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Abstract: In this paper we investigate an extension to Vuillemin's work on continued
fraction arithmetic [Vuillemin 87, Vuillemin 88, Vuillemin 90], that permits it to eval-
uate the standard statistical distribution functions. By this we mean: the normal dis-
tribution, the �2-distribution, the t-distribution, and, in particular, the F-distribution.
The underlying representation of non-rational computable real numbers is also as con-
tinued fractions, in the style of Vuillemin. This permits arbitrary accuracy over a range
of values. The number of terms of a continued fraction that are used by the implemen-
tation is dynamically controlled by the accuracy demanded of the �nal answer.
The use of a modern lazy functional language { Haskell { has considerably eased the
programming task. Two features are of note. Firstly, the type-class structure allows
one to augment the varieties of numbers supported by the language. Secondly, the lazi-
ness inherent in the Haskell's semantics, makes it very straightforward to dynamically
control the accuracy of the intermediate evaluations.

1 Introduction

In this paper we investigate the use of continued fractions to evaluate the stan-
dard statistical distribution functions, by which is meant: the normal distri-
bution, the �2-distribution, the t-distribution, and the F-distribution. The un-
derlying representation of non-rational computable real numbers themselves is
also as continued fractions, in the style of Vuillemin [Vuillemin 87, Vuillemin 88,
Vuillemin 90].

The novelty of the work presented in the paper lies in the following areas.

{ We use Vuillemin's work in a setting (the calculation of the incomplete beta
function) which is highly unstable, and demonstrate that his system is fea-
sible.

{ We show that three continued fraction expansions, not discussed by Vuillemin,
are nevertheless compatible with his system.

{ We show that Gauss' continued fraction may be safely used for a range of
values besides those already described by Vuillemin.

The use of Vuillemin's system permits arbitrary accuracy over a range of
values. The number of terms of the continued fraction that are used by the
implementation is dynamically controlled by the accuracy demanded of the �nal
answer. Here, we exploit the Laziness of mordern functional languages { in this
case Haskell [Hudak et al 88].

The use of a modern lazy functional language { Haskell { has considerably
reduced the amount of code required; currently amounting to just less than
1000 lines. This includes: an implementation of the rationals, Gosper's continued
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fraction package, Vuillemin's transcendental function package, and the extra
functions for the statistical functions. Two further features are of note. Firstly,
the type-class structure allows one to augment the varieties of numbers supported
by the language. Secondly, the laziness inherent in the Haskell's semantics, makes
it very straightforward to dynamically control the accuracy of the intermediate
evaluations.

The most interesting problems arise whilst considering the incomplete beta
function, which is required to implement Fisher's F-distribution [Fisher 22].
Lackritz [Lackritz 84] has provided a simple method of evaluating this distri-
bution, provided we deal only with small integral degrees of freedom �1 and
�2. The complexity of the evaluation of Lackritz's �nite series is O(N2), where
N = �1 + �2. We therefore require a method for non-integral �1 and �2 and for
those situations where �1 + �2 is large, say 105 or more.

As Mardia and Zemroch have observed [Mardia and Zemroch 78], we are
mainly concerned with rational-valued degrees of freedom when we consider non-
parametric statistical testing. That is, we no longer assume that we are sampling
from normally distributed populations. Examples are: the Kruskal-Wallis Test
[Kruskal and Wallis 52], and Box's test of Homoscedasticity [Box 49].

We begin by considering the continued fractions that we will be using.

2 Continued Fractions

Continued fractions were much favoured by applied mathematicians of pre-
vious centuries, because they provided a relatively straightforward calculat-
ing procedure in a pre-computer age (see Gauss and Laplace amongst others)
[Gauss 1812, Laplace 1805]. The analytic properties of Gauss' work are well de-
scribed by Wall [Wall 48]. However, with the development of 
oating point soft-
ware and hardware, attention shifted away from them.

A number of researchers are undertaking a reappraisal of algorithms associ-
ated with continued fractions. These tend to fall into two categories: �rstly those
using continued fraction algorithms with 
oating point implementations of real
numbers, and secondly, those using continued fractions to represent real num-
bers. In this paper I shall be using both techniques to outline some extensions to
the Haskell [Hudak et al 88] continued fraction package described in [Lester 92]
so that it may perform analysis on standard statistical distributions.

In the �eld of statistical distribution tabulation { and in particular that of
the F-distribution { much use has been made of continued fraction algorithms
[Tretter and Walster 79, Tretter and Walster 80]. Unfortunately, it is not possi-
ble to make na��ve use of these continued fractions for 
oating point calculations,
as cancellation of terms results in a fatal loss of accuracy. To this end, Tret-
ter and Walster use MACSYMA to perform symbolic simpli�cations on their
continued fraction. Brown and Levy [Brown 94] use these simpli�cations to vali-
date DiDonato and Morris' 
oating point Algorithm 708 for the incomplete beta
function [DiDonato and Morris 92], against a Maple implementation.

The use of continued fractions as a representation of real numbers has been
facilitated by two developments. Firstly, Gosper has shown how to manipulate
continued fraction representions of real numbers to perform basic arithmetic
[Gosper 80, Gosper 81]. His work was subsequently extended to deal with tran-
scendental functions by Vuillemin [Vuillemin 87, Vuillemin 88, Vuillemin 90].
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We begin with a review of nineteenth century work on continued fraction
algorithms.

3 Gauss' Hypergeometric Function

In the impressively titled paper: \Disquisitiones Generales Circa Seriem In�ni-
tam

1 +
��

1 : 

x+

�(�+ 1)�(� + 1)

1 : 2 : 
(
 + 1)
xx+

�(�+ 1)(�+ 2)�(� + 1)(� + 2)

1 : 2 : 3 : 
(
 + 1)(
 + 2)
x3 + etc.

Pars prior" [Gauss 1812], Gauss outlines the properties of the hypergeometric
function. Formally, it can be de�ned by Equation 11.

2F1(�; �; 
; z) = 1 +
1X
n=1

 
nY
i=1

(�+ i � 1)(� + i� 1)

i(
 + i � 1)

!
zn (1)

This has a circle of convergence jzj = 1; and its behaviour on this circle is:

{ divergence whenever <(
 � �� �) � �1;
{ absolute convergence whenever <(
 � �� �) > 0;
{ conditional convergence whenever �1 < <(
 � �� �) � 0, the point z = 1
is excluded.

One of the properties mentioned by Gauss, occurs in the second section
of his paper, where a continued fraction is de�ned for the ratio of a pair of
hypergeometric functions.
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and, as Gauss observes: \cuius lex progressionis obvia est".
On its own, Equation 2 is not too useful; what we really require is not a con-

tinued fraction for a ratio of hypergeometric functions, but one for an individual
function. Observe what happens when we substitute � = 0 into Equation 2: the
numerator becomes 2F1(�; 0; 
;x), which is 1. Hence Gauss provides a continued
fraction expansion for 2F1(�; 1; 
;x).

Suitably massaged, this continued fraction can be represented as a potentially
in�nite sequence of rationals. The sequence will terminate if one of �, 
, or 
��
is a negative integer or 0.

2F1(�; 1; 
 + 1;x) =

�
1

1�
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1�
bx

1�
cx

1�
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1� � � �
�

(3)

1 Here, and throughout, we shall refer to the Hypergeometric function as
2F1(�;�;
;x). The leading 2 subscript refers to the two parameters forming the
numerator of each coe�cient (� and �), and the 1 subscript refers to the one param-
eter associated with the denominator of each coe�cient (
).
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where
a = �
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+3��)
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In Haskell, we can express Gauss' continued fraction (for rational parameters a
and c) as gauss1CFa c which is 2F1(a; 1; c; 1).

> gauss1CF :: QRational -> QRational -> [QRational]
> gauss1CF a c
> = 0: 1: c/a: a*(c+1)/ca: cf (ca/(a*(a+1)*c)) 0
> where cf :: QRational -> Integer -> [QRational]
> cf p n = (c+(2*n+2)%%1)*p:
> (c+(2*n+3)%%1)/(p*(ca+n1)*n2):
> cf (p*(ca+n1)*n2/((a+n2)*(c+n1))) (n+1)
> where n1 = fromInteger (n+1) :: QRational
> n2 = fromInteger (n+2) :: QRational
> ca = c-a

To evaluate 2F1(a; 1; c;x) at a particular value of x we simply divide alternate
terms of gauss1CF by �x, evaluate the resultant continued fraction, and multiply
this result by �1

x
. This can be made to work for real valued x not just rational

values.

3.1 Kummer's Con
uent Hypergeometric Function

If, in the de�nition of the hypergeometric function, we let � !1 as x! x
�
we

obtain Kummer's Function.

1F1(�; 
; z) = lim
�!1

2F1(�; �; 
;
z

�
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i(
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!
zn (4)

For our purposes, it su�ces to consider 1F1(�; 
; z), with � = 1 and 
 � 1.
Given the value of 
 we may calculate 1F1(1; 
; 1) as phiCF1
.

> phiCF1 :: QRational -> [QRational]
> phiCF1 c
> = 0: 1: cf (-1%%1) 0
> where cf :: QRational -> Integer -> [QRational]
> cf p n = (c+fromInteger (2*n)) * p :
> ((c+fromInteger (2*n+1)) /
> (p*fromInteger n')):
> cf p' n'
> where p' = -p * (1/c')* fromInteger n'
> n' = n+1
> c' = c + fromInteger n

Once more the calculation of 1F1(1; 
; z) involves dividing alternate terms by z
and dividing the result by z.

507



4 The Normal Distribution

This, the simplest of the standard statistical distribution functions we shall con-
sider, is de�ned as the integral in Equation 5.

�(x) =
1p
2�

Z x

�1

e�
1

2
x2dx (5)

To obtain a continued fraction, we need to consider the Mills' ratio, of Equa-
tion 6.

R(x) =
1� �(x)

�0(x)
= e

1

2
x2
Z
1

x

e�
1

2
x2dx (6)

Laplace was the �rst to give a continued fraction for this function in
[Laplace 1805]. It occurred as a rejected hypothesis for the thermally induced
atmospheric distortion that the astronomers of the day were observing.
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(7)

This continued fraction { Equation 7 { su�ers from a low rate of convergence
for small x. For this reason we use Shenton's continued fraction { Equation 8 {
instead [Shenton 54].
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r
�

2
e
1

2
x2 �R(x) =

�
x

1�
x2
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2x2

5�
3x2

7+
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�

(8)

Once more, this algorithm will work for x represented as a continued fraction as
well as rational x.

Oddly enough, the most expensive part of the calculation involves the cal-
culation of

p
� = exp (log pi/2) rather than that of the Mills' ratio. Since

� (12) =
p
�, this leads nicely into the next section, where we obtain a more

e�cient algorithm to perform this calculation.

5 The Gamma Function

The Gamma function � (�) is Euler's generalization of the factorial function
on integers. Although we won't be using it at complex values, this function is
analytic over the entire complex plane, except at the points � = 0; �1; �2; : : :.
It can be de�ned by the integral given in Equation 9.

� (�) =

Z
1

0

x��1e�xdx (9)

Provided that j�j is reasonably small, i.e. less than 105, the �rst part of the
implementation uses Equation 10 to adjust the value of � to lie within 0 < � < 2.

� (�+ 1) = �� (�) (10)

Clearly, if � is one of 0; �1; �2; : : :, then we will be using the formula in reverse
and will eventually end by dividing by zero.
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Associated with the Gamma function are the pair of incomplete Gamma
functions : 
(�; x) and � (�; x) de�ned in Equations 11 and 12.


(�; x) =

Z x

0

x��1e�xdx for 0 � x (11)

� (�; x) =

Z
1

x

x��1e�xdx for 0 < x (12)

Obviously the following relation holds between the incomplete Gamma functions
and the Gamma function proper.

� (�) = 
(�; x) + � (�; x) for 0 < x (13)

For this to be a viable exact method for the calculation of � (x) we seek con-
tinued fraction expansions for 
(�; x) and � (�; x); these are given in Equations
14 and 15.


(�; x) =
x�e�x

�
1F1(1; �+ 1; x) for 0 < x (14)

Recall that 1F1 is the con
uent hypergeometric function of Kummer.

� (�; x) = x�e�x
�
1

x+

1� �

1+

1

x+

2� �

1+

2

x+
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�

for 0 < x (15)

In particular, for computational purposes we select x = 1. This eliminates the
need to calculate x� { which given that both � and x might, in general, not be
integral { leads to a considerable optimization.

� (�) = e�1
�
1

�
1F1(1; �+ 1; 1) +

�
1

1+

1� �

1+

1

1+

2� �

1+

2

1+
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��

(16)

As a corollary we can compute the Beta function B(p; q) which is de�ned as:

B(p; q) =
� (p)� (q)

� (p+ q)
(17)

One optimization that is possible in the calculation of B(p; q), is to avoid two of
the divisions by e.

The problem with direct use of Equation 17 occurs when p and q are both
large { say 1050 and 1049. In these circumstances it is no longer practical to use
the recurrence relations to simplify the gamma functions. We will explore an
alternative at the end of Section 7.
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6 The �2-Distribution

One direct use that can be made of our work on the � functions is that it is now
very easy to generate exact values for the �2-distribution.

Q(�2; �) = 1� 
(�2 ;
�2

2 )

� (�2 )
where 0 � �2 and 0 < � (18)

Notice that for small positive integral values of �
2 , we may use the alternative

de�nition of Equation 19.

Q(�2; �) =
� (�

2
; �

2

2
)

(�
2 � 1)!

(19)

Expanding the continued fraction of Equation 15 results in the �nite series of
Lackritz [Lackritz 83].

7 The F -distribution

There are some interesting features in the calculation of the F-distribution. For
example,Mardia and Zemroch [Mardia and Zemroch 78] show that F = 8:4872�
1078 to obtain Q(F; 120; 0:1) = 0:0001. This value of F is, curiously, close to the
limit of the maximum 
oating point number available on their machine. The
points at which Brown and Levy [Brown 94] were able to test DiDonato and
Morris' algorithm was also arti�cially restricted, by 
oating point limitations in
their generation routine.

In [Lackritz 84] Lackritz shows how to obtain exact p values for F and t tests,
provided that we are dealing with small integral valued degrees of freedom. The
following approach gives exact results for rational valued degrees of freedom.

We begin with a de�nition: the probability of random variable { F-distributed
with �1 and �2 degrees of freedom { being greater than F is Q(F j�1; �2), de�ned
in Equation 20

Q(F j�1; �2) = Ix(
�2

2
;
�1

2
) where x =

�2

�2 + �1F
and 0 � F; 0 < �i (20)

The normalized incomplete beta function: Ix(p; q), is given in Equation 21.

Ix(p; q) =
Bx(p; q)

B(p; q)
(21)

The incomplete beta function is related to Guass' Hypergeometric in Equa-
tion 22.

Bx(p; q) =
xp

p
2F1(p; 1� q; p+ 1;x) (22)

However, using one of Gauss' transformations:

2F1(�; �; 
;x) = (1� x)�� 2F1(�; 
 � �; 
;
x

x� 1
)
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we obtain:

Bx(p; q) =
xp(1� x)q�1

p
2F1(1� q; 1; p+ 1;

x

x� 1
) (23)

Expanding the hypergeometric function yields Equation 23 which is essentially
the continued fraction of Mueller.

The use of this continued fraction is limited to those cases where �1 �
x

x�1 < 1 in order that the argument may lie within the radius of convergence of
Gauss' Hypergeometric continued fraction. To ensure that this remains the case,
whenever x > 1

2 we use the re
ection property of Equation 24.

Ix(p; q) = 1� I1�x(q; p) (24)

It is possible { for large values of p and q (> 105) { for the method of
calculatingB(p; q) to become too time consuming. For this reason, an alternative
exact method for calculating B(p; q) is required.

7.1 Student's t-Distribution

This is merely a special case of the F-distribution.

A(tj�) = 1� Ix(
�

2
;
1

2
) wherex =

�

� + t2
and � > 0 (25)

Once more, care needs to be taken to ensure that the value of x lies in the
range 0 � x � 1

2 . If it doesn't we must use the re
ection formula of Equation 24.

8 Conclusion and Further Work

In this paper we have shown how to extend Vuillemin's work on continued frac-
tion arithmetic [Vuillemin 87, Vuillemin 88, Vuillemin 90], to the evaluation of
the standard statistical distribution functions. The number of terms of a contin-
ued fraction that are used is dynamically controlled by the accuracy demanded
of the �nal answer.

Two features of Haskell have proved particularly helpful. Firstly, the type-
class structure allows one to augment the varieties of numbers supported by
the language. Secondly, the laziness inherent in the Haskell's semantics, makes
it very straightforward to dynamically control the accuracy of the intermediate
evaluations.

We have shown how to use Tretter and Walsters' continued fraction to evalu-
ate the incomplete beta function [Tretter and Walster 79, Tretter and Walster 80].
DiDonato and Morris incorporate various improvements in their algorithm, but
admit that, for small values of p and q their continued fraction requires many
terms of the continued fraction to be evaluated [DiDonato and Morris 92]. Our
implementation is capable of handling this problem, albeit at reduced speed.

The principle outstanding problem we have is when p and q are large; then
the calculation of B(p; q) becomes inordinately expensive. We are able to work
with values of p and q less than 105. Improving this requires that we are able to
give an exact value for the log Gamma function ln(� (1 + �)).

Another avenue of investigation lies with the calculation of the probabilities
associated with the non-central �2- and F-distributions.
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