
Distributed Caching in Networked File Systems

Artur Klauser
(Institute for Applied Information Processing and Communications,

Graz University of Technology, Austria,
aklauser@iaik.tu-graz.ac.at)

Reinhard Posch
(Institute for Applied Information Processing and Communications,

Graz University of Technology, Austria,
rposch@iaik.tu-graz.ac.at)

Abstract: Changing relative performance of processors, networks, and disks makes it
necessary to reconsider algorithms using these three resources. As networks get faster
and less congested topologies emerge, it becomes important to use network resources
more aggressively to obtain good performance. Substitution of local disk accesses by
accesses to remote memory can lead to better balanced resource usage and thus to
faster systems. In this work we address the issue of �le caching in a networked �le
system con�guration. Distributed block-level in-memory caches are considered. We
show that carefully constructed distributed concepts can lead to lower server load
and better overall system performance than centralized concepts. Oversimpli�cation,
although aimed at gaining performance for single components, may deteriorate overall
performance as a result of unbalanced resource usage.

Key Words: networked �le systems, distributed �le caches, load balancing, �le sys-
tem performance

Category: D.4.2, D.4.3, C.4

1 Introduction

File caching is used as the most important method to overcome the inherent
speed di�erence between processor and disk. In centralized systems �le caches
form an intermediate storage level between slow disk storage and fast memory.
File accesses in distributed systems are based on a client-server computing model
[Coulouris, Dollimore 1988] and have to propagate through various instances.
These present many opportunities for caching at various levels like the server,
the client, or the network.

We compare a number of client caching approaches in distributed client-
server systems. The performance of a single server cache with cacheless clients is
used as a reference point for our comparisons. Our major goal is to �nd e�ective
approaches for distributed caching which perform at least as well as centralized
server caches, while at the same time reducing the load usually put on the server.
For this considerations we assume standard Unix �le system semantics in the
distributed system. Client �le caches are maintained in client memory, not on
client disks. Caching and cache coherency is based on the �le system block level.
Clients reading a �le see changes to this �le immediately after completion of the
write operation, not only after close.

To compare the performance of various algorithms we use trace-driven sim-
ulations. Traces come from a measured, real workload to prevent biasing the

Journal of Universal Computer Science, vol. 1, no. 6 (1995), 399-409
submitted: 31/3/95, accepted: 16/6/95, appeared: 28/6/95Springer Pub. Co.

399



simulation with synthetic workloads that might make inadequate assumptions
about the �le access and �le sharing pro�le. Simulations also let us lift restrictions
typically found in current hardware and allow a prediction of the performance
of future systems. Moreover, simulations allow exact repeatability, which is an
important advantage for studying algorithms in distributed systems.

Our computing model is a general MIMD type architecture with distributed
memory, and a point-to-point interconnection network. This model �ts both,
networks of workstations (NOWs) with high-performance communication net-
works (e.g. ATM, HIPPI) and MPP machines. The only means of inter-node
communication is by message passing.

An important point of the network structure is its ability to perform multiple
network operations concurrently. Distinct pairs of machines can communicate
concurrently by means of di�erent communication links. We assume point-to-
point networks to be more appropriate for parallel and distributed systems,
as they are more scalable than multidrop networks, which are limited to one
network operation at a time.

As network speeds evolve rapidly we chose to simulate the internal communi-
cation network of an MPP supercomputer, namely an Intel Paragon. Although
NOWs do not usually reach this performance yet, they will be able to operate
at such speeds in the near future. The model uses a direct network with 2D-
mesh topology and wormhole routing with an E-cube routing decision strategy
(x-y routing). All message routing is implemented by dedicated hardware. The
simulation model comprises of a 4�4 mesh with 16 processing nodes. Basic sim-
ulation parameters are 105 �s latency and 26 MBytes/s bandwidth, performance
�gures measured in Transmittal-8, an early beta release of the Paragon operating
system.

[Section 2] gives an overview of the implemented caching policies. The sim-
ulator and the �le system trace data are introduced in [Section 3]. [Section 4]
discusses results of the simulations, [Section 5] presents related work, and the
work is concluded in [Section 6].

2 Caching Policies

All caching models have a number of common features. Unless otherwise noted
caches are assumed to operate at the �le system block level, with a block size
of 4-kByte and a write-back policy with server driven invalidations. A cache re-
placement strategy of least recently used (LRU) is used in all cases. Although
this strategy is not optimal, many studies have shown that it is close to opti-
mal ([Ma�eis 1992],[Ma�eis, Cap 1992]). Moreover, LRU guarantees the inclu-
sion property, i.e. caches of size i + 1 hold all items of size i caches, plus one
additional item. This property is important for variable-size caches, as it guar-
antees monotony of the cache's hit rate function. Finally, all models use fully
associative caches which give good performance and only require minimal addi-
tional overhead in the case of �le accesses, which are rather expensive operations
already.

2.1 Fixed-Size Caches

The following reference models are used in the evaluation process. These models
have been chosen to give some upper and lower bounds on speci�c distribution

400



concepts. They are not intended to be sophisticated implementations of these
concepts. The order of presentation is approximately an order of increased com-
plexity. A more detailed description of the models can be found in [Klauser 1994].

Server Cache Only (SCO): Server caching with cacheless clients is used as a
reference point for comparing other policies. This model requires every client
access to be forwarded to the server, resulting in substantial network and
server load. It provides an upper bound on network tra�c induced by the
�le system. The centralized design imposes strong limitations on scalability.

Local Disk (LOD): This model assumes each client to use a local disk for �le
storage and also assumes a memory cache to be operated by each client. The
server's role is only that of a coordination instance, controlling the tra�c 
ow
between clients. Our interest is in the cache hit rates. As the client-server
tra�c does not contribute to this measure it has been omited. This model
presents the most optimistic view of a completely distributed �le service,
where all accesses can be ful�lled locally. Any realistic implementationwould
also induce some client-server and client-client tra�c.

No Coherency (NOC): With this model we assume a con�guration with serv-
er and client caches. Compared to SCO the tra�c on the network is reduced
by the introduction of the additional caching level at the clients. Multi-client
cache consistency is not modeled in this approach, thus reducing the net-
work load to an absolute minimum.Only misses in the client cache and cache
write-back operations generate tra�c on the network. This approach presents
an unrealistically optimistic network load. Realistic implementations would
induce higher network load due to coherency tra�c.

Write Through All (WTA): An implementation of the NOC approach with
added coherency tra�c is presented with this model. WTA uses the easiest
way to guarantee consistency in the system, which is a write-through caching
scheme. All changed blocks are transferred form client to server as part of
the write operation. This guarantees that the server is always in possession
of the most recent version of every block and thus can service requests from
other clients with up-to-date data. As many �les are only used by one client
this protocol generates lots of unnecessary operations on the network and
on the server. It is intended as a pessimistic model for guaranteeing global
consistency on the block level. The amount of write tra�c from clients to
the server is the same as in the SCO model.

Write Share Sequential (WSS): Whereas WTA writes back blocks which
could be kept locally without degrading client cache coherency, WSS seeks
to eliminate this additional tra�c. Analyzing �le access tra�c reveals that
most of the written �les are not actually shared between clients. Only a
small fraction of �les are actively shared. By using di�erent write policies
for shared and non-shared �les the excess coherency tra�c can be eliminated.
WSS uses a write-back policy for non-shared �les, which is dynamically
changed to write-through as soon as �le sharing is detected by the server.
This guarantees a consistent view on the server. However, clients may still
read old versions of blocks from their local caches. Although this drawback
is acceptable for some applications, it might not be desirable in general and
can be eliminated by the next algorithm.

Write Share Concurrent (WSC): To overcome the coherency problem in-
herent in WSS, WSC uses a slight modi�cation of the protocol. Instead of

401



changing the write policy from write-back to write-through when a �le is
shared, the �le caching policy is changed to be non-cachable on the clients.
This forces the only version of the �le to be kept on the server, which guar-
antees consistency under any circumstances. This approach loads the server
with the burden of handling all shared �le accesses. However, as long as the
�le sharing ratio is not too high this approach is acceptable.

2.2 Remote Memory Variable-Size Client Caches

Besides variations in caching policies as presented in the previous section, anoth-
er orthogonal direction to explore is the usage of the network, i.e. remote memory
accesses, to ful�ll local cache misses. We investigate the use of remote memory
by allowing each client to split its local cache into two distinct regions. One
region is used to hold local cache contents, whereas the other region is exported
to be used by other clients.

Splitting cache memory into two regions and exporting part of it to other
clients reveals two questions. How much memory should be used locally, and
which clients are allowed to use the exported regions. Considering the overall
performance of the system as the target to be optimized, it can be proven that
an optimal solution to this partitioning problem exists [Klauser 1994]. The op-
timum, i.e. the minimum total number of misses in the whole system, is reached
when the derivatives of all clients' miss functions with respect to their cache size
are equal.

We have considered this strategy by making two sets of runs over the trace
data; during the �rst set the optimal cache partitioning for various global cache
sizes has been collected. The second set of runs uses these optimal cache parti-
tions during its operation. In a production environment this two stage process
needs to be replaced by a one stage process that uses an on-line cache partition
prediction algorithm.

3 Simulation and Trace Data

Proteus [Brewer, Delloracas, et at. 1991], a public domain parallel architecture
simulator has been used to evaluate the presented caching policies. Proteus is
an execution-driven simulator for parallel architectures. It handles the simula-
tion of both the processing hardware as well as the communication subsystem
and the network. It also provides basic operating system services on processing
nodes like multithreading, synchronization and communication. The simulation
is performed on a processor clock-cycle basis.

Simulated models are fed with the Sprite File System trace data from the
University of California at Berkeley [Baker, Hartman, et al. 1991]. These traces
are publically available. They contain a variety of di�erent events like read,
write, open, close, delete, lookup and many others. For this simulation only
read and write events have been used. The traces come from several di�erent
�le servers each containing data from several 48-hour and 24-hour sampling
periods. For this study, however, we only use traces from the main �le server.
Traces from secondary servers show such a small amount of tra�c that the
caches usually did not warm up before the simulation was completed. We use
three sets of traces, each representing 48 hours of continuous workload. [Tab. 1]

402



shows the actual workload presented to the simulator after some data reduction
to eliminate kernel, backup, and trace gathering references from the traces. The
�rst 24 hours of every trace are used to warm up the caches, and only the second
24 hours are counted towards the results.

Although trace data events are tagged with a time stamp in the traces, it
is not used in this case. The events are fed into the simulator as fast as the
simulated caching model is able to handle them. There are two restrictions that
bound the event 
ow into the simulator. On one hand obviously serial accesses
to each �le are serialized in the inbound data stream, i.e. the second request is
held back until the �rst one has completed. On the other hand a static limit of
maximal 8 outstanding requests from any node is enforced. This limit simulates
the maximum number of processes on a node that will perform I/O requests to
the server concurrently. This, however, does not restrict the number of processes
that run on any node but is a way to control the mean I/O activity of a client.

Data read write read + write
Set count vol. c % v % count vol. c % v % count vol.

1.1 223199 898.2 68.6 54.7 101942 744.6 31.4 45.3 325141 1642.8
1.2 61755 254.6 89.2 89.5 7458 29.8 10.8 10.5 69213 284.4
2.1 185279 746.7 58.7 56.7 130535 570.0 41.3 43.3 315814 1316.7
2.2 42508 165.5 62.4 59.1 25607 114.7 37.6 40.9 68115 280.2
3.1 163955 668.2 70.2 59.5 69646 455.4 29.8 40.5 233601 1123.6
3.2 106741 426.0 67.9 59.9 50395 285.6 32.1 40.1 157136 711.6

Table 1: Results of read/write event data reduction. Split-up of number of read and
write events and volume of data (in MByte) actually used for each of the six data sets.
The table contains the number of events processed and the volume of tra�c transferred
for both, read and write events. Also listed is the relative percentage of read and write
events for both, event count and tra�c volume.

4 Results and Discussion

This section compares hit rates acquired for di�erent caching models throughout
the network at the same boundary conditions such as size of the caches, network
throughput and latency, disk throughput and seek time.

4.1 Disk Access Tra�c

All �ve client cache models LOD, NOC, WTA, WSS, WSC are simulated with
cache sizes ranging from16 to 8192 blocks per client (i.e. 64 kBytes to 32 MBytes).
The hit rate behavior of all �ve models, though, shows only a di�erence of some
percent from each other, especially as caches get large enough to hold a relevant
part of the clients' working sets. Using a server cache as a second-level cache re-
duces these di�erences still further. This result gives con�dence that neither very
sophisticated nor very simple coherency schemes do change much in the access
tra�c to the server disk. The dominant parameter for this tra�c is the size of

403



the caches and not the coherency protocol used. Simple coherency protocols can
eventually compensate for disadvantages due to ine�cient tra�c characteristics,
by using less space for the cache state data, thus leaving more space to allocate
to actual cache data bu�ers.

4.2 Network Load

Comparing network tra�c shows a completely di�erent situation. Here we see
more sophisticated schemes substantially reducing tra�c on the network. How-
ever, it highly depends on type, topology, and speed of the network whether
these e�ects are of any severity in the perspective of the whole system. Especial-
ly on the simulated network model, long term utilization of the communication
channels is very low. However, request bursts usually found in �le access traf-
�c can lead to signi�cant network loads for short periods of time. As networks
get faster more rapidly than disks, the importance of network load will even
shrink further. The limiting factor in our simulation was more or less the I/O
performance of the disk, which was assumed to be several times lower than the
network performance. These observations lead to the insight that, under the as-
pect of a well balanced system, disks can be o�-loaded by putting load on the
network. Using remote memory accesses to maintain a system-wide distributed
cache can help to increase client cache hit rates and thus o�-load both the server
and its disks. Additionally, the point-to-point network structure handles request
bursts more gracefully as the increased load is distributed over large parts of the
system, instead of being concentrated onto a single shared communication link.

4.3 Server Cache vs. Fixed-Size Client Caches

Server caching on its own is a very simple way to approach the situation. Never-
theless, we found that it is by far better than any of the client caching schemes
under consideration, even when using the most optimistic assumptions about
additional coherency tra�c (LOD). This e�ect even grows drastically with in-
creasing cache sizes in the system. Large client caches, as used sometimes now
and certainly used more often in the future, perform several times worse than
server caches with the same total number of cache blocks. This behavior is de-
picted in [Fig. 1] for data set 2.

The reason for this unpleasant behavior can be explained by the access pat-
terns of the trace data. The traces hold requests coming from a large number of
di�erent workstations arriving at the server. Although the number of di�erent
sources has been reduced in the simulation to fold the traces onto the simulated
topology, it still shows an unbalanced static and even more unbalanced dynamic
usage pattern. This leads to the e�ect that some clients user their caches e�-
ciently, while others completely underutilize their caches. Still others are far from
optimal in their cache hit rates because they have to handle much larger working
sets. [Fig. 2] shows the great variety of client cache behaviors with varying cache
size. Adding more memory to all client caches only shows signi�cant e�ects on
overutilized caches, while underutilized ones can not make e�ective use of addi-
tional memory. Hence, from a certain point on, adding more memory is only of
marginal bene�t for the overall performance of the whole system. Unfortunately
it is not predictable in advance how much cache memory each client can use
e�ciently. Moreover, this cache usage pattern does not stay constant over time.

404



fixed size

server cache

variable size

240

60

80

100

120

140

160

180

200

220

128 256 512 1024 2048 4096 8192 16384
number of blocks

m
is

se
s 

w
rt

. s
er

ve
r 

ca
ch

e 
(%

)

Figure 1: Fixed and variable-size client cache behavior with respect to server cache for
data set 2.

60 %
80 %

20 %
40 %

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
32 64128

2048
8192

0
20
40
60
80

100

hit rate (%)

512

number of blocks
client cache

Figure 2: In
uence of the cache size on the hit rates of client caches.

4.4 Remote Memory Variable-Size Client Caches

The previous observations lead to the insight that �xed-size caches do not con-
tribute to e�cient client caching schemes. Hence, cache memory has to be shared
and balanced between clients. By allowing remote memory caches, as described
in [Section 2.2], client caching can be made much more e�cient.

Simulation studies with varying cache sizes show that a distributed variable-
size client cache scheme exhibits almost the same miss rate as a single big server
cache. [Fig. 1] shows that distributed variable-size client caches perform very
competitively compared to a single big server cache. Due to the increased ref-
erence locality in a private client cache compared to a shared server cache, dis-

405



tributed variable-size client caches even perform better than a big server cache
for some cache sizes and input data sets.

Although this scheme reintroduces network tra�c due to the nonlocal use
of memory, it still produces less network tra�c than a pure centralized server
cache. It frees the server from the burden of processing every single request in
the whole system and shows much better hit rates than any of the �xed-size
client caching approaches discussed before. Moreover, the additional tra�c is
distributed throughout the whole system and does not introduce new hot spot
communication or processing bottlenecks.

4.5 Network and I/O Speed

To be more con�dent about the simulated computer model some sets of simula-
tions also have been repeated with varying network and I/O bandwidth param-
eters. Variations of the network bandwidth ranged from 1 to 200 MBytes/s and
variations of the disk throughput ranged from 1 to 10 MBytes/s. All these sim-
ulations show that the miss rates reported in the system are fairly independent
of these parameters, with variations being in the range of the accuracy of the
simulation, which is predicted as � 0.5 % by statistical considerations.

5 Related Work

Optimal partitioning of memory for concurrent operations based on multiple
unrelated input streams has been investigated by [Thiebaut, Stone, Wolf 1992],
[Stone, Turek, Wolf 1992], and [Ghanem 1975]. Our approach of deriving opti-
mal sizes for splitting client cache memory into local and remote parts has some
similarities to their work.

[Mohindra, Ramachandran 1991] and [Zhou, Stumm, Li, Wortman 1990] in-
vestigate the use of distributed shared memory (DSM) in networks of worksta-
tions. Local/remote cache splitting is based on some of these DSM ideas.

[Nelson, Welch, Ousterhout 1988] describe caching approaches taken in the
Sprite network �le system. Client caches use delayed write-back to reduce server
load and vulnerability to crashes.

[Dahlin, Wang, et al. 1994] and [Dahlin, Mather, Wang, et al. 1994] explore
the use of remote client memory to improve �le system performance in xFS.
The approach is based on modi�cations to the AFS �le system to allow direct
client-to-client interaction. Their mechanism is based on caching whole �les and
uses a coherency scheme of write-after-close. Trace driven simulations use the
Berkely Sprite and Auspex �le system traces.

In the work of [Mann, Birell, et al. 1994] caching strategies in the Echo dis-
tributed �le system are presented. Client caching with delayed write-back is used
to reduce client write tra�c to the server. Ordering constraints on write-back
allow coherency to be maintained in the case of unreliable clients.

[Biswas et al. 1994] use non-volatile write caches, together with volatile read
caches to provide reliability in the case of distributed �le systems with client
caching. They use synthetic workloads with a commercial production I/O pro�le.

406



6 Conclusions

We have compared a number of client caching schemes for high performance
networks of workstations and MPPs. Di�erent cache coherency approaches and
distribution schemes have been used. Cache hit rates have been compared using
centralized server caching as a major reference point.

Variations in miss rate for di�erent coherency schemes used by �xed-size
client caches have been found to be negligible compared to the di�erence be-
tween �xed-size schemes and a centralized server cache. To achieve miss rates
in the range of a single big server cache it is important to give clients access to
remote memory resources. Moreover, clients can adjust their cache sizes among
each other for the overall number of misses to reach a minimum. This can be
achieved by allowing clients with overutilized caches to use part of the underuti-
lized clients' cache memory.

By increasing networking tra�c to access remote parts of client caches, dis-
tributed variable-size client caches reduce disk access tra�c and thus reach bet-
ter balanced system resource usage. This approach has advantages over both,
centralized server caches and �xed-size client caches.

References

[Baker, Hartman, et al. 1991] Baker, M. G., Hartman, J. H., Kupfer, M. D., Shirri�,
K. W., Ousterhout, J. K.: \Measurements of a Distributed File System";
Technical report, University of California at Berkeley, Computer Science Di-
vision, July 1991, also appeared in Proceedings of the 13th Symposium on
Operating Systems Principles, Oct. 1991.

[Biswas et al. 1994] Biswas, P., Ramakrishnan, K. K., Towsley, D., Krishna, C. M.:
\Performance Bene�ts of Non-Volatile Caches in Distributed File Systems";
Concurrency|Practice and Experience, 6, 4 (1994), 289{323.

[Brewer, Delloracas, et at. 1991] Brewer, E. A., Dellarocas, C. N., Colbrool, A., Weihl,
W. E.: \Proteus: A High-Performance Parallel-Architecture Simulator";
Technical report MIT/LCS/TR-516, Massachusetts Institute of Technology,
Laboratory for Computer Science, September 1991.

[Coulouris, Dollimore 1988] Coulouris, G. F., Dollimore, J.: \Distributed Systems:
Concepts and Design"; Addison-Wessley 1988, ISBN 0-201-18059-6.

[Dahlin, Mather, Wang, et al. 1994] Dahlin, M. D., Mather, C. J., Wang, R. Y., An-
derson, T. E., Patterson, D. A.: \A Quantitative Analysis of Cache Policies
for Scalable Network File Systems"; Proceedings of the ACM SIGMETRICS
Conference on the Measurement and Modeling of Computer Systems, May
1994.

[Dahlin, Wang, et al. 1994] Dahlin, M. D., Wang, R. Y., Anderson, T. E., Patterson,
D. A.: \Cooperative Caching: Using Remote Memory to Improve File System
Performance"; Proceedings of the Operating Systems: Design and Implemen-
tation Conference, November 1994.

[Ghanem 1975] Ghanem, M. Z.: \Dynamic Partitioning of the Main Memory Using
the Working Set Concept"; IBM Journal of Research and Development, 19,
9 (1975), 445{450.

[Klauser 1994] Klauser, A. W.: \A Simulation Study for Distributed File Caching in
High-Performance Parallel Architectures"; Master's thesis, Graz University
of Technology, Austria, Department for Applied Information Processing, Jan-
uary 1994.

407



[Ma�eis 1992] Ma�eis, S.: \Cache Management Algorithms for Flexible Filesystems";
Technical report, Institut f�ur Informatik der Universit�at Z�urich (IFI), Decem-
ber 1992.

[Ma�eis, Cap 1992] Ma�eis, S., Cap, C. H.: \Replication Heuristics and Polling Al-
gorithms for Object Replication and a Replicating File Transfer Protocol";
Technical Report IFI TR 92.06, Institut f�ur Informatik der Universit�at Z�urich
(IFI), July 1992.

[Mann, Birell, et al. 1994] Mann, T., Birrell, A., Hisgen, A., Jerian, C., Swart, G.:
\A Coherent Distributed File Cache with Directory Write-Behind"; ACM
Transactions on Computer Systems, 12, 2 (1994), 123{164.

[Mohindra, Ramachandran 1991] Mohindra, A., Ramachandran, U.: \A Survey of Dis-
tributed Shared Memory in Loosely-coupled Systems"; Technical Report
GIT-CC-91/01, College of Computing, Georgia Institute of Technology, Jan-
uary 1991.

[Nelson, Welch, Ousterhout 1988] Nelson, M. N., Welch, B. B., Ousterhout, J. K.:
\Caching in the Sprite Network File System"; ACM Transactions on Com-
puter Systems, 6, 1 (1988), 134{154.

[Stone, Turek, Wolf 1992] Stone, H. S, Turek, J., Wolf, J. L.: \Optimal Partitioning of
Cache Memory"; IEEE Transactions on Computers, 41, 9 (1992), 1054{1068.

[Thiebaut, Stone, Wolf 1992] Thiebaut, D., Stone, H. S., Wolf, J. L.: \Improving Disk
Cache Hit-Ratios Through Cache Partitioning"; IEEE Transactions on Com-
puters, 41, 6 (1992), 665{676.

[Zhou, Stumm, Li, Wortman 1990] Zhou, S., Stumm, M., Li, K., Wortman, D.: \Het-
erogeneous Distributed Shared Memory"; Technical Report CSRI-244, Com-
puter Systems Research Institute, University of Toronto, September 1990.

408



Appendix A

[Tab. 2] contains hit rates of the various caches for trace data set 2. Abbreviations
CC and SC stand for client cache and server cache respectively, and OV stands
for overall, which compares the number of misses of the last cache level to the
total number of accesses processed in the system. (Entries of * represent the
cases where no accesses have been detected, thus no hit rate can be given.)

Data Set 2 SCO LOD NOC WTA WSS WSC

read - 33.4 33.5 33.9 33.5 30.2
CC write - 8.1 8.1 7.5 8.1 8.1

r+w - 23.2 23.2 23.2 23.2 21.3
32 read 23.2 - 2.1 0.8 2.2 6.5

SC write 2.2 - 0.3 2.6 0.5 0.4
blocks r+w 14.7 - 1.2 1.7 1.4 3.6

read 23.2 33.4 34.7 34.3 34.8 34.6
OV write 2.2 8.1 5.5 2.6 5.6 5.7

r+w 14.7 23.2 22.9 21.5 22.9 22.9
read - 73.8 73.8 74.0 73.8 69.3

CC write - 70.5 70.5 70.7 70.4 70.3
r+w - 72.4 72.5 72.7 72.4 69.7

512 read 45.3 - 14.3 0.6 14.0 26.1
SC write 26.6 - 2.2 34.8 2.8 2.6

blocks r+w 37.7 - 8.1 25.3 8.2 14.9
read 45.3 73.8 77.5 74.1 77.5 77.3

OV write 26.6 70.5 59.5 34.8 60.0 60.0
r+w 37.7 72.4 70.2 58.2 70.4 70.3
read - 98.7 98.7 98.7 98.7 94.4

CC write - 92.2 92.2 92.2 92.2 92.0
r+w - 96.1 96.1 96.1 96.1 93.5

8192 read 85.0 - 32.0 19.2 32.0 84.2
SC write 87.4 - * 78.8 100.0 87.0

blocks r+w 85.9 - 32.0 77.7 37.2 84.3
read 85.0 98.7 99.1 98.9 99.1 99.1

OV write 87.4 92.2 100.0 78.8 100.0 100.0
r+w 85.9 96.1 99.5 90.8 99.5 99.5

Table 2: Cache hit rates for data set 2.

409


