
A Translation of the Pi-Calculus Into MONSTR

R. Banach
(Computer Science Dept., Manchester University, Manchester, M13 9PL, U.K.

banach@cs.man.ac.uk)

J. Balázs
(Computer Science Dept., P. J.S̆afárik University, 041 54 ˘Kosice, Slovakia.

balazs@turing.upjs.sk)

G. Papadopoulos
(Computer Science Dept., University of Cyprus, Nicosia, P.O. Box 537, Cyprus.

george@jupiter.cca.ucy.cy)

Abstract: A translation of theπ-calculus into the MONSTR graph rewriting language is
described and proved correct. The translation illustrates the heavy cost in practice of faithfully
implementing the communication primitive of theπ-calculus and similar process calculi. It also
illustrates the convenience of representing an evolving network of communicating agents directly
within a graph manipulation formalism, both because the necessity to use delicate notions of
bound variables and of scopes is avoided, and also because the standard model of graphs in set
theory automatically yields a useful semantics for the process calculus. The correctness proof
illustrates many features typically encountered in reasoning about graph rewriting systems, and
particularly how serialisation techniques can be used to reorder an arbitrary execution into one
having stated desirable properties.

Key Words: Concurrency, Pi-Calculus, Term Graph Rewriting, MONSTR, Process Networks,
Simulation, Serialisability.

Category: D.1.3, D.3.1, F.3.2, F.4.2

1 INTRODUCTION

As [Aczel (1993)] has pointed out, the word “process” has very different connotations
in different branches of computer science. For instance, those who study process alge-
bra, those who work on operating systems, and those who construct systems for sup-
porting “the business process”, would hardly recognise each others’ use of the word.
The work in this paper may partly be seen as a comparison of notions of process from
the first two of these, since in presenting a translation from theπ-calculus to MONSTR,
both areas may be brought into contact.

Theπ-calculus [Milner et al. (1992), Milner (1993a)] arose as a generalisation of CCS
[Milner (1989)] to allow networks of processes to evolve dynamically. It is thus a pro-
cess algebra language. MONSTR by contrast is a generalised term graph rewriting lan-
guage that was used as the intermediate language for the Flagship machine. See
[Banach et al. (1988), Banach and Watson (1989), Banach (1993a), Banach (1993b),
Watson and Watson (1987), Watson et al. (1987), Watson et al. (1989)]. Since the ma-
chine needed a runtime system, whose implementation centred round MONSTR, the

Journal of Universal Computer Science, vol. 1, no. 6 (1995), 339-398
submitted: 20/10/94, accepted: 26/6/95, appeared: 28/6/95Springer Pub. Co.

339

connection with operating systems emerges. (In fact MONSTR evolved as a restriction
of a more general term graph rewriting language DACTL, [see Glauert et al. (1988a),
Glauert et al. (1988b)], the restrictions being forced by implementation issues.)

MONSTR therefore rejoices in the virtue of having been implemented in anger for a
real machine. In particular, the directed arcs of a MONSTR graph are intended to be
directly modeled by pointers in a conventional store in the overwhelming majority of
instances, (see [Banach (1993a)] for an exposition of exactly how). So translations of
process algebra formalisms (or for that matter anything else) into MONSTR can give a
reasonable idea of the practicality of the primitive notions inherent in these formalisms.
In the present case we find that the atomicity and synchronisation properties inherent in
the communication primitive of theπ-calculus extract a heavy price in the translation.
This aspect is common to all similar process algebra models such as CCS — one reason
why we concentrate on theπ-calculus in this paper is that the more flexible mechanisms
for channel hiding and binding (compared with eg. CCS), pose no problems for a MON-
STR implementation. Other features of the syntax, such as the identification of potential
communications by complementary occurrences of the same channel name, free in
some particular context, give rise to other sources of minor inconvenience when they
interact with the rest of the syntax.

At the heart of these issues is the structure of the syntax of process algebra languages,
which is patterned after the structure of the syntax of many conventional languages, and
produces a strong desire to use syntax directed techniques in the theory of these sys-
tems. For stack based languages such as Pascal, this approach to the meaning of the
language is particularly successful, as the denotational semantics of such languages
bears out. Unfortunately, the structure of process networks is seldom closely related to
the structure of the parse tree of the algebraic expression that defines them, which con-
siderably weakens the case for exclusively pursuing syntax directed analyses. Graph
theory is much more in sympathy with the structure of the typical process network,
which makes a translation into a graph-based formalism even more attractive.

Ironically, presentations of process algebra, having once described the syntax and some
operational semantics, are frequently awash with pictures of process networks — which
are of course nothing but graphs of one kind or another. Prodigious manipulations of
the syntax ensue; often demonstrating some fairly simple property of the network which
could have been established on graph theoretic grounds by elementary means. In the
translation presented below, many sources of intricacy residing in the standard syntactic
presentation of theπ-calculus, once properly understood, can be seen to correspond to
elementary constructions in an appropriate category of term graphs, (though we hasten
to add, we will not need to make any systematic use of categorical techniques in this
paper).

Of course graph based languages also need syntax, but this is used merely as a handy
notation for the standard semantic model of graphs, which is what we really have in
mind all along. (One could of course contemplate non-standard models of languages
for graph theory if one really longs for such exotica.) The emphasis is thus different
than in process algebra: rather than starting with the syntax and then wondering what it
means, we have the semanticsab initio.

The syntax of a graph based language tends to be rather flat — it usually does little more
than list the nodes and edges of the graph in question. In the case of term graphs, some
slight embellishment of this is possible because of the quasi-term structure of individual

340

nodes which allows some nesting, but the underlying “just list ’em all” philosophy re-
mains. The main consequence of this is that sophisticated notions of scope, or of bind-
ing, tend to be absent from such languages. This might be thought to be a great
deficiency, but in fact it proves not to be so. All the jobs normally done by notions of
scope inside the syntax are taken over by graph structure and by suitable notions of
graph homomorphism. These are described at the meta-syntactic level and act directly
on the semantic objects of interest. Of course for this to work, we need to know what
the semantic objects of interest are — but we have already said that we have the seman-
ticsab initio so this is not a problem. In the case of theπ-calculus, in which the syntax
has the familiar hierarchical flavour, distinct subprocess objects residing in remote pe-
ripheral areas of the parse tree may share private names despite their syntactic remote-
ness. Elaborate notions of scope and of binding are needed to manage the syntactic
arm-twisting that forestalls the name clashes that are prone to occur due to the fact that
the two subprocess objects may only express their relationship via their closest common
ancestor in the tree. In a graph based language, this is unnecessary — one simply en-
codes the required relationship by suitable edges or arcs and that is it.

The present authors are not the only ones to notice that graphs have some utility in pro-
cess algebras and similar systems. One may cite [Milner (1979), Degano and Mon-
tanari (1987), Milner (1993b), Corradini et al. (1994), Parrow (1994)] amongst others.
However it is not clear that these other formalisms have the same closeness to direct
implementation that MONSTR gains by virtue of its association with the Flagship ma-
chine.

The structure of the rest of this paper is as follows. In [Section 2] we give a description
of MONSTR, while in [Section 3] we set out the version ofπ-calculus that we will use.
[Section 4] describes the key features behind the translation strategy, and [Section 5]
presents the details. [Section 6] establishes the basic properties of translated systems
that are needed in proving the translation correct, and the correctness proof itself ap-
pears in [Section 7]. [Section 8] contains some discussion of aspects of theπ-calculus
not directly treated in the version of [Section 3]. [Section 9] concludes, and contains
further discussion of the material herein, drawing analogies between the proof of sound-
ness on the one hand, and serialisability theory or forcing techniques on the other.

2 MONSTR

MONSTR arose as a result of the attempt to reconcile the desire for an intermediate lan-
guage with rewriting-based semantics, with the reality of a parallel machine where the
primitive atomic actions were in principle of much smaller granularity than atomic re-
writes of arbitrary size. The result was a term graph rewriting language MONSTR, for
which the implementation problem did not make excessive demands on the architec-
ture’s semantics.

Term Graph Rewriting

The operational semantics of MONSTR deals with the transformation of term graphs.
These are graphs in which the nodes are labelled with node symbols from an alphabet
S; each nodex having an arityA(x) = {1…n}, indicating thatx has a sequence ofn out-
arcs. A nodex may be the target of an arbitrary number of in-arcs.

The nodes and arcs of MONSTR graphs are further decorated with certain markings
which relate to reduction strategy. Specifically, if a node is marked with∗, then it is

341

active and can serve as the root of a redex. If it is marked with#n, then it is suspended
waiting forn “notifications” (see below), and then (usually) some of its out-arcs are no-
tification arcs, i.e. are marked with the notification mark^, which is whence the notifi-
cations will arrive. The only other possibilities are that nodes and arcs are unmarked
(i.e. idle, written visibly asε where necesary).

Here is the formal definition. In definition 2.1,N* is the set of sequences overN, sim-
ilarly for { ε, ^}*; the domain of a sequence is the set of its indices; and the arity of a
nodex, A(x), is defined in clause (3).

Definition 2.1 A term graph (or just graph)G, is a quintuple (N, σ, α, µ, ν) where

(1) N is a set of nodes,

(2) σ is a mapN → S, the symbol map,

(3) α is a mapN → N*, giving the arcs ofx, with for allx, A(x) = dom(α(x)),

(4) µ is a mapN → { ε, ∗, #, ##, ###, … #n (n ≥ 1)}, the node marking map,

(5) ν is a mapN → { ε, ^}*, the arc marking map, with for allx, dom(ν(x)) = A(x).

(The nomenclature is meant to be alliterative:σ for symbols,α for arcs,µ for markings,
ν for notifications.) We refer to an arc of a graph by writing (pk, c) wherep is the parent
andc is itsk’th child. Alternatively usingα, we writec = α(p)[k] where –[–] is the look-
up operator on sequences. [Fig. 1] below shows a term graph, in which each node is
depicted by its symbol followed by its sequence of out-arcs in brackets, and only non-
idle markings are shown.

For rewriting, we need a notion of pattern, and a sufficiently flexible notion of pattern
matching. Accordingly a pattern satisfies definition 2.1 except that the signature ofσ
is N → S ∪ {Any} whereAny is special node symbol not inS, the intention being that
Any-labelled nodes may match “anything”. For later convenienceAny-labelled nodes
are called implicit whereas other nodes are explicit. We restrictAny-labelled nodes to
occur only at leaves of patterns so that

σ(x) = Any ⇒ A(x) = ∅ i.e.α(x) = ν(x) = ∅

Evidently a graph is a kind of pattern, but not vice versa.

∗F[]

Cons[] Var

2 Nil

#Q[]

^

Fig. 1

Root[]

342

Definition 2.2 A ruleD is a quadruple (P, root, Red, Act) where

(1) P is a pattern, called the full pattern of the rule.

(2) root is an explicit node ofP called the root, and all implicit nodes ofP are acces-
sible from the root. Ifσ(root) = S, thenD is a rule forS. The subpattern ofP
accessible from (and including)root is called the left patternL of the rule, and
nodes ofP not inL are called contractum nodes.L is unmarked, i.e. for allx ∈
L, µ(x) = ε, andν(x)[k] = ε for all k ∈ A(x).

(3) Red is a set of pairs of nodes, (called redirections) such thatRed⊆ L × P, and if
(x, y) ∈ Red, thenx is explicit. Red is the graph of a function with distinctly la-
belled nodes in the domain, i.e. if (x, y), (u, v) ∈ Red thenx = u ⇒ y = v andx ≠ u
⇒ σ(x) ≠ σ(u). For (x, y) ∈ Red, x is called the LHS andy the RHS of the redi-
rection.

(4) Act is a set of nodes (called activations) ofP such thatAct ⊆ L.

[Fig. 2] is a picture of a rule, withroot indicated by the short stubby arrow,Red indicat-
ed by the dotted arrows, andAct indicated by adorning the relevant (single in this case)
nodes ofL with a∗ (these are unmarked according to definition 2.2.(2)).

In concrete syntax this becomes

 F[Cons[a b] x:Var] => #G[a ^*b] , x := *SUCCEED

In this notation, clutter is saved by nesting node definitions where practicable. Theroot
node is always the one listed first, and the nesting indicates that it has aCons first child
and aVar second child. TheCons child has twoAny children, indicated by just men-
tioning the node identifiersa andb (as opposed to node labels which are always capit-
alised). The left pattern is everything that occurs to the left of the=>, and the material
to the right describes everything else. Thus the contractum contains a once-suspended
G node whose children are those of the leftCons node, (such shared references mean
that in general node identifiers are needed as well as node labels). The fact thatG’s sec-
ond child is marked witĥ* indicates firstly that the relevant arc is^-marked, and sec-
ondly that that the node is inAct (being a* -marked reference to a left pattern node —
in generalany* -marked occurrence of a left pattern node on the right of a rule indicates
that the node is inAct). The other contractum node is an activeSUCCEED node. By
convention the=> indicates that the root node is to be redirected to the node immedi-
ately following the=>, and the syntaxx := *SUCCEED indicates that theVar node

F[]

Cons[] Var

Any ∗Any

#G[]

∗SUCCEED

^

Fig. 2

343

is to be redirected to theSUCCEED node, in agreement with [Fig. 2]. Note that only
theVar node needs to be specified in full (i.e. using both a node identifier and a node
label).

A rule systemR is just a set of rules. In outline, given a rule system and some graph,
an execution proceeds thus. First choose some active (∗-marked) node of the graph;
secondly examine the rule system to see which rules will match at that active node; if
there are some, choose one of them and rewrite the graph using it; alternatively if there
are none, perform notifications from the active node. Continue to repeat the whole pro-
cess with the new graphs successively generated thereby as long as possible.

Here are the technical definitions, starting with matching or homomorphism.

Definition 2.3 A matching of a patternP with rootr say, to a graphG at a nodet ∈ G,
is a node maph : P → G such that

(1) h(r) = t

(2) If x ∈ P is explicit then, σ(x) = σ(h(x)), A(x) = A(h(x)), and for allk ∈ A(x),
h(α(x)[k]) = α(h(x))[k].

Omitting mention of roots, the same definition will suffice for matching arbitrary pat-
terns to other patterns or, for matching graphs to other graphs. Ifh : P → G is a match-
ing, then we say thatz∈ G is explicitly matched if it is theh image of an explicit node.
Otherwise we say that it is implicitly matched.

Now the definitions pertinent to rewriting.

Definition 2.4 LetX be a graph,t ∈ X a node ofX such thatµ(t) = ∗, andR a system.
Let Sel = {D | there is aD ∈ R such that there is a matchingh : L → X of the left pattern
L of the full patternP of the ruleD toX at t}. Rule selection is some (otherwise unspec-
ified) process for choosing a member ofSel assuming it is non-empty. The chosenD
makest the root of the redexh(L) and D the selected rule that governs the rewrite.

Assuming we haveX, t, D = (P, root, Red, Act) andh given as above, rewriting accord-
ing to the rule proceeds via three phases (contractum building, redirection, activation),
each of which can be viewed as a mini graph transformation. Naturally, our graph and
rule given above provide a running example. There is clearly a redex rooted atF.

Definition 2.5 Contractum building adds a copy of each contractum node ofP to X.
Copies of arcs ofP from contractum nodes to their children are added in such a way that
there is an extended matchingh′ from the whole ofP to the graph being created, which
agrees withh onL. Node and arc markings for the new items are copied fromP. Call
the resulting graphX′ and letiX,X′ be the natural injection.

In our running example, doing the above yields [Fig. 3]. We see that copies of exactly
the contractum nodes and arcs, suitably marked, have been added, and that this enables
the extended matchingh′ of the whole ofP to be constructed.

Definition 2.6 Redirection replaces each arc (pk, c) of X′, such thatc = h′(x) for some
(x, y) ∈ Red, with (pk, h′(y)). This can be done consistently since the LHSs of two dis-
tinct redirections cannot map to the same node ofX′ since their node symbols are dif-
ferent by definition 2.2.(3). All such redirections are performed simultaneously. Let
the resulting graph be calledX′′ and letiX′,X′′ be the natural injection. Note thatiX′,X′′
is just an injective map on nodes rather than a matching as foriX,X′. We define the map

344

rX′,X′′ by rX′,X′′(c) = iX′,X′′(c) unlessc = h′(x) for some (x, y) ∈ Red, in which case
rX′,X′′(c) = iX′,X′′(h′(y)).

Performing the redirections on our example yields [Fig. 4].

Definition 2.7 Activation merely alters some node markings. Roughly speaking,root
is made idle and the nodes inAct are made active. More preciselyµ(iX′,X′′(h′(root))) is
changed toε, and for eachu ∈ Act, providedµ(iX′,X′′(h′(u))) = ε beforehand, the mark-
ing µ(iX′,X′′(h′(u))) is changed to∗. We call the resulting graphY, and defineiX′′,Y as the
natural injection.

Doing this for our running example yields [Fig. 5].

The graphY is taken to be the result of the rewrite, i.e. the result of a single atomic ac-
tion in the rewriting model. Note that no node of the original graphX is ever removed
modulo the identifications of nodes among the various stages. This lack of garbage col-
lection is an issue which will be remedied in due course.

By composing the various mapsiX,X′, iX′,X′′ or rX′,X′′, etc., we can track the history of a
node through an execution of the system. We thus haveiX,Y(x) = (iX′′,Y iX′,X′′ iX,X′)(x)
as the node which is the copy inY of x ∈ X, andrX,Y(x) = (iX′′,Y rX′,X′′ iX,X′)(x) as the
node ofY thatx got redirected to. This notation is a little cumbersome, but consider the
following. The phrase “adds a copy of each contractum node” is really a euphemism
for disjoint union. If one knows in advance which such disjoint unions are needed, one
can arrange that all the copies used are distinct, and thus implement disjoint union by

∗F[]

Cons[] Var

2 Nil

#Q[]

^

Root[]

#G[]

∗SUCCEED

^

Fig. 3

∗F[]

Cons[] Var

2 Nil

#Q[]

^

Root[]

#G[]

∗SUCCEED

^

Fig. 4

345

ordinary union. In more general situations though this is not possible, and one has to
take the demands of disjoint union more seriously (such cases arise in the detailed re-
percussions of the issues we discuss in [Section 8]). In such cases one uses some kind
of tagging to make copies distinct, and in these cases the obvious natural injections are
no longer identities. In this respect, the more involved notation is more portable. Fur-
thermore, we will need to keep close track of nodes through an execution sequence in
[Section 7] and our notation provides a firm foundation for this; also it is useful when
we delve into the innards of a rewrite, as we do in lemma 6.10.

Suppose now thatSel is empty. Then as we said, instead of a rewrite, notification takes
place. Again letX be the graph, andt ∈ X the chosen node ofX such thatµ(t) = ∗.

Definition 2.8 Notification merely alters some node and arc markings. The node
markingµ(t) is changed toε. Further for all arcs (pk, t) in X such that the arc making
ν(p)[k] is ^, the markingν(p)[k] is changed toε, and if the node markingµ(p) is #n (for
n ≥ 1), µ(p) is changed to#n–1, with #0 being understood as∗. We call the resulting
graphY and defineiX,Y to be the natural injection.

The result of the notification is the graphY as before.

In [Fig. 5], assuming there are no rules forNil or SUCCEED, there is scope for two
notifications. When they have both been performed, [Fig. 6] results. What might hap-
pen subsequently depends on what rules, if any, there might be forQ andG.

The remaining technicalities we need in our rewriting model are disposed of in the fol-
lowing couple of definitions.

F[]

Cons[] Var

2 ∗Nil

#Q[]

^

Root[]

#G[]

∗SUCCEED

^

Fig. 5

F[]

Cons[] Var

2 Nil

∗Q[]

Root[]

∗G[]

SUCCEED

Fig. 6

346

Definition 2.9 An initial graph is one which consists of an isolated node of empty arity,
with the active (∗) node marking, and labelled by the symbolInitial.

Definition 2.10 An executionG of a systemR is a sequence of graphs [G0, G1…] of
maximum length such thatG0 is initial and for eachi ≥ 0 such thati+1 is an index ofG,
Gi+1 results fromGi either by rewriting (in case there is an applicable rule) or by noti-
fication (otherwise) at some arbitrarily selected active nodeti of Gi. Graphs occuring
in executions are called execution graphs.

The above presents a general framework in which term graph rewriting (with pro-
grammed control of strategy) may be developed. To be closer to executable machine
semantics, MONSTR imposes a collection of restrictions as follows.

The MONSTR Restrictions

First the symbol alphabetS is partitioned intoF ∪ C ∪ V, whereF consists offunctions
which have rules but which cannot occur at subroot positions of patterns of rules; and
C andV, consisting ofconstructors andvariables (orstateholders) respectively, neither
of which can occur at root positions of patterns of rules and therefore neither of which
have rules; in addition constructors are not permitted to occur as the LHS of a redirec-
tion. Compared to the use of term graph rewriting as an implementation vehicle for
functional languages, where only functions and constructors are needed, the presence
of stateholders within MONSTR considerably increases the flexibility of the language
for conveniently modelling imperative notions such as storage cells, synchronisation
objects, and the logical variable. They will play a vital role in our translation of theπ-
calculus below by representing channels and encoding protocol states.

Next we insist that rules are of two kinds, normal rules and default rules. A default rule
has a pattern which consists of an active function node and as many distinct implicit
children as its arity dictates. Otherwise it is normal. Thus a default rule’s pattern will
always match at an active execution graph node labelled with the appropriate function
symbol.

We insist that there is at least one default rule for every function symbol, and we require
a normal rule to be selected in preference to a default rule whenever either will match.
In the concrete syntax of MONSTR, we can enforce this rule selection policy using the
nondeterministic rule separator| and the sequential rule separator; .

Definition 2.11 MONSTR graphs, rules and rule systems must conform to the follow-
ing list of restrictions.

(1) Symbols have fixed arities, i.e. the map sending a nodex to its arityA(x) depends
only onσ(x), and thusA(x) = A(σ(x)) (where the secondA is a notation for sym-
bol arity).

(2) Functions have fixed matching templates, i.e. for eachF ∈ F there is a subset
M(F) ⊆ A(F) such that for any normal rule for F with root root, k ∈ M(F) iff
α(root)[k] is explicit.

(3) Functions may explicitly match a stateholder in at most one position, and must
otherwise explicitly match only constructors, i.e. for eachF ∈ F there is a subset
Σ(F) ⊆ M(F) ⊆ A(F), at most a singleton, such that for any normal rule forF with
root root, if k ∈ Σ(F), thenσ(α(root)[k]) ∈ C ∪ V; else for explicitα(root)[l],
such thatl ≠ k, σ(α(root)[l]) ∈ C.

347

(4) Left patterns are shallow, i.e. for each rule, any grandchild of the root is implicit.

(5) Any nodes may not be tested for pointer equivalence, i.e. for every rule, no im-
plicit node may have more than one parent in the left pattern.

(6) Every nodex in every rule is balanced, i.e.µ(x) = #n for somen ≥ 1 iff n is the
cardinality of {k ∈ A(x) | ν(x)[k] = ^}.

(7) Every notification arc (pk, c) in every rule is state saturated or head activated, i.e.
if ν(p)[k] = ^, then ifµ(c) = ε then eitherc is explicit andσ(c) ∈ V, orc ∈ Act.

(8) A redirection to an unactivated idle node is to a stateholder, i.e. for every rule, if
(x, y) ∈ Red with µ(y) = ε then eithery is explicit andσ(y) ∈ V, ory ∈ Act.

(9) The root is always redirected, i.e. for every rule with rootroot, (root, t) ∈ Red for
somet.

(10) LHSs of redirections must not be activated unless they are also RHSs of redirec-
tions, i.e. for every rule, if (y, z) ∈ Red andy ∈ Act, then (x, y) ∈ Red for somex.

There isn’t the space here to explain all the ramifications of these restrictions, or why
they are a good idea (see [Banach (1993a)] for a thorough discussion). Essentially, the
restrictions enable one to prove a number of run-time properties of arbitrary MONSTR
systems, that are desirable from an implementation’s point of view.

It is easy enough to check that our running example above, conforms to all of these re-
strictions, and that the rewrite we showed is in fact a MONSTR rewrite (up to garbage).
We will deal with garbage shortly.

It turns out that the MONSTR systems that result from our translation have a relatively
simple run-time structure, and using the general properties provable from the syntactic
restrictions will not be necessary in the fairly involved correctness proof which is the
main concern of this paper — all the facts we will need will be derived directly from
the structure of the rule system. Accordingly, we point out one additional feature of
MONSTR rewriting that is important in the general theory but that becomes superfluous
in the specific systems we deal with.

The definition 2.3, of pattern matching, is insensitive to the markings on nodes and arcs,
and aside from the fact that the root of a redex must be active, this carries through to the
term graph rewriting model described above. For MONSTR rewriting, as well as the
syntactic restrictions, we demand that the explicitly matched arguments of the root of a
redex are idle; and in case an active node attempts to rewrite when this is not the case,
the rewrite is suspended until such time as it becomes true. This is a run-time mecha-
nism. Fortunately for us, we will be able to prove directly that in our translated systems,
all the explicitly matched arguments in a rewrite are idle, and so we needn’t concern
ourselves with the details of this mechanism. To achieve this simplification though, one
of the rules we will use later (in fact rule [9] of the communication protocol of [Section
5]) violates restriction 2.11.(8) as it performs a redirection to an unactivated implicit
node. We will prove directly that in fact thisAny node is only ever matched to idle
stateholders in any execution of the system. As a consequence, our transgression does
not affect any of the desirable run-time properties. Given the complexity of the correct-
ness proof that we tackle below, we regard this avoidance of having to deal with sus-

348

pensions, as reasonable under the circumstances. (In fact all such run-time suspensions
can be eliminated. [Banach (1993b)] discusses in detail how this is done.)

It is time we addressed garbage collection, since the rewriting model described above,
which never throws anything away, is rendered somewhat unsatisfactory thereby. The
following definition of liveness is sound in the presence of the MONSTR restrictions
(and run-time suspensions), in that garbage collection may be done eagerly after every
rewrite or notification, or delayed, without changing the live part of any execution
graph. (See [Banach (1993a)] for a full discussion.) In the sequel, we will be ambiva-
lent about whether garbage is actually present in the graphs we consider. Obviously,
when we do garbage collection, the mapsiX,X′ rX′,X′′, etc. become partial, as some of the
codomain elements disappear.

Definition 2.12 Given a MONSTR graphX, garbage collection removes all non-live
nodes and arcs fromX, giving a subgraph Live(X). A live nodex is one that can be
proved so on the basis of the following rules of inference:

(1) If σ(x) is a special symbolRoot (a constructor), thenx is live.

(2) If µ(x) = ∗, thenx is live.

(3) If p is live and (pk, x) is an idle arc, thenx is live.

(4) If c is live and (xk, c) is a notification arc, thenx is live.

A live arc is one for which both head and tail nodes are live; and non-live nodes and
arcs are garbage.

Returning to our running example, the original graph in [Fig. 1] clearly contains no gar-
bage. When we perform the rewrite getting [Fig. 5], a certain amount of garbage is gen-
erated. Removing this results in [Fig. 7].

In general, and despite the soundness result, Live(X) does not satisfy all the conditions
for being a MONSTR graph (since eg. a live node may have a garbage child node); how-
ever, this possibility will not occur in the systems we consider below. In more general
cases, the possibility makes theoretical treatments of MONSTR easier when garbage is
retained. Once more, the reader is refered to [Banach (1993a)] for a fuller discussion.

2 ∗Nil

#Q[]

^

Root[]

#G[]

∗SUCCEED

^

Fig. 7

349

3 THE PI-CALCULUS

Theπ-calculus first appeared in [Milner et al. (1992)] and since that time has been seen
in a number of minor variants. We will fix on a version of the monadic calculus, as pre-
sented in the first part of [Milner (1993a)], since it is in many ways the most economic
version, and so leads to the most transparent translation. We regard as given a suitable
alphabetCN of channel names, ranged over byx, y, z etc. Here is the formal syntax.

Definition 3.1 Theπ-calculus language of process expressions is given by the follow-
ing syntax whereP is a process and the variousQi are subprocesses (thus corresponding
to the same nonterminal in a formal BNF). We will take it for granted that parentheses
may be used in the usual way.

P = π1.Q1 + π2.Q2 + … +πn.Qn
 Q1 | Q2 | … |Qn
 νxQ
 !Q
 0

Speaking informally, the first case is guarded summation where eachπi is of the form
x(y) orxz. Here the parentheses and the overbar are constant symbols within the syntax,
and as belowx, y, z are inCN. The input expressionx(y).Q, means that some channel
nameq say, is to be read over the channelx which plays the role of a communication
link, and thenq is bound to all free occurences ofy in Q; y is a bound name inx(y).Q
andQ is its scope. Conversely the output expressionxz.Q means that the channel name
z (the data) is to be written to the channelx which acts as the communication link. A
process which is a sum can evolve into exactly one of the alternatives, the others being
discarded. The second case is parallel composition; all theQi’s are parallel processes
and evolve concurrently. The third case is restriction; inνxQ, where theν is a constant
of the syntax, the channel namex is bound, and refers to a channel that is private toνxQ,
soνx is a binder and its scope isQ. The fourth case is replication, in which the ! in !Q
is another constant of the syntax. !Q is intended to be (syntactically) equivalent to the
parallel composition of as many copies ofQ as one might wish for, i.e. !Q ≡ Q | Q | Q |
… | !Q. However we will take a different approach to replication as described below.
Finally the process0 does nothing.

Process algebra definitions are normally supplemented by demanding that summation
and parallel composition are monoidal operators with0 as unit. We will simplify our
subsequent task a little by not demanding the “0 as unit” part, so that any top level0’s
that get exposed during the evolution of a process expression (see below) just end up
lying around as inactive parallel subprocesses. (We could overcome this at the price of
extra complexity.)

Further, since the subprocesses in our sums are always prefixed, we do not demand that
(prefixed) summation is associative, else prefix might in some sense become left dis-
tributive, a possibility that is usually regarded as nota priori desirable. (In this respect,
we must regard a process expression such as ((π1.Q1 + π2.Q2) + π3.Q3) as merely a
meta-level shorthand for a flattened ternary summation (π1.Q1 + π2.Q2 + π3.Q3) rather
than as a true two level summation according to the formal syntax.) Of the monoidal
laws, we are thus left with associativity of parallel composition, and commutativity of
both summation and parallel composition. More formally:

350

Definition 3.2 The language ofπ-calculus expressions is required to conform to the
congruences generated by the following equations

(Q1 | Q2) | Q3 ≡ Q1 | (Q2 | Q3)
Q1 | Q2 ≡ Q2 | Q1
π1.Q1 + π2.Q2 ≡ π2.Q2 + π1.Q1

The free channel names ofπ-calculus expressions in particular, will play an important
part in the translation of [Section 5]. We give below the free and bound channel names
for each of the syntactic constructs. (For the first case, we just give the binary variant
to avoid clutter.)

Definition 3.2 The free and bound channel names of aπ-calculus expression are given
by recursion by the rules:

Free(x(y).Q1 + zw.Q2) = {x, z, w} ∪ (Free(Q1) – {y}) ∪ Free(Q2)
Free(Q1 | Q2 | … |Qn) = Free(Q1) ∪ Free(Q2) ∪ … ∪ Free(Qn)
Free(νxQ) = Free(Q) – {x}
Free(!Q) = Free(Q)
Free(0) = ∅

Bound(x(y).Q1 + zw.Q2) = {y} ∪ Bound(Q1) ∪ Bound(Q2)
Bound(Q1 | Q2 | … |Qn) = Bound(Q1) ∪ Bound(Q2) ∪ … ∪ Bound(Qn)
Bound(νxQ) = Bound(Q) ∪ {x}
Bound(!Q) = Bound(Q)
Bound(0) = ∅

The above makes clear that thex(y) in x(y).Q and theνx in νxQ, are binders. We will
need to regard the alpha-convertibility of bound variables as fundamental below, so we
have the next definition.

Definition 3.3 The language ofπ-calculus expressions is required to conform to the
congruence generated by alpha-convertibility

Φ(x(y).Q) ≡ Φ(x(y′).Q{ y′/y})
Φ(νxQ) ≡ Φ(νx′Q{ x′/x})

where in the above,Φ is aπ-calculus expression containing eg.νxQ as a subexpression,
x′ andy′ are some other names not free inQ, and eg.Q{ x′/x} refers toQ with all free
occurrences ofx substituted byx′. In general, when we exploit alpha-convertibility, we
will typically assumex′ andy′ are fresh names not appearing anywhere else in the whole
expression, rather than just not appearing free inQ.

We turn now to the dynamics of theπ-calculus. For most of the time (until [Section 8]
in fact), we will restrict our attention to the behaviour of closed systems.

Definition 3.4 A closedπ-calculus system evolves using the replication rewrite rule

!P →R P | !P

and the communication rewrite rule

(… + x(y).P + …) | (… +xz.Q + …) →C P{ z/y} | Q

where in the RHS of the latter,P{ z/y} again refers to the substituted version ofP.

351

The replication rule shows that rather than regarding replication as a syntactic congru-
ence which is the usual approach in theπ-calculus, we will regard the spawning of cop-
ies of a replicated subexpression as being done via an explicit rule within the dynamics
of aπ-calculus system. This is because the translation will also manufacture copies of
(the translation of) a replicated subexpression by explicitly rewriting, and consequently
the correctness proof will become more managable if we can pick out points in the dy-
namics of the originalπ-calculus expression at which replication was needed.

It is to be understood that both of the dynamic rules are applicable only “near the top
level” of aπ-calculus expression, which brings out an analogy with the Chemical Ab-
stract Machine [Berry and Boudol (1990)]. The top level proviso may be stated in pre-
cise terms as follows.

Definition 3.5 The contexts within which the rules ofπ-calculus dynamics are appli-
cable, are given by the additional rules

and

where above,→Y stands for either of→R and→C (we will use this notation below
where convenient).

Thus dynamic behaviour can only take place under parallel compositions andνx bind-
ers. As a result, a communication must be done either entirely inside, or entirely outside
the scope of aνx binder. The reason for this is as follows. Consider the input and output
subprocesses of a potential communication,x(y).P andxz.Q. If z is free in the whole
expression, then the communication can go ahead, since then ifx is bound in aνx bind-
er, both processes will be in the scope of theνx, otherwise it doesn’t matter. But ifz is
bound in aνz binder, then if thex(y).P were to occur outside the scope of theνz, doing
the communication would create via substitution an occurrence ofz outside its scope,
and and such az would be a different name according to the conventions regarding
bound variables. Therefore we canot allow bound names to escape their scopes in this
manner and must forbid such communications. However this has the undesirable con-
sequence of forbidding potential communications wherein the sender and recipient
have a communication link in common, but the sender is prevented from sending his
data because it would escape the scope that that happens to contain that data at the given
moment.

The original description of theπ-calculus in [Milner et al. (1992)] provided mecha-
nisms to overcome this. We will take a simpler approach that allows us to simply en-
large the scope of aνz binder sufficiently, so that any communication linkx over which
z might be transmitted using a prefixxz, has all corresponding input prefixesx(y) which
are visible near the top level, within the scope of theνz binder. More precisely we have
the following.

Definition 3.6 The syntactic reduction≡〉 is defined as follows.

(νzQ1 | Q2 | … |Qn) ≡〉 νz′(Q1{ z′/z} | Q2 | … |Qn)

P →Y Q

P | R →Y Q | R

P →Y Q

νxP →Y νxQ

352

Above, theνz′ and {z′/z} refer to an alpha-conversion of the binderνz performed to
avoid potential capture of free variables in the enlarged scope. We write≡〉+ and≡〉* for
the transitive and reflexive transistive closure of≡〉. The contexts in which≡〉 is allowed
to apply are given once more by the rules in definition 3.5.

Lemma 3.7 The relation≡〉* is a simulation; i.e. ifP ≡〉* P′ andP →Y Q, then there is
aQ′ with Q ≡〉* Q′ such thatP′ →Y Q′.

Proof. Immediate from definitions 3.5 and 3.6.

The above result allows us to enlarge the scopes ofνz binders until they permit all pro-
spective communications to take place. We will regard the extended potential for com-
munications that arises in this way as part of the operational semantics of aπ-calculus
expression.

Definition 3.8 Let E = Φ(xz.P, x(y).Q) be aπ-calculus expression such thatxz.P and
x(y).Q are at top level, i.e. the syntactic constructs abovexz.P andx(y).Q in the parse
tree ofΦ consist of parallel compositions and restrictions. ThenE is standard with re-
spect toz, iff any νz binder (for the specific channel namez) in Φ, contains either both
xz.P andx(y).Q, or neither of them, in its scope.E is in standard form iff it is standard
with respect to all output prefix data channel names occurring at top level.

For practical purposes therefore, we will enhance the dynamics ofπ-calculus expres-
sions to include conversion to standard form, by applying≡〉* after each→Y step until
all output prefix data channel names at top level eg.xz which occur within aνz binder,
have all corresponding input prefixes eg.x(y) included in the scope of the binder.

The following result will be useful later.

Lemma 3.9 LetΦ(νxP, Q) be aπ-calculus expression (containingνxP andQ as sub-
expressions), and let

Φ(νxP, Q) ≡〉* Ψ(νx′∆(P{ x′/x}, Q))

i.e. theνx binder has been lifted till its scope has capturedQ. Then the free and bound
names ofQ in both LHS and RHS of the above relation are the same, and such a name
is free (resp. bound) inΦ(νxP, Q) iff it is free (resp. bound) inΨ(νx′∆(P{ x′/x}, Q)).

Proof. This is because the bound name in theνx binder will have been alpha-converted
to x′ precisely to ensure this.

Remark 3.10 We point out that lemmas 3.7 and 3.9 remain true if we also include the
clauses

(π1.νzQ1 + π2.Q2 + … +πn.Qn) ≡〉 νz′(π1.Q1{ z′/z} + π2.Q2 + … +πn.Qn)
νxνyQ ≡〉 νyνxQ

in definition 3.6, but we will not need this fact subsequently.

We cannot however extend the lifting ofνz binders arbitrarily. Eg. we note thatνz bind-
ers cannot be lifted past replications. It is clear why: a replication rewrite of !Q creates
a copy of anyνz-bound scope withinQ, and any such copy will refer to its own distinct
bound name (regardless of whether this bound name is calledz, or alpha-converted). If
theνz binder were floated above the !, then the references toz within these scopes would
become references to a common name, free in all copies ofQ, quite the opposite of what
is intended.

353

Here is a small example of aπ-calculus system and one possible evolution. It will pro-
vide a running example for the translation later on.

x(u).u(t).0 | (xv.vs.0 + xv.0) | x(y).0
 →C v(t).0 | vs.0 | x(y).0
 →C 0 | 0 | x(y).0

Readers may check that the same system may also evolve tov(t).0 | 0 | x(y).0 or to
x(u).u(t).0 | vs.0 | 0 or tox(u).u(t).0 | 0 | 0.

We emphasise once more that we are dealing with closedπ-calculus systems for the mo-
ment. This gives us a more easily comprehensible goal for translation. The original
formulation of theπ-calculus in [Milner et al. (1992)] was presented via a more
finegrained transition system suited to the description of open systems (ones with ex-
ternal as well as internal communications), and featuring phenomena such as the open-
ing, closing, and extrusion of the scopes of restriction operators. These latter permit the
extension of our syntactic reduction≡〉 above to a congruence, and of our simulation≡〉*
to a true bisimulation, and legitimise our use of≡〉* to enhance the communication ca-
pabilities of aπ-calculus expression. Once we have the translation of closed systems
under control, we will see that it is not hard to understand these more subtle mechanisms
using the concepts that arise in the development of the translation. We will discuss this
more fully in [Section 8], after we have presented the translation and proved it correct.

4 AN OVERVIEW OF THE TRANSLATION

The general idea of the translation is thatπ-calculus processes in an evolving system,
are represented by active function nodes in a MONSTR execution graph, since in the
MONSTR world such nodes represent independent loci of control in a computation.
Thereforeπ-calculus processes which are potentially able to communicate by virtue of
not being ancestrally guarded, correspond to active function nodes. Channels are rep-
resented by stateholder nodes, and all processes with an interest in a given channel share
(i.e. have an out-arc to) the stateholder representing that channel. Two facts make this
an appropriate representation strategy. Firstly, MONSTR nodes have fixed arities, so
modelling the sharing of a channel by out-arcs from the channel to the community of
processes that share it, would be awkward in view of the fact that this community
changes as the system evolves; on the other hand, there is no such restriction on the in-
arcs of a node. Secondly, the notion of arc redirection, having been designed as the nat-
ural directed-graph generalisation of substitution in the term world, is ideally suited to
model the substitution operation that takes place when a pair of processes communicate.

Suppose then a pair of active processesP andQ share a channelchan, (we assume that
the symbolsP andQ encode the potential behaviours of the two processes), andP wish-
es to send a channelchan_out alongchan, andQ wishes in turn to receive a channel
alongchan to bind to its channelchan_in. We represent this action as the term graph
transformation in [Fig. 8].

Note that this achieves the substitution ofchan_in by chan_out via the redirection
chan_in := chan_out, the channel of communicationchan playing an almost inciden-
tal role. P′ andQ′ represent the subsequent potential behaviours ofP andQ. (We have
assumed for the sake of argument that bothP′ andQ′ retain an interest in both channels,
though this needn’t be the case.)

354

One thing prevents us from turning this insight directly into a MONSTR rewrite rule,
and that is that MONSTR forbids multi-rooted LHSs of rules — our left hand configu-
ration above is double-rooted. The reason for this is purely to do with the efficiency of
pattern matching of single-rooted LHSs of rules; they are operationally much easier to
test for a successful match than multi-rooted ones. (Nevertheless, given that the formal
notion of matching is that of graph homomorphism, there is no obstacle to multi-rooted-
LHS rules as far as the abstract semantics of graph rewriting is concerned.) This has a
number of consequences. NeitherP norQ can be assumed to know about the other in
any rule that initiates communication. The best that they can do is to propose a com-
munication viachan, and hope that a suitable partner process offers to cooperate.

At this pointπ-calculus semantics enters the fray. Offers of communication by individ-
ual processes must be rescindable, otherwise deadlock could occur if a cycle of process-
es were involved in making offers to others without any of them being reciprocated.
Furthermore, the actions that constitute the playing out of the communication protocol
for any representation of aπ-calculus system must be equivalent to some serial shedule
of atomic communication events in the original system.

The easiest way to ensure this is to impose a global synchronisation on the execution.
A global semaphore, shared by all processes, is introduced, and processes accede to a
mutex discipline in order to enter some offers of communication on some channel, or
to rescind or cooperate with an offer already made. Such a protocol can easily be shown
to have the correct serialisability properties. Expressing such a protocol in MONSTR
is however quite expensive in terms of the number of rewrite rules needed. Further, the
concurrency permitted by such a protocol is easily seen to be rather small, which is per-
haps rather against the spirit of a formalism specifically designed to express concurren-
cy. Instead, we prefer a much simpler, much more concurrent protocol, synchronised
on a per-channel basis. It does however suffer from a busy waiting overhead, because
each process proposing an offer to communicate over some channel is responsible for
(nondeterministically) rescinding its own offer, since in the end, it may be the only pro-
cess with an interest in that given channel.

Here is an outline of our preferred protocol. The states of a channel are represented by
the three stateholder symbolsEmpty, Busy_Unlocked, andBusy_Locked. Empty
means no reader has recorded an offer on this channel.Busy_Unlocked means that a
reader has registered an offer on this channel. At this stage, either the offer may be re-
scinded by the original reader and the state of the channel reverts toEmpty, or a writer
completes a rendezvous with the reader, installing its data, and changing the state to

∗P[…] ∗Q[…]

chan

chan_out
chan_in

⇒

P′[…] Q′[…]

chan chan_out

Fig. 8

355

Busy_Locked. In the latter case it becomes the reader’s responsibility to extract the
data and bind it to the input channel, and to reset the channel state toEmpty.

The behaviour of a processP = (… +chan(chan_in).Q + …) is represented by a collec-
tion of rules, one for each summand. The rule for the summand displayed, records a de-
cision, made nondeterministically, forP to attempt to communicate viachan, and when
successful to evolve toQ. The node forP rewrites toP_Q and spawns a helper process
Help_r[chan chan_in] to manage the protocol. If the attempt is unsuccessful,P_Q
backtracks toP once more.

5 THE TRANSLATION IN DETAIL

The translation of aπ-calculus expression proceeds in a bottom up fashion. First of all
we label all nodes of the parse tree of the expression with new (process) names; we do
this by introducing a pair of squiggly brackets round each possible subexpression, and
labelling each pair with the new name. For exampleQ1 |Q2 | … |Qn becomes {Q1 |Q2
| … |Qn} P andνxQ becomes {νxQ} P. For later convenience, we permit identical or al-
pha-convertible subexpressions to be identically labelled provided that all their own
corresponding identical or alpha-convertible subexpressions are also identically la-
belled, but we do not insist on this. Generally at the meta level we will useP for the
name of the subexpression andQ, Qi etc. for the names of the immediate subcompo-
nents. The names are available to serve both as meta-names for the subexpressions
themselves and as names for the MONSTR function symbols that encode the behaviour
of the relevant subprocess.

Secondly, we will translate each process subexpressionP to a pair. The second compo-
nent of each pair is a set of MONSTR rules for the function symbolP that encodes the
behaviour ofP. The first component of the pair is a mappingArgsP : Free(P) → args P
from the free channel names ofP as given in [Section 3], to the argumentsargs P of
the corresponding MONSTR function symbol. Strictly speaking, this is a map from
free channel names to positive integers (argument positions); but in the context of a rule,
anargs P sequence will always be a sequence of node identifiers. Equalities between
the channel node identifiers occuring in the codomains ofArgs maps for symbols on the
left and right sides of rules, shows how channels migrate through the execution of a
MONSTR representation of aπ-calculus system.

As in all rule systems, from the rewriting viewpoint, all occurrences of node identifiers
in MONSTR rules are bound; they are templates for nodes of execution graphs that are
either located during pattern matching, or instantiated during the contractum building
phase of the rewrite. As such their identity is fluid in that they can be renamed (alpha-
converted) to avoid node identifier clashes. Therefore when we speak ofargs P etc.
below, we assume it contains a sequence of distinct node identifiers, all different from
any node identifiers that might arise from the translation of channel identifiers occurring
visibly in aπ-calculus subexpression, eg.x in νxQ; such explicit channel identifiers are
translated “by font change”. A consequence of the latter is that we assume that all
bound variables occurring in theπ-calculus expression that we are translating have been
renamed apart from each other and apart from any free names in the expression. This
forestalls the need to actually invoke alpha-conversion in the translation. Note that
since all occurrences of node identifiers in rules are bound, the relationship between oc-
currences of node identifiers inargs P andargs Q lists in a rule needs to be consistent
only on a per-rule basis. Note also that the bound names of theπ-calculus do not occur

356

as such in the translation. Only their free instances get translated. This is in line with
our comments in the introduction on the absence of scope and binding mechanisms in
(the syntax of) graph rewriting. We will make suitable remarks as we go.

Lastly, if theπ-calculus expression is to be treated as a module to be combined with oth-
ers at some future stage, the output of the translation is the set of rules generated, to-
gether with theArgsP map for the top level function symbol. If the expression is to
stand for a self contained system, the output is the set of generated rules together with
a rule forInitial which instantiates the free channels of the top level function.

The Translation Body

Here is the translation, easiest cases first. We recall that all channels have been suitably
renamed apart. The separate cases below generate rules for various MONSTR function
symbols, but do not give much of a clue as to what rule selection strategy is to be em-
ployed. It is a property of the rules we generate here that all normal (i.e. non-default)
rules have non-overlapping patterns. The appropriate rule selection strategy is there-
fore: “Given an active function node, attempt to match a normal rule; if no normal rule
matches, match a default rule”. We therefore omit the rule separators| and; from the
text of the translation.

{ 0} P : Free(P) = ∅ ; ArgsP = ∅ ; Rules(P) ≡ { P => *Root }

{ νxQ} P : Free(P) = Free(Q) – {x} ;
If x ∉ Free(Q) then SetArgsP = ArgsQ andargs P = args Q ;

Rules(P) ≡ { P[args P] => *Q[args Q] }
else (x ∈ Free(Q)) then assume for simplicity thatx occurs last inargs Q ;

Set ArgsP = ArgsQFree(P) andargs P =
all_except_the_last_of(args Q) ;

Rules(P) ≡ { P[args P] => *Q[args P x:Empty] }
Note that there is no trace ofx in P[...] . Only whenP evolves toQ
is x created as a freshEmpty stateholder.

{! Q} P : Free(P) = Free(Q) ; SetArgsP = ArgsQ andargs P = args Q ;
Rules(P) ≡ { P[args P] => *Q[args Q],*P[args P] }

Note that sinceargs P = args Q, all the correct channels are shared byP
andQ on the RHS.

{ Q1 | Q2 | … |Qn} P : Free(P) = ∪ i ∈ [1… n] Free(Qi) ;
Let blendP be a function that merges a set of sequences into a single sequence
without repetitions (so providing an implementation of set union). Set

args P = blendP(args Q1
, args Q2

, … ,args Qn
) ;

∀i • ∀d ∈ Free(Qi) • ArgsP(d) = ArgsQi
(d) ;

Rules(P) ≡ { P[args P] =>
*Q1[args Q1

],*Q 2[args Q2
],...,*Q n[args Qn

] }

357

{ Σ i ∈ [1… n] xi(ui).Q
R
i + Σ j ∈ [1… m] zjwj.Q

W
j } P :

Free(P) = {x1,…, xn, z1,…, zm, w1,…, wm}

 ∪ ∪ i ∈ [1… n] (Free(QR
i) – {ui}) ∪ ∪ j ∈ [1… m] Free(QW

j) ;

 Assume ablendP function as above. Set
args P = blendP ([x1,…, xn, z1,…, zm, w1,…, wm],

args QR
1

,…, args QR
n

, args QW
1

,…, args QW
m

) ;

and
∀i • ∀d ∈ Free(QR

i) – {ui} • ArgsP(d) = ArgsQR
i
(d) ;

∀j • ∀d ∈ Free(QW
j) • ArgsP(d) = ArgsQW

j
(d) ;

Rules(P) is given by firstly∪ i ∈ [1… n] of

P[args P] => #P_Q R
i [^*Help_r[x i u i] args P

ui:Empty]

P_QR
i [Yes args P u i] => *Q R

i [args QR
i
]

(note that ifui ∈ Free(QR
i) thenui occurs inargs QR

i
)

P_QR
i [No args P u i] => *P[args P]

P_QR
i [a args P u i] => *P_Q R

i [a args P u i]

and secondly∪ j ∈ [1… m] of

P[args P] => #P_Q W
j [^*Help_w[z j w j] args P]

P_QW
j [Yes args P] => *Q W

j [args QW
j
]

P_QW
j [No args P] => *P[args P]

P_QW
j [a args P] => *P_Q W

j [a args P]

The above constitutes the body of the translation. This must be supplemented by the
communication protocol rules described below. To make a component module of a
larger system, on the assumption thatT is the top level symbol labelling the outermost
construct of the originalπ-calculus expressionE, the accumulated set of rules (with the
selection strategy mentioned above) is combined with the mapArgsT : Free(T) →
args T to form the output of translation called Tr–(E). The latter holds the information
on how arguments ofT correspond to the free channels of the module, which is needed
for interfacing to other modules. To form a stand alone system, we needn’t retainArgsT,
but we need to form an initial rule. Ifargs T hask entries, this rule is

Initial => *T[u 1:Empty,...,u k:Empty]

which simply instantiates the top level free channels and sets the system in motion. To
prevent confusion, we call this version of the output of translation Tr(E).

Like many translations, the one above is prone to some inefficiencies. Some of the
translation steps do not do very much. Nevertheless, it is simple enough to be reason-
ably transparent for pedagogical purposes. The reader who has grasped the structure of

358

the translation above would have no difficulty in altering it so that it translated a more
meaty chunk of syntax such as

{ νx1,…, xn(Σ πi1
.Qi1

 | Σ πi2
.Qi2

 | … |Σ πim
.Qim

)} P

all in one go, saving on both rules and rewrites.

The Communication Protocol

To effect a communication, the helper functionsHelp_r[x u] andHelp_w[z w] must ac-
tually make contact and transfer data. A collection of rules is needed to handle various
aspects of the protocol. Unlike the body rules above which were mainly default rules
as all they had to do was to manage the plumbing, the rules below do a fair amount of
pattern matching. The default rules for the symbols in question are forced by the defi-
nition of MONSTR and are mainly superfluous. Again the normal rules have non-over-
lapping patterns (with the exception ofHelp_r_test_chan which has two
overlapping rules that implement a nondeterministic busy wait), and so the strategy for
rule selection in the complete system is once again “(nondeterministically) select a nor-
mal rule if one will match, otherwise a default rule”. The rules are numbered for future
reference.

Rules for read helper.

Help_r initiates an offer; no offers in progress. [1]

 Help_r[chan:Empty chan_in]
 => *Help_r_test_chan[chan’:Busy_Unlocked chan_in],
 chan := chan’

Help_r default rule; backs off. [2]

 Help_r[chan chan_in]
 => *No

Rules for write helper.

Help_w sees a channel containing an offer; starts a rendezvous. Below, this rule will
be known as the communication commit rule (or just commit rule); rewrites using this
rule will be called commit rewrites. [3]

 Help_w[chan:Busy_Unlocked chan_out]
 => *Yes , chan := chan’:Busy_Locked[chan_out]

Help_w default rule. [4]

 Help_w[chan chan_out]
 => *No

Rules forHelp_r_test_chan .

Help_r_test_chan waits a bit longer. [5]

 Help_r_test_chan[chan:Busy_Unlocked chan_in]
 => *Help_r_test_chan[chan chan_in]

359

Help_r_test_chan revokes its own offer. [6]

 Help_r_test_chan[chan:Busy_Unlocked chan_in]
 => *No , chan := chan’:Empty

Help_r_test_chan detects a rendezvous. [7]

 Help_r_test_chan[chan:Busy_Locked[data] chan_in]
 => *Help_r_assign_data[chan data chan_in]

Help_r_test_chan default rule. [8]

 Help_r_test_chan[chan chan_in]
 => *Help_r_test_chan[chan chan_in]

Rules forHelp_r_assign_data .

Help_r_assign_data assigns data and prepares to unlockchan . [9]

 Help_r_assign_data[chan data chan_in:Empty]
 => *Help_r_unlock[chan] , chan_in := data

Help_r_assign_data default rule. [10]

 Help_r_assign_data[chan data chan_in]
 => *Help_r_assign_data[chan data chan_in]

Rules forHelp_r_unlock .

Help_r_unlock unlocks chan and resets protocol. [11]

 Help_r_unlock[chan:Busy_Locked[data]]
 => *Yes , chan := chan’:Empty

Help_r_unlock default rule. [12]

 Help_r_unlock[chan]
 => *Help_r_unlock[chan]

It is clear from the above structure that the protocol offered is by no means the only one
that will do the job. It just seems to us to be the simplest one that makes the points that
we wish to make. From the relatively straightforward way in which the protocol rules
interface to the body rules, it is obvious that a more hard-nosed protocol could be sub-
stituted for ours, if for example one wished to avoid the penalty of busy waiting, (as ex-
emplified by rule [5] forHelp_r_test_chan). However each such protocol poses
its own challenge where correctness is concerned. See below.

An Example

Let us see what our translation scheme does to the smallπ-calculus example we dis-
cussed in [Section 3]. Here it is again in fully bracketed form.

{ { x(u).{u(t).{0} Z} U} X1 | {xv.{vs.{0} Z} V + xv.{0} Z} S | {x(y).{0} Z} X4 }T

When translated, as well as the protocol rules, the following rules would be generated.
For variety, we write them out with rule separators, but emphasise that these merely em-
body the rule selection strategy mentioned above.

360

Z => *Root ;

U[u] => #U_Z[^*Help_r[u t] u t:Empty] ;

U_Z[Yes u t] => *Z |
U_Z[No u t] => *U[u] ;
U_Z[a u t] => *U_Z[a u t] ;

X1[x] => #X1_U[^*Help_r[x u] x u:Empty] ;

X1_U[Yes x u] => *U[u] |
X1_U[No x u] => *X1[x] ;
X1_U[a x u] => *X1_U[a x u] ;

X4[x] => #X4_Z[^*Help_r[x y] x y:Empty] ;

X4_Z[Yes x y] => *Z |
X4_Z[No x y] => *X4[x] ;
X4_Z[a x y] => *X4_Z[a x y] ;

V[v s] => #V_Z[^*Help_w[v s] v s] ;

V_Z[Yes v s] => *Z |
V_Z[No v s] => *V[v s] ;
V_Z[a v s] => *V_Z[a v s] ;

S[x v s] => #S_V[^*Help_w[x v] x v s] |
S[x v s] => #S_Z[^*Help_w[x v] x v s] ;

S_V[Yes x v s] => *V[v s] |
S_V[No x v s] => *S[x v s] ;
S_V[a x v s] => *S_V[a x v s] ;

S_Z[Yes x v s] => *Z |
S_Z[No x v s] => *S[x v s] ;
S_Z[a x v s] => *S_Z[a x v s] ;

T[x v s] => *X1[x] , *S[x v s] , *X4[x] ;

Initial => *T[x:Empty v:Empty s:Empty] ;

In [Fig. 9] below we give a picture of the execution graph just after the system has been
set in motion; and in [Fig. 10] we show the execution graph just after the first successful
data transfer by processS which has synchronised with processX1.

6 PROPERTIES OF TRANSLATED SYSTEMS

In this section we state a number of definitions and establish a number of mostly easy
lemmas, which enable us to speak more incisively about the structure of execution
graphs of translated systems, and about the transitions between them effected by the
rules we have proposed. We assume henceforth that we are dealing with complete sys-
tems, i.e. given aπ-calculus expressionE, the translation ofE is Tr(E), which contains
a suitable rule forInitial.

361

Definition 6.1 A function symbolF arising from the translation of a constructC will
be called a

∗ proposer function symbol ifC is {Σi πi.Qi} P andF is P,

∗ proposer-intermediate function symbol ifP is a proposer symbol andF is P_Qi
for some summandQi of {Σi πi.Qi} P,

∗X1[] ∗S[]

x : Empty v : Empty s : Empty

∗X4[]

Fig. 9

#X1_U[]

∗Help_r_test_chan[]

#S_V[]

∗Yes

x : Busy_Locked[] v : Empty s : Empty

∗X4[]

u : Empty

^
^

Fig. 10

362

∗ auxiliary function symbol ifC is {0} P, {νxQ} P, or {Q1 | Q2 | … |Qn} P andF is
P; and more specifically,P is called a zero symbol,ν symbol, or composition
symbol respectively,

∗ replication function symbol ifC is {!Q} P andF is P,

∗ initial function symbol ifF is Initial,

∗ protocol function symbol ifF is one of the functions defined in the communica-
tion protocol section of the translation, i.e.Help_r, Help_w, Help_r_test_chan
etc.

Definition 6.2 The stateholder symbolsEmpty, Busy_Unlocked, andBusy_Locked
will be called channel symbols.

Lemma 6.3 LetE be aπ-calculus expression, and Tr(E) its translation. Then the live
part of every execution graph of Tr(E) has the following properties.

(1) Each non-protocol function node and eachRoot constructor has no parent.

(2) Each function node is active unless it is a proposer-intermediate node in which
case it is either active or suspended.

(3) Each protocol function node has a unique parent which is a suspended proposer-
intermediate node. Each activeYes or No constructor node has a unique parent
which is a suspended proposer-intermediate node, and each idleYes or No con-
structor node has a unique parent which is an active proposer-intermediate node.

(4) Each function node has only channel nodes as children, except for proposer-in-
termediate nodes, which in addition have as a child either a protocol function
node, or aYes, or aNo constructor.

(5) Each protocol function node has only channel nodes as children, either two or
three of them according to arity.

(6) Each channel node is an idleEmpty, Busy_Unlocked, orBusy_Locked[data],
wheredata is another channel node.

Proof. We proceed by induction on the structure of executions. The initial graph obvi-
ously satisfies the properties. For the induction step suppose all execution graphs up to
Gi in some execution have the properties. ThenGi+1 is given by either a notification or
a rewrite.

For a notification, it is easy to see that all the properties are preserved as the only pos-
sible notifications in an execution are fromRoot constructors which by induction hy-
pothesis (1) forGi notify nobody, and fromYes andNo constructors which by
induction hypothesis (3) forGi notify their unique suspended proposer-intermediate
node parent. (All stateholders are always idle by induction hypothesis (6) forGi so nev-
er notify.)

For a rewrite there are a large number of cases to check, six for each rule type in the
translation. Fortunately all of them are easy and we briefly examine one example rule
and leave the diligent or skeptical reader to check as many others as he wishes. Con-
sider a rule of the form

363

 Help_r_test_chan[chan:Busy_Locked[data] chan_in]
 => *Help_r_assign_data[chan data chan_in]

By hypothesis (6) forGi, data andchan_in are (matched inGi to) idle channel
nodes. Therefore the creation of a∗Help_r_assign_data[chan data chan_in] node
as specified in the rule, creates a new protocol function node satisfying (4). The other
conditions are equally easy.

Definition 6.4 LetD be a MONSTR rule, andp a node of the left pattern. We say that
p is rewritten toq if

* D specifies a redirection (p, q), or

* p is the root of the left pattern ofD andq is a contractum node.

We also say thatp is rewritten toq to refer to the fact that there is a graphX, a matchh
of the left pattern of some ruleD to X, and a rewrite governed byD with result graphY
and either

* D specifies a redirection (u, w), andh(u) = p in X is redirected torX,Y(h(u)) = q
in Y whererX,Y is the redirection function from [Section 2], or

* u is the root of the left pattern ofD, w is a contractum node,h(u) = p is the root
of the redex inX, andiX′,Y(h′(w)) = q is w’s copy inY whereiX′,Y (the composi-
tion iX′′,Y iX′,X′′), is the injection function from [Section 2].

The use of the same phraseology to refer to both syntactic and semantic phenomena as
legitimised in definition 6.4 avoids excruciating circumlocutions in the discussion be-
low, without losing the reader’s conviction that we are telling the truth. Further, we will
say thatp is rewritten toq when (in the semantic sense) the reflexive transitive closure
of the above phenomena is intended, i.e. there is a sequence of zero or more rewrites of
X to X1 toX2 … toY such thatp in X is (in the preceding sense) rewritten top1 in X1,
which is rewritten top2 in X2, … , which is rewritten toq in Y. Where necessary, we
will allow rewrites which do not pattern match any of thep … , and also notifications,
to interrupt the rewriting sequence [X … Y].

Lemma 6.5 Let E be aπ-calculus expression, and Tr(E) its translation. LetP be an
initial, auxiliary or replication function symbol of Tr(E) and letp:P[…] be a node of an
execution graphX. Thenp can be rewritten to a collection of nodes which are active
proposer function nodes, active replication nodes, and idleRoot constructors.

Proof. SinceP is a function symbol of Tr(E), it arises from a labelled subexpression of
E, {…} P say. Consider the parse tree of {…}P. Each node of the tree with its children
corresponds to a syntactic construct of theπ-calculus, and each leaf corresponds to a
zero; each of these having corresponding rules (call them {}P-rules) in Tr(E). Consider
an execution graphY formed fromX by: (a), allowingp to be rewritten using {}P-rules
corresponding toInitial, | ,ν , and0 as long as there are redexes for such rules; (b) per-
forming all notifications of activeRoot constructors; (c), allowing a finite number of
uses of {}P-rules corresponding to replication and applying (a) and (b) to any non-rep-
lication nodes generated thereby. Since the parse tree is finite, a finite amount of work
is involved. ThenY has the property claimed.

Definition 6.6 The protocol function symbolsHelp_r_test_chan, Help_r_assign_-
data, Help_r_unlock will be called protagonist symbols. All other function symbols

364

will be called non-protagonist symbols. A channel nodec is said to be in the chan po-
sition of a protocol function nodep in a graphX if there is an arc (p1, c) in X, i.e.c occurs
in the position matched tochan in rules forσ(p). In this casep is called a chan position
parent ofc.

Lemma 6.7 LetE be aπ-calculus expression, and Tr(E) its translation. Then

(I) Every channel node in every execution graph of Tr(E) is in one of the following
states.

(α) Empty, and all its chan position parents are non-protagonists.

(β) Busy_Unlocked, with exactly oneHelp_r_test_chan chan position protago-
nist parent and zero or more other chan position non-protagonist parents,

(γ1) Busy_Locked[data] with exactly oneHelp_r_test_chan chan position protag-
onist parent and zero or more other chan position non-protagonist parents,

(γ2) Busy_Locked[data] with exactly oneHelp_r_assign_data chan position pro-
tagonist parent and zero or more other chan position non-protagonist parents,

(γ3) Busy_Locked[data] with exactly oneHelp_r_unlock chan position protago-
nist parent and zero or more other chan position non-protagonist parents.

(II) The state changing transitions for a channel nodec in chan position in an execution
graph are the following (where the reference numbers of the rules used are noted).

(α) → (β) whenc is rewritten by aHelp_r chan position parent, [1]

(β) → (α) whenc is rewritten by aHelp_r_test_chan chan position parent, [6]

(β) → (γ1) whenc is rewritten by aHelp_w chan position parent, [3]

(γ1) → (γ2) whenc is matched by aHelp_r_test_chan chan position parent, [7]

(γ2) → (γ3) whenc is matched by aHelp_r_assign_data chan position parent, [9]

(γ3) → (α) whenc is rewritten by aHelp_r_unlock chan position parent. [11]

(III) The non state changing transitions for a channel nodec in chan position in an ex-
ecution graph are the following (again including rule numbers).

(α) → (α) whenc is matched by aHelp_w chan position parent, [4]

(β) → (β) whenc is matched by either aHelp_r, or aHelp_r_test_chan chan position
parent, [2, 5]

(∗) → (∗) whenc is matched by either aHelp_r or aHelp_w chan position parent,
where (∗) is any of (γ1), (γ2), (γ3), [2, 4]

(∗) → (∗) whenc is matched by any non protocol chan position function parent, where
(∗) is any of (α), (β), (γ1), (γ2), (γ3).

Proof. Again by induction on the structure of executions. In fact we need to strengthen
the induction hypothesis by adding a number of clauses. Rather than present them all
at once, we will introduce them only as needed in discussing features of the proof.

The base case is trivial, as is the inductive step for notifications. For rewrites, we need
to merely check that the rewrite rules which match in chan position indeed implement

365

the required behaviour. This has two aspects. Firstly that the normal protocol rewrite
rules effect the transitions stated; and secondly that any transitions in principle permit-
ted by the rules but unstated above, do not in fact take place. The latter transitions are
the ones determined by the default rules forHelp_r_test_chan, Help_r_assign_da-
ta, andHelp_r_unlock, as an inspection of the rules used in parts (II) and (III) shows.

To show that these rules are never used, it is sufficient to strengthen the induction hy-
pothesis to assert that

(IV) (a) the chan position child of everyHelp_r_test_chan function
node is aBusy_Unlocked channel node or aBusy_Locked[data]
channel node,

(b) that the third (chan_in) child of everyHelp_r_assign_data
function node is anEmpty channel node,

(c) the chan position child of everyHelp_r_unlock function node is a
Busy_Locked[data] channel node,

since thenHelp_r_test_chan, Help_r_assign_data, andHelp_r_unlock will always
be able to match a normal rule.

To prove (IV).(b), the only part that doesn’t follow from a trivial inspection of the rules,
we need to strengthen the induction hypothesis yet further to assert that

(V) (a) a read proposal initiated by a proposer node rewriting to a proposer-
intermediate node, instantiates the input node as a newEmpty
channel node whose only parents are the suspended proposer-
intermediate node and the corresponding read helper,

(b) a read helper that matches anEmpty chan position channel, passes
its Empty input node toHelp_r_test_chan (in second position),
whereupon theEmpty input node’s only live parents are the
suspended proposer-intermediate node and theHelp_r_test_chan node,

(c) aHelp_r_test_chan that detects a rendezvous, passes itsEmpty
input node toHelp_r_assign_data (in third position), whereupon
theEmpty input node’s only live parents are the suspended proposer-
intermediate node and theHelp_r_assign_data node.

It is easy to see that (V).(a)⇒ (V).(b) ⇒ (V).(c) ⇒ (IV).(b).

Checking the induction step for rewrites involves showing that the various rules used,
preserve the properties of states claimed in part (I), and implement the various transi-
tions described in the remaining parts. Essentially there are two sorts of deductions.

Firstly, if a rule rewrites its chan position nodec then it first matches it explicitly, and
in such cases it is a feature of the protocol rewrite rules that all redirections of nodes in
chan position by protocol functions are also to explicit nodes of the rule, which makes
the behaviour immediately evident.

Otherwise the rule just matchesc without redirection. This possibility has two cases,
theHelp_r_test_chan function which implements (γ1) → (γ2) by inspection, and the
Help_r_assign_data function which implements (γ2) → (γ3). For the latter we need
a final strengthening of the induction hypothesis to assert that

366

(VI) the chan position child of everyHelp_r_assign_data function node is a
Busy_ Locked[data] channel node,

which is immediate given the form of rule [7] forHelp_r_ test_chan.

With the full induction hypothesis laid bare, the induction step for rewrites is mostly
trivial, consisting of a large number of rather elementary cases. All that is required is a
simple inspection of the information available in the rules, modulo the properties of the
set of chan position parents of channel nodes in various states; all subtler properties
needed are captured in the various clauses above. We omit the tedious details.

As a corollary to lemma 6.7, we have shown that the communication protocol does not
deadlock assuming that every active function node will rewrite eventually, a property
that we will formalise as weak fairness in [Section 7]. Part (II) of lemma 6.7 is sum-
marised in the transition diagram of [Fig. 11] below.

The final topic we need to consider in this section concerns some subcommutativity
lemmas which allow us to permute rewriting steps under suitable circumstances. In the
following, for technical simplicity, we assume that we rewrite without removing gar-
bage, so that the injection and redirection functionsi andr are total.

Lemma 6.8 In a MONSTR execution sequence, two adjacent notification steps may
be interchanged.

Lemma 6.9 In a MONSTR execution sequence, a notification step adjacent to a re-
write may be interchanged with it.

Given that notifications merely make the notifying constructor or stateholder idle, and
alter the non-idle markings on some other nodes and arcs, we regard the above two re-
sults as sufficiently obvious to allow us to both omit their proofs and even be a bit vague
in their statement. We are rather more careful about the next lemma, which incidentally
provides a guide round which lemmas 6.8 and 6.9 may be rephrased more accurately.

(α) (β)

(γ1)

(γ2)(γ3)

Help_r_test_chan

Help_r_test_chan Help_w

Help_r_unlock

Help_r_assign_data

Help_r

Fig. 11

367

Lemma 6.10 LetE be aπ-calculus expression, and Tr(E) its translation. LetG be an
execution graph of Tr(E). Fori = 1, 2, letDi = (Pi, rooti, Redi, Acti) be two rules of Tr(E)
with left subpatternsLi, and letgi : Li → G be two redexes. Suppose thatg1(root1) ≠
g2(root2), and that ifsi is an explicit stateholder ofLi, theng1(s1) ≠ g2(s2). LetHi be the
graph obtained by rewritinggi : Li → G and letrG,Hi

 be the corresponding redirection
function. For either choice ofi, let j denote the alternative choice. Then

(1) Dj has a redexhi : Lj → Hi in Hi given by

hi = rG,Hi
 gj

(2) LetKi be the graph obtained by rewritinghi and letrHi,Ki
 be the respective redi-

rection functions. Then there is an isomorphismθ : K1 → K2 and for allx ∈ G,

θ(rH1,K1
 rG,H1

(x)) = rH2,K2
 rG,H2

(x)

(3) Restricted to Live(K1), θ provides an isomorphism

θ : Live(K1) → Live(K2)

Proof. Assume that bothL1 andL2 explicitly match a stateholder; otherwise we just
have a simplified form of what follows. Sog1(root1), g2(root2), g1(s1), g2(s2) are all
distinct nodes ofG. Consequently, the arcs ofG partition into five classes: those with
heads atg1(root1), atg2(root2), g1(s1), g2(s2), and fifthly those with head at some other
node.

Supposeg1 rewrites first. Contractum building, formingG′1 does not alter any arc from
g2(root2) so iG,G′1

g2 : L2 → G′1 is a redex forD2. Likewise redirection, forming
G′′1 does not alter (the copy inG′1 of) the arc (g2(root2)m2, g2(s2)) between the root and
single explicitly matched stateholder child of the redexiG,G′1

g2. Other arcs of this
redex may be affected by the redirection but since they are all implicitly matched, this
does no harm and sorG′1,G′′1

iG,G′1
g2 : L2 → G′′1 is a redex forD2. Finally, the ac-

tivation phase, formingH1 merely makes the root ofg1 idle, so

rG′′1,H1
rG′1,G′′1

iG,G′1
g2 = rG,H1

 g2 : L2 → H1

is a redex forD2 and by symmetry we get (1).

To get (2) we note that the contractum building phases of both rewrites independently
add copies of contractum nodes ofPi to the execution graph. Since we are refraining
from garbage collection, we immediately infer the existence of a node bijectionθ : K1
→ K2. This obviously extends to a bijection on tails of arcs, and to show thatθ extends
to a graph isomorphism, we need to examine the effects of the various redirections on
the heads of arcs. This is because the remaining phases, the activation phases, are easily
seen to be independent of each other and of the rest of the rewriting phases.

As before, arcs partition into those with heads at (a):g1(root1), (b):g2(root2), (c):g1(s1),
(d): g2(s2), and (e): none of the preceding. We extendθ to the various sets of arcs as
follows.

Obviously if a node is not redirected, one can make it the head of an additional collec-
tion of arcs by adding these arcs in any order, soθ extends to arcs in (e) immediately.
From the form of Tr(E) rules and from lemma 6.3.(1) and 6.3.(3), nodes in (a) and (b)

368

either have no parent or have a unique one, so do not acquire any new parents via con-
tractum building, and independently get redirected to contractum nodes. Soθ easily ex-
tends to arcs in (a) and (b). This leaves the arcs in (c) and (d).

Now by inspection of the rules in Tr(E), all non-root redirections are of channel nodes
to fresh (contractum) channel nodes, apart from in the normal rule [9] forHelp_r_as-
sign_data. So if neitherD1 norD2 is rule [9], then we can interchange the the order of
rewriting with impunity as contractum building and redirection are independent for the
two rewrites. If bothD1 andD2 are this rule, then sinces1 ands2 are both the matched
input nodes of this rule, by clause (V).(c) in the proof of lemma 6.7, neither of them is
accessible from the other redex, so neitherdata argument matchess1 or s2 and the re-
writes may again be swapped.

If sayD1 is rule [9] andD2 is not, ifD1’s data argument does not matchs2, then we
can obviously swap the rewrites as before. IfD1’s data argument does matchs2, then
if D1 is done first, we find that the arcs in (c) get redirected tos2, (from the form ofD1
it is clear that no new arcs are added to (c) during contractum building); and then they
and all arcs in (d) (both arcs existing inH1 and any new ones added during contractum
building) get redirected toz2, the redirection target ofs2. Otherwise theD2 rewrite is
done first, and redirects the arcs in (d) toz2 (these are arcs existing inH2, any new ones
added during contractum building, and including any arc(s) of theD1 redex that
matched thedata argument ofHelp_r_assign_data). TheD1 redex, nowrG,H2

 g1,
redirects the arcs in (c) toz2 directly. A symmetric argument works ifD2 is rule [9], so
the results of either rewriting sequence are equivalent andθ : K1 → K2 extends to a
graph isomorphism as claimed.

To conclude thatθ restricts to an isomorphism on live parts, we note thatθ preserves
graph structure and node symbols, but particularly that it also preserves node and arc
markings. Therefore the rules of inference in definition [2.12.(1) – (4)] are invariant
underθ, and a proof of liveness of a node or arc inK1 will map by induction into a proof
of liveness of a node or arc inK2, and vice versa. Likewise for garbage. This gives us
(3).

In the above, we have indicated that we can interchange the order of rewriting given
some mild conditions. Essentially the same result holds true for quite arbitrary MON-
STR systems, though we have to take note of non-trivial activations and dynamic sus-
pensions. However in general, we do not have the wealth of detailed information about
the structure of execution graphs that we exploited to make the preceding proof fairly
straightforward, and the demonstration in the general case is rather more arduous.

7 CORRECTNESS OF THE TRANSLATION

What can we say about the correctness of the translation? When source and target lan-
guages are as far apart as in this case, one has to be careful about what one means by
correctness. For instance in theπ-calculus itself, there is no possibility that a single
communication may thrash without making progress, whereas the busy waiting feature
of the MONSTR communication protocol leaves Tr(E) systems open to the possibility
of readers and writers perpetually failing to make appropriate contact, and the system
as a whole stalling thereby, despite there being a copious quantity of rewrites being per-
formed. Under such circumstances it is reasonable to guard claims of correctness by
suitable fairness assumptions. Even with fairness though, an execution of the MON-

369

STR system will contain quite an amount of fruitless work, as processes make attempts
to communicate which are futile for one reason or another; eg. there may be attempts to
communicate while offers or rendezvouses are in progress on the same channel, or
when there are no available writers on the channel in question.

Our claim for correctness amounts to two facts. The first states that “anything that aπ-
calculus expressionE can do, can be simulated by its translation Tr(E)”. It is a com-
pleteness statement proved by establishing the existence of a “standard simulation” of
anyπ-calculus expression and appears as theorem 7.9. The second states that “anything
that the translation Tr(E) of aπ-calculus expressionE can do, corresponds in a certain
sense to (at least a prefix of) a trace of replication and comunication steps of the original
π-calculus expressionE”. This soundness result is guarded by a fairness assumption,
and involves a fairly intricate manipulation of an arbitrary fair execution until it be-
comes a standard simulation. It appears as theorem 7.16. The details of the manipula-
tion constitute one of the main technical contributions of this paper.

Definition 7.1 Let E be aπ-calculus expression. A top-level parallel subexpression
(TLPSE) ofE is a subexpression of the form {0} P, {! Q} P, or {Σi πi.Qi} P, such that there
is no subexpression of one of these forms that properly contains it.

So a generalπ-calculus expression is built up out of TLPSEs by usingν and parallel
composition, as one would expect.

Definition 7.2 LetE be aπ-calculus expression, and Tr(E) its translation. An execu-
tion graphG of Tr(E) representsE if

(1) There is a bijectionρ between TLPSEs ofE and live nodes ofG such that

∗ ρ({ 0} P) is an idleRoot constructor node,

∗ ρ({! Q} P) is an active replication function node∗P[…],

∗ ρ({ Σi πi.Qi} P) is an active proposer function node∗P[…].

(2) ρ extends to a bijection between free channel names of the TLPSEs ofE and idle
Empty channel nodes ofG such that

∗ if channelx is free in the TLPSEsE1 … Ek then there is a normal arc from
each of theρ(Ei) to ρ(x).

Note that in a representation of an expressionE, the bound names of top-levelν’s (those
not occurring inside any TLPSE), are “unwrapped” and appear explicitly in the graph.
For our exampleπ-calculus expression, [Fig. 9] above represents the original expres-
sion, before any communications have taken place.

Definition 7.3 LetE be aπ-calculus expression, and Tr(E) its translation. We denote
by →A(E) the relation on execution graphs of Tr(E) given by rewriting from an active
initial or auxiliary function node, or by notifying from an activeRoot constructor. We
denote by→R(E) the relation on execution graphs of Tr(E) given by rewriting from an
active replication function node. We denote by→C(E) the relation on execution graphs
of Tr(E) given by rewriting from an active proposer, or proposer-intermediate, or pro-
tocol function node, or by notifying from an activeYes orNo constructor. We write eg.
→A(E)

+ or →A(E)* for the transitive, resp. reflexive transitive, closure of these.

370

Lemma 7.4 LetE be aπ-calculus expression, and Tr(E) its translation. Then there is
an execution graphG of Tr(E) such that

∗Initial →A(E)
+ G

andG representsE.

Proof. Essentially this is a byproduct of lemma 6.5. We rewrite∗Initial using rules for
Initial, | , ν, and perform notifications byRoot constructors as long as we can do so
yielding G. An induction on the structure of the derivation ofG using the structure of
the “rewrites to” relation of definition 6.4 ensures that the correct function nodes are
generated, and the properties of theArgsP andblendP functions of the translation ensure
that suitable channel nodes are linked to the correct function nodes.

Most of the remaining results in this section must be understood as holding up to iso-
morphism, or up to isomorphism of live subgraphs (as appropriate), as in lemma 6.10.
We abuse language somewhat by not mentioning the relevant mappings.

Lemma 7.5 LetE be aπ-calculus expression, and Tr(E) its translation. Let execution
graphG of Tr(E) representE. LetE ≡〉* F be a reduction to standard form ofE. Then
G representsF, provided TLSEs ofE andF are consistently tagged and such tags are
consistently translated into function symbols.

Proof. Consider the defining clause of≡〉 in tagged form.

{ { νz{ Q1} Q1
} N | Q2 | … |Qn }P ≡〉 { νz′{{ Q1} Q1

 | Q2 | … |Qn }P′ }N′

Here we have tagged the subexpresionQ1 consistently on both sides (leading to the
same function symbolQ1) and have introduced new tags for the restriction and parallel
combinators on the RHS. Consider the rules generated by the translations of the LHS
and RHS. On both sides, the rules forQ1, translatingQ1, would be identical since the
free and bound names ofQ1 are the same on both sides. The same applies to the other
Qi by lemma 3.9. On the LHS,P would spawn nodes forQ2 to Qn andN, the last of
which would create a freshEmpty channel node forz and then spawnQ1. On the RHS,
N′ would create a freshEmpty channel node forz′ and then spawnP′, which would
spawn nodes forQ1 toQn. Clearly in an execution, the nodesP, N, (resp.P′, N′), would
be garbaged, so the live subgraphs containingQ1 to Qn and the channel nodes that they
refer to would be isomorphic. The same applies if the expressions shown on the LHS
and RHS were merely subexpressions at top level of a larger expression, and also if the
Qi merely contained restrictions and and parallel compositions of TLSEs. The rest of
the proof is an induction on the length of the derivationE ≡〉* F.

We note that if we had included the first clause of remark 3.10 in our definition of re-
duction to standard form, thenνz-binders in the interior of a summand would have been
able to float above such summands making the bound channel names in question free
in those summands. This would have destroyed the isomorphism (up to garbage) of
lemma 7.5 since the representatives of such summands would now have had extra ar-
guments to these channel nodes. However these would just have been dummy argu-
ments, carried around dormant until they were actually needed, so would not have
altered the behaviour of the translation.

371

Lemma 7.6 LetE1 be aπ-calculus expression, and Tr(E1) its translation. LetE1 →R
E2 be a replication rewrite ofE1. Then there are execution graphsG1 andG2 such that
G1 representsE1 andG2 representsE2 and

Proof. It is clear that there is an execution graphG1 that representsE1 by lemma 7.4.
Consider the expressionE1 and its replicated subexpression {!Q} P. The latter corre-
sponds to a replication nodeP of G1. Assuming “Q” labels the subexpressionQ, rewrit-
ing ∗P[…] yields a graphH1 in which ∗P[…] is replaced by∗P[…], ∗Q[…]. Now a
replication rewrite ofE1 = … {!Q} P … yieldsE2 = … {{ Q} Q | {!Q} P} R … . Assuming
thatR is fresh, that the other subexpressions ofE2 are labelled as inE1, and assuming
that the new instance ofQ and its subexpressions are labelled identically to the instance
inside {!Q} P, it is easy to see by using lemma 6.5 to reduce∗Q[…] to proposer nodes,
idle Root nodes and replication nodes, that a representationG2 of E2 results.

Lemma 7.7 LetE1 be aπ-calculus expression, and Tr(E1) its translation. LetE1 →C
E2 be a communication rewrite ofE1. Then there are execution graphsG1 andG2 such
thatG1 representsE1 andG2 representsE2 and

Proof. By lemma 7.4 we obtain aG1 that representsE1. Let the communication step
E1 →C E2 involve the summands {(… +πr.Q′ + …)}P′ and {(… + πw.Q′′ + …)}P′′
whereπw is a write prefix, andπr is a suitable read prefix, giving

(… | {(… + πr.Q′ + …)}P′ | {(… + πw.Q′′ + …)}P′′ | …)
→C (… |Q′[χ] | Q′′ | …)

whereQ′[χ] is Q′ with the appropriate channel substitution applied. The TLPSEsP′
andP′′ correspond to proposer nodesP′ andP′′ in G1. Running the communication
protocol for these nodes for the choicesP′ => P′_Q′ andP′′ => P′′_Q′′ we obtainH1;
in whichP′ andP′′ have been replaced byQ′ andQ′′, the input channel node of Q′ has
been instantiated and redirected, and perhaps some other channels ofP′ andP′′ have
been garbaged.

The subgraph ofH1 which omitsQ′ andQ′′ (and their out-arcs, and any garbage that
this omission generates), is a representation of the subexpression ofE2 which omits the
summandsQ′[χ] andQ′′, provided that the other subexpressions ofE2 are labelled con-
sistently with theirE1 counterparts.H1 itself fails to representE2 unlessQ′ andQ′′ are
proposer or replication nodes, but only for this reason. Applying lemma 6.5 toH1 to
reduceQ′ andQ′′ to proposer nodes, idleRoots and replicator nodes using auxiliary
rules and notifications only, we obtainG2 which does representE2, and which can ob-

G1 R(E1) H1 A(E1)* G2

A(E1)*

∗Initial

A(E1)*

∗Initial

A(E2)*

∗Initial

G1 C(E1)
+ H1 A(E1)* G2

A(E1)*

∗Initial

A(E1)*

∗Initial

A(E2)*

∗Initial

372

viously be obtained from∗Initial using→A(E2)* only, provided as before, we label the
subexpressions ofE1 andE2 consistently.

Theorem 7.8 Let E ≡ E0 be aπ-calculus expression, and Tr(E) its translation. Let
→A(E), →R(E) and→C(E) be the corresponding rewrite relations. Then for any trace of
communication and replication steps fromE, eg.

E ≡ E0 →C E1 →R E2 → …

there is a rewriting sequence

such that for eachi, Gi representsEi.

Proof. We assume that we label all the subexpresions of theEi consistently as we did
in lemmas 7.6, 7.7. Noting that→C(Ei)

⊆ →C(E), that→R(Ei)
⊆ →R(E), and that→A(Ei)⊆ →A(E), if for no other reason than thatEi is an execution graph of Tr(E0), we can use

induction on the structure of the trace fromE, using lemmas 7.6, 7.7 for the induction
steps.

Theorem 7.9 Let E ≡ E0 be aπ-calculus expression, and Tr(E) its translation. Let
→A(E), →R(E) and→C(E) be the corresponding rewrite relations. Then for any trace of
communications and replications fromE enhanced by reduction to a standard form at
each step, eg.

E ≡ E0 ≡〉* F0 →C E1 ≡〉* F1 →R E2 ≡〉* F2 → …

there is a rewriting sequence

such that for eachi, Gi represents bothEi andFi.

Proof. This is a straightforward enhancement of the induction of theorem 7.8. By lem-
ma 7.5 we note that up to garbage, the same execution graphGi will do duty for bothEi
andFi, so once we note that a replication can be done inFi iff it can be done inEi (and
thus can be simulated inGi), we just need to check thatGi is capable of performing all
the communications ofFi which were unavailable toEi. That this holds, follows once
we note that in our translation, sending and receiving are independent activities apart
from their need to synchronise. Thus the sender’s success in transmitting aν-bound
channel does not depend on knowing that the receiver is in the scope of theν. Equally,

G0 C(E)
+ H0 A(E)* G1 R(E) H1 A(E)* G2 …

A(E0)*

∗Initial

A(E1)*

∗Initial

A(E2)*

∗Initial

G0 C(E)
+ H0 A(E)* G1 R(E) H1 A(E)* G2 …

A(E0)*

∗Initial

A(E1)*

∗Initial

A(E2)*

∗Initial
∗Initial ∗Initial∗Initial

A(F0)

*
A(F1)

*
A(F2)

*

373

the receiver’s success is independent of whether or not the received channel isν-bound,
and if so of what theν’s scope is.

The later remarks in the above proof bring out with some force the fact that our graph
based formalism, by directly expressing connectivity in a communication network via
connectivity in the graph, handles easily issues that demand some technical pain in the
π-calculus.

Definition 7.10 LetE be aπ-calculus expression, and Tr(E) its translation. An execu-
tion such as the one described in theorem 7.9 is called a standard execution of Tr(E).

Theorem 7.9 says that the translation is complete in providing a standard execution of
any possible trace ofE. It is clear from the properties of standard executions that they
are in fact weak simulations of the traces ofE.

Soundness is rather harder. Given an arbitrary executionH of a system Tr(E), we want
to show that there is a traceT of communications and replications enhanced by reduc-
tion to standard form fromE, such thatH corresponds toT in some acceptable way.
Given the standard executions furnished by theorem 7.9 for Tr(E) systems, we regard it
as sufficient to manufacture fromH a standard executionG that is equivalent toH in a
convincing sense. This manufacturing process has to accomplish a number of things.
The actions corresponding to a successful run of the communications protocol have to
be clustered together (the reference points for this are the commit rewrites of the proto-
col, the rewrites governed by theHelp_w normal rule); waste rewrites corresponding
to unsuccessful essays of the protocol must be eliminated; and rewrites using auxiliary
rules must be suitably clustered to ensure, for each successful commit point or replica-
tion point (say thei’th), before the initiation of the communication or replication, that
Gi really does representEi.

For future notational convenience, ifx is a node of an execution graphGi of an execu-
tion G, we presuperscript it, writing(i)x, to distinguish it from other nodes in other ex-
ecution graphs ofG. So by definition,(i)x ∈ Gi. If j ≥ i we write(j)x for rGi,Gj

(x) =
rGi,Gj

((i)x) where as in previous sections,rGi,Gj
 is the function which maps(i)x in Gi to

its redirection target inGj. Also when more than one execution is being discussed, we
additionally presubscript nodes with notation to indicate which execution they belong
to, eg.(i)Gx ∈ Gi ∈ G.

Definition 7.11 Let R be a rule system andX = [X0, X1, X2, …] andY = [Y0, Y1, Y2,
…] be two executions ofR where bothX0 andY0 are the initial graph. We define the
relationΞ between nodes of execution graphs ofX andY as follows.

(1) (0)
X0

init Ξ (0)
Y0

init, where(0)
X0

init and(0)
Y0

init are the initial nodes ofX0 andY0,

(2) If (i)x Ξ (j)y, i ≤ i′, j ≤ j′, then(i′)x Ξ (j′)y,

(3) If (i)x Ξ (j)y, and(i)x and(j)y are roots of redexes of the same ruleD of R, andXi+1

andYj+1 are the results of rewriting these redexes, then if(i+1)x′ ∈ Xi+1and(j+1)y′
∈ Yj+1 are copies of the same contractum nodep of the full pattern of the ruleD

introduced during these rewrites, then(i+1)x′ Ξ (j+1)y′.

By clause (1) of the above, any two executions ofR areΞ-related to some extent. This
relationship may easily be a not very useful one if the two executions swiftly diverge

374

from one another, theΞ-related parts becoming consigned to garbage. However, the
more closely the two executions follow one another disregarding inessential detail, the
larger the proportion of execution node instances in the first execution, that will be in a
useful non-garbage way,Ξ-related to counterparts in the second execution.

We can extendΞ to arcs, connectivity, and other graph theoretic concepts as required.
For example.

Definition 7.12 With the provisions of definition 7.11 understood, let ((i)pk,
(i)c) be an

arc ofXi and ((j)qk,
(j)d) be an arc ofYj. If

(i)p Ξ (j)q, and(i)c Ξ (j)d then we say ((i)pk,
(i)c) Ξ ((j)qk,

(j)d).

Lemma 7.13 LetE be aπ-calculus expression, and Tr(E) its translation. LetG = [G0,
G1, …] andH = [H0, H1, …] be two executions of Tr(E) such that

(a) Gi = Hi for i ∈ [0 … m, m+2 …].

(b) Gm contains two redexes rooted at(m)
Gr1 and(m)

Gr2 which satisfy the hypotheses

of lemma 6.10. Understood as nodes inHm, these roots are written(m)
Hr1 and

(m)
Hr2.

(c) In G, Gm → Gm+1 rewrites the redex rooted at(m)
Gr1 andGm+1 → Gm+2 = Hm+2

rewrites the redex rooted at(m+1)
Gr2. While inH, Hm→ Hm+1 rewrites the redex

rooted at(m)
Hr2 andHm+1→ Hm+2 =Gm+2 rewrites the redex rooted at(m+1)

Hr1.

Then

(1) For every node(i)x ∈ Gi ∈ G, (i)x Ξ (j)y for some(j)y ∈ Hj ∈ H, and if(i)x is live

then(j)y is live. And conversely.

(2) For every arc ((i)pk,
(i)c) ∈ Gi ∈ G, ((i)pk,

(i)c) Ξ ((j)qk,
(j)d) for some arc ((j)qk,

(j)d) ∈ Hj ∈ H. And conversely.

Proof. Fori ∈ [0 … m, m+2 …] we can obviously setΞ to (the closure under the re-
cursive clause of definition 7.11 of) the identity relation on nodes(i)x ∈ Gi = Hi and cor-
respondingly for arcs. Fori = m+1, for non-contractum nodes arising from(m)

Gx =
(m)

Hx , we set(m+1)
Gx Ξ (m+1)

Hx. For contractum nodes, ifp is a contractum node of the
rule for ther1 rewrite, we set(m+1)

Gp Ξ (m+2)
Hp in an obvious notation for the intro-

duced copies, and likewise(m+2)
Gq Ξ (m+1)

Hq for a contractum nodeq of the rule for the
r2 rewrite. The results for arcs follow readily, and the converses are immediate.

Corollary 7.14 The results of Lemma 7.13 hold when one or both ofGm → Gm+1and
Gm+1 → Gm+2 are notifications.

Definition 7.15 LetG be an execution of a rule systemR. Let (i)x be an active node
of Gi in G. Suppose for somej ≥ i the next execution step is either a notification by the
constructor/stateholder(j)x or a rewrite of a redex whose root is(j)x. If for eachi and
for each active(i)x in Gi there is such aj, then we say the execution is weakly fair.

Note that standard executions as per theorem 7.9 are not necessarily weakly fair unless
the trace ofE satisfies additional “reasonableness” criteria.

375

Now for the main theorem.

Theorem 7.16 Let E be aπ-calculus expression, and Tr(E) its translation. LetH =
[H0, H1, …] be a weakly fair execution of Tr(E). Then there is a traceT of communi-
cations and replications fromE, enhanced by reductions to standard form, such that for
a standard executionG = [G0, G1, …] of Tr(E) corresponding via theorem 7.9 toT, for
some prefix [G0, G1, … ,GN] of G, with 0≤ N ≤ ∞, if i ≤ N

(1) For every node(i)x ∈ Gi ∈ G, (i)x Ξ (j)y for some(j)y ∈ Hj ∈ H, and if(i)x is live

then(j)y is live.

(2) For every arc ((i)pk,
(i)c) ∈ Gi ∈ G, ((i)pk,

(i)c) Ξ ((j)qk,
(j)d) for some arc ((j)qk,

(j)d) ∈ Hj ∈ H.

(3) If Hj → Hj+1 ∈ H is a rewrite of a redex rooted at(j)y ∈ Hj and governed by either
a rule for a replication symbol, or a communication commit rule, there is a cor-
responding rewriteGi → Gi+1 ∈ G of a redex rooted at a node(i)x ∈ Gi, which

is governed by the same rule, and(i)x Ξ (j)y. Further, ifHj → Hj+1 andHj′ → Hj′+1
are two distinct such rewrites, their correspondingGi → Gi+1 andGi′ → Gi′+1 are

also distinct, and all such rewrites occur in the same order inH andG.

Thus on the one hand every part of the standard executionG can be located inH; on the
other, every replication or communication step ofH can be found inG also. On this
basisG, which faithfully depictsT, shows that the essence of any execution of Tr(E)
corresponds to a trace ofE, giving soundness.

Proof. The proof proceeds through a number of phases, gradually transformingH into
the requiredG, while retaining the properties (1) – (3). Most of the phases are fairly
similar so we treat the first in detail, and the others more curtly.

The first few phases eliminate “waste work” of various kinds from the executionH.

Let X O.0 = [X0
O.0, X1

O.0, …] be a working name for the executionH.

PHASE I — Elimination of failed write attempts. These arise from the following se-
quence of events. (Here and below, the communication protocol rules used in each
event are indicated by their reference numbers.)

(a) A proposer node(a)p rewrites to a proposer-intermediate node(a+1)p with a
Help_w child (a+1)h.

(b) TheHelp_w child(b)h matches a non-Busy_Unlocked channel node(b)c and re-
writes to aNo constructor(b+1)h using its default rule. [4]

(c) TheNo constructor(c)h notifies its suspended parent(c)p.

(d) The parent(d)p matches theNo constructor(d)h and reverts to a proposer node
(d+1)p.

Weak fairness assures us that once such a sequence of events starts withinX O.0 it runs
to completion. So as indices of graphs ofX O.0, a < b < c < d. Suppose further that no

376

a′ < a is the first element of such a subsequence ofX O.0, so we are dealing with the first
failed write attempt. LetX O.1 be the sequence of graphs obtained fromX O.0 by de-
leting the rewrites/notifications mentioned in (a) – (d). ThusX0

O.1 = X0
O.0; X1

O.1 =
X1

O.0 ; … ; Xa
O.1 = Xa

O.0; Xa+1
O.1 is similar toXa+2

O.0 in that the latter has aHelp_w
node, and the symbol labelling its parent(a+2)

0p ∈ Xa+2
O.0 is a proposer-intermediate

symbol, while the symbol labelling its counterpart(a+1)
1p ∈ Xa+1

O.1 is the original pro-
poser symbol; similarly forXa+2

O.1 andXa+3
O.0 etc.;Xb

O.1 is similar toXb+2
O.0 and so

on; Xc–1
O.1 is similar toXc+2

O.0 etc.;Xd–2
O.1 = Xd+2

O.0 up to garbage (since we have
reached the point where the failed write attempt has aborted) and so on.

We claim thatX O.1 is an execution of Tr(E). This is easy to see since no rewrite of
X O.1 matches a node whose symbol has been changed compared toX O.0 (the only such
node beingp mentioned above in (a) – (d), which being a proposer/proposer-intermedi-
ate node, has no parents by lemma 6.3.(1)). Therefore all transitionsXi

O.1→ Xi+1
O.1 of

X O.1 are legal execution sequence steps: the notifications obviously so, and the rewrites
also legally so since no change of rule selection is necessitated by the change of symbol
of p.

We can now establish the conclusions (1) – (3) of the theorem forX O.1. To get (1), we
see that for each node(i)

1x ∈ Xi
O.1 we have

(i)
1x Ξ (i+δ)

0x

where(i+δ)
0x ∈ Xi+δ

O.0 and where

δ = 0 if 0≤ i ≤ a,
= 1 if a+1≤ i ≤ b–1,
= 2 if b≤ i ≤ c–2,
= 3 if c–1≤ i ≤ d–3,
= 4 if d–2≤ i.

Clearly if (i)
1x is live then so is(i+δ)

0x given the relatively slight changes made to the
execution.

In a similar vein, for (2) we can see that arcs behave well, i.e.

((i)1pk,
(i)

1c) Ξ ((i+δ)
0pk,

(i+δ)
0c)

for all arcs except those emerging from the affectedp node. For those we can see that

((i)1pk,
(i)

1c) Ξ ((d+1)
0pk,

(d+1)
0c)

where a+1≤ i ≤ d–3. And (3) becomes clear once we notice that we have not affected
any of the successful communication or replication rewrites.

Thus we have eliminated the first failed write attempt (if there was indeed one at all)
from X O.0 giving X O.1. Likewise we can eliminate the first failed write attempt from
X O.1 giving X O.2 etc. We get a sequence of executionsX O.i which it is easy to see
have a non-decreasing invariant prefix and such that for all relevanti, X O.i is related to
X O.i+1 by conditions (1) – (3).

If X O.0 is finite then this process stops after a finite number of steps. Call the final ex-
ecution generatedX I.0. If X O.0 is infinite then there are two possibilities. Either the
non-decreasing invariant prefix is never eventually constant; in which case theX O.i

377

converge to an infinite execution. Call itX I.0 as before. (Note thatX I.0 may not be a
weakly fair execution. This would arise if some particular proposer node consistently
failed to succeed in communicating. In such a case the graphs inX I.0 would eventually
all contain an active node (the said proposer) that was never the root of a rewrite.) Oth-
erwise the the invariant prefix stops increasing after some point sayi0. In this case all
active nodes of execution graphs beyond the prefix ofX O.j for j ≥ i0 are involved with
failing write attempts. (Such behaviour would be forced if say the expressionE con-
tained only writers at the top level, eg.E = xz.0.) In this case call the final stable prefix
X I.0. Note that strictly speaking it is not an execution since its final graph will contain
active nodes. Nevertheless we will overlook this below. Finally, if there were no failed
write attempts at all inX O.0, we setX I.0 = X O.0.

PHASE II — Elimination of clashing read attempts. These arise from the following se-
quence of events.

(a) A proposer node(a)p rewrites to a proposer-intermediate node(a+1)p with aHel-
p_r child (a+1)h, and instantiates the input channel node(a+1)u.

(b) TheHelp_r child (b)h matches a non-Empty channel node(b)c and rewrites to a
No constructor(b+1)h using its default rule. [2]

(c) TheNo constructor(c)h notifies its suspended parent(c)p.

(d) The parent(d)p matches theNo constructor(d)h and reverts to a proposer node
(d+1)p.

Since Phase I did not interfere with clashing read attempts, once such a sequence of
events starts, it will run to completion by the weak fairness ofX O.0. So we eliminate
the first such sequence fromX I.0 giving X I.1. The technical details are as for Phase I.
Again we generate a sequence of executionsX I.0, X I.1, X I.2 etc. with non-decreasing
invariant prefixes. Once more there are three cases depending on whetherX I.0 was fi-
nite, and if not, whether the non-decreasing invariant prefix increased indefinitely or
not. In all cases we call the resulting executionX II.0. As previouslyX II.0 need not be
weakly fair.

PHASE III — Elimination of failed read attempts. These arise from the following se-
quence of events.

(a) A proposer node(a)p rewrites to a proposer-intermediate node(a+1)p with aHel-
p_r child (a+1)h, and instantiates the input channel node(a+1)u.

(b) TheHelp_r child (b)h matches anEmpty channel node(b)c, and using its normal
rule, rewrites to aHelp_r_test_chan function(b+1)h, rewriting the channel(b)c
to aBusy_Unlocked channel(b+1)c. [1]

(c1) The Help_r_test_chan function (c1)h matches theBusy_Unlocked channel
(c1)c and rewrites to aHelp_r_test_chan function(c1+1)h. [5]

(c2) The Help_r_test_chan function (c2)h matches theBusy_Unlocked channel
(c2)c and rewrites to aHelp_r_test_chan function(c2+1)h. [5]

378

… … … … … … …

(cm) The Help_r_test_chan function (cm)h matches theBusy_Unlocked channel
(cm)c and rewrites to aHelp_r_test_chan function(cm+1)h. [5]

(d) TheHelp_r_test_chan function(d)h matches theBusy_Unlocked channel(d)c
and rewrites to aNo constructor(d+1)h, rewriting theBusy_Unlocked channel
(d)c to anEmpty channel node(d+1)c. [6]

(e) TheNo constructor(e)h notifies its suspended parent(e)p.

(f) The parent(f)p matches theNo constructor(f)h and reverts to a proposer node
(f+1)p.

Again once such a sequence of events starts, it will run to completion by the weak fair-
ness ofX O.0, although this time, it is possible thatm = ∞ and the events (d) – (f) never
take place. Apart from the fact that more events need to be dealt with in eliminating
such a sequence, the details are sufficiently similar that we can omit them. One point
to note is that unlike the previous phases, elimination of a sequence (a) – (f) changes the
state of the channel nodec from Busy_Unlocked to Empty between stages (b) and (d)
inclusive. Since channel nodes are shared, any rewrite explicitly matchingc in this pe-
riod would find a different symbol and so would need to use a different rule. However,
we can deduce by lemmas 6.3 and 6.7, that any such rewrite must belong to a clashing
read attempt, and these have already been eliminated above. So the change of state goes
unobserved, and the elimination is safe.

So we generate a sequence of executions as previously,X II.0, X II.1, X II.2 etc. with
non-decreasing invariant prefixes. Once more there are three cases depending on
whetherX II.0 was finite, and if not, whether the non-decreasing invariant prefix in-
creased indefinitely or not. In all cases we call the resulting executionX III.0.

PHASE IV — Elimination of useless work from successful read attempts. These are to
be found within sequences of events as follows; wherem > 0.

(a) A proposer node(a)p rewrites to a proposer-intermediate node(a+1)p with aHel-
p_r child (a+1)h, and instantiates the input channel node(a+1)u.

(b) TheHelp_r child (b)h matches anEmpty channel node(b)c, and using its normal
rule, rewrites to aHelp_r_test_chan function(b+1)h, rewriting the channel(b)c
to aBusy_Unlocked channel(b+1)c. [1]

(c1) The Help_r_test_chan function (c1)h matches theBusy_Unlocked channel
(c1)c and rewrites to aHelp_r_test_chan function(c1+1)h. [5]

(c2) The Help_r_test_chan function (c2)h matches theBusy_Unlocked channel
(c2)c and rewrites to aHelp_r_test_chan function(c2+1)h. [5]

… … … … … … …

379

(cm) The Help_r_test_chan function (cm)h matches theBusy_Unlocked channel
(cm)c and rewrites to aHelp_r_test_chan function(cm+1)h. [5]

(d) TheHelp_r_test_chan function(d)h matches theBusy_Locked[data] channel
(d)c and rewrites to aHelp_r_assign_data function(d+1)h. [7]

(e …) The remaining steps of the communication protocol complete successfully.

In this case all we wish to do is to eliminate the steps (c1) – (cm) without affecting the
rest of the communication. (This time we can assert thatm is finite, regarding all infinite
m cases as partially complete failed read attempts.) The elimination can be done with-
out complication, especially when we note that all the eliminated steps are actually null
rewrites modulo garbage: none of them changes the live graph at all. The same strategy
as before now applies. Once more we generate a sequence of executions,X III.0, X III.1,
X III.2 etc. We call the resulting executionX IV.0.

At this point, we have eliminated all spurious activity from the execution. What re-
mains, is to standardiseX IV.0 by reordering the rewrites in a sensible way. This consists
of two subtasks. The first is to cluster the rewrites corresponding to a successful run of
the communication protocol at the commit points. The second is to ensure that the re-
writes of auxiliary and replication functions occur at suitable places so that we can iden-
tify execution graphs that actually represent the expressionsEi of a trace fromE. All
this must be done in a way that preserves the order of communications and replications
so as not to fall foul of causality considerations that would prevent eg. a rewrite (β) from
being permuted to a place earlier in the execution than the rewrite (α) which created
(β)’s redex root as a contractum node. We start with the communications.

PHASE V — Compression of successful communication sequences. We will standard-
ise on the following sequence of events for a successful communication.

(a) A proposer node(a)pw rewrites to a proposer-intermediate node(a+1)pw with a
Help_w child (a+1)hw.

(b) A proposer node(b)pr rewrites to a proposer-intermediate node(b+1)pr with a
Help_r child (b+1)hr, and instantiates the input channel node(b+1)u.

(c) TheHelp_r child (c)hr matches anEmpty channel node(c)c, and using its normal
rule, rewrites to aHelp_r_test_chan function(c+1)hr, rewriting the channel(b)c
to aBusy_Unlocked channel(c+1)c. [1]

(d) TheHelp_w child (d)hw matches theBusy_Unlocked channel node(d)c and re-
writes to aYes constructor(d+1)hw, rewriting the channel to aBusy_Locked[-
data] channel(d+1)c. [3]

(e) TheHelp_r_test_chan function(e)hr matches theBusy_Locked[data] chan-
nel (e)c and rewrites to aHelp_r_assign_data function(e+1)hr. [7]

(f) The Help_r_assign_data function(f)hr matches theEmpty input channel(f)u,
and rewrites to aHelp_r_unlock function (f+1)hr, rewriting the input channel to
the data channel(f+1)d. [9]

380

(g) TheHelp_r_unlock function (g)hr, matches theBusy_Locked[data] channel
(g)c and rewrites to aYes constructor(g+1)hr, rewriting the channel to anEmpty
channel(g+1)c. [11]

(h) TheYes constructor(h)hr notifies its suspended proposer-intermediate node par-
ent(h)pr.

(i) TheYes constructor(j)hw notifies its suspended proposer-intermediate node par-
ent(j)pw.

(j) The active proposer-intermediate parent(i)pr matches theYes constructor(i)hr
and rewrites successfully.

(k) The active proposer-intermediate parent(k)pw matches theYes constructor(k)hw
and rewrites successfully.

The above is one possible ordering compatible with causality. The general situation is
illustrated in [Fig. 12] where an arrow indicates that the higher event must causally pre-
cede the lower event. That this is indeed the case is easily shown on the basis of lemmas
6.3 and 6.7 and the form of the protocol rules. In fact [Fig. 12], with time flowing down
the page, is an elementary event structure for a successful communication according to
our protocol [Nielsen et al. (1981), Winskel (1986), Winskel (1988)].

For obvious reasons, the commit events (d) are regarded as pinpointing the position of
a communication within an execution. Thus even if the event sequences for two com-
munications overlap, they are still regarded as taking place in the order of their commit
events.

Remark 7.16.1 We recall the fact (also pertinent to Phases III and IV above), that be-
tween events (c) and (g) inclusive of a communication sequence, no function nodes oth-
er than those involved in the communication sequence itself explicitly match the
channelc. This is because by lemmas 6.3 and 6.7 such nodes must be participating in
a clashing read or failing write attempt, and these have already been eliminated above.

To a communication with events (a) – (k) we apply the following transformation steps.

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(j)

(i)

(k)

(a)

Fig. 12

381

(1) Interchange event (c) with its succeeding events repeatedly until it becomes the
event immediately preceding event (d).

(2) Interchange event (b) with its successors until it immediately precedes event (c).

(3) Interchange event (a) with its successors until it immediately precedes event (b).

(4) Interchange event (e) with its predecessors until it immediately succeeds event
(d).

(5) Interchange event (f) with its predecessors until it immediately succeeds event
(e).

(6) Interchange event (g) with its predecessors until it immediately succeeds event
(f).

(7) Interchange event (h) with its predecessors until it immediately succeeds event
(g).

(8) Interchange event (i) with its predecessors until it immediately succeeds event
(h).

(9) Interchange event (j) with its predecessors until it immediately succeeds event
(i).

(10) Interchange event (k) with its predecessors until it immediately succeeds event
(j).

We must be sure that doing the above to a succesful communication sequence trans-
forms an execution of Tr(E) into another execution of Tr(E). For brevity we pretend
that all intervening execution steps that we have to consider are rewrites, the case of no-
tifications being simpler by corollary 7.14. To justify step (1) we argue as follows.

If the event following (c) is (d), then we are done and step (1) yields an execution of
Tr(E). Otherwise the redex rewritten in rewrite (c+1)→ (c+2) already existed in exe-
cution graph (c), since the only redex that rewrite (c)→ (c+1) creates is the redex for
the corresponding event (d). Consequently, both redexes exist in execution graph (c)
and by remark 7.16.1, satisfy the hypotheses of lemma 6.10. Therefore by lemma 6.10
we can do the rewrites in the other order. This yields a new execution which by lemma
7.13 has properties (1) and (2) of the present theorem; while property (3) is obviously
preserved since we do not move event (d).

The justifications for the other steps are similar and are omitted.

As in previous phases, we start with the first succesful communication sequence, and
the interchanges performed during the compression generate a number of new execu-
tion sequences which we resist the temptation of trying to catalogue. Upon completing
the compression of the first sequence we proceed to the second. And so on. We will
name the end product of this activityX V.0.

PHASE VI — Compression of auxiliary rewriting sequences. These arise through a se-
quence of events such as the following.

(a) An active function node(a)f rewrites and createsk active composition,ν, orRoot
nodes(a+1)n1,

(a+1)n1, … , (a+1)nk as copies of its contractum nodes.

382

(b1) One of the active nodes(b1)n1,
(b1)n1, … ,(b1)nk,

(b1)ni say, rewrites (if it is a com-
position orν node), or notifies (if it is aRoot node).

(b2) One of the remaining active nodes of {(b2)n1,
(b2)n1, … , (b2)nk} – { (b2)ni} re-

writes or notifies.

… … … … … … …

(bk) The last active node(bk)nm rewrites or notifies.

In such a sequence we call (a) the auxiliary-parent event and the (bi) the auxiliary-child
events. There is a direct correspondence between such auxiliary-parent / auxiliary-chil-
dren configurations, and fragments of the parse tree of the originalπ-calculus expres-
sionE, because the auxiliary rules used, are generated directly from the parse tree in the
translation. Rather as in Phase V, such an auxiliary-parent / auxiliary-children config-
uration,aka fragment of parse tree, can be regarded as a mini elementary event structure
for the collection of auxiliary rewrites generated, with the parent causally preceding the
children.

To such a sequence we can apply the following transformation.

(1) Interchange event (b1) with its predecessors until it immediately succeeds event
(a).

(2) Interchange event (b2) with its predecessors until it immediately succeeds event
(b1).

… … … … … … …

(k) Interchange event (bk) with its predecessors until it immediately succeeds event
(bk–1).

Such a series of interchanges is easily justified by noting that no auxiliary node ever pat-
tern matches to rewrite since its rule is a default rule, so arguments like those used in
Phase V apply even more readily.

We apply the transformation above to the first or initial rewrite ofX V.0 if applicable
(i.e. if the initial rewrite, interpreted as an auxiliary-parent event, generates any compo-
sition,ν, or Root nodes), yieldingX V.1. We then apply the transformation to the sec-
ond rewrite ofX V.1 if applicable yieldingX V.2. We then apply the transformation to
the third rewrite ofX V.2 if applicable yieldingX V.3. And so on. The end product is
an executionX VI.0. It obviously satisfies the properties (1) and (2) of the theorem, also
(3) since no replication rewrite (or communication commit rewrite) is moved in Phase
VI. An important property ofX VI.0 is that as a result of the order in which the trans-
formations are applied, the only events that can occur between an auxiliary-parent event
(a) and any of its auxiliary-child events (bi), are sibling events of (bi), their own auxil-
iary-children etc. In fact following any auxiliary-parent event (a), there is a segment of
the execution which is a sequence of auxiliary rewrites corresponding exactly to the re-
writing of the root of the auxiliary-parent event redex to a collection of proposer nodes,
replication nodes, and idleRoot nodes according to lemma 6.5, with no intervening oth-
er events. This sequence corresponds to a preorder listing of the sub parse tree rooted
at the vertex corresponding to (a), and truncated at summation and replication vertexes.

383

The order to which “preorder” refers, is constructed by, at each level of the sub parse
tree, ordering the child vertexes of a vertex in the same order as the corresponding aux-
iliary-child events appear in the original execution (this order is obviously preserved by
Phase VI). This truncated parse tree in turn corresponds to a larger elementary event
structure obtained by gluing together the mini event structures mentioned above. All of
this is easy enough to see by induction.

One important consequence of this transformation is that the last two events (j) and (k)
of a successful communication, which can both in principle rewrite their roots to auxil-
iary function nodes, can now both be immediately followed by rewrite sequences that
turn these functions into idleRoots, and active proposer or replication functions, i.e. the
events (j) and (k) have become separated. This prompts the last Phase.

PHASE VII — Reattachment of communication events (k). We just repeat step (10) of
Phase V.

(1) Interchange event (k) with its predecessors until it immediately succeeds event
(j).

As before we apply this transformation to each of the successful communications in
turn, reattaching their (k) events. This yields the executionX VII.0.

ExecutionX VII.0 which we rename asG, is the execution sought in the theorem. By
construction, it satisfies the properties (1) – (3) as required. Further we claim it is (a
possibly proper prefix of) a standard execution of Tr(E) corresponding to a trace of
communications and replications fromE, enhanced by reductions to standard form.
The proper prefix property arises since Phases I – III may individually or together dis-
pose of an infinite suffix ofH. For the rest we argue as follows.

Let Gα → Gα+1 be an execution step ofG which is either a replication rewrite, or a re-
write corresponding to an event (a) of a successful communication. We call the graphs
Gα of such steps witness graphs, including also the last graph ofG as a witness graph
in caseG is finite. We claim that the sequence of witness graphs represent the expres-
sions in a trace of communications and replications fromE, enhanced by reductions to
standard form.

We proceed by induction. First the base case. LetG(α0) be the first witness graph. We
claim it representsE ≡ E0. For consider the parse tree ofE0. It will depict how the
TLPSEs ofE0 are combined to formE0. It is clear that:

(1) The initial rewrite and ensuing sequence of auxiliary rewrites (and notifications
by Roots) mirrors a preorder listing of this parse tree of the TLPSEs ofE0.

(2) The collection of idleRoots, active replication and proposer nodes ofG(α0) gen-
erated, is in a bijective correspondenceρ0 : E0 → G(α0) with the TLPSEs ofE0,
as required by definition 7.2.(1).

(3) ρ0 extends to an appropriate bijection between free channel names of TLPSEs of
E0 andEmpty channel nodes ofG(α0), again as required by definition 7.2.(2).

The above can be verified in detail by a subinduction on the structure of the derivation
of G(α0) from ∗Initial; using the structure of the “rewrites to” relation of definition 6.4
to ensure that the correct function nodes are generated, and the properties of theArgsP
andblendP functions of the translation to ensure that channel nodes are linked to the

384

correct function nodes. Now letE0 ≡〉* F0 be a reduction to standard form, performed
in case any of the subsequent communications ofG require top levelν’s to have larger
scopes than they possess inE0. By lemma 7.5 we know thatG(α0) representsF0 too,
via a mapρ′0 : F0 → G(α0).

For the induction step, assumeG(αi) representsFi through the bijectionρ′i : Fi → G(αi).
There are two cases. Either the next rewriteG(αi) → G(αi)+1 is a replication rewrite of
a replication nodeP of G(αi) or not. If so, then there is a replication TLPSE {!…}P of
Ei corresponding toP via ρi. LetEi+1 be theπ-calculus expression obtained by repli-
cating {!…}P. In general the replicated subexpression will not be a TLPSE ofEi+1 but
will be a combination of TLPSEs ofEi+1 using | andν. The execution steps deriving
G(α(i+1)) from G(αi)+1 mirror a preorder listing of the appropriate sub parse tree. So the
next representationρi+1 : Ei+1 → G(α(i+1)) can be constructed. This is followed by a
reduction to standard formEi+1 ≡〉* Fi+1 for the usual reason. Using lemma 7.5 again,
we find the representationρ′i+1 : Fi+1 → G(α(i+1)). In detail, this can be established us-
ing subinductions on the structure of the derivationG(αi)+1 →* G(α(i+1)), and of the re-
ductionEi+1 ≡〉* Fi+1.

Otherwise the next rewriteG(αi) → G(αi)+1 is event (a) of a successful communication
between proposer nodesP andQ of G(αi), using a channel nodex say as transmission
link. Then there are two TLPSEs {+…+}P and {+…+}Q of Fi corresponding toP and
Q via ρ′i, and they are able to communicate via channel namex because of the proper-
ties ofFi andρ′i; specifically the data channel of the communication does not escape
any scope it might be contained in becauseFi is in standard form. LetEi+1 be theπ-
calculus expression obtained by doing the communication inFi. In general {+…+}P
and {+…+}Q will be replaced by two subexpressions which are not themselves TLPSEs
of Ei+1, but combinations using | andν of TLPSEs ofEi+1. The execution steps deriv-
ing G(α(i+1)) from G(αi)+1 mirror preorder listings of the two relevant sub parse trees.
The execution will be such that the two sub parse tree roots are mirrored first, followed
by the two remainders of the preorder listings, one after the other. This is a consequence
of the detailed operation of Phases VI and VII. As before, the next representationρi+1
: Ei+1 → G(α(i+1)) can now be constructed. This is followed by a reduction to standard
form Ei+1 ≡〉* Fi+1 for the usual reason. Using lemma 7.5, we again find the represen-
tationρ′i+1 : Fi+1 → G(α(i+1)). As before, all of the above can be checked in detail using
a subinduction on the structure of the derivationG(αi)+1 →* G(α(i+1)), and of the reduc-
tion Ei+1 ≡〉* Fi+1.

EvidentlyG is a standard execution with the advertised properties, which corresponds
via theorem 7.9 to a traceT of E as required. We are done.

We can modify the theorem in two significant ways. If we drop the fairness assumption,
then something like the original conclusion still holds true. The main problem is that
for any event in the execution, its logical successor may be absent, which substantially
messes up the technical details of the various early phases. Nevertheless, by discarding
partially completed event sequences, an analogue of a prefix of a standard execution
may be constructed. The main way in which it might fail to be standard, would be if
auxiliary rewriting sequences failed to run to completion, leaving auxiliary nodes which
did not rewrite to idleRoots, proposers and replicators, blocking the construction of a
representation, particulary when reductions to standard form were involved. One could
invent a modified notion of representation, or one could impose a more pernickety no-
tion of weak fairness that only applied to auxiliary symbols, in order to cope with this.

385

In the opposite direction, if we strengthen the fairness assumption by assuming that no
proper suffix of an infiniteH consists entirely of useless work, we can drop the caveat
about suffixes in the theorem. Viz.

Corollary 7.17 Let E be aπ-calculus expression, and Tr(E) its translation. LetH =
[H0, H1, …] be a weakly fair execution of Tr(E). Suppose that ifH is infinite, it contains
an infinite number of commit rewrites. Then there is a traceT of communications and
replications fromE, enhanced by reductions to standard form, such that for a standard
executionG = [G0, G1, …] of Tr(E) corresponding via theorem 7.9 toT

(1) For every node(i)x ∈ Gi ∈ G, (i)x Ξ (j)y for some(j)y ∈ Hj ∈ H, and if(i)x is live

then(j)y is live.

(2) For every arc ((i)pk,
(i)c) ∈ Gi ∈ G, ((i)pk,

(i)c) Ξ ((j)qk,
(j)d) for some arc ((j)qk,

(j)d) ∈ Hj ∈ H.

(3) If Hj → Hj+1 ∈ H is a rewrite of a redex rooted at(j)y ∈ Hj and governed by either
a rule for a replication symbol, or a communication commit rule, there is a cor-
responding rewriteGi → Gi+1 ∈ G of a redex rooted at a node(i)x ∈ Gi, which

is governed by the same rule, and(i)x Ξ (j)y. Further, ifHj → Hj+1 andHj′ → Hj′+1
are two distinct such rewrites, their correspondingGi → Gi+1 andGi′ → Gi′+1 are

also distinct, and all such rewrites occur in the same order inH andG.

Now that we have the preceding results, we remark that we can easily adapt them to the
more conventional view of theπ-calculus in which replication is viewed as a syntactic
congruence. All we need to do is to forget the replication steps in the traceT, concen-
trating on the witness graphs that represent starting configurations of successful com-
munications. We do not repeat the relevant theorems.

8 OTHER ASPECTS OF THE PI-CALCULUS

Theorem 7.16 is the main objective of this paper. In pursuing it, we omitted mention of
a number of aspects of theπ-calculus present in the original description [Milner et al.
(1992)]. In this section, we return to some of these.

Other Syntactic Features

The original description features zero and parallel composition as before, but summa-
tion is unprefixed. In a translation such as ours, we can deal with such more general
nondeterministic sums in much the same way as we did above. Namely, the symbol rep-
resenting the sum, nondeterministically rewrites to a symbol representing one of the
possibilities, which then attempts to engage in a transition corresponding to that possi-
bility. Enough information must be retained so that backtracking can take place, and
the system of choices may need to go (and if necessary to backtrack) several levels
deep. The reason for this is that whereas with the prefixed sums of [Section 3], a choice
followed by a successful communication commits the system irrevocably, with unpre-
fixed sums, a choice may not yield a possibility capable of committing the system im-
mediately, eg. the chosen summand may be itself an unprefixed sum. Worse, because
the prefixes in the original description are not restricted to just the communication prim-

386

itives, not all of them are committing. All of this offers much scope for optimisations
in a real implementation. Let us look through the prefixes now.

The prefixes divide into the committing ones which areτ.Q, xy.Q, x(y).Q, and the non-
committing ones namely [x = y].Q andνxQ. We discuss these in a convenient order.

The case ofτ.Q is relatively easy. Since in theπ-calculus one has the transition

τ.Q τ−→ Q

one could introduce rules in the translation for symbols that “did nothing for one step”
easily enough. In the treatment of correctness, in an augmented theorem 7.16, the re-
writes for such rules would simply be left where they were.

The next easiest case is the noncommitting [x = y].Q. In standard MONSTR, there is
no “pointer equality test”. However many systems find such a test extremely useful, so
in practice many MONSTR systems admit the additional pair of rules

PointersEqual[x x] => *Yes ;
PointersEqual[x y] => *No

the first being considered a non-default rule. An analysis of the architectural demands
of such rules reveals that they are not excessive so their inclusion is permissible, though
invevitably they clutter the case analysis of proofs about MONSTR systems, which ex-
plains why they are often omitted.

The natural way to incorporate the syntactic construct {[x = y].Q} P into the translation
is thus to have symbolP callPointersEqual[x y], and depending on the result, to either
proceed to behave asQ if x = y, or to backtrack toP (or an ancestor ofP) if not. Here
is one sense in which the equality test is noncommitting; if the test fails, it is still per-
fectly possible that some other process might subsequently makex andy equal, allow-
ing the test to succeed. Furthermore theπ-calculus transition rule

gives us cause for concern, since it appears to demand the synchronisation of the equal-
ity test with the succeeding actionα. This is another sense in which the equality test is
noncommitting; any committment is contingent on the success ofα. The synchronisa-
tion poses no problem in a standard execution, but in an arbitrary execution the two sub-
actions may be separated in time. However, an augmented theorem 7.16 may exploit
the semantics of substitution and redirection, which both hold that onceb has been sub-
stituted for / redirected toa, the action cannot be subsequently undone. Thus the re-
writes for a successful equality test can be postponed until they occur just before the
rewrites for the subsequentα action. In this manner correctness may be extended to
include the equality test.

Interestingly, the same does not hold for a hypothetical inequality test, [x ≠ y].Q, since
in the translation of the transition rule

Q α−→ Q′
[x = x].Q α−→ Q′

Q α−→ Q′
[x ≠ y].Q α−→ Q′

387

an arbitrary execution may perform the successful inequality test, and the critical action
of α, at distant points of the execution. A priori it is not permissible to move either ac-
tion to be close enough to the other, so the translated system could exhibit behaviours
incommensurate with the originalπ-calculus expression. Worse, the architectural ex-
igiencies of an inequality test are much more severe than those of an equality test, and
thus inequality tests are definitely excluded from the remit of MONSTR. Cf. also re-
marks on a hypothetical inequality test in [Milner et al. (1991)].

We now briefly mention the prefix formνxQ. This would be implemented very much
as in [Section 3], by rules that instantiate the bound channel. As for the equality test,
the actions for aνx-prefixed process are not committing eg.

Therefore, as with the input communication primitive, enough information must be re-
tained to enable backtracking to occur; and when it does occur, the instantiated bound
channel is garbaged.

The other prefix forms,xy.Q andx(y).Q, refer to the communication abilities of aπ-cal-
culus expressionE. Up to a point we have dealt with these in our translation, insofar as
we have translated internal communications faithfully. However, the main reason that
the original formulation of theπ-calculus is interesting, is the fact that it deals also with
external communications, i.e. how aπ-calculus expressionE communicates with its en-
vironment. Once we have understood how environments can be modelled in the context
of our translation, we will be able to discuss the analogues of scope extrusion and intru-
sion within our framework.

Consider the question of environments. IfEnv is (aπ-calculus expression representing)
an environment forE, then one placesE in the environmentEnv by forming

(E | Env).

If Tr(E) and Tr(Env) are the corresponding translations, then assuming that subexpres-
sion labels have been renamed apart inE andEnv to forestall unfortunate name clashes,
the analogue of the immersion can be viewed three ways.

One can first consider the ruleset Tr({E | Env} T) directly, whereT is a new top level
symbol.

Secondly one can regard it as having arisen from Tr(E) and Tr(Env) by discarding the
two initial rules, and introducing a new rule forInitial which causes∗Initial to rewrite
to a fresh functionT, this in turn rewriting as would any other rule for a composition
symbol, to activeT1 andT2 nodes (with suitable channel correspondences), these being
the top level symbols for Tr(E) and Tr(Env).

Thirdly one can view the preceding ad-hoc procedure from a more formal perspective,
regarding it as a specific example of the modular composition of translated systems al-
luded to in [Section 5]. If Tr–(E) and Tr–(Env) are the modular translations ofE and
Env without initial rules but withArgs functions specifically mentioned, then we form

Tr({ [Tr –(E)]T1
 | [Tr–(Env)]T2

 }T)

Q α−→ Q′
νxQ α−→ Q′

388

where

{ [] T1
 | []T2

 }T

is a specific labelledπ-calculus context, into the holes of which (the square brackets),
we are expected to “place” Tr–(–) rulesets, in order to subsequently translate the entire
expression to a MONSTR rule system. Depending on exactly how we view the com-
position of systems as taking place, this “placing” has a number of different interpreta-
tions. In the present case, we would just add the rule forT (and then either the rule for
∗Initial, or theArgsT : Free(T) → args T function, as required).

Let us now examine this process for an arbitrary context, say

{ C([]T1
, []T2

, …, []Tn
) }T

whereC is aπ-calculus context expression, i.e. an expression ofπ-calculus syntax
which is “syntactically non-ground” in thatn leaves of its parse tree areπ-calculus ex-
pression non-terminals. These non-terminals correspond to then []Ti

 holes into which
some Tr–(Ei) translations of systems are to be “placed”. For it to work as it should, we
need some restrictions on the behaviour of names and symbols in the different compo-
nents.

(1) There are no clashes of subexpression labels, either between labels coming from
the variousEi, or between labels coming from one of these and labels in the en-
closing contextC, except that the symbols labelling the top-level constructs of
theEi match the symbols labelling the holes into which their Tr–(Ei) translations
are placed.

(2) TheArgsTi
 functions for the top-level constructsTi output by the translations of

the subcomponents in Tr–(Ei), must match theArgsTi
 functions assumed for these

subcomponents by the translation of the context. More specifically, the two ver-
sions of theArgsTi

 functions must agree in their domains i.e. the sets of free chan-
nel names involved, and in the argument positions of the variousTi symbols that
these free channel names get mapped to. A byproduct of this is that capture of
subcomponents’ free names by binders in the interior of the context is permitted.

Elaborating a little on the second point, inspection of the translation in [Section 5]
shows that the various recursive constructs of aπ-calculus expression act as transform-
ers ofArgsP functions. The same must be true for “syntactically non-ground” compo-
sitions of recursive constructs, i.e. contexts. This leads us to view the translation of an
arbitrary context from two complementary perspectives.

Firstly the translation of the context may be “delayed” until the translations of the sub-
components to be inserted into the holes are available, (specifically till the top-level
ArgsTi

 functions are available), and then the bottom-up translation may be completed.
In this case, the “placing” of the Tr–(–) translations we mentioned above, is simply set
union of the Tr–(Ei) translations with what is generated by the remainder of the transla-
tion.

Secondly, the translation may be done eagerly, before the translations of the subcompo-
nents are available, by abstracting away all information obtained from theArgsTi

 func-
tions within the body of the context’s translation. In this case, we obtain the concept of
a “standalone” translation of a contextC with holes, which as for a closed system, again

389

has two components. The first component is anArgsT function transformer, which takes
a collection ofArgsTi

 functions (to be eventually supplied by the Tr–(Ei) translations for
its holes), and maps them into theArgsT function of the top-level symbolT of the con-
text. Abstracting away from lower level detail, this function constructs the union of the
free channel names mentioned in the domains of theArgsTi

 functions, removes any
names that are captured by binders inC, and maps what remains (together with any
channel names that are mentioned inC and occur free at the top level) to the argument
positions ofT. The second component is a partially instantiated set of MONSTR rules
for the syntactic structure ofT. The uninstantiated features of these rules (eg. their arity)
will depend upon which and how many free channels are input from the Tr–(Ei) sub-
systems, which of them are captured by binders in the context, and which of them need
to be output in the top-level of the result. Again such a partially instantiated set of rules
can be viewed as a function, taking as input a collection ofArgsTi

 functions, and map-
ping them into the fully instantiated set of rules. In this case, the “placing” of the Tr–

(Ei) translations corresponds to the composition of a top-level context module Tr(C)
with an appropriate number of input systems Tr–(Ei). This is accomplished by the ap-
plication of the context’sArgsT transformer and rule generation function to theArgsTi
functions of the input systems, and including the rules of the input systems. This yields
anArgsT function for the top-level symbol of the new system, and a fully instantiated
set of rules for the system as a whole.

However, in this more general setting, we can contemplate composing a top-level con-
text with an appropriate number of input contexts (with holes). The composition of an
ArgsT function transformer with a suitable collection of inputArgsTi

 function transform-
ers is anotherArgsT function transformer. Similarly the composition of a function from
a collection ofArgsTi

 functions to a fully instantiated ruleset, with a suitable collection
of input ArgsTi

 function transformers, is another function fromArgsTi
 functions to a

ruleset. Performing these compositions, and including the input functions from the
ArgsTi

 to rulesets in the latter, yields the resulting module

Tr–({ C([Tr–(C1([…]))] T1
, [Tr–(C2([…]))] T2

, …, [Tr–(Cn([…]))] Tn
) }T)

Pursuing this idea further would lead us to a graph rewriting based fibration semantics
for theπ-calculus (cf. [Coquand et al. (1989), Asperti and Martini (1992)]). However
we will not follow this up here.

We note that a closed system, regarded as a context with no holes, translates to a con-
stantArgsT function transformer (which just yields the top levelArgsT function), and a
constant function yielding a fully instantiated set of rules, which is as we would expect.

Now that we understand environments, we can make sense of such transitions as

xy.Q
xy−→ Q

within the translation. Let us consider the more general form

E
xy−→ F

which says that (it can be proved within the deduction system ofπ-calculus that)E is
capable of evolving toF by virtue of engaging in a communication in which it ouputs
y onx when placed in an environment capable of inputting onx. The natural analogue

390

of this in the MONSTR world is to say that Tr–(E) is capable of an equivalent commu-
nication in a modular composition

Tr({ [Tr –(E)]T1
 | [Tr–(Env)]T2

 }T)

in whichEnv has channel namex free at the top level and is capable of inputing on it.

An alternative way of saying this is to consider a graphG which representsE (by re-
writing using Tr(E) as in lemma 7.4 for example). The representationρE : E → G iden-
tifies nodes ofG which represent the free channels, and channelx in particular. If we
have a graphGenv which represents a suitable environmentEnv, then the representation
ρEnv : Env→ Genv picks out a node representingx in Genv. If B is a graph consisting
exactly of as manyEmpty channel nodes asE andEnv have free channel names in com-
mon, there are bijectionse : B → E andenv : B → Env identifying nodes inB with the
relevant free channel names inE andEnv respectively. The compositions

ρE e : B → G and ρEnv env : B → Genv

are arrows in the category of MONSTR graphs and graph homomorphisms. We can
form the pushoutG B Genv of these two arrows, which just joins the graphsG and
Genv by identifying nodes representing the common free channel names likex. Push-
outs in general are the appropriate analogue in the graph world of modular composition,
and it is not hard to see thatG B Genv represents (E | Env).

The significance for the MONSTR world of transitions like

E
xy−→ F

should now be clear. Essentially such a piece of notation refers to the possible behav-
iour of E in a suitable environment, but with the environment abstracted out. Accord-
ingly, we can do the same with the translation and write

G
xy−→ H

to mean thatG, which representsE, is capable of offering a write of channely over
channelx, and upon successful completion, to perform some auxilliary rewrites in order
to get into shape to representF via graphH. We justify this by an appeal to lemma 7.7
with the role of the environment abstracted away. (Note that it is preferable to haveG
andH present in such a notation rather than Tr(E) and Tr(F) since the former are the
semantic objects which are engaged in any actual communications.)

We can take a similar approach to the input transition of theπ-calculus involving the
prefixx(y).Q.

The main thing from the original description that remains undiscussed is the business
of scope extrusion and intrusion. There are no such notions in the system of [Section
3]. In that system, if a private channely in one part of theπ-calculus expression is in-
tended to be communicated to some other part of the expression, the bindingνy must
have a scope large enough to enclose both parts, for which reason we introduced the
syntactic reduction≡〉*. This means that if one subsystem wishes to send to another sub-
system a channely that it prefers to consider as private, the bindingνy must occur in the
context into which both subsystems are to be placed. Technically, the the data channel
y becomes free in the sending subsystem, and thus there is the risk of unintended name

+

+

391

capture unless the channel names in the subsystems and enclosing context are chosen
wisely.

Scope extrusion and intrusion delays the necessity of wise name choice, by allowingy
to remain bound (and thus alpha-convertible), with scope initially within the sending
subsystem. The open rule

effectively cuts open the scope of theνy binder by transforming the output actionxy into
x(u) (whereu is a fresh name), which indicates that the data channel nameu is bound
and is not to be captured by other free names. The wise choice of channel names (im-
plemented now by alpha-converting the bound nameu as needed), is thereby postponed
until the communication takes place via the close rule

which demands that the bound channels in sender and receiver must match (thus fore-
stalling inappropriate name clashes), and binds the result of the communication within
a fresh binder whose scope is now large enough to enclose both subsystems, as in the
previous discussion.

To achieve this effect in the framework of our translation we need do nothing special.
A graph representing the sender subexpression can be generated as usual, but because
the data channelu say, isν-bound,u does not appear in the domain of theArgsTi

 func-
tion of the sender. Because the transmission link channel,x say, must be free in both
sender and receiver,x does appear in the domain of theArgsTi

 functions of both sender
and receiver. Now when we perform the pushout to join the sender’s and receiver’s rep-
resenting graphs, the two nodes corresponding tox will be identified, thoughu will re-
main private to the sender’s subgraph. As we said in theorem 7.9, which data channel
gets sent in a successful communication is purely the business of the sender and does
not depend on the data channel’s scope, and the receiver is equally indifferent to this.
Thus upon successful completion of the communication, the resulting graph would cor-
respond to aπ-calculus expression in which theνu-binder had drifted into the context
via a≡〉* reduction. This is as we would expect.

Scope extrusion and intrusion are thus superfluous in the translation. This confirms our
earlier remarks, that graph connectivity is able to easily accomplish what is achieved
(and perhaps a little awkwardly at that) by subtle notions of scope manipulation in the
syntax of theπ-calculus. In the end, the whole of the theory of theπ-calculus can be
translated into the world of the MONSTR representatives on the basis of the results in
[Section 7], albeit that the precise technical details become more intricate.

Equalities

Much of the theory of theπ-calculus and similar systems is concerned with the formu-
lation of equality theories over the expressions of the calculus, formed by considering
various bisimulations [see Milner et al. (1992)]. Given that we can translate theπ-cal-
culus faithfully into MONSTR, all such theories can be reformulated as properties of

Q
xy−→ Q′

νyQ
x(u)−−→ Q′{ u/y}

P
x(u)−−→ P′ Q

x(u)−−→ Q′

P | Q
τ−→ νu(P′ | Q′)

392

the corresponding class of MONSTR graphs as we indicated above. Rather than do this
though, we make some comments about equalities that arise naturally in the context of
MONSTR rewriting. In general they will be weaker notions than those which arise
through theπ-calculus bisimulations.

The natural notion of equality in the context of graph rewriting, is that of graph isomor-
phism (of live subgraphs). Because we are interested in the dynamics of systems, we
must ensure that the underlying notion of homomorphism includes equality of the node
and arc markings. Isomorphism is quite a weak notion compared to most of the ones
studied for theπ-calculus, for example it distinguishes between different numbers of
copies of replicated processes. But it has some good points. Perhaps its main virtue is
that it clearly distinguishes concurrency from interleaving. Whenx, y, u, v are all dif-
ferent, the two expressionsxu | y(v) andxu.y(v) + y(v).xu, are strongly ground equiva-
lent in [Milner et al. (1992)], but in the MONSTR translation, the representative ofxu |
y(v) has two function nodes whereas the representative ofxu.y(v) + y(v).xu has only one
(of course this is a consequence of how we chose to do the translation). Opinions differ
on whether these expressions ought to be considered equal or not. That they are ground
bisimilar rests on the fact that bisimilarity depends on sequential observation. This in
turn can be laid at the feet of the inherently sequential rewriting model used to express
the transition relation. And that is as true of the MONSTR translation as it is of theπ-
calculus.

If one goes beyond the sequential rewriting model to a more concurrent one, in which
more than one redex may be rewritten simultaneously provided they don’t interfere,
then a more concurrent environment eg.x(a) |yb (as opposed tox(a).yb + yb.x(a)) could
distinguish between the two expressions. Thusxu | y(v) might rewrite to0 | 0 in one
step, whilexu.y(v) + y(v).xu would always require two steps to rewrite to0. To explore
this in more detail though, would take us far beyond the scope of this paper.

Restricting attention once more to the syntax of [Section 3], another good thing about
our translation (up to graph isomorphism) is that it respects the various equivalences of
π-calculus systems that we introduced in [Section 3].

Let us mention the semigroup rules for + and |. For the former, we have commutativity
since summation of alternatives is translated into set union of rules for distinct function
symbols. (And insofar as in [Section 3] we informally permit ourselves to consider
summations such as ((π1.Q1 + π2.Q2) + π3.Q3), the implied associativity thereof is just
a feature of this set union of rules.) For the latter we have commutativity since the par-
allel composition of a set of subprocesses is translated into the set union of the distinct
contractum nodes that represent them in the RHS of a rule for |. Associativity for | arises
since the derivation of the representing graph of a compound parallel composition dif-
fers from the derivation of the representing graph of its flattened version, by one or more
auxiliary rewrites (rather as in lemma 7.5). It is clear that in standard executions, once
the garbage is removed, the two resulting representing graphs come out isomorphic, (or
even possibly equal if a convenient implementation of a premeditated suite of contrac-
tum building operations is adopted).

Another equivalence demanded in [Section 3] is alpha-convertibility. It is clear that this
is respected by the translation (up to graph isomorphism), since each bound channel
name get translated to anEmpty contractum node of some rule, whose instantiations
will all be equivalent under graph isomorphism. Finally, our syntactic reduction≡〉* has
been dealt with in lemma 7.5.

393

A slightly stronger notion of equality for MONSTR systems arises through the “inno-
cent” renaming of symbols. This is worth considering given that the tags that label sub-
expressions in the translation and ultimately correspond to function symbols in the
translated system are arbitrary.

Definition 8.1 LetR andS be two MONSTR rule systems. A substitutionθ : S → S
on symbols is a system homomorphism iff for allD = (P, root, Red, Act) ∈ R, θD, in-
terpreted pointwise, is isomorphic to a rule ofS. It is a renaming ofR iff θR = S, where
θR is interpreted pointwise.

Thus a renaming of a rule system takes rules inR to rules inS which “do the same
thing” modulo the renaming. Note that renamings automatically respect the constant
Initial, and ought to respect the constantRoot if garbage collection is to be unchanged.

Definition 8.2 LetR be a MONSTR rule system andX = [X0, X1, X2, …] be an exe-
cution ofR. Likewise forS andY = [Y0, Y1, Y2, …]. Let θR = S be a renaming. Then
we write

(i)x ∈ Xi Ξθ
(j)y ∈ Yj iff

(i)θ(x) Ξ (j)y

where(i)θ(x) is the node(i)x with its symbol substituted according toθ i.e.σ((i)θ(x)) =
θ(σ((i)x)).

Theorem 8.3 LetR be a MONSTR system and letθR = S be a renaming.

(1) For every executionX = [X0, X1, X2, …] of R there is an execution ofY = [Y0,

Y1, Y2, …] of S such that for alli, and all(i)x ∈ Xi,

(i)x Ξθ
(j)y

for a suitable(j)y ∈ Yj.

(2) For any executionY = [Y0, Y1, Y2, …] of S, there is an executionX = [X0, X1, X2,

…] of R such that for alli, and all(j)y ∈ Yj

(i)x Ξθ
(j)y

for a suitable(i)x ∈ Xi.

We regard the above as self-evident and do not bother proving it.

By altering the tags that label subexpressions during translation we end up with a sys-
tem that is renamed compared to if we had not done so. Theorem 8.3 confirms that we
do not alter the intrinsic behaviour thereby. Furthermore, there is one place where we
have evaded the necessity of considering renamed systems already. That is when early
in [Section 5], we allowed identical subexpressions of aπ-calculus expression to be
identically labelled. This was exploited in lemma 7.6 when a replicandP was identi-
cally tagged to its originating !P. Had we been forced to tag the new copy with a fresh
label, we would have been forced to consider lemma 7.6 only up to a renaming, an un-
desirable complication in [Section 7].

Renaming thus provides a natural notion of bisimulation when node symbols are con-
sidered as arbitrary “user-supplied” names (as they are for the auxiliary symbols in the

394

translation), rather than universal constants (as applies to symbols such asInitial, Root,
and the symbols of the communication protocol). Further, it is clear that renaming is
still a weaker bisimulation than the strong ground equivalence of [Milner et al. (1992)].

Being well defined in conventional set theory, both graph isomorphism and renaming
provide adequate semantics for theπ-calculus via the translation of [Section 5]. Unlike
most semantics for process algebras, they are not directly manufactured from the syn-
tactic components that constitute the original expression.

We note finally that [Milner et al. (1992)]’s strong equivalence, which asserts bisimilar-
ity under all substitutions, corresponds in the MONSTR world to a rather unusual rela-
tion on graphs given by externally imposed redirections, of channel nodes to other
channel nodes. Such a notion does not make any sense for arbitrary MONSTR graphs
but can be made to do so for those arising from Tr(E) systems.

9 CONCLUSIONS

The translation of theπ-calculus into MONSTR brings out a number of useful points.
Firstly it necessitates the clear understanding of the issues of free and bound names and
of scoping, as they arise in very different styles of computational system. A good part
of the material above can be interpreted as an essay about this. Specifically, we have
seen that in a graph based language, where connections between parts of the computa-
tional structure are explicitly represented using arcs or edges, the ideas of bound vari-
ables and scope as used in the syntax of traditional languages become largely
superfluous; the structure of the graph and the notion of graph matching provide an in-
formation channel that supercedes the use of the parse tree for this purpose.

Secondly, by targetting our translation to a language designed with a very concrete im-
plementation in mind, the reasonableness in practice of the primitives of the source lan-
guage may be judged. This is a particularly valuable objective if one is interested in
bringing together notions of “process” in use in disparate areas of computer science, as
we, by dint of remarks in the introduction, are, at least implicitly. In the case of theπ-
calculus, we have seen that the amount of synchronisation implicit in the communica-
tion rule can make substantial demands of implementations. In MONSTR, in which the
capabilities of a single rewrite are rather closely geared to what is cheaply implement-
able in a single atomic action of a concurrent distributed system, we have seen that it is
realistic to have a quantity of state change in such an action, equivalent to the update of
the root function and of one other non-root node. Unfortunately, to implement the true
dynamic synchronised point to point communication of theπ-calculus, in a system fea-
turing maximal concurrency, we need to be able to update at least one further piece of
state within a single action. There is nothing to prevent us from doing so within the syn-
tax of graph rewriting (it is easy enough in DACTL, MONSTR’s parent), but there are
good operational reasons why it is prohibited in MONSTR. Given this state of affairs,
to stay within MONSTR, one has to either go for a protocol featuring some degree of
wastefulness, or for a much more heavily serialised implementation such as afforded by
a global semaphore. In this paper we have chosen the former course.

In the real world, “agents” are normally connected to a set of communication channels
of which they are well aware. Generally, the agents are active and the channels are pas-
sive. Even if the agents are hazy about which other agents are connected to their chan-
nels, little synchronisation hinges on the interactions with channels due to the latters’

395

passivity. Theπ-calculus communication primitive thus comes across as rather more
high level and abstract than might be expected of a basic communication primitive; this
particularly so since the collection of channels that an agent may use is a function of the
agent’s context and the dynamics of the system. In the real world, the closest that we
might get to a situation where mutually ignorant agents communicate over a shared me-
dium, is the internet. No one knows precisely who is connected to the internet at any
given moment. However, even in this situation, the internet is not used to effect seria-
lised and synchronised point to point communications between an arbitrary mutually ig-
norant sending/receiving pair of agents. On the contrary side, one cannot argue with the
syntactic and algebraic simplicity of the communication rule of theπ-calculus, to which
its existence is largely attributable. Of course similar remarks apply to many other pro-
cess calculi, but we have been specific in this paper.

Thirdly, the treatment of correctness deserves comment. Essentially, a suitable weak
bisimulation has been set up but the techniques to construct it owe more to rewriting
theory and to serialisability theory than to the usual finitistic techniques frequently
found in process algebra. A fairly comprehensive and self-contained treatment of the
correctness issue has been given, and many of its aspects are to be found in correctness
arguments for any MONSTR program. In fact this paper contains the first such MON-
STR correctness argument to be written out in reasonable detail, which gives it inde-
pendent interest.

So in one sense this paper may be viewed as a concrete exercise in MONSTR program
verification, the program being the output of translation Tr(E). In another sense, be-
cause of the generic nature of the proof, it is also an exercise in compiler correctness,
the compiler being the meta-level translation process. The correctness argument is vis-
ibly non-trivial, and not formal in the usual sense of the word, but it certainly sets the
agenda for what such a formal proof would have to address. A fully formal proof would
be a sizeable undertaking, but in reality, given suitable theories for a number of what
are well understood but properly higher order concepts such as “graph”, “execution”
etc., [Section 6] and [Section7] involved nothing other than what could be straightfor-
wardly expressed, in a logic in which the universal quantifiers occur bounded over some
well understood set, and the existential quantifiers refered to objects that were explicitly
constructed. So a formal proof would not be completely out of the question.

In a third sense, one can see the soundness proof in particular, as an exercise in serial-
isability theory, another case of a distant area of computer science concerned with no-
tions of process, namely concurrency control theory from the database world, having an
impact on a problem in process algebra. In this regard, the recent work on atomicity of
[Lynch et al. (1994)] (see also references therein), bears comparison with the contents
of this paper. Certainly the complexity of the serialisability proofs there is rather rem-
iniscent of what appears in the present paper. Pursuing the analogy for a moment, we
can view the communications of aπ-calculus expression as high level transactions
(from the viewpoint of the MONSTR system). Nevertheless, unlike normal database
systems, individual rewrites themselves have many features of transactions too, in that
serialisation is not just a matter of choosing a suitable order for them. The sheduling
strategy for rewrites is determined by MONSTR rule selection semantics, and any seri-
alisation performed, must be done within the constraints allowed by this. Up to a point,
this makes life harder in our case.

396

Viewed from yet a different perspective, one can see the serialisability proof of theorem
7.16 (and other serialisability proofs), as a particularly easy example of a forcing or pri-
ority or finite injury argument (to use recursion-theoretic jargon), in that the object of
interest, the executionG, is constructed as the limit of a number of other executions, all
featuring a decreasing proportion of undesirable characteristics. Two things contribute
to the easy nature of the argument, the first being the explictly constructible nature of
the transformation process, and the second is the vital observation that the process can
be neatly split into phases, the earliest of which serve to simplify matters considerably
for their successors. A “one pass” version of the theorem would be perfectly feasable,
but the technical details would be considerably more intricate, as the reader is invited
to imagine.

The translation itself was inspired by other translations into term graph rewriting sys-
tems. In particular by those in [Banach and Papadopoulos (1993), Banach and Papa-
dopoulos (1995)], which are concerned with concurrent logic languages. Also [Glauert
(1992)] does related work on mapping a process calculus into a term graph rewriting
system, however with the crucial ommission of the guarded summation construct. It is
precisely that which forces us to adopt a communication protocol and its synchronisa-
tion problems, due to the amount of atomic state change implicit in the general case of
a single comunication of theπ-calculus. It is also that which is the source of most of
the fun and games in [Section 6] and [Section 7].

10 References

[Aczel (1993)] Aczel P.H.G., Processes and Final Universes. Seminar, Dept. of Computer Sci-
ence, Manchester University, (1993).

[Asperti and Martini (1992)] Asperti A., Martini S., Categorical Models of Polymorphism. In-
formation and Computation99, (1992), 1-79.

[Banach and Papadopoulos (1993)] Banach R., Papadopoulos G., Parallel Term Graph Rewriting
and Concurrent Logic Programs.in: Proc. WPDP-93, Bulgarian Acad. of Sci., Boyanov
(ed.), (1993), 303-322. (North Holland, to appear.)

[Banach and Papadopoulos (1995)] Banach R., Papadopoulos G., Linear Logic Behaviour of
Term Graph Rewriting Programs.in: Proc. A.C.M. SAC-95, (1995), 157-163.

[Banach et al. (1988)] Banach R., Sargeant J., Watson I., Watson P., Woods V., The Flagship
Project.in: Proc. UK-IT-88, (Alvey Technical Conference), 242-245, Information Engi-
neering Directorate, Department of Trade and Industry, IEE Publications, (1988).

[Banach and Watson (1989)] Banach R., Watson P., Dealing with State in Flagship: the MON-
STR Computational Model.in: Proc. CONPAR-88, Jesshope, Reinhartz (eds.), 595-604,
B.C.S. Workshop Series, Cambridge University Press, (1989).

[Banach (1993a)] Banach R., MONSTR I — Fundamental Issues and the Design of MONSTR.
Submitted to New Generation Computing, (1993).

[Banach (1993b)] Banach R., MONSTR II — Suspending MONSTR Semantics.Submitted to
New Generation Computing, (1993).

[Banach (1993c)] Banach R., MONSTR: Term Graph Rewriting for Parallel Machines.in: Term
Graph Rewriting: Theory and Practice, Sleep, Plasmeijer, van Eekelen (eds.), 243-252,
John Wiley, (1993).

[Berry and Boudol (1990)] Berry G., Boudol G., The Chemical Abstract Machine.in: 17th An-
nual Symposium on Principles of Programming Languages, A.C.M., (1990).Also in: The-
oretical Computer Science96, (1992), 217-248.

397

[Coquand et al. (1989)] Coquand T., Gunter C., Winskel G., Domain Theoretic Models of Poly-
morphism. Information and Computation81, (1989), 123-167.

[Corradini et al. (1994)] Corradini A., Montanari U., Rossi F., An Abstract Machine for Concur-
rent Modular Systems: CHARM. Theoretical Computer Science122, (1994), 165-200.

[Degano and Montanari (1987)] Degano P., Montanari U., A Model of Distributed Systems
Based on Graph Rewriting. J.A.C.M.34, (1987), 411-449.

[Glauert (1992)] Glauert J.R.W., Asynchronous Mobile Processes and Graph Rewriting.in: Proc.
PARLE-92, Etiemble, Syre (eds.), LNCS605 63-78, Springer, (1992).

[Glauert et al. (1988a)] Glauert J.R.W., Kennaway J.R., Sleep M.R., Somner G.W., Final Speci-
fication of DACTL. Internal Report SYS-C88-11, School of Information Systems, Uni-
versity of East Anglia, Norwich, U.K, (1988).

[Glauert et al. (1988b)] Glauert J.R.W., Hammond K., Kennaway J.R., Papdopoulos G.A., Sleep
M.R., DACTL: Some Introductory Papers. School of Information Systems, University of
East Anglia, Norwich, U.K, (1988).

[Lynch et al. (1994)] Lynch N., Merritt M., Weihl W., Fekete A., Atomic Transactions. Morgan
Kaufmann, (1994).

[Milner (1979)] Milner R., Flow Graphs and Flow Algebras. J.A.C.M.26, (1979), 794-818.

[Milner (1989)] Milner R., Communication and Concurrency. Prentice-Hall, (1989).

[Milner (1993a)] Milner R., The Polyadic Pi-Calculus: A Tutorial.in: Logic and Algebra of
Specification, Bauer, Brauer, Schwichtenberg (eds.), 203-246, Springer, (1993).

[Milner (1993b)] Milner R., An Action Structure for Synchronous Pi-Calculus.in: Proc. FCT-93,
Esik (ed.), LNCS710 87-105, Springer, (1993).

[Milner et al. (1991)] Milner R., Parrow J., Walker D., Modal Logics for Mobile Processes.in:
Proc. CONCUR-91, Baeten, Groote (eds.), LNCS527 45-60, Springer, (1991).

[Milner et al. (1992)] Milner R., Parrow J., Walker D., A Calculus of Mobile Processes – I / II.
Inf. and Comp.100, (1992), 1-40, 41-77.

[Nielsen et al. (1981)] Nielsen M., Plotkin G., Winskel G., Petri Nets, Event Structures and Do-
mains, Part I. Theoretical Computer Science13, (1981), 85-108.

[Parrow (1994)] Parrow J., Interaction Diagrams.in: A Decade of Concurrency, de Bakker, de
Roever, Rozenberg (eds.), LNCS803 477-508, Springer, (1994).and Manuscript, SICS,
Kista, Sweden.

[Watson and Watson (1987)] Watson P., Watson I., Evaluating Functional Programs on the Flag-
ship Machine.in: Proc. FLCA-87, Kahn (ed.), LNCS274 80-97, Springer, (1987).

[Watson et al. (1987)] Watson I., Woods V., Watson P., Banach R., Greenberg M., Sargeant J.,
Flagship: A Parallel Architecture for Declarative Programming.in: Proc. 15th Annual In-
ternational Symposium on Computer Architecture, Hawaii, ACM, (1987).

[Watson et al. (1989)] Watson I., Sargeant J., Watson P., Woods V., The Flagship Parallel Ma-
chine.in: Proc. CONPAR-88, Jesshope, Reinhartz (eds.), 125-133, BCS Workshop Series,
Cambridge University Press, (1989).

[Winskel (1986)] Winskel G., Event Structures.in: Petri Nets, An Advanced Course, LNCS255,
325-392, (1986).

[Winskel (1988)] Winskel G., An Introduction to Event Structures.in: Linear Time, Branching
Time and Partial Order in Logics and Models for Concurrency. de Bakker, de Roever, Ro-
zenberg (eds.), LNCS354, 364-397, (1988).

398

