Journal of Universal Computer Science, vol. 1, no. 7 (1995), 439-453
submitted: 15/12/94, accepted: 26/6/95, appeared: 28/7/950Springer Pub. Co.

A High Radix On-line Arithmetic for Credible and
Accurate Computing

Thomas Lynch
(Advanced Micro Devices, U.S.A
Tom.Lynch@amd.com)

Michael J. Schulte
(University of Texas at Austin, U.S.A
schulte@pine.ece.utexas.edu)

Abstract: The result of a simple floating-point computation can be in great error, even
though no error is signaled, no coding mistakes are in the program, and the computer
hardware is functioning correctly. This paper proposes a set of instructions appropriate
for a general purpose microprocessor that can be used to improve the credibility and
accuracy of numerical computations. Such instructions provide direct hardware sup-
port for monitoring events which may threaten computational integrity, implementing
floating-point data types of arbitrary precision, and repeating calculations with greater
precision. These useful features are obtained by the efficient implementation of high
radix on-line arithmetic. The prevalence of super-scalar and VLIW processors makes
this approach especially attractive.

Key Words: High-radix, on-line arithmetic, precision, accurate, reliable, credible,
super-scaler, VLIW.

1 Introduction

One of the principle problems of numerical analysis is to determine how
accurate the results of certain numerical methods will be. A “credibility-
gap” problem is involved here: we don’t know how much of the computer’s
answers to believe.

- Donald Knuth [Knuth 81]

For a program to be credible, the results it produces must not be mislead-
ing. Hence, a program that always returns the value ‘indeterminate’ is credible;
although 1t 1s not accurate. It is highly desirable to define an arithmetic that
can be used to develop credible and accurate programs, and then to support the
arithmetic in hardware so that it can be fast and efficient.

The most common approach to the credibility /accuracy problem has been the
“use lots of bits” approach. For example, IEEE std. 754 [IEEE 85] implementa-
tions often have 64 bit data paths. Although it is unlikely that so much precision
is needed at any step in a program, in the rare case that it is needed the precision
is available. Still, an TEEE std. 754 conformant program can produce results
that are completely inaccurate without warning [Lynch and Swartzlander 92,
Bohlender 90].

The TEEE std. 754 rounding specifications facilitate a credible interval arith-
metic [Moore 66, Nickel 85, Alefeld 83]. Accordingly, upper and lower bounds of
intervals which contain the true results are calculated. This, however, does not

439

guarantee accuracy, since interval boundaries may diverge due to accumulated
numerical errors and pessimistic assumptions.

Several software approaches have been developed to produce credible and

accurate arithmetic. Some special computer languages such as [Cohen et al. 83,
Klatte et al. 92] give the programmer control over precision and cancelation.
LeLisp is based on on continued fractions [Vuillemin 90], while the program de-
scribed in [Boehm et al. 86] is based on a form of on-line arithmetic.
In [Wiedmer 80], a method is described by which abstract symbolic manipula-
tions can be used to exactly manipulate values which have infinite representa-
tions in conventional form. In [Schwartz 89], a C++ library is presented which
allows results to be evaluated to arbitrary precision. Numbers are represented
in two parts: a data value, which corresponds to the already known bits of the
number, and an expression. When more bits are required, the expression is ma-
nipulated to generated the required bits.

A common component of many credible and accurate programs is variable-
precision arithmetic. The reason for this is discussed in [Section 2]. Based on
this observation, G. Bohlender, W. Walter, P. Kornerup, and D. W. Matula,
argue that certain hardware hooks should be added to microprocessors in order
to make variable-precision arithmetic more efficient [Bohlender et al. 91]. We
take this a step further, and describe a set of microprocessor instructions which
implement high radix on-line arithmetic. These instructions can be implemented
by simple extensions to conventional microprocessor architectures, and they are
well suited for very long instruction word (VLIW) and super-scalar techniques.

On-line arithmetic performs operations serially most significant digit first

[Ercegovac 84, Ercegovac 91, Irwin and Owens 87, Muller 94],
[Duprat and Muller 93, Bajard et. al 94]. This is possible because of the redun-
dancy in the underlying signed digit representation. On-line operations concep-
tually operate on arbitrarily long digit streams, and as a consequence changing
or mixing precisions is straight forward. Most significant digit first variable-
precision techniques were successfully used on the AMD K5(tm) microprocessor
for implementing accurate transcendental functions on a processor with a narrow
data path [Lynch et al. 95].

This paper presents an efficient method for performing credible and accurate
computation through the use of high radix on-line arithmetic. The relationship
between credible, accurate arithmetic and variable-precision arithmetic is dis-
cussed in [Section 2]. [Section 3] discusses our method for performing high radix
on-line arithmetic using sequences of three operand microprocessor instructions.
Hardware designs for a significand adder unit and significand multiplier unit are
discussed in [Section 4] and [Section 5], respectively. High radix on-line floating-
point algorithms are discussed in [Section 6], followed by conclusions in [Section
7]. This paper is an extended version of the research presented in [Lynch 95].

2 Range Expansion and Error

The goal of this section is to establish the relationship between credible, accurate
arithmetic and variable-precision calculations. We start by quantifying the limi-
tations of conventional floating-point representations as a function of precision.
We then show how these representation limitations interact with the behavior

440

of accurate computer approximations. We conclude the section with an example
of how relative error can be controlled by using variable-precision arithmetic.

The distance between neighboring representable values around the point z
in a conventional binary floating-point system is:

Az, p) = 9llegs|e|]—(p—1) (1)

where p is the precision of floating-point numbers in the system. This function
bounds the minimum worst case error that may be introduced by a computer
approximation of any continuous function with a range that spans at least two
representable values. If the rounding mode is round-to-nearest, then the worst
case absolute representation error in a neighborhood around =z is:

LA D))

and the worst case relative error is:

LA) @

The distance between neighboring result values of a perfect computer ap-
proximation of a continuous function, f, around a point z is closely described

UF, 2 pin) = Al pin) T (1

where p;, 18 the input precision. The distance between representable result values
with a precision of pey: around f(z) is A(f(2), pout). The ratio of (f, z, pin) to

A(f(x), pout) 18
(f(2), pout) |) 5
n(f, 2, Pins Pout) = A0, Poud) (5)

This ratio is a measure of how well round-to-nearest of f(x) maps continuous
values of « into a floating-point representation of precision p,,,; without consid-
ering the effects of approximation error. We call this ratio the range expansion
because when this ratio is greater than one (or 1/2 at exponent boundaries), all
values belonging to the floating-point representation of precision p,; cannot be
produced by f(xz). Many representable values fall in between neighboring output
values and hence there is ambiguity in determining the correct output value.

This point is illustrated further in [Figure 1]. This figure shows that for a
perfect approximation of e”; e” € [1000.000, 1111.111], where p;,, = 7 and pyyp =
7, there are multiple representable values between possible output values. In this
example, the function was rounded to nearest as though it had been calculated
to infinite precision, yet input representation error, which is guaranteed to be
present, causes a worst case error of 7 ulps on the output If equatlon (5) had
been apphed to this example to force a small range expansion by raising the
input precision, this effect would not occur, as there would not be multiple
representable values between output values.

By definition, a credible and accurate computer approximation has a guaran-
teed output accuracy. The output precision can be set from the output accuracy
since 1t is not helpful for the distance between produced values to be much

441

output values representable
(input assumed exact) values

— 1111111
|ndeterm|nacy neareg(f(x)) e ———
~7ulps

——— 1100.000

Figure 1: Range Expansion of e® With a 7 Bit Precise Input

smaller than the dominate output error. By using equation (5), this output pre-
cision implies an input precision, which implies an input precision for the next
operation back, etc. When precision 1s set in this way, the accumulation of small
rounding errors occur at the end of the word, and therefore are of the order of
the representation error, A(z,p). This suggests that error propagates into the
values like carries from the bottom of the word, at a rate of O(log(m)), where
m is the number of floating-point operations.

[Figure 2] shows the range expansion for the function z—1 for z € [14+2715 2].
The plot on the left shows a worst case factor of 2'® more distance between result
neighbors than between representable neighbors. The plot on the right shows
that the factor can be reduced to a worst case of % by adding 16 more bits to
the input precision.

The technique of using variable-precision arithmetic to reduce error is illus-
trated further by coding the function

S
S = (6)

in both fixed precision and variable-precision arithmetics. A supplemented ver-
sion of the language “Mathematica” [Wolfram 91] is used for coding this exam-
ple. The code segment on the left is a 16 bit fixed precision implementation. The
code on the right is a variable precision version with a range expansion of at
most one half for each operation. The function round rounds the first operand to
nearest using the precision specified by the second operand. The accuracy goal
for this transformation is a relative error of 2712, Its domain is z € [1 42715 2].

442

lo
9271

14

12

10

-10

-12

-14

1 1.2 1.4 1.6 1.8

2
z log n

16 Bits In, 16 Bits Out 32 Bits In, 16 Bits Out

Figure 2: Range Expansion of z — 1 for z € [1 + 271, 2]

f_fixed[z_] := Modulel {7, f_variable[z_] := Modulel {7},
zp = round[z,16]; zp = round[z,31];
zsq = round[Sqrt[zp]l, 16]; zsq = round[Sqrt[zp], 32];
n = round[zsq + 1, 16]; n = round[zsq + 1, 16];
d = round[zsq - 1, 16]; d = round[zsq - 1, 16];
nsd = round[n/d, 16]; nsd = round[n/d, 14];

Return [nsd] Return [nsd]

]]

In the variable precision code, an output precision of 14 gives two guard
bits for roundoff error accumulation. The numerator and denominator sums are
computed to an output precision of 16 bits to minimize the roundoff error accu-
mulated in the subsequent divide, and to make up for the small input alignment
shifts in the add. The square root is performed with an output precision of 32
bits so that the input precision to the subsequent zsq — 1 will be sufficient to
ensure a range expansion of at most one half. The input precision to the square
root is set to 31 bits to give a satisfactory range expansion.

Here are the results of evaluating each of these code segments for the input
value 3072/3071. Values are given in hexadecimal.

z = 1.0015571c97b74f469b3 . . (7)

f(z) = 2ffd fifaaa71c42. (8)
fﬁxed_precision(’z) 3334.0 (9)
Jinterval(?) = [2aab.4,4001.8] (10)
fvariable_precision(z) 2ffe.0 (11)

The fixed precision result has only one significant bit. The interval result (16
bit calculation) has less than one significant bit, but it does contain the exact
result. Only the variable-precision code produces a result with a small relative

error. [Figure 3] shows scatter plots of the relative error in the fixed precision and
variable-precision code. The variable-precision code has an even relative error,
bounded by about 2713, The fixed precision code has unbounded error, which
becomes large as z approaches 1.

Fixed Precision Code Variable Precision Code, n<1

-10

R Lo

" v . e S
-15 -‘ ?ﬁ e »"*W“@?&’W - re

-20

-25

Log re
g2

Figure 3: Log Relative Error of f(z) for z € [1 + 2715, 2]

3 High Radix On-line Arithmetic

In [Bohlender et al. 91], G. Bohlender, W. Walter, P. Kornerup, and D. W. Mat-
ula suggest hardware features which make variable-precision arithmetic easier to
implement. They suggest that adders should return the rounded sum and the
bits shifted off during alignment, that multipliers should return the upper and
lower bits of the product, and that dividers should return the quotient and the
remainder. The instruction specifications for add, subtract, multiply, and divide
using this technique are:

add ¢,d ; a,b
sub ¢,d ; a,b
mul ¢,d ; a,b
div ¢,d ; a,b

where a and b are source registers and ¢ and d are destination registers.

There are two main disadvantages of implementing these instructions on
a general purpose microprocessor. First, most microprocessors’ instruction sets
allow at most three operands and would be unable to support these four operand
instructions. Second, the internal control of most microprocessors works on the
principal of one destination operand per instruction, while these instructions
each have two.

To overcome these disadvantages, we propose the use of a high radix on-
line arithmetic. The high radix on-line arithmetic is implemented as a sequence

of three operand instructions, with two source operands and one destination
operand. These instructions require no extraordinary timing, instruction for-
mats, or decoding. Hence they are sufficient primitives for implementing an ef-
ficient variable-precision arithmetic congruent with modern architectures. They
have the added advantage of being simpler to implement than their conven-
tional fixed-precision, floating-point counter-parts. The sets of instructions for
implementing high radix on-line addition and multiplication are:

add_init spill, a_0, b_0O
add_extend y_{i-1}, a_i, b_i

add_complete y_n, null, null
mul_init null, a_0, b_0
mul_extend y_{i-1}, a_i, b_i
mul_complete y_n, null, null

Sequences of these instructions are combined to perform high radix on-line
arithmetic. For example, the instruction sequences for implementing four digit
high radix on-line addition and multiplication are:

add_init spill, a_0, b_0
add_extend y_0, a_1l, b_1
add_extend y_1, a_2, b_2
add_extend y_2, a.3, b_3
add_complete y_3, null, null
mult_init null, a_0, b_0
mult_init null, a_1, b_1
mult_extend y_0, a.2, b_2
mult_extend y_1, a.3, b_3

mult_complete y_2, null, null
mult_complete y_3, null, null

An n digit plus n digit high radix on-line addition consists of one add_init in-
struction, n — 1 add_extend instructions, and one add_complete instruction. An
n digit by n digit high radix on-line multiplication consists of two mult_init in-
structions, n — 2 mult_extend instructions, and two mult_complete instructions.
For these instructions, each digit is a machine word. Machine integers work nat-
urally as signed digits, and they are supported directly in the processor’s data
paths, caches, memory busses, etc. Each instruction executes in one machine
cycle until the execution unit runs out of some resource such as multiplier width
or operand register width, as discussed later.

Since high radix on-line arithmetic produces results most significant digit
first, separate code segments may be pipelined. For example, it is not necessary
to wait for a series of digit adds to complete before starting a subsequent series
of digit multiplies. This can be used to speed up operations on a super-scalar
processor where multiple execution units are available simultaneously. In a super-
scalar design, implementing a number of small units has advantages over using
one large unit, because the small units fit in the integer data path, do not limit

clock periods; and can also be used for integer instructions. For example, a 64
by 64 bit multiplier may only be partially utilized by programs that perform
32 bit arithmetic, and such programs may even stall for lack of multiplication
resources. On the other hand four 32 by 32 bit multipliers require approximately
the same total die area, but can be better utilized.

According to this method a floating-point number & 1s represented as a string
of ny + 1 signed integers (eg;xg,€1,...,2n,—1), Where e, is the exponent of
and x; is the ith significand digit. The value of « is:

Ne—1

x = E x; o reET!
i=0

where 7 is the radix of the number system. If each digit 1s a k-bit signed integer,
then r = 28~1. Increasing n, increases the precision of z, which allows variable-
precision computations to be performed. Integer arithmetic can be efficiently
performed as single-digit operations on the same hardware.

A signed-digit, floating-point number can have multiple representations. For
example, if the digits are decimal, the number 1024 can be represented as
z=(3;1,0,2,4) or equivalently « = (3;1, 1, -8, 4). Conversion from signed-digit
notation to conventional notation is accomplished by subtracting the negative
digits from the non-negative digits, as shown below.

(1’ 1’ o’ 4)
- (o’ o’ 8’ o)

4 Adder Significand Unit

The functionality of the adder significand unit is described here using C++
classes. These classes can be viewed as hardware behavior models. The declara-
tion for the adder significand unit is:

class adderq{
public: //three instructions
int initial(int a, int b);
int extend(int a, int b);
int complete();
protected:
int keepsum;
s
Each of the C++ class methods performs the same function that a hardware unit
would perform if it received an analogous instruction. For example, calling the
method initial with two values, a and b is analogous to sending the instruction
opcode for add_init along with the values a and b on the operand busses to the
adder significand unit.

With the proposed method, all digits are streamed through the same func-
tional unit. The signed digit adder carries the sums to the right instead of prop-
agating carries to the left. The sum carried to the right is called keepsum in the
code. This sum is stored in a register in the add unit.

446

In the case of a VLIW machine, it is easy to stream instructions through
a specific unit, since the instruction sequences may be placed into the correct
unit’s decode slot. However, for a super-scalar microprocessor there is a problem
since the usual dependency checking hardware will not see dependencies between
related initial, extend, and complete instructions. A solution to this problem is
to code related initial, extend, and complete instructions consecutively in the
instruction stream and have the decode unit treat them specially by placing
them in an instruction queue in front of the appropriate execution unit.

The initial instruction resets the unit’s state in preparation for a new se-
quence of digits. It sets keepsum to zero, calculates the most significant sum
digit, and returns the value of spill. The value of spill is zero, unless the most
significant sum digit produces a carry. Carry from the most significant digit is
a special condition, since the exponent calculation is affected. This event should
be fairly rare, since the likelihood of carry when adding full word integers is low.

int adder::initial(int a, int b){ //on-line delay of omne
int spill;
keepsum = 0;
return spill = extend(a, b);

}

The extend instruction outputs a new sum digit by adding a new transfer
digit ¢ to the keepsum calculated in the previous iteration. It also calculates a
new keepsum digit to be used in the next iteration.

int adder::extend(int a, int b){
long long dig_sum; // this is larger than int
int adj_sum;
int t;
int sum;
int result_sum;

dig_sum = (long long)a + (long long)b;//add two digits

if(dig_sum >= DIG_MAX){ //check for carry
t = 1;
adj_sum = dig_sum - DIG_MAX - 11; //may go negative
Yelse
if(dig_sum <= -DIG_MAX){ //check for borrow
t = -1;
adj_sum = dig_sum + DIG_MAX + 11; //may go positive
Yelse{
t = 0;

adj_sum = dig_sum;
b
result_sum = keepsum + t;
keepsum = adj_sum;
return result_sum;

}

The last sum digit is returned directly by issuing an add_complete instruction.

int adder::complete(){

447

return keepsum;

}

5 Multiplier Significand Unit

The interface to the multiplier significand unit 1s similar to the interface to the
adder significand unit. The multiplier state consists of two operand registers, a
partial product accumulator, and a digit counter which points into the operand
registers. The class definition for the multiplier significand unit is shown below.

class mul{
public:
void initial(int a, int b);
int extend(int a, int b);
int complete();
protected:
word Xi,Yi; //operand registers:
word running_product; // a partial product accumulator
int i; // digit counter

};

The used portion of the two operand registers increases as new digits are
introduced. This places a limitation on the number of digits that can be multi-
plied. When the internal state is saturated, a program can scan out the internal
partial remainder value by issuing mult_complete instructions. This value can
then be used to extend the operation.

In order to support internal state manipulations in the multiplier, we intro-
duced maximum word length operations for addition, shifting, and word by digit
multiplication. The C++ definition for the word class is given below.

class word {
public:

word(char * d0, ...);

word();

word(int);

“word();

void print();

int & operator[] (unsigned int index);

word simplify();

word operator-();

word operator+(word b);

word operator—(word b);

word operator>>(int count);

word operator<<(int count);

word word_by_digit(int digit);
protected:

int digit[DIGS]; // DIGS is the register width
s

The algorithm we use is basically that presented by Trivedi and Ercegovac
[Trivedi and Ercegovac 75]. The introduction of new operand digits at each step
results in a new row and a new column in the partial product matrix. Car-
ries created by this addition of new rows and columns are limited in duration,
and so it is possible to return the leading partial product digit after two new
row/column sums are added. The rows and columns are produced with digit by
word multiplies. In high radix on-line arithmetic a digit by digit multiplier; or
perhaps a digit by a few digits multiplier will be the largest practical unit, so
the digit by word operation will become slower as the number of operand digits
becomes larger. This causes the result digit latencies to grow as the number of
input operands becomes larger.

The nitial instruction sets the digit counter, i, to zero and computes the
most significant partial product digit. The result busses are not driven, since
this digit may need to be adjusted in the next iteration.

void mul::initial(int xx, int yy){ //on-line delay of two,
i=20;
extend(xx, yy);

}

The extend instruction produces a new product digit. Initially, it computes
a new row and column of the matrix by multiplying the new digit of z by the
previous digits of y and the new digit of y by the previous digits of . The new
row and column are added to the running partial product and the leading digit
of the running partial product is returned.

int mul::extend(int xx, int yy){
// overflowed our state?
if(i >= DIGS){
fprintf(stderr,"digit overflow\n");
abort();
}
// shift the new digits into the operand registers
Yili+1] = yy; // Yi is real state
word Ximi;
Ximl = Xi; // Xi is real state
Xil[i+1] = xx;
// add in the new row and the new column to the matrix
word trap_row = Yi.word_by_digit(xx);
word trap_col = Ximl.word_by_digit(yy);
word partial_product = add_nr(trap_row, trap_col);
running_product = add_nr(running_product, partial_product);
// extract leading digit of the running product
word S = add_nr(abs_word(running product) , half);
int dj = sign(running_product) * S[0];
// add cancels the lead digit
running_product = add_nr(running_product, -dj);
running_product = running_product << 1;// walks to the left
i++;

return dj;

449

Two mult_complete instructions are used to return the last two product digits.

int mul::complete(){
return extend(0,0);

}

6 Floating-point Algorithms

The high radix on-line floating-point algorithms presented in this paper are sim-
ilar to those given in [Watanuki and Ercegovac 81]. However, these operations
have been partitioned into microprocessor instruction sequences. Overflow or
cancelation from the leading digit should be fairly rare, because of the large
radix. Hence, the exponent and significand operations are somewhat indepen-
dent. The programmer specifies the steps in the operation explicitly. The fol-
lowing shows the assembly code for a five digit floating-point multiply. The jnz
instruction should be coded so that it is predicted to be taken by the branch
prediction unit. When the branch is found to be not taken, the processor will
delete the speculative state. The jnz instruction 1s placed at the end of the se-
quence so that the decoder gets the multiply instructions to the multiplier as
soon as possible. It could be moved up a little to fill delay slots caused by the
multiplier getting slower with the introduction of operand digits.

add exp_y, exp_a, exp_b // may get ov trap

mult_init null, a0, ©b_0 // perform multiply

mult_init null, a_1, b_1

mult_extend y_0, a_2, b_2

mult_extend y_1, a_3, b_3

mult_extend y_2, a_4, b_4

mult_complete y_3, null, null

mult_complete y_4, null, null

mult_test norm, y_0, null // test for normalized result

jnz done, norm, null
// add program personality here;
done: exit

The program personality code is seldom executed, since it is only looking
for three out of 2% cases, where k is the number of bits per integer. This is
a benefit of using a high radix. Hence, we can normally ignore the exponent
adjustment, and performance does not suffer. No additional hardware structures
beyond those needed for the significand unit are required for performing high
radix on-line floating-point multiply.

For addition, the operand alignment step does not require a real shifter, since
the operand with the smaller exponent is simply delayed. We decided to perform
the exponent subtract and the operand delay inside the significand adder unit.
Otherwise floating-point addition code sequences require the declaration of an
index variable, and the use of an ¢f block and while loop. This decision causes
the need for an operand register in the unit. The operand register width grows
with alignment delay as operand digits are introduced. Operand length limits
are already caused by the operand registers in the multiplier, so this situation
is tolerable in the adder. The proposed assembly code for a four digit on-line
addition is shown below.

450

add_exponent exp_y, exp_a, exp_b

add_init spill, a_o0, b_0

add_extend y_0, a_1, b_1

add_extend y_1, a_2, b_2

add_extend y_2, a_3, b_3

add_complete y_3, null, null

add_test spc, y_0, spill // test for special cases
jnz done, spc, null

// add program personality here;
done: exit

The add_exponent and the add_init instruction can be executed in parallel
in single cycle. Each add_extend instruction the requires another cycle. Finally
the add_test instruction does not effect performance since it is done after the
add 1s complete — unless the normalization or carry test fails. In which case the
fix-up code must be executed. Hence, in the usual case there 1s an online delay
of one cycle followed by one cycle to calculate each digit, for a total of 5 cycles
for this add. The adder unit is unavailable for an additional cycle which the test
is being performed.

The additional area requirements over that needed for an integer unit is
modest. The operand registers and the instruction queue are the largest items.
Also these units will fit in an integer data path (unlike most conventional floating-
point units). The hardware for the on-line floating-point multiplier unit is:

two word width operand registers

a word width partial product register
a digit counter

a digit by word multiplier

a word width adder

an instruction queue

O O o —

The hardware needed for the on-line floating-point adder is:

. a word width operand register
. a digit width register
. a digit width adder

. an instruction queue

s o N

The instructions presented can be used to implement various data types
by filling in the personality sections, and by varying the number of extend in-
structions. For example, arbitrary width floating-point data types can be easily
generated by the compiler by varying the number of extend instructions gener-
ated for each type. Language support is as simple as passing a parameter into
the type declaration. In C one might imagine a statement such as:

rbfloat x(3), y(4);

which declares two high radix on line floating-point variables and y with sig-
nificand lengths of 3 words and 4 words, respectively.

When performing addition or multiplication, there may be need for nor-
malization, as can be determined by looking at the most significant digit. If
normalization is needed, there are a variety of options. The simplest (other than

451

doing nothing) is to adjust the exponent, and then shift the significand digits to
the left. The action taken depends on the program’s requirements.

We believe that these instructions can also be used with backtracking to pro-
duce guaranteed precision results as described by Boehm, et al. [Boehm et al. 86].
When cancelation occurs, the personality section would trigger the lazy evalua-
tion of previous operations to fill in the lost significance.

7 Conclusions

The propagation of numerical errors can ameliorated by limiting the disparity
between a) the distance between values produced by an operation, and b) the
distance between possible representable values. Also, this disparity, range ez-
pansion, can be controlled through the use of variable precision, multi-precision,
arithmetic.

Such an arithmetic is high radiz online arithmetic. This variation of online
arithmetic differs in that the radix is set so that digits are machine integers, and
operations are executed on a programmed microprocessor instead of on dedicated
hardware.

The proposed high radix on-line execution units have many advantages over
conventional floating point execution units: they requires less area than the con-
ventional floating-point hardware; they can perform integer operations; they fit
into an integer data path; and they can be used to efficiently implement accurate
and credible floating point arithmetic.

References

[Alefeld 83] Alefeld, G.; Herzberger, J.: “An Introduction to Interval Computations”;
Academic Press, New York, 1983.

[Bajard et. al 94] J. C. Bajard, J. Duprat, S. Kla, and J. M. Muller.: “Some Opera-
tors for On-line Radix 2 Computations”; Journal of Parallel and Distributed
Computing, pp 336-345, vol. 22, 2, Aug 1994.

[Boehm et al. 86] Boehm, H., Cartwright, R., Riggle, M., O’Donnell, M.: “Exact Real
Arithmetic: A Case Study in Higher Order Programming”; ACM 0-89791-
200-4/86,/0800-0162.

[Bohlender et al. 91] Bohlender, G., Walter, W., Kornerup, P., Matula, D.: “Semantics
for Exact Floating Point Operations”; Proceedings 10th Symposium on Com-
puter Arithmetic, IEEE Computer Society Press, Grenoble, France, 1991,
22-26.

[Bohlender 90] Bohlender, G.: ”What Do We Need Beyond IEEE Arithmetic?”; Com-
puter Arithmetic and Self-Validating Numerical Methods Academic Press,
New York, 1990, 1-32.

[Cohen et al. 83] Cohen, M., Hull, T., Hamacher, V.: “CADAC: A Controlled Precision
Decimal Arithmetic Unit”; IEEE Transactions on Computers, C-32, 4, 1983,
370-377.

[Duprat and Muller 93] J. Duprat and J. M. Muller.: “The Cordic Algorithm: New Re-
sults for Fast VLSI Implementation.”; IEEE Transactions on Computers, pp
168-178, vol. 42, 2, Feb 1993.

[Ercegovac 84] Ercegovac, M.: “On-line Arithmetic: an Overview”; SPIE, Real Time
Signal Processing VII, 1984, 86-93.

452

[Ercegovac 91] Ercegovac, M.: “On-line Arithmetic for Recurrence Problems”; Ad-
vanced Signal Processing Algorithms, Architectures, and Implementations 11,
SPIE-The International Society for Optical Engineering, 1991.

[IBM 86] IBM: “IBM High-Accuracy Arithmetic Subroutine Library (ACRITH)”;
General Information Manual, GC 33-6163-02, IBM Deutschland GmbH (De-
partment 3282, Schonaicher Strasse 220, 7030 Béblingen), 3rd edition, 1986.

[IEEE 85] American National Standards Institute / Institute of Electrical and Elec-
tronics Engineers: “A Standard for Binary Floating-Point Arithmetic”;
ANSI/IEEE Std. 754-1985, New York, 1985.

[Irwin and Owens 87] Irwin, M. and Owens, R.: “Digit-pipelined Arithmetic as Tllus-
trated by the Paste-Up System: A tutorial”; IEEE Computer, 1987, 61-73.

[Klatte et al. 92] Klatte, R., Kulisch, U., Neaga, M., Ratz, D., Ullrich, Ch.:
“PASCAL-XSC - Language Reference with Examples”; Springer-Verlag,
Berlin/Heidelberg /New York, 1992.

[Knuth 81] Knuth, D.: “The Art of Computer Programming: Seminumerical Algo-
rithms”; Vol. 2, 2nd ed., Addison-Wesley, Reading, MA, 1981.

[Lynch et al. 95] Lynch, T., Ahmed, A., Schulte, M., Callaway, T., Tisdale, R.: " The
K5 Transcendental Functions”; Proceedings of the 12th Symposium on Com-
puter Arithmetic, [EEE Computer Society Press, Bath, England, 1995.

[Lynch 95] Lynch, T.: "High Radix Online Arithmetic for Credible and Accurate Gen-
eral Purpose Computing”; Real Numbers and Computers ...Les Nombre
Réels et L’Ordinateur, Ecole des Mines de Saint-Etienne, France, 1995, 78-89.

[Lynch and Swartzlander 92] Lynch, T., Swartzlander E.: “A Formalization for Com-
puter Arithmetic”; Computer Arithmetic and Enclosure Methods, Elsevier
Science Publishers, Amsterdam, 1992.

[Moore 66] Moore, R.: “Interval Analysis”, Prentice Hall Inc., Englewood Cliffs, NJ,
1966.

[Muller 94] J. M. Muller.: “Some Characterizations of Functions Computable in On-
line Arithmetic”; IEEE Transactions on Computers, pp 752-755, vol. 43, 6,
June 1994.

[Nickel 85] Nickel, K.(Ed.): “Interval Mathematics 1985: Proceedings of the Interna-
tional Symposium”; Freiburg 1985, Springer-Verlag, Vienna, 1986.
[Schwartz 89] Schwarz, G.: “Implementing Infinite Precision Arithmetic”; Proceedings
of the 9th Symposium on Computer Arithmetic, IEEE Computer Society

Press, Santa Monica, CA, 1989, 10-17.

[Trivedi and Ercegovac 75] Trivedi, K., Ercegovac, M. “On-line Algorithms for Divi-
sion and Multiplication”; Proceedings of the IEEE 3rd Symposium on Com-
puter Arithmetic, IEEE Computer Society Press, Dallas, TX, 1975.

[Vuillemin 90] Vuillemin, J: “Exact Real Computer Arithmetic with Continued Frac-
tions”; IEEE Transactions on Computers, C-39, 8, 1990.

[Watanuki and Ercegovac 81] Watanuki, O., Ercegovac M.: “Floating-point On-line
Arithmetic Algorithms”; Proceedings of the 5th Symposium on Computer
Arithmetic, IEEE Computer Society Press, Ann Arbor, MI, 1981.

[Wiedmer 80] Wiedmer, E.: “Computing with Infinite Objects,” Theoretical Computer
Science, 10, 1980, 133-155.

[Wolfram 91] Wolfram S., ”"Mathematica - A System for Doing Mathematics by Com-
puter”; Addison-Wesley, Redwood City, 1991.

453

