Journal of Universal Computer Science, vol. 1, no. 6 (1995), 339-398
submitted: 20/10/94, accepted: 26/6/95, appeared: 28/6/950 Springer Pub. Co.

A Translation of the Pi-Calculus Into MONSTR

R. Banach
(Computer Science Dept., Manchester University, Manchester, M13 9PL, U.K.
banach@cs.man.ac.uk)

_ J. Balazs
(Computer Science Dept., P.Shafarik University, 041 5Kosite, Slovakia.
balazs@turing.upjs.sk)

G. Papadopoulos
(Computer Science Dept., University of Cyprus, Nicosia, P.O. Box 537, Cyprus.
george@jupiter.cca.ucy.cy)

Abstract: A translation of thetrcalculus into the MONSTR graph rewriting language is
described and proved correct. The translation illustrates the heavy cost in practice of faithfully
implementing the communication primitive of triealculus and similar process calculi. It also
illustrates the convenience of representing an evolving network of communicating agents directly
within a graph manipulation formalism, both because the necessity to use delicate notions of
bound variables and of scopes is avoided, and also because the standard model of graphs in set
theory automatically yields a useful semantics for the process calculus. The correctness proof
illustrates many features typically encountered in reasoning about graph rewriting systems, and
particularly how serialisation techniques can be used to reorder an arbitrary execution into one
having stated desirable properties.

Key Words: Concurrency, Pi-Calculus, Term Graph Rewriting, MONSTR, Process Networks,
Simulation, Serialisability.

Category: D.1.3,D.3.1,F.3.2,F4.2

1 INTRODUCTION

As [Aczel (1993)] has pointed out, the word “process” has very different connotations
in different branches of computer science. For instance, those who study process alge-
bra, those who work on operating systems, and those who construct systems for sup-
porting “the business process”, would hardly recognise each others’ use of the word.
The work in this paper may partly be seen as a comparison of notions of process from
the first two of these, since in presenting a translation from-tadculus to MONSTR,

both areas may be brought into contact.

Thetrcalculus [Milner et al. (1992), Milner (1993a)] arose as a generalisation of CCS
[Milner (1989)] to allow networks of processes to evolve dynamically. It is thus a pro-
cess algebra language. MONSTR by contrast is a generalised term graph rewriting lan-
guage that was used as the intermediate language for the Flagship machine. See
[Banach et al. (1988), Banach and Watson (1989), Banach (1993a), Banach (1993b),
Watson and Watson (1987), Watson et al. (1987), Watson et al. (1989)]. Since the ma-
chine needed a runtime system, whose implementation centred round MONSTR, the

339

connection with operating systems emerges. (In fact MONSTR evolved as a restriction
of a more general term graph rewriting language DACTL, [see Glauert et al. (1988a),
Glauert et al. (1988b)], the restrictions being forced by implementation issues.)

MONSTR therefore rejoices in the virtue of having been implemented in anger for a
real machine. In particular, the directed arcs of a MONSTR graph are intended to be
directly modeled by pointers in a conventional store in the overwhelming majority of
instances, (see [Banach (1993a)] for an exposition of exactly how). So translations of
process algebra formalisms (or for that matter anything else) into MONSTR can give a
reasonable idea of the practicality of the primitive notions inherent in these formalisms.
In the present case we find that the atomicity and synchronisation properties inherent in
the communication primitive of thre-calculus extract a heavy price in the translation.
This aspect is common to all similar process algebra models such as CCS — one reason
why we concentrate on threcalculus in this paper is that the more flexible mechanisms
for channel hiding and binding (compared with eg. CCS), pose no problems for a MON-
STR implementation. Other features of the syntax, such as the identification of potential
communications by complementary occurrences of the same channel name, free in
some particular context, give rise to other sources of minor inconvenience when they
interact with the rest of the syntax.

At the heart of these issues is the structure of the syntax of process algebra languages,
which is patterned after the structure of the syntax of many conventional languages, and
produces a strong desire to use syntax directed techniques in the theory of these sys-
tems. For stack based languages such as Pascal, this approach to the meaning of the
language is particularly successful, as the denotational semantics of such languages
bears out. Unfortunately, the structure of process networks is seldom closely related to
the structure of the parse tree of the algebraic expression that defines them, which con-
siderably weakens the case for exclusively pursuing syntax directed analyses. Graph
theory is much more in sympathy with the structure of the typical process network,
which makes a translation into a graph-based formalism even more attractive.

Ironically, presentations of process algebra, having once described the syntax and some
operational semantics, are frequently awash with pictures of process networks — which
are of course nothing but graphs of one kind or another. Prodigious manipulations of
the syntax ensue; often demonstrating some fairly simple property of the network which
could have been established on graph theoretic grounds by elementary means. In the
translation presented below, many sources of intricacy residing in the standard syntactic
presentation of tha-calculus, once properly understood, can be seen to correspond to
elementary constructions in an appropriate category of term graphs, (though we hasten
to add, we will not need to make any systematic use of categorical techniques in this
paper).

Of course graph based languages also need syntax, but this is used merely as a handy
notation for the standard semantic model of graphs, which is what we really have in
mind all along. (One could of course contemplate non-standard models of languages
for graph theory if one really longs for such exotica.) The emphasis is thus different
than in process algebra: rather than starting with the syntax and then wondering what it
means, we have the semanadsinitio.

The syntax of a graph based language tends to be rather flat — it usually does little more
than list the nodes and edges of the graph in question. In the case of term graphs, some
slight embellishment of this is possible because of the quasi-term structure of individual

340

nodes which allows some nesting, but the underlying “just list 'em all” philosophy re-
mains. The main consequence of this is that sophisticated notions of scope, or of bind-
ing, tend to be absent from such languages. This might be thought to be a great
deficiency, but in fact it proves not to be so. All the jobs normally done by notions of
scope inside the syntax are taken over by graph structure and by suitable notions of
graph homomorphism. These are described at the meta-syntactic level and act directly
on the semantic objects of interest. Of course for this to work, we need to know what
the semantic objects of interest are — but we have already said that we have the seman-
ticsab initio so this is not a problem. In the case ofritealculus, in which the syntax

has the familiar hierarchical flavour, distinct subprocess objects residing in remote pe-
ripheral areas of the parse tree may share private names despite their syntactic remote-
ness. Elaborate notions of scope and of binding are needed to manage the syntactic
arm-twisting that forestalls the name clashes that are prone to occur due to the fact that
the two subprocess objects may only express their relationship via their closest common
ancestor in the tree. In a graph based language, this is unnecessary — one simply en-
codes the required relationship by suitable edges or arcs and that is it.

The present authors are not the only ones to notice that graphs have some utility in pro-
cess algebras and similar systems. One may cite [Milner (1979), Degano and Mon-
tanari (1987), Milner (1993b), Corradini et al. (1994), Parrow (1994)] amongst others.
However it is not clear that these other formalisms have the same closeness to direct
implementation that MONSTR gains by virtue of its association with the Flagship ma-
chine.

The structure of the rest of this paper is as follows. In [Section 2] we give a description
of MONSTR, while in [Section 3] we set out the versiomalalculus that we will use.
[Section 4] describes the key features behind the translation strategy, and [Section 5]
presents the details. [Section 6] establishes the basic properties of translated systems
that are needed in proving the translation correct, and the correctness proof itself ap-
pears in [Section 7]. [Section 8] contains some discussion of aspectstafatoalus

not directly treated in the version of [Section 3]. [Section 9] concludes, and contains
further discussion of the material herein, drawing analogies between the proof of sound-
ness on the one hand, and serialisability theory or forcing techniques on the other.

2 MONSTR

MONSTR arose as a result of the attempt to reconcile the desire for an intermediate lan-
guage with rewriting-based semantics, with the reality of a parallel machine where the
primitive atomic actions were in principle of much smaller granularity than atomic re-
writes of arbitrary size. The result was a term graph rewriting language MONSTR, for
which the implementation problem did not make excessive demands on the architec-
ture’s semantics.

Term Graph Rewriting

The operational semantics of MONSTR deals with the transformation of term graphs.
These are graphs in which the nodes are labelled with node symbols from an alphabet
S; each node& having an arityA(x) = {1...n}, indicating thatx has a sequence wbut-

arcs. A node may be the target of an arbitrary number of in-arcs.

The nodes and arcs of MONSTR graphs are further decorated with certain markings
which relate to reduction strategy. Specifically, if a node is markediwitten it is

341

active and can serve as the root of a redex. If it is markedtithen it is suspended
waiting forn “notifications” (see below), and then (usually) some of its out-arcs are no-
tification arcs, i.e. are marked with the notification nmfankhich is whence the notifi-
cations will arrive. The only other possibilities are that nodes and arcs are unmarked
(i.e. idle, written visibly as where necesary).

Here is the formal definition. In definition 2M* is the set of sequences oWwrsim-
ilarly for {€, ~}*; the domain of a sequence is the set of its indices; and the arity of a
nodex, A(x), is defined in clause (3).

Definition 2.1 A term graph (or just graplg, is a quintupleN, o, a, W, v) where
(1) Nis aset of nodes,

(2) oisamaN - S, the symbol map,

(3) aisamapN - N* giving the arcs ok, with for all x, A(X) = dom(x)),

(4) pisamaiN - {g, O#, ##, ###, ... #" (n= 1)}, the node marking map,
(5) visamalN - {g *}*, the arc marking map, with for ak, dom@(x)) = A(X).

(The nomenclature is meant to be alliteratwéor symbolsga for arcspu for markings,

v for notifications.) We refer to an arc of a graph by writmgd) wherep is the parent

andc is itsk'th child. Alternatively usingx, we writec = a(p)[K] where —[-] is the look-

up operator on sequences. [Fig. 1] below shows a term graph, in which each node is
depicted by its symbol followed by its sequence of out-arcs in brackets, and only non-
idle markings are shown.

Root[l]

E? \ #Ql]
Cons’[/ \] Var
N

N

Fig. 1

For rewriting, we need a notion of pattern, and a sufficiently flexible notion of pattern
matching. Accordingly a pattern satisfies definition 2.1 except that the signature of
isN - S O {Any} whereAny is special node symbol not$) the intention being that
Any-labelled nodes may match “anything”. For later conveniémgelabelled nodes

are called implicit whereas other nodes are explicit. We resmi¢iabelled nodes to
occur only at leaves of patterns so that

o) =Any 0 AX) =0 ie.a(x=v(x)=0

Evidently a graph is a kind of pattern, but not vice versa.

342

Definition 2.2 A ruleD is a quadrupleR, root, Red, Agtwhere
(1) Pisa pattern, called the full pattern of the rule.

(2) rootis an explicit node d? called the root, and all implicit nodes®are acces-
sible from the root. 16(root) = S thenD is a rule forS The subpattern &
accessible from (and including)ot is called the left patterh of the rule, and
nodes ofP not inL are called contractum nodels.is unmarked, i.e. for all [
L, u(x) =€, andv(X)[K] = ¢ for all k O A(X).

(3) Redis a set of pairs of nodes, (called redirections) suchRibai L x P, and if
(x, y) O Red thenx is explicit. Redis the graph of a function with distinctly la-
belled nodes in the domain, i.e.t §), (u, v 0 Redthenx=ul] y=vandx#u
0 o(x) #o(u). For k, y) O Red x is called the LHS angthe RHS of the redi-
rection.

(4) Actis a set of nodes (called activationsPafuch thaAct O L.

[Fig. 2] is a picture of a rule, wittoot indicated by the short stubby arrd®edindicat-
ed by the dotted arrows, aAdtindicated by adorning the relevant (single in this case)
nodes ol with alJ(these are unmarked according to definition 2.2.(2)).

A
7 \\\\> #G[/ /1]
Cons[] Var "
/ [BUCCEED

Any [Any

Fig. 2

In concrete syntax this becomes
F[Cons[a b] x:Var] => #G[a D] , x := *SUCCEED

In this notation, clutter is saved by nesting node definitions where practicablmoThe
node is always the one listed first, and the nesting indicates that iCbas first child

and aVar second child. Th€ons child has twoAny children, indicated by just men-
tioning the node identifietd andb (as opposed to node labels which are always capit-
alised). The left pattern is everything that occurs to the left cfhand the material

to the right describes everything else. Thus the contractum contains a once-suspended
G node whose children are those of the Gdhs node, (such shared references mean
that in general node identifiers are needed as well as node labels). The Gstsbat

ond child is marked with* indicates firstly that the relevant ar¢*imarked, and sec-
ondly that that the node is #ct (being a* -marked reference to a left pattern node —

in generahny* -marked occurrence of a left pattern node on the right of a rule indicates
that the node is iAct). The other contractum node is an ac®ldCCEED node. By
convention the=> indicates that the root node is to be redirected to the node immedi-
ately following the=>, and the syntax := *SUCCEED indicates that th&ar node

is to be redirected to tH®UCCEED node, in agreement with [Fig. 2]. Note that only
the Var node needs to be specified in full (i.e. using both a node identifier and a node
label).

A rule systenR is just a set of rules. In outline, given a rule system and some graph,
an execution proceeds thus. First choose some atiivarked) node of the graph;
secondly examine the rule system to see which rules will match at that active node; if
there are some, choose one of them and rewrite the graph using it; alternatively if there
are none, perform notifications from the active node. Continue to repeat the whole pro-
cess with the new graphs successively generated thereby as long as possible.

Here are the technical definitions, starting with matching or homomorphism.

Definition 2.3 A matching of a patter® with rootr say, to a grap® at a node¢ [J G,
is a node map : P —» G such that

(1) h(r)=t

(2) If xO P is explicit then, a(x) = o(h(x)), A(X) = A(h(X)), and for allk 0 A(X),
h(a(X)[K]) = a(h())[K].

Omitting mention of roots, the same definition will suffice for matching arbitrary pat-
terns to other patterns or, for matching graphs to other graphsPIf. G is a match-

ing, then we say that(l G is explicitly matched if it is thb image of an explicit node.
Otherwise we say that it is implicitly matched.

Now the definitions pertinent to rewriting.

Definition 2.4 LetX be a graph, 0 X a node oK such thafi(t) = J andR a system.
Let Sel={D | there is & O R such that there is a matchingL — X of the left pattern

L of the full patterrP of the ruleD to X att}. Rule selection is some (otherwise unspec-
ified) process for choosing a membeiSaeflassuming it is non-empty. The cho$2n
makeg the root of the redety(L) andD the selected rule that governs the rewrite.

Assuming we hav¥, t, D = (P, root, Red Acf) andh given as above, rewriting accord-

ing to the rule proceeds via three phases (contractum building, redirection, activation),
each of which can be viewed as a mini graph transformation. Naturally, our graph and
rule given above provide a running example. There is clearly a redex robted at

Definition 2.5 Contractum building adds a copy of each contractum noBemX.
Copies of arcs dP from contractum nodes to their children are added in such a way that
there is an extended matchinigrom the whole oP to the graph being created, which
agrees withh onL. Node and arc markings for the new items are copied Fro@all

the resulting grapi’ and letiy . be the natural injection.

In our running example, doing the above yields [Fig. 3]. We see that copies of exactly
the contractum nodes and arcs, suitably marked, have been added, and that this enables
the extended matchirg of the whole of to be constructed.

Definition 2.6 Redirection replaces each gpg, €) of X', such that = h'(x) for some

(x,) O Red with (py, ' (y)). This can be done consistently since the LHSs of two dis-
tinct redirections cannot map to the same nod€ since their node symbols are dif-
ferent by definition 2.2.(3). All such redirections are performed simultaneously. Let
the resulting graph be calledf and letiy x+ be the natural injection. Note thgty:

is just an injective map on nodes rather than a matching gggor We define the map

Cons[] Var
/ [SUCCEED

Fig. 3

Iy x+ BY I xi(€) = ix x»(C) unlessc = h'(x) for some X, y) O Red in which case
I x(€) = lix x(h'(¥))-
Performing the redirections on our example yields [Fig. 4].

[(BUCCEED

Fig. 4

Definition 2.7 Activation merely alters some node markings. Roughly speakioiy,
is made idle and the nodesAnt are made active. More precisgliy x(h'(root))) is
changed te, and for eacl 00 Act, providedu(ix x+(h'(u))) = € beforehand, the mark-
ing M(ix x(N'(U))) is changed tal We call the resulting graphand definey y as the
natural injection.

Doing this for our running example yields [Fig. 5].

The graphy is taken to be the result of the rewrite, i.e. the result of a single atomic ac-
tion in the rewriting model. Note that no node of the original gkjzhever removed
modulo the identifications of nodes among the various stages. This lack of garbage col-
lection is an issue which will be remedied in due course.

By composing the various maggx:, ix x Or Iy x, €tc., we can track the history of a
node through an execution of the system. We thusikaxe) = (ix+ yOix: xOix x)(X)

as the node which is the copyrof x [J X, andry y(X) = (ix+ yory xOix x)(X) as the

node ofY thatx got redirected to. This notation is a little cumbersome, but consider the
following. The phrase “adds a copy of each contractum node” is really a euphemism
for disjoint union. If one knows in advance which such disjoint unions are needed, one
can arrange that all the copies used are distinct, and thus implement disjoint union by

345

[(BUCCEED

2 CNil
Fig. 5

ordinary union. In more general situations though this is not possible, and one has to
take the demands of disjoint union more seriously (such cases arise in the detailed re-
percussions of the issues we discuss in [Section 8]). In such cases one uses some kind
of tagging to make copies distinct, and in these cases the obvious natural injections are
no longer identities. In this respect, the more involved notation is more portable. Fur-
thermore, we will need to keep close track of nodes through an execution sequence in
[Section 7] and our notation provides a firm foundation for this; also it is useful when
we delve into the innards of a rewrite, as we do in lemma 6.10.

Suppose now th&elis empty. Then as we said, instead of a rewrite, notification takes
place. Again leX be the graph, and] X the chosen node of such thafi(t) = O

Definition 2.8 Notification merely alters some node and arc markings. The node
marking(t) is changed te. Further for all arcspy, t) in X such that the arc making
v(p)[K] is », the marking(p)[K] is changed te, and if the node marking(p) is #" (for

n= 1), u(p) is changed t&"L, with #0 being understood a8 We call the resulting
graphY and definey y to be the natural injection.

The result of the notification is the graplas before.

In [Fig. 5], assuming there are no rules for or SUCCEED, there is scope for two
notifications. When they have both been performed, [Fig. 6] results. What might hap-
pen subsequently depends on what rules, if any, there might QeafwiG.

Root[\]_/_\‘

7 Q[Gl /]
Cons[,] Vvar
/ SUCCEED

2 Nil
Fig. 6

The remaining technicalities we need in our rewriting model are disposed of in the fol-
lowing couple of definitions.

346

Definition 2.9 An initial graph is one which consists of an isolated node of empty arity,
with the active [) node marking, and labelled by the symimitial.

Definition 2.10 An executionG of a systenR is a sequence of grapi@y| G;...] of
maximum length such th& is initial and for each= 0 such thait+1 is an index o6,

G;,1 results fromG; either by rewriting (in case there is an applicable rule) or by noti-
fication (otherwise) at some arbitrarily selected active mooeG;. Graphs occuring

in executions are called execution graphs.

The above presents a general framework in which term graph rewriting (with pro-
grammed control of strategy) may be developed. To be closer to executable machine
semantics, MONSTR imposes a collection of restrictions as follows.

The MONSTR Restrictions

First the symbol alphab&tis partitioned intd- 00 C O V, whereF consists ofunctions

which have rules but which cannot occur at subroot positions of patterns of rules; and
C andyV, consisting otonstructorsandvariables(or stateholdersrespectively, neither

of which can occur at root positions of patterns of rules and therefore neither of which
have rules; in addition constructors are not permitted to occur as the LHS of a redirec-
tion. Compared to the use of term graph rewriting as an implementation vehicle for
functional languages, where only functions and constructors are needed, the presence
of stateholders within MONSTR considerably increases the flexibility of the language
for conveniently modelling imperative notions such as storage cells, synchronisation
objects, and the logical variable. They will play a vital role in our translation of the
calculus below by representing channels and encoding protocol states.

Next we insist that rules are of two kinds, normal rules and default rules. A default rule
has a pattern which consists of an active function node and as many distinct implicit
children as its arity dictates. Otherwise it is normal. Thus a default rule’s pattern will
always match at an active execution graph node labelled with the appropriate function
symbol.

We insist that there is at least one default rule for every function symbol, and we require
a normal rule to be selected in preference to a default rule whenever either will match.
In the concrete syntax of MONSTR, we can enforce this rule selection policy using the
nondeterministic rule separatorand the sequential rule separator

Definition 2.11 MONSTR graphs, rules and rule systems must conform to the follow-
ing list of restrictions.

(1) Symbols have fixed arities, i.e. the map sending axtudigs arityA(x) depends
only ona(x), and thuA(x) = A(a(X)) (where the secondlis a notation for sym-
bol arity).

(2) Functions have fixed matching templates, i.e. for €athF there is a subset
M(F) O A(F) such that for any normal rule f&rwith rootroot, k 0 M(F) iff
a(root)[K] is explicit.

(3) Functions may explicitly match a stateholder in at most one position, and must
otherwise explicitly match only constructors, i.e. for e&€hF there is a subset
2(F) O M(F) O A(F), at most a singleton, such that for any normal rul& feith
rootroot, if k 0 Z(F), thena(a(root)[K]) O C O V; else for explicita(root)[l],
such that Z k, a(a(root)[l]) O C.

347

(4) Left patterns are shallow, i.e. for each rule, any grandchild of the root is implicit.

(5) Any nodes may not be tested for pointer equivalence, i.e. for every rule, no im-
plicit node may have more than one parent in the left pattern.

(6) Every node in every rule is balanced, ig(x) = #" for somen > 1 iff nis the
cardinality of &k O A(X) | v(X)[K] = "}

(7) Every notification argy, €) in every rule is state saturated or head activated, i.e.
if v(p)[K] =, then ifu(c) = € then eithec is explicit ando(c) OV, orc O Act

(8) Aredirection to an unactivated idle node is to a stateholder, i.e. for every rule, if
(x, y) O Redwith u(y) = € then eithey is explicit ando(y) OV, ory O Act

(9) Therootis always redirected, i.e. for every rule with root, (root, t) (] Redfor
somet.

(10) LHSs of redirections must not be activated unless they are also RHSs of redirec-
tions, i.e. for every rule, iff(2 0 Redandy O Act, then &, y) O Redfor somex.

There isn't the space here to explain all the ramifications of these restrictions, or why
they are a good idea (see [Banach (1993a)] for a thorough discussion). Essentially, the
restrictions enable one to prove a number of run-time properties of arbitrary MONSTR
systems, that are desirable from an implementation’s point of view.

It is easy enough to check that our running example above, conforms to all of these re-
strictions, and that the rewrite we showed is in fact a MONSTR rewrite (up to garbage).
We will deal with garbage shortly.

It turns out that the MONSTR systems that result from our translation have a relatively
simple run-time structure, and using the general properties provable from the syntactic
restrictions will not be necessary in the fairly involved correctness proof which is the
main concern of this paper — all the facts we will need will be derived directly from
the structure of the rule system. Accordingly, we point out one additional feature of
MONSTR rewriting that is important in the general theory but that becomes superfluous
in the specific systems we deal with.

The definition 2.3, of pattern matching, is insensitive to the markings on nodes and arcs,
and aside from the fact that the root of a redex must be active, this carries through to the
term graph rewriting model described above. For MONSTR rewriting, as well as the
syntactic restrictions, we demand that the explicitly matched arguments of the root of a
redex are idle; and in case an active node attempts to rewrite when this is not the case,
the rewrite is suspended until such time as it becomes true. This is a run-time mecha-
nism. Fortunately for us, we will be able to prove directly that in our translated systems,
all the explicitly matched arguments in a rewrite are idle, and so we needn’t concern
ourselves with the details of this mechanism. To achieve this simplification though, one
of the rules we will use later (in fact rule [9] of the communication protocol of [Section

5]) violates restriction 2.11.(8) as it performs a redirection to an unactivated implicit
node. We will prove directly that in fact tdgy node is only ever matched to idle
stateholders in any execution of the system. As a consequence, our transgression does
not affect any of the desirable run-time properties. Given the complexity of the correct-
ness proof that we tackle below, we regard this avoidance of having to deal with sus-

pensions, as reasonable under the circumstances. (In fact all such run-time suspensions
can be eliminated. [Banach (1993b)] discusses in detail how this is done.)

It is time we addressed garbage collection, since the rewriting model described above,
which never throws anything away, is rendered somewhat unsatisfactory thereby. The
following definition of liveness is sound in the presence of the MONSTR restrictions
(and run-time suspensions), in that garbage collection may be done eagerly after every
rewrite or notification, or delayed, without changing the live part of any execution
graph. (See [Banach (1993a)] for a full discussion.) In the sequel, we will be ambiva-
lent about whether garbage is actually present in the graphs we consider. Obviously,
when we do garbage collection, the mggg rx x, etc. become partial, as some of the
codomain elements disappear.

Definition 2.12 Given a MONSTR grapK, garbage collection removes all non-live
nodes and arcs frop, giving a subgraph Live{). A live nodex is one that can be
proved so on the basis of the following rules of inference:

(1) If o(x) is a special symbdtoot (a constructor), thexis live.

(2) If u(x) =g thenxis live.

(3) Ifpislive and fy, X) is an idle arc, thenis live.

(4) Ifcislive and ¥, ©) is a notification arc, thexis live.

A live arc is one for which both head and tail nodes are live; and non-live nodes and
arcs are garbage.

Returning to our running example, the original graph in [Fig. 1] clearly contains no gar-

bage. When we perform the rewrite getting [Fig. 5], a certain amount of garbage is gen-
erated. Removing this results in [Fig. 7].

Root[\]_/_\‘

[(BUCCEED

2 CNil
Fig. 7

In general, and despite the soundness result, Xjvde{es not satisfy all the conditions

for being a MONSTR graph (since eg. a live node may have a garbage child node); how-
ever, this possibility will not occur in the systems we consider below. In more general
cases, the possibility makes theoretical treatments of MONSTR easier when garbage is
retained. Once more, the reader is refered to [Banach (1993a)] for a fuller discussion.

349

3 THE PI-CALCULUS

Thertrcalculus first appeared in [Milner et al. (1992)] and since that time has been seen
in a number of minor variants. We will fix on a version of the monadic calculus, as pre-
sented in the first part of [Milner (1993a)], since it is in many ways the most economic
version, and so leads to the most transparent translation. We regard as given a suitable
alphabeCN of channel names, ranged ovendyy, zetc. Here is the formal syntax.

Definition 3.1 Thertrcalculus language of process expressions is given by the follow-
ing syntax wher® is a process and the varid@sare subprocesses (thus corresponding

to the same nonterminal in a formal BNF). We will take it for granted that parentheses
may be used in the usual way.

P=m.Q +T.Qx + ... +T,.Q;
0Q1 Q2] -+ 1Qn
vxQ
0Q
o

Speaking informally, the first case is guarded summation whereeecbf the form

X(y) orxz Here the parentheses and the overbar are constant symbols within the syntax,
and as below, y, zare inCN. The input expressiax(y).Q, means that some channel
nameq say, is to be read over the charxelhich plays the role of a communication

link, and therg is bound to all free occurencesyoih Q; y is a bound name ix(y).Q

andQ s its scope. Conversely the output expressifp means that the channel name

Z (the data) is to be written to the chanxelhich acts as the communication link. A
process which is a sum can evolve into exactly one of the alternatives, the others being
discarded. The second case is parallel composition; althare parallel processes

and evolve concurrently. The third case is restrictionx@®, where the is a constant

of the syntax, the channel namis bound, and refers to a channel that is private@

sovx is a binder and its scope@ The fourth case is replication, in which the !@n !

is another constant of the syntax i intended to be (syntactically) equivalent to the
parallel composition of as many copie<pés one might wish for, i.eQ'=Q |Q | Q|

... | 'Q. However we will take a different approach to replication as described below.
Finally the proces8 does nothing.

Process algebra definitions are normally supplemented by demanding that summation
and parallel composition are monoidal operators @iéts unit. We will simplify our
subsequent task a little by not demanding thas' unit” part, so that any top lev@

that get exposed during the evolution of a process expression (see below) just end up
lying around as inactive parallel subprocesses. (We could overcome this at the price of
extra complexity.)

Further, since the subprocesses in our sums are always prefixed, we do not demand that
(prefixed) summation is associative, else prefix might in some sense become left dis-
tributive, a possibility that is usually regarded asanptiori desirable. (In this respect,

we must regard a process expression suchmga®((+ 1.Q,) + 13.Q3) as merely a
meta-level shorthand for a flattened ternary summatip@{ + 15,.Q, + 15.Q3) rather

than as a true two level summation according to the formal syntax.) Of the monoidal
laws, we are thus left with associativity of parallel composition, and commutativity of
both summation and parallel composition. More formally:

350

Definition 3.2 The language atf-calculus expressions is required to conform to the
congruences generated by the following equations

(Q11Q2) 1Q3=Q1 | Q21Q3)

Q11Q2=Q21Qy

mM.Qp +TH.Q =TH.Qy +.Qy
The free channel namesmicalculus expressions in particular, will play an important
part in the translation of [Section 5]. We give below the free and bound channel names

for each of the syntactic constructs. (For the first case, we just give the binary variant
to avoid clutter.)

Definition 3.2 The free and bound channel namesmtalculus expression are given
by recursion by the rules:

Freek(y).Qq + zwQ,) = {x, zw} O (FreeQq) — {y}) U FreeQ,)
FreeQ1 Q| ... |Qn) = FreeQq) O FreeQ,) U ... O FreeQyp)
FreepxQ) = FreeQ) — {x}

Free{Q) = FreeQ)

FreeQ) =0

Bound(y).Qq + zwQ,) = {y} 0 Bound@Q;) 0 Bound@y)

BoundQ4 Q5| ... |Q,) = Bound@q) O BoundQ,) O ... 00 Bound@Q,)
Bound@xQ) = BoundQ) O {x}

Bound(iQ) = BoundQ)

BoundQ) =0

The above makes clear that #{g) in x(y).Q and thevx in vxQ, are binders. We will
need to regard the alpha-convertibility of bound variables as fundamental below, so we
have the next definition.

Definition 3.3 The language af-calculus expressions is required to conform to the
congruence generated by alpha-convertibility

D(x(y)-Q) = P(x(y)-QA{y/¥})
P(vxQ) = D(VX' Q{X/x})

where in the abova&) is art-calculus expression containing @gQ as a subexpression,

X andy' are some other names not fre€inand egQ{x'/x} refers toQ with all free
occurrences of substituted by'. In general, when we exploit alpha-convertibility, we
will typically assumex andy’ are fresh names not appearing anywhere else in the whole
expression, rather than just not appearing fré@. in

We turn now to the dynamics of thecalculus. For most of the time (until [Section 8]
in fact), we will restrict our attention to the behaviour of closed systems.

Definition 3.4 A closedrtcalculus system evolves using the replication rewrite rule
IP .gP|IP

and the communication rewrite rule
(oo +XW)P+)| (.o +x2Q+ 1)) 5o P{ZV} | Q

where in the RHS of the lattd®{ z/y} again refers to the substituted versiorPof

351

The replication rule shows that rather than regarding replication as a syntactic congru-
ence which is the usual approach intihealculus, we will regard the spawning of cop-

ies of a replicated subexpression as being done via an explicit rule within the dynamics
of atr-calculus system. This is because the translation will also manufacture copies of
(the translation of) a replicated subexpression by explicitly rewriting, and consequently
the correctness proof will become more managable if we can pick out points in the dy-
namics of the originatt-calculus expression at which replication was needed.

It is to be understood that both of the dynamic rules are applicable only “near the top
level” of atrcalculus expression, which brings out an analogy with the Chemical Ab-
stract Machine [Berry and Boudol (1990)]. The top level proviso may be stated in pre-
cise terms as follows.

Definition 3.5 The contexts within which the rulesmtalculus dynamics are appli-
cable, are given by the additional rules

P-yQ
PIR-yvQIR

and

P-yQ
VXP -y vxQ

where above y stands for either of. g and - ¢ (we will use this notation below
where convenient).

Thus dynamic behaviour can only take place under parallel compositions bimai-

ers. As aresult, a communication must be done either entirely inside, or entirely outside
the scope of ax binder. The reason for this is as follows. Consider the input and output
subprocesses of a potential communicatigy,.P andxzQ. If zis free in the whole
expression, then the communication can go ahead, since #ierbdund in ax bind-

er, both processes will be in the scope ofheotherwise it doesn’t matter. Butzis

bound in avz binder, then if the(y).P were to occur outside the scope oftkaedoing

the communication would create via substitution an occurrenzewside its scope,

and and such awould be a different name according to the conventions regarding
bound variables. Therefore we canot allow bound names to escape their scopes in this
manner and must forbid such communications. However this has the undesirable con-
sequence of forbidding potential communications wherein the sender and recipient
have a communication link in common, but the sender is prevented from sending his
data because it would escape the scope that that happens to contain that data at the given
moment.

The original description of thecalculus in [Milner et al. (1992)] provided mecha-
nisms to overcome this. We will take a simpler approach that allows us to simply en-
large the scope ofve binder sufficiently, so that any communication lindver which
zmight be transmitted using a prefiz has all corresponding input prefixég) which

are visible near the top level, within the scope obthiginder. More precisely we have

the following.

Definition 3.6 The syntactic reducticenis defined as follows.

(vzQ [Qz | .. [Qn) =vZ(Qu{Z/Z | Q2| ... [Qp)

352

Above, thevZ and {/z refer to an alpha-conversion of the binderperformed to
avoid potential capture of free variables in the enlarged scope. WeWied=* for
the transitive and reflexive transistive closuremofThe contexts in whichris allowed
to apply are given once more by the rules in definition 3.5.

Lemma 3.7 The relatiore™ is a simulation; i.e. iP =* P' andP -y Q, then there is
aQ with Q= Q' such thaP' -y Q'

Proof Immediate from definitions 3.5 and 3.

The above result allows us to enlarge the scopeslahders until they permit all pro-
spective communications to take place. We will regard the extended potential for com-
munications that arises in this way as part of the operational semantioscafculus
expression.

Definition 3.8 LetE = ®(xzP, x(y).Q) be arrcalculus expression such thatP and
X(y).Q are at top level, i.e. the syntactic constructs aa@areandx(y).Q in the parse
tree of® consist of parallel compositions and restrictions. Thé&nhstandard with re-
spect taz, iff any vz binder (for the specific channel nagén @, contains either both
xzP andx(y).Q, or neither of them, in its scop& is in standard form iff it is standard
with respect to all output prefix data channel names occurring at top level.

For practical purposes therefore, we will enhance the dynamicgatulus expres-
sions to include conversion to standard form, by applsgihgfter each- y step until
all output prefix data channel names at top levekeghich occur within az binder,
have all corresponding input prefixes ®g) included in the scope of the binder.

The following result will be useful later.

Lemma 3.9 Let®(vxP, Q) be arrcalculus expression (containimgP andQ as sub-
expressions), and let

d(vxP, Q) =t WWAP{X/x}, Q))

i.e. thevx binder has been lifted till its scope has capt@ed hen the free and bound
names of) in both LHS and RHS of the above relation are the same, and such a name
is free (resp. bound) i(vxP, Q) iff it is free (resp. bound) iIK(VXA(P{X'/x}, Q)).

Proof. This is because the bound name irvthbinder will have been alpha-converted
to X' precisely to ensure this.)

Remark 3.10 We point out that lemmas 3.7 and 3.9 remain true if we also include the
clauses

(MvzQ +TH.Qp + ... +TH.Qp) =WZ(.Qy{ 2/7 + T.Qp + ... +T1,.Qp)
VXVYQ =0vyvxQ

in definition 3.6, but we will not need this fact subsequently.

We cannot however extend the liftinguafbinders arbitrarily. Eg. we note thatbhind-
ers cannot be lifted past replications. It is clear why: a replication rewrifearéhates

a copy of anwz-bound scope withi@, and any such copy will refer to its own distinct
bound name (regardless of whether this bound name is zatledlpha-converted). If
thevzbinder were floated above the !, then the referencasithin these scopes would
become references to a common name, free in all copigsjoite the opposite of what
is intended.

353

Here is a small example ofrecalculus system and one possible evolution. It will pro-
vide a running example for the translation later on.

X(u).u(t).0 | (xv.vsO +xv.0) | x(y).0
—-c V(1).0]vsO|x(y).0
-c 0]0]|x(y).0

Readers may check that the same system may also evol{g.Qd 0 | x(y).0 or to
X(u).u(t).0 | vs0O | 0 or tox(u).u(t).0 |0 | O.

We emphasise once more that we are dealing with ctesattulus systems for the mo-

ment. This gives us a more easily comprehensible goal for translation. The original
formulation of ther-calculus in [Milner et al. (1992)] was presented via a more
finegrained transition system suited to the description of open systems (ones with ex-
ternal as well as internal communications), and featuring phenomena such as the open-
ing, closing, and extrusion of the scopes of restriction operators. These latter permit the
extension of our syntactic reductismabove to a congruence, and of our simulatitn

to a true bisimulation, and legitimise our use6fto enhance the communication ca-
pabilities of arrcalculus expression. Once we have the translation of closed systems
under control, we will see that it is not hard to understand these more subtle mechanisms
using the concepts that arise in the development of the translation. We will discuss this
more fully in [Section 8], after we have presented the translation and proved it correct.

4 AN OVERVIEW OF THE TRANSLATION

The general idea of the translation is thatalculus processes in an evolving system,

are represented by active function nodes in a MONSTR execution graph, since in the
MONSTR world such nodes represent independent loci of control in a computation.
Thereforertcalculus processes which are potentially able to communicate by virtue of
not being ancestrally guarded, correspond to active function nodes. Channels are rep-
resented by stateholder nodes, and all processes with an interest in a given channel share
(i.e. have an out-arc to) the stateholder representing that channel. Two facts make this
an appropriate representation strategy. Firstly, MONSTR nodes have fixed arities, so
modelling the sharing of a channel by out-arcs from the channel to the community of
processes that share it, would be awkward in view of the fact that this community
changes as the system evolves; on the other hand, there is no such restriction on the in-
arcs of a node. Secondly, the notion of arc redirection, having been designed as the nat-
ural directed-graph generalisation of substitution in the term world, is ideally suited to
model the substitution operation that takes place when a pair of processes communicate.

Suppose then a pair of active proce$saadQ share a channehan, (we assume that
the symbol$# andQ encode the potential behaviours of the two processedy, aish-

es to send a chanmghan_out alongchan, andQ wishes in turn to receive a channel
alongchan to bind to its channalhan_in. We represent this action as the term graph
transformation in [Fig. 8].

Note that this achieves the substitutiorcbéin_in by chan_out via the redirection
chan_in := chan_out, the channel of communicatichan playing an almost inciden-
tal role. P andQ' represent the subsequent potential behaviol?sa0dQ. (We have
assumed for the sake of argument that B68mdQ’ retain an interest in both channels,
though this needn’t be the case.)

354

Ko)|] Pl ...] Ql,y -1

P[, ..]
\. g

chan_out

chan_in
chan chan chan_out

Fig. 8

One thing prevents us from turning this insight directly into a MONSTR rewrite rule,
and that is that MONSTR forbids multi-rooted LHSs of rules — our left hand configu-
ration above is double-rooted. The reason for this is purely to do with the efficiency of
pattern matching of single-rooted LHSs of rules; they are operationally much easier to
test for a successful match than multi-rooted ones. (Nevertheless, given that the formal
notion of matching is that of graph homomorphism, there is no obstacle to multi-rooted-
LHS rules as far as the abstract semantics of graph rewriting is concerned.) This has a
number of consequences. NeitRenorQ can be assumed to know about the other in
any rule that initiates communication. The best that they can do is to propose a com-
munication viachan, and hope that a suitable partner process offers to cooperate.

At this pointr-calculus semantics enters the fray. Offers of communication by individ-
ual processes must be rescindable, otherwise deadlock could occur if a cycle of process-
es were involved in making offers to others without any of them being reciprocated.
Furthermore, the actions that constitute the playing out of the communication protocol
for any representation ofracalculus system must be equivalent to some serial shedule

of atomic communication events in the original system.

The easiest way to ensure this is to impose a global synchronisation on the execution.
A global semaphore, shared by all processes, is introduced, and processes accede to a
mutex discipline in order to enter some offers of communication on some channel, or
to rescind or cooperate with an offer already made. Such a protocol can easily be shown
to have the correct serialisability properties. Expressing such a protocol in MONSTR
is however quite expensive in terms of the number of rewrite rules needed. Further, the
concurrency permitted by such a protocol is easily seen to be rather small, which is per-
haps rather against the spirit of a formalism specifically designed to express concurren-
cy. Instead, we prefer a much simpler, much more concurrent protocol, synchronised
on a per-channel basis. It does however suffer from a busy waiting overhead, because
each process proposing an offer to communicate over some channel is responsible for
(nondeterministically) rescinding its own offer, since in the end, it may be the only pro-
cess with an interest in that given channel.

Here is an outline of our preferred protocol. The states of a channel are represented by
the three stateholder symbdspty, Busy_Unlocked, andBusy_Locked. Empty

means no reader has recorded an offer on this chaBnosy._Unlocked means that a
reader has registered an offer on this channel. At this stage, either the offer may be re-
scinded by the original reader and the state of the channel revénpty, or a writer
completes a rendezvous with the reader, installing its data, and changing the state to

355

Busy_Locked. In the latter case it becomes the reader’s responsibility to extract the
data and bind it to the input channel, and to reset the channel dEatpty

The behaviour of a proceBs= (... +char(chan_in.Q + ...) is represented by a collec-

tion of rules, one for each summand. The rule for the summand displayed, records a de-
cision, made nondeterministically, fBrto attempt to communicate \idan and when
successful to evolve Q. The node foP rewrites taP_Q and spawns a helper process
Help_r[chan chan_in] to manage the protocol. If the attempt is unsucced3fu),
backtracks td® once more.

5 THE TRANSLATION IN DETAIL

The translation of &-calculus expression proceeds in a bottom up fashion. First of all
we label all nodes of the parse tree of the expression with new (process) names; we do
this by introducing a pair of squiggly brackets round each possible subexpression, and
labelling each pair with the new name. For exan@leQ, | ... |Q, becomes @, | Qo

| ... |Qn}p andvxQ becomes¥xQ}p For later convenience, we permit identical or al-
pha-convertible subexpressions to be identically labelled provided that all their own
corresponding identical or alpha-convertible subexpressions are also identically la-
belled, but we do not insist on this. Generally at the meta level we wiit {methe

name of the subexpression &RAQ; etc. for the names of the immediate subcompo-
nents. The names are available to serve both as meta-names for the subexpressions
themselves and as names for the MONSTR function symbols that encode the behaviour
of the relevant subprocess.

Secondly, we will translate each process subexpreBdioma pair. The second compo-
nent of each pair is a set of MONSTR rules for the function syPbwht encodes the
behaviour oP. The first component of the pair is a mapphngss : FreeP) - args p

from the free channel names®fs given in [Section 3], to the argumeatgs p of

the corresponding MONSTR function symbol. Strictly speaking, this is a map from
free channel names to positive integers (argument positions); but in the context of a rule,
anargs p sequence will always be a sequence of node identifiers. Equalities between
the channel node identifiers occuring in the codomaiAsgg¥maps for symbols on the

left and right sides of rules, shows how channels migrate through the execution of a
MONSTR representation ofracalculus system.

As in all rule systems, from the rewriting viewpoint, all occurrences of node identifiers
in MONSTR rules are bound; they are templates for nodes of execution graphs that are
either located during pattern matching, or instantiated during the contractum building
phase of the rewrite. As such their identity is fluid in that they can be renamed (alpha-
converted) to avoid node identifier clashes. Therefore when we spaaisof etc.

below, we assume it contains a sequence of distinct node identifiers, all different from
any node identifiers that might arise from the translation of channel identifiers occurring
visibly in atecalculus subexpression, egn vxQ; such explicit channel identifiers are
translated “by font change”. A consequence of the latter is that we assume that all
bound variables occurring in thecalculus expression that we are translating have been
renamed apart from each other and apart from any free names in the expression. This
forestalls the need to actually invoke alpha-conversion in the translation. Note that
since all occurrences of node identifiers in rules are bound, the relationship between oc-
currences of node identifiersdmgs p andargs g lists in a rule needs to be consistent
only on a per-rule basis. Note also that the bound namesmfctddeulus do not occur

356

as such in the translation. Only their free instances get translated. This is in line with
our comments in the introduction on the absence of scope and binding mechanisms in
(the syntax of) graph rewriting. We will make suitable remarks as we go.

Lastly, if ther-calculus expression is to be treated as a module to be combined with oth-
ers at some future stage, the output of the translation is the set of rules generated, to-
gether with theArgss map for the top level function symbol. If the expression is to
stand for a self contained system, the output is the set of generated rules together with
a rule forlnitial which instantiates the free channels of the top level function.

The Translation Body

Here is the translation, easiest cases first. We recall that all channels have been suitably
renamed apart. The separate cases below generate rules for various MONSTR function
symbols, but do not give much of a clue as to what rule selection strategy is to be em-
ployed. Itis a property of the rules we generate here that all normal (i.e. non-default)
rules have non-overlapping patterns. The appropriate rule selection strategy is there-
fore: “Given an active function node, attempt to match a normal rule; if no normal rule
matches, match a default rule”. We therefore omit the rule sepdraaacs from the

text of the translation.

{O}p: FreeP) =0 ;Argss =0 ; RulesP) ={ P =>*Root }

{vxQ}p : FreeP) = FreeQ) — {x} ;

If xOJ FreeQ) then Sefrgs, = Argsg andargs p=args q;
RulesP) ={ P[args p] =>*Q[args q] }

else k U FreeQ)) then assume for simplicity thatoccurs last irargs q ;
SetArgs = Argsglireep) @andargs p =

all_except_the_last_(drgs o) ;

RulesP) ={ P[args p] =>*Q[args p x:Empty] }

Note that there is no tracexf P[...] . Only whenP evolves taQ

isx created as a frestmpty stateholder.

{! Q}p : FreeP) = FreeQ) ; SetArgss = Argsg andargs p=args q;
RulesP) ={ P[args p] =>*Q[args ol.*P[args ¢] }
Note that sincargs p = args q, all the correct channels are sharedPby
andQon the RHS.

{Qu1Qz| ... IQp: Freep) =L 11 . FreeQ):
Let blends be a function that merges a set of sequences into a single sequence
without repetitions (so providing an implementation of set union). Set
args p = blends(args Qp @r9S Qy -+ »args Qn) ;
Oi « Od O Free;) * Argss(d) =Arngi(d) ;
RulesP) ={ P[args p] =>
*Qil args 1*Q A args o,.-*Q nlags gl }

357

{Ziop. W R +Zj00n..mzw.QMe:
Free@) = {Xy,.... Xn, Zg, -1 Zpyy Wy, -, Wi}
o[iop.. n (FreeQ) —{u}) O [] 0. m Free@Y ;
Assume llends function as above. Set
args p =blends ([Xq1,..., X, Z1s- -1 Zpy Wy, .., Wiy,
R R W W) -
args ..., args R ,args Q¥ ..., args Qm) ;
and
Oi » 0d O Free@Y) — {u} * Argss(d) = ArgsoR(d) ;
Oj + 0d O Free@QY) « Argss(d) = Arng\jN(d) :

Rules) is given by firstlyl | ; 3 . of
Plargs p] =>#P_Q R[™Help_rx ;u;] argsp
uij:Empty]
P_d,q [Yes args pui=>*Q 'i?[args Q?]
(note that ifu; O Free@) thenu; occurs inargs QFi%)
P R[No args pui]=>*P[args ¢
P Rla argspu]=>*P_Q Rla argspu
and secondI)D jOq1... m Of
Plargs p] =>#P_Q W[™Help_w[z jwj] args p]
P_QV[Yes args p]=>*Q Y[args ijv]

P_QY[No args p] =>*P[args p]
P_.QV[a args pl=>*P_Q W[a args gl

The above constitutes the body of the translation. This must be supplemented by the
communication protocol rules described below. To make a component module of a
larger system, on the assumption fhad the top level symbol labelling the outermost
construct of the originat-calculus expressidg, the accumulated set of rules (with the
selection strategy mentioned above) is combined with the Angg : Free(l) -

args T to form the output of translation called). The latter holds the information

on how arguments af correspond to the free channels of the module, which is needed
for interfacing to other modules. To form a stand alone system, we needn’Argtgin

but we need to form an initial rule. dfgs 1 hask entries, this rule is

Initial => *T[u 1:Empty,...,u k- Empty]

which simply instantiates the top level free channels and sets the system in motion. To
prevent confusion, we call this version of the output of translatidg).Tr(

Like many translations, the one above is prone to some inefficiencies. Some of the
translation steps do not do very much. Nevertheless, it is simple enough to be reason-
ably transparent for pedagogical purposes. The reader who has grasped the structure of

358

the translation above would have no difficulty in altering it so that it translated a more
meaty chunk of syntax such as

(VX XE T Q1 Z T, Q| 2T Qe
all in one go, saving on both rules and rewrites.

The Communication Protocol

To effect a communication, the helper functibledp_r[x u] andHelp_w[z w] must ac-

tually make contact and transfer data. A collection of rules is needed to handle various
aspects of the protocol. Unlike the body rules above which were mainly default rules
as all they had to do was to manage the plumbing, the rules below do a fair amount of
pattern matching. The default rules for the symbols in question are forced by the defi-
nition of MONSTR and are mainly superfluous. Again the normal rules have non-over-
lapping patterns (with the exception dElp_r_test_chan which has two
overlapping rules that implement a nondeterministic busy wait), and so the strategy for
rule selection in the complete system is once again “(nondeterministically) select a nor-
mal rule if one will match, otherwise a default rule”. The rules are numbered for future
reference.

Rules for read helper.
Help_r initiates an offer; no offers in progress. [1]
Help_r[chan:Empty chan_in]
=>*Help_r_test chan[chan’:Busy_Unlocked chan_in],
chan := chan’
Help_r default rule; backs off. [2]

Help_r[chan chan_in]
=>*No

Rules for write helper.

Help_w sees a channel containing an offer; starts a rendezvous. Below, this rule will
be known as the communication commit rule (or just commit rule); rewrites using this
rule will be called commit rewrites. [3]

Help_w[chan:Busy_Unlocked chan_out]
=>*Yes , chan := chan’:Busy_Locked[chan_out]

Help_w default rule. [4]

Help_w[chan chan_out]
=>*No

Rules forHelp_r_test chan
Help_r_test chan waits a bit longer. [5]

Help_r_test chan|[chan:Busy_Unlocked chan_in]
=>*Help_r_test_chan[chan chan_in]

359

Help_r_test chan revokes its own offer. [6]

Help_r_test chan[chan:Busy_Unlocked chan_in]
=>*No , chan := chan:Empty

Help_r_test chan detects a rendezvous. [7]

Help_r_test chan[chan:Busy_Locked[data] chan_in]

=>*Help_r_assign_data[chan data chan_in]
Help_r_test chan default rule. [8]

Help_r_test_chan[chan chan_in]

=> *Help_r_test_chan[chan chan_in]
Rules forHelp_r_assign_data
Help_r_assign_data assigns data and prepares to unidwin . [9]

Help_r_assign_data[chan data chan_in:Empty]
=>*Help_r_unlock[chan] , chan_in := data

Help_r_assign_data default rule. [10]

Help_r_assign_data[chan data chan_in]
=> *Help_r_assign_data[chan data chan_in]

Rules forHelp_r_unlock
Help_r_unlock unlocks chan and resets protocol. [11]

Help_r_unlock[chan:Busy_Locked[data]]
=>*Yes , chan := chan’:Empty

Help_r_unlock default rule. [12]

Help_r_unlock[chan]
=> *Help_r_unlock[chan]

Itis clear from the above structure that the protocol offered is by no means the only one
that will do the job. It just seems to us to be the simplest one that makes the points that
we wish to make. From the relatively straightforward way in which the protocol rules
interface to the body rules, it is obvious that a more hard-nosed protocol could be sub-
stituted for ours, if for example one wished to avoid the penalty of busy waiting, (as ex-
emplified by rule [5] foHelp_r_test chan). However each such protocol poses

its own challenge where correctness is concerned. See below.

An Example

Let us see what our translation scheme does to the mmaltulus example we dis-
cussed in [Section 3]. Here it is again in fully bracketed form.

{ {x(u).{u®) {0} 2 U} xa | xv{vs{0} v +xv{0} s | {x(¥)-{O} Z xa }1

When translated, as well as the protocol rules, the following rules would be generated.
For variety, we write them out with rule separators, but emphasise that these merely em-
body the rule selection strategy mentioned above.

360

Z => *Root ;
Ulu] => #U_Z["*Help_r[u t] u tEmpty] ;

U Z[Yesut]=>*Z [
U_Z[No u t] => *UJ[u] ;
U Z[aut]=>*U_Z[aut] ;

X1[x] => #X1_U[**Help_r[x u] X u:Empty] ;

X1 _U[Yes x u] => *U[u] |
X1 _U[No x u] => *X1[x] ;
X1 Ulaxu]=>*X1 Ulaxu] ;

XA4[x] => #X4_Z[™Help_r[x y] X y:Empty] ;

X4 Z[Yes xy]=>*Z |
X4 _Z[No x y] => *X4[x] ;
X4 Z[axy] =>*X4_Z[axy] ;

V[v s] => #V_Z[™Help_w][v s] v s] ;

V_Z[Yesvs]=>*Z |
V_Z[No v s] => *V|v 5] ;
V_Z[avs]=>*V_Z[av s] ;

S[x v s] =>#S_V[™*Help_w[x V] X v s] |
S[xvs]=>#S_Z[™Help_w[x Vv] x v 8] ;

S_V[Yes x v s] =>*V|v] [
S _VI[No x v s] =>*S[x Vv 3] ;
S Vlaxvs]=>*S V[axvs] ;

S_Z[Yesxvs]=>*Z
S Z[No x Vv s]=>*S[x Vv g] ;
S Z[axvs]=>*S_Z[axVs] ;

TIx v s] =>*X1[x], *S[x v s], *X4[X] ;
Initial => *T[x:Empty v:Empty s:Empty] ;

In [Fig. 9] below we give a picture of the execution graph just after the system has been
set in motion; and in [Fig. 10] we show the execution graph just after the first successful
data transfer by proceSswhich has synchronised with procesk

6 PROPERTIES OF TRANSLATED SYSTEMS

In this section we state a number of definitions and establish a number of mostly easy
lemmas, which enable us to speak more incisively about the structure of execution
graphs of translated systems, and about the transitions between them effected by the
rules we have proposed. We assume henceforth that we are dealing with complete sys-
tems, i.e. given &-calculus expressioB, the translation of is Tr(E), which contains

a suitable rule fomitial.

361

X1[,] (5[]

X : Empty v : Empty s : Empty
o)
Fig. 9
#X1_U[) 5\] #S_ V]

>

[(Help_r_test_chan[;] Les

X : Busy_Locked[,] v Empty s : Empty

N
o

Fig. 10

Definition 6.1 A function symboF arising from the translation of a constr@ctvill
be called a

O proposer function symbol & is {Z; 15.Q} p andF is P,

O proposer-intermediate function symboPifis a proposer symbol aridis P_Q;
for some summan@; of {Z; 15.Q} p,

362

O auxiliary function symbol iC is {0} p, {VXQ}p 0Or {Q1 Q> | ... |Qn}p andF is
P; and more specificallyp is called a zero symbol, symbol, or composition
symbol respectively,

O replication function symbol i€ is {!Q} p andF is P,

initial function symbol ifF is Initial,

protocol function symbol iF is one of the functions defined in the communica-
tion protocol section of the translation, tHelp_r, Help_w, Help_r_test chan
etc.

Definition 6.2 The stateholder symbdisnpty, Busy Unlocked, andBusy_Locked
will be called channel symbols.

Lemma 6.3 LetE be ar-calculus expression, and Ej(its translation. Then the live
part of every execution graph of Ej(has the following properties.

(1) Each non-protocol function node and eRdwt constructor has no parent.

(2) Each function node is active unless it is a proposer-intermediate node in which
case it is either active or suspended.

(3) Each protocol function node has a unique parent which is a suspended proposer-
intermediate node. Each actives or No constructor node has a unique parent
which is a suspended proposer-intermediate node, and eatlesdbe No con-
structor node has a unigue parent which is an active proposer-intermediate node.

(4) Each function node has only channel nodes as children, except for proposer-in-
termediate nodes, which in addition have as a child either a protocol function
node, or aes, or aNo constructor.

(5) Each protocol function node has only channel nodes as children, either two or
three of them according to arity.

(6) Each channel node is an idmpty, Busy Unlocked, orBusy Locked[data],
wheredata is another channel node.

Proof. We proceed by induction on the structure of executions. The initial graph obvi-
ously satisfies the properties. For the induction step suppose all execution graphs up to
G; in some execution have the properties. T&gris given by either a notification or

a rewrite.

For a notification, it is easy to see that all the properties are preserved as the only pos-
sible natifications in an execution are frétoot constructors which by induction hy-
pothesis (1) foiG; notify nobody, and fronYes andNo constructors which by
induction hypothesis (3) fag; notify their unique suspended proposer-intermediate
node parent. (All stateholders are always idle by induction hypothesis (B)sonev-

er notify.)

For a rewrite there are a large number of cases to check, six for each rule type in the
translation. Fortunately all of them are easy and we briefly examine one example rule
and leave the diligent or skeptical reader to check as many others as he wishes. Con-
sider a rule of the form

363

Help_r_test chan[chan:Busy_Locked[data] chan_in]
=> *Help_r_assign_data[chan data chan_in]

By hypothesis (6) foG;, data andchan_in are (matched ii&; to) idle channel
nodes. Therefore the creation dfldelp _r_assign_data[chan data chan_in] node

as specified in the rule, creates a new protocol function node satisfying (4). The other
conditions are equally easy

Definition 6.4 LetD be a MONSTR rule, argla node of the left pattern. We say that
p is rewritten tag if

* D specifies a redirectiomp,(q), or
* p is the root of the left pattern Bfandq is a contractum node.

We also say thai is rewritten tag to refer to the fact that there is a grafla matcth
of the left pattern of some rul2to X, and a rewrite governed Bywith result graphy
and either

* D specifies a redirectiom,(w), andh(u) = p in X is redirected toy v(h(u)) =q
in Y wherery v is the redirection function from [Section 2], or

* u is the root of the left pattern &f, w is a contractum nodé(u) = p is the root
of the redex irX, andiy v(h'(w)) = qisw's copy inY whereiy v (the composi-
tion iy yoix x»), is the injection function from [Section 2].

The use of the same phraseology to refer to both syntactic and semantic phenomena as
legitimised in definition 6.4 avoids excruciating circumlocutions in the discussion be-
low, without losing the reader’s conviction that we are telling the truth. Further, we will
say thap is rewritten tog when (in the semantic sense) the reflexive transitive closure

of the above phenomena is intended, i.e. there is a sequence of zero or more rewrites of
XtoX1toX2 ... toY such thap in X is (in the preceding sense) rewritterpioin X1,

which is rewritten t@2 in X2, ... , which is rewritten tg in Y. Where necessary, we

will allow rewrites which do not pattern match any of phe. , and also naotifications,

to interrupt the rewriting sequencé [.. Y].

Lemma 6.5 LetE be artcalculus expression, and Ej(its translation. LeP be an
initial, auxiliary or replication function symbol of B and letp:P[...] be a node of an
execution graptX. Thenp can be rewritten to a collection of nodes which are active
proposer function nodes, active replication nodes, andRiok¢ constructors.

Proof. SinceP is a function symbol of TH), it arises from a labelled subexpression of

E, {...} psay. Consider the parse tree of {p..JEach node of the tree with its children
corresponds to a syntactic construct of thealculus, and each leaf corresponds to a
zero; each of these having corresponding rules (call themugs) in TrE). Consider

an execution grap¥i formed fromX by: (a), allowingp to be rewritten using {g-rules
corresponding tdnitial, | ,v , and0 as long as there are redexes for such rules; (b) per-
forming all notifications of activ®oot constructors; (c), allowing a finite number of
uses of {Jo-rules corresponding to replication and applying (a) and (b) to any non-rep-
lication nodes generated thereby. Since the parse tree is finite, a finite amount of work
is involved. TherY has the property claimed>

Definition 6.6 The protocol function symboldelp_r_test_chan, Help_r_assign_-
data, Help_r_unlock will be called protagonist symbols. All other function symbols

364

will be called non-protagonist symbols. A channel nodesaid to be in the chan po-
sition of a protocol function nogein a graptXif there is an arqgy, c) in X, i.e.c occurs
in the position matched than in rules fora(p). In this cas@is called a chan position
parent ofc.

Lemma 6.7 LetE be ar-calculus expression, and Ej(its translation. Then

() Every channel node in every execution graph oE)i§ in one of the following
states.

(a) Empty, and all its chan position parents are non-protagonists.

(B) Busy_Unlocked, with exactly oneHelp_r_test_chan chan position protago-
nist parent and zero or more other chan position non-protagonist parents,

(yl) Busy_Locked[data] with exactly ondHelp_r_test chan chan position protag-
onist parent and zero or more other chan position non-protagonist parents,

(y2) Busy_Locked[data] with exactly ondHelp_r_assign_data chan position pro-
tagonist parent and zero or more other chan position non-protagonist parents,

(y3) Busy_Locked[data] with exactly oneHelp_r_unlock chan position protago-
nist parent and zero or more other chan position non-protagonist parents.

(I) The state changing transitions for a channel mddechan position in an execution
graph are the following (where the reference numbers of the rules used are noted).

(a) - (B) whenc is rewritten by dlelp_r chan position parent, [1]
(B) - (o) whenc is rewritten by &elp_r_test chan chan position parent, [6]
(B) - (y1) whenc is rewritten by aelp_w chan position parent, [3]
(y1l) - (y2) whenc is matched by &lelp_r_test_chan chan position parent, [7]
(y2) - (y3) whenc is matched by &lelp_r_assign_data chan position parent, [9]
(Y3) - (a) whenc is rewritten by alelp_r_unlock chan position parent. [11]

(Il The non state changing transitions for a channel radehan position in an ex-
ecution graph are the following (again including rule numbers).

(a) - (a) whenc is matched by &elp_w chan position parent, [4]

(B) - (B) whenc is matched by eithertdelp_r, or aHelp_r_test_chan chan position
parent, [2, 5]

(O - (O whenc is matched by either ldelp_r or aHelp_w chan position parent,

where (is any of ¢1), 2), (/3), [2, 4]

(0 - (O whenc is matched by any non protocol chan position function parent, where

(O is any of &), (B), (v1), (2), (3).

Proof. Again by induction on the structure of executions. In fact we need to strengthen
the induction hypothesis by adding a number of clauses. Rather than present them all
at once, we will introduce them only as needed in discussing features of the proof.

The base case is trivial, as is the inductive step for naotifications. For rewrites, we need
to merely check that the rewrite rules which match in chan position indeed implement

365

the required behaviour. This has two aspects. Firstly that the normal protocol rewrite
rules effect the transitions stated; and secondly that any transitions in principle permit-
ted by the rules but unstated above, do not in fact take place. The latter transitions are
the ones determined by the default rulesHelp_r_test_chan, Help_r_assign_da-

ta, andHelp_r_unlock, as an inspection of the rules used in parts (II) and (lll) shows.

To show that these rules are never used, it is sufficient to strengthen the induction hy-
pothesis to assert that

(IV) (a) the chan position child of eveHelp_r_test_chan function
node is 8Busy_Unlocked channel node orBusy_Locked[data]
channel node,

(b) that the third¢han_in) child of everyHelp_r_assign_data
function node is aEmpty channel node,

(c) the chan position child of eveHelp_r_unlock function node is a
Busy_Locked[data] channel node,

since therHelp_r_test _chan, Help_r_assign_data, andHelp_r_unlock will always
be able to match a normal rule.

To prove (IV).(b), the only part that doesn't follow from a trivial inspection of the rules,
we need to strengthen the induction hypothesis yet further to assert that

(V) (a) aread proposal initiated by a proposer node rewriting to a proposer-
intermediate node, instantiates the input node as &ngty
channel node whose only parents are the suspended proposer-
intermediate node and the corresponding read helper,

(b) aread helper that matchesEmpty chan position channel, passes
its Empty input node tdHelp_r_test_chan (in second position),
whereupon th&mpty input node’s only live parents are the
suspended proposer-intermediate node andéfie r_test_chan node,

(c) aHelp_r_test chan that detects a rendezvous, passesritpty
input node tdHelp_r_assign_data (in third position), whereupon
the Empty input node’s only live parents are the suspended proposer-
intermediate node and thtelp_r_assign_data node.

It is easy to see that (V).(8) (V).(b) O (V).(c)O (IV).(b).

Checking the induction step for rewrites involves showing that the various rules used,
preserve the properties of states claimed in part (1), and implement the various transi-
tions described in the remaining parts. Essentially there are two sorts of deductions.

Firstly, if a rule rewrites its chan position nodéhen it first matches it explicitly, and

in such cases it is a feature of the protocol rewrite rules that all redirections of nodes in
chan position by protocol functions are also to explicit nodes of the rule, which makes
the behaviour immediately evident.

Otherwise the rule just matchesvithout redirection. This possibility has two cases,
theHelp_r_test_chan function which implements/{) - (y2) by inspection, and the
Help_r_assign_data function which implements/2) — (y3). For the latter we need
a final strengthening of the induction hypothesis to assert that

366

(VI) the chan position child of eveiyelp_r_assign_data function node is a
Busy_ Locked[data] channel node,

which is immediate given the form of rule [7] fdelp_r_ test_chan.

With the full induction hypothesis laid bare, the induction step for rewrites is mostly
trivial, consisting of a large number of rather elementary cases. All that is required is a
simple inspection of the information available in the rules, modulo the properties of the
set of chan position parents of channel nodes in various states; all subtler properties
needed are captured in the various clauses above. We omit the tedious @etails.

As a corollary to lemma 6.7, we have shown that the communication protocol does not
deadlock assuming that every active function node will rewrite eventually, a property
that we will formalise as weak fairness in [Section 7]. Part (ll) of lemma 6.7 is sum-
marised in the transition diagram of [Fig. 11] below.

Help_r
/\
(a) B)
\/
Help_r_test _chan Help_w
Help_r_unlock (Y1)
Help_r_test chan
(¥3) (¥2)
‘\/

Help_r_assign_data

Fig. 11

The final topic we need to consider in this section concerns some subcommutativity
lemmas which allow us to permute rewriting steps under suitable circumstances. In the
following, for technical simplicity, we assume that we rewrite without removing gar-
bage, so that the injection and redirection functicarsdr are total.

Lemma 6.8 In a MONSTR execution sequence, two adjacent naotification steps may
be interchanged.

Lemma 6.9 In a MONSTR execution sequence, a notification step adjacent to a re-
write may be interchanged with it.

Given that notifications merely make the notifying constructor or stateholder idle, and
alter the non-idle markings on some other nodes and arcs, we regard the above two re-
sults as sufficiently obvious to allow us to both omit their proofs and even be a bit vague
in their statement. We are rather more careful about the next lemma, which incidentally
provides a guide round which lemmas 6.8 and 6.9 may be rephrased more accurately.

367

Lemma 6.10 LetE be art-calculus expression, and Ej(its translation. LeG be an
execution graph of TH). Fori =1, 2, leD; = (P;, root, Red, Act) be two rules of TE)
with left subpatterns;, and letg; : Lj — G be two redexes. Suppose tggfroot;) #
go(rooty), and that if§ is an explicit stateholder &f, thengy(s;) # 9x(s,). LetH; be the
graph obtained by rewriting : L; - G and letrg. H. be the corresponding red|rect|on
function. For either choice tD,f|etJ denote the altérnative choice. Then

(1) Djhasaredek; :Lj - H;inH; given by
hi=rgH ©g

(2) LetK; be the graph obtained by rewritihgand IetrHiyKi be the respective redi-
rection functions. Then there is an isomorphsniK,; — K, and for allx O G,

B(rH Ky © To,H, () = TH, kK, © T HL(X)
(3) Restricted to Livey{,), 6 provides an isomorphism
0 : Live(Ky) — Live(Ky)

Proof. Assume that both; andL, explicitly match a stateholder; otherwise we just
have a simplified form of what follows. $R(rooty), go(rooty), g1(Sy), 9x(sy) are all
distinct nodes o6. Consequently, the arcs Gfpartition into five classes: those with
heads ag;(root;), atg,(rooty), 91(Sy), 92(Sp), and fifthly those with head at some other
node.

Supposey, rewrites first. Contractum building, formi&j does not alter any arc from
go(rooty) soig s © G 1 Ly — Gjis a redex foD,. Likewise redirection, forming

G’ does not alo?ér (the copy @ of) the arc ¢,(rooty),p, gz(sz)) between the root and
single explicitly matched stateholder child of the reggyg, © g,. Other arcs of this
redex may be affected by the redirection but since they are all implicitly matched, this
does no harm and $ Gy © 'G,Gl 00p:Ly - G is aredex foD,. Finally, the ac-
tivation phase, formi%bll merely makes the root gf idle, so

rGri’Hl @) rGi’Gri @) Iqu @) gz = rG’Hl @) gz . L2 — Hl
is a redex foD, and by symmetry we get (1).

To get (2) we note that the contractum building phases of both rewrites independently
add copies of contractum nodesRyfto the execution graph. Since we are refraining

from garbage collection, we immediately infer the existence of a node bijéctidn

- Ky. This obviously extends to a bijection on tails of arcs, and to sho@ éxénds

to a graph isomorphism, we need to examine the effects of the various redirections on
the heads of arcs. This is because the remaining phases, the activation phases, are easily
seen to be independent of each other and of the rest of the rewriting phases.

As before, arcs partition into those with heads agg@oot;), (b): go(rooty), (¢):91(Sy).
(d): gx(sy), and (e): none of the preceding. We exténd the various sets of arcs as
follows.

Obviously if a node is not redirected, one can make it the head of an additional collec-
tion of arcs by adding these arcs in any ordef) egtends to arcs in (e) immediately.
From the form of Ti) rules and from lemma 6.3.(1) and 6.3.(3), nodes in (a) and (b)

368

either have no parent or have a unique one, so do not acquire any new parents via con-
tractum building, and independently get redirected to contractum nodé=aSity ex-
tends to arcs in (a) and (b). This leaves the arcs in (c) and (d).

Now by inspection of the rules in H), all non-root redirections are of channel nodes
to fresh (contractum) channel nodes, apart from in the normal rule [Hefprr_as-
sign_data. So if neitheD, norD, is rule [9], then we can interchange the the order of
rewriting with impunity as contractum building and redirection are independent for the
two rewrites. If bottD, andD,, are this rule, then sinsg ands, are both the matched
input nodes of this rule, by clause (V).(c) in the proof of lemma 6.7, neither of them is
accessible from the other redex, so neitlega. argument matches ors, and the re-
writes may again be swapped.

If say D is rule [9] andD, is not, ifD;’s data argument does not matek then we
can obviously swap the rewrites as beforeD,I§ data argument does matsh, then

if Dy is done first, we find that the arcs in (c) get redirecteg, {drom the form oD,

it is clear that no new arcs are added to (c) during contractum building); and then they
and all arcs in (d) (both arcs existingHp and any new ones added during contractum
building) get redirected tm,, the redirection target @&. Otherwise th®, rewrite is
done first, and redirects the arcs in (djt@these are arcs existinghty, any new ones
added during contractum building, and including any arc(s) oDiheedex that
matched thelata argument oHelp_r_assign_data). TheD; redex, nowg y, © g,
redirects the arcs in (c) ® directly. A symmetric argument worksD# is rule2[9], SO
the results of either rewriting sequence are equivalenBarith — K, extends to a
graph isomorphism as claimed.

To conclude tha® restricts to an isomorphism on live parts, we note @haeserves

graph structure and node symbols, but particularly that it also preserves node and arc
markings. Therefore the rules of inference in definition [2.12.(1) — (4)] are invariant
underB, and a proof of liveness of a node or ark rwill map by induction into a proof

of liveness of a node or arck, and vice versa. Likewise for garbage. This gives us
3). ©

In the above, we have indicated that we can interchange the order of rewriting given
some mild conditions. Essentially the same result holds true for quite arbitrary MON-
STR systems, though we have to take note of non-trivial activations and dynamic sus-
pensions. However in general, we do not have the wealth of detailed information about
the structure of execution graphs that we exploited to make the preceding proof fairly
straightforward, and the demonstration in the general case is rather more arduous.

7 CORRECTNESS OF THE TRANSLATION

What can we say about the correctness of the translation? When source and target lan-
guages are as far apart as in this case, one has to be careful about what one means by
correctness. For instance in thealculus itself, there is no possibility that a single
communication may thrash without making progress, whereas the busy waiting feature

of the MONSTR communication protocol leavesEJr§ystems open to the possibility

of readers and writers perpetually failing to make appropriate contact, and the system
as a whole stalling thereby, despite there being a copious quantity of rewrites being per-
formed. Under such circumstances it is reasonable to guard claims of correctness by
suitable fairness assumptions. Even with fairness though, an execution of the MON-

369

STR system will contain quite an amount of fruitless work, as processes make attempts
to communicate which are futile for one reason or another; eg. there may be attempts to
communicate while offers or rendezvouses are in progress on the same channel, or
when there are no available writers on the channel in question.

Our claim for correctness amounts to two facts. The first states that “anythingrthat a
calculus expressioR can do, can be simulated by its translatiofE)lt(It is a com-
pleteness statement proved by establishing the existence of a “standard simulation” of
anyTrcalculus expression and appears as theorem 7.9. The second states that “anything
that the translation TE) of at-calculus expressio can do, corresponds in a certain
sense to (at least a prefix of) a trace of replication and comunication steps of the original
T-calculus expressioR”. This soundness result is guarded by a fairness assumption,
and involves a fairly intricate manipulation of an arbitrary fair execution until it be-
comes a standard simulation. It appears as theorem 7.16. The details of the manipula-
tion constitute one of the main technical contributions of this paper.

Definition 7.1 LetE be arrcalculus expression. A top-level parallel subexpression
(TLPSE) ofE is a subexpression of the for}§, {! Q} p, or {Z; 15.Q} p, such that there
is no subexpression of one of these forms that properly contains it.

So a generatt-calculus expression is built up out of TLPSEs by usiramd parallel
composition, as one would expect.

Definition 7.2 LetE be artcalculus expression, and Ej(its translation. An execu-
tion graphG of Tr(E) representg if

(1) There is a bijectiop between TLPSEs @& and live nodes d& such that

O p({ 0} p) is an idleRoot constructor node,
O p({! Q}p) is an active replication function node...],
O p({ % 5.Q;} p) is an active proposer function nodey...].

(2) pextends to a bijection between free channel names of the TLPEEsidfdle
Empty channel nodes @ such that

O if channelx is free in the TLPSHES; ... E; then there is a normal arc from
each of the(E;) to p(x).

Note that in a representation of an expreskidhe bound names of top-lewes (those

not occurring inside any TLPSE), are “unwrapped” and appear explicitly in the graph.
For our exampleatcalculus expression, [Fig. 9] above represents the original expres-
sion, before any communications have taken place.

Definition 7.3 LetE be arrcalculus expression, and Ej(its translation. We denote

by — acg) the relation on execution graphs ofHygiven by rewriting from an active
initial or auxiliary function node, or by notifying from an actiReot constructor. We
denote by- r(the relation on execution graphs ofH)r@iven by rewriting from an
active replication function node. We denote-by g, the relation on execution graphs

of Tr(E) given by rewriting from an active proposer, or proposer-intermediate, or pro-
tocol function node, or by notifying from an activies or No constructor. We write eg.

- A(E)+ or - (g for the transitive, resp. reflexive transitive, closure of these.

370

Lemma 7.4 LetE be artcalculus expression, and E)(its translation. Then there is
an execution grap@ of Tr(E) such that

Onitial —>A(E)+ G
andG representg.

Proof. Essentially this is a byproduct of lemma 6.5. We rewtitéial using rules for
Initial, | ,v, and perform notifications bRoot constructors as long as we can do so
yielding G. An induction on the structure of the derivatiorGofising the structure of

the “rewrites to” relation of definition 6.4 ensures that the correct function nodes are
generated, and the properties of Alngs> andblends functions of the translation ensure
that suitable channel nodes are linked to the correct function nedes.

Most of the remaining results in this section must be understood as holding up to iso-
morphism, or up to isomorphism of live subgraphs (as appropriate), as in lemma 6.10.
We abuse language somewhat by not mentioning the relevant mappings.

Lemma 7.5 LetE be arr-calculus expression, and Ej(its translation. Let execution
graphG of Tr(E) represenE. LetE =* F be a reduction to standard formef Then

G represent$, provided TLSEs oE andF are consistently tagged and such tags are
consistently translated into function symbols.

Proof. Consider the defining clause=ifin tagged form.
{({vAQuqunIQ2l - 1Qn}p=o{ VZ{ Qi} g, | Q2| - [Qn}p I

Here we have tagged the subexprespgrconsistently on both sides (leading to the
same function symbd@),) and have introduced new tags for the restriction and parallel
combinators on the RHS. Consider the rules generated by the translations of the LHS
and RHS. On both sides, the rules@qg, translatingQ,, would be identical since the

free and bound names @f are the same on both sides. The same applies to the other
Q; by lemma 3.9. On the LH®, would spawn nodes f@p, to Q,, andN, the last of

which would create a fredfmpty channel node farand then spaw@,. On the RHS,

N' would create a fresBmpty channel node foz and then spawR’, which would

spawn nodes fd@, toQ,,. Clearly in an execution, the nod&¥, (respP’, N'), would

be garbaged, so the live subgraphs contai@intp Q,, and the channel nodes that they
refer to would be isomorphic. The same applies if the expressions shown on the LHS
and RHS were merely subexpressions at top level of a larger expression, and also if the
Q; merely contained restrictions and and parallel compositions of TLSEs. The rest of
the proof is an induction on the length of the derivaliear F. ©)

We note that if we had included the first clause of remark 3.10 in our definition of re-
duction to standard form, thez-binders in the interior of a summand would have been
able to float above such summands making the bound channel names in question free
in those summands. This would have destroyed the isomorphism (up to garbage) of
lemma 7.5 since the representatives of such summands would now have had extra ar-
guments to these channel nodes. However these would just have been dummy argu-
ments, carried around dormant until they were actually needed, so would not have
altered the behaviour of the translation.

371

Lemma 7.6 LetE, be arrcalculus expression, and Eyf its translation. LeE; - g
E, be a replication rewrite &,. Then there are execution gra@sandG, such that
G, represent&; andG, represent&, and

Gy —=rey) HiI—aE)" G2

T A(Ey) T\ AEy) T AE,)

Onitial Onitial Onitial

Proof. It is clear that there is an execution gr>that represents; by lemma 7.4.
Consider the expressidfy and its replicated subexpressio@fk The latter corre-
sponds to a replication noBeof G;. Assuming " labels the subexpressi@ rewrit-

ing [P[...] yields a graptH, in which[P[...] is replaced byP][...], (Q[...]. Now a
replication rewrite oE; = ... {!Q}p ... yieldsE, = ... {{ Q} o | {!Q}p}R --- - ASSUMINg
thatR is fresh, that the other subexpressiongpére labelled as i&;, and assuming
that the new instance Qfand its subexpressions are labelled identically to the instance
inside {!Q}p it is easy to see by using lemma 6.5 to reddigle..] to proposer nodes,
idle Root nodes and replication nodes, that a represent@gari E, results. ©

Lemma 7.7 LetE, be arrcalculus expression, and g its translation. LeE; - ¢
E, be a communication rewrite Bf. Then there are execution gra@sandG, such
thatG; represent&; andG, represent&, and

G — cg)’ H1 —=nE)* G2

T A(Ey) T\ A(Ey) T\ A(E))

Onitial nitial Onitial

Proof. By lemma 7.4 we obtain@, that represents;. Let the communication step
E, - ¢ E; involve the summands {(... #.Q' + ...)}p and {(... +15,.Q" + ...)}p"
wherert, is a write prefix, andf, is a suitable read prefix, giving

Co G +T0Q + . 0 (e +T5,Q" + . 0} | 0)
c (- [QIXIQ"]..)

whereQ'[x] is Q' with the appropriate channel substitution applied. The TLHSES
andP'" correspond to proposer nodesandP'" in G;. Running the communication
protocol for these nodes for the choi€és> P'_Q’ andP" => P""_Q" we obtainHy;

in whichP" andP'’ have been replaced By andQ", the input channel node & has
been instantiated and redirected, and perhaps some other charRiede\dP'’ have
been garbaged.

The subgraph dfl; which omitsQ' andQ" (and their out-arcs, and any garbage that
this omission generates), is a representation of the subexpresBiowtath omits the
summand$§)'[x] andQ", provided that the other subexpressionsgdre labelled con-
sistently with theilE; counterpartsH, itself fails to represert, unlesQ' andQ" are
proposer or replication nodes, but only for this reason. Applying lemma Blpto
reduceQ’ andQ" to proposer nodes, idRRoots and replicator nodes using auxiliary
rules and notifications only, we obta®3 which does represef, and which can ob-

372

viously be obtained frorinitial using - Ez)* only, provided as before, we label the
subexpressions &; andE, consistently.é)

Theorem 7.8 LetE = Ej be arrcalculus expression, and Ej(its translation. Let
- A(E) —R(E) and - ¢ be the corresponding rewrite relations. Then for any trace of
communication and replication steps fr&meg.

there is a rewriting sequence

Go—=cp Ho —=np*G1 —=r H1 —np* G2 = ...

T AEQ) T A(Ep) T AED)

Onitial Onitial Onitial
such that for each G; represents;.

Proof. We assume that we label all the subexpresions d;tbensistently as we did
inlemmas 7.6, 7.7. Noting thatcg) U - cE) that-rE) U - rE) and thats o)

0 - ag), if for no other reason than tHgtis an execution graph of 'Hf), we can use
induction on the structure of the trace fr&nusing lemmas 7.6, 7.7 for the induction
steps.©

Theorem 7.9 LetE = Ej be arrcalculus expression, and Ej(its translation. Let

- A(E) ~R(E) and - c(g) be the corresponding rewrite relations. Then for any trace of
communications and replications frdmenhanced by reduction to a standard form at
each step, eg.

EEEOEDQ FO _'CEIEE{(Fl —»REZEE{‘ F2 - ...
there is a rewriting sequence

Go—=c@' Ho —=a@*G1 —=re Hi —=ap"* G> > ..

* % A G G
A(FQ) T A(F7) T A(F) T

Onitial Onitial Onitial
Onitial Onitial Onitial

such that for each G; represents botl; andF;.

Proof. This is a straightforward enhancement of the induction of theorem 7.8. By lem-
ma 7.5 we note that up to garbage, the same execution@rayhdo duty for bothg;

andF;, so once we note that a replication can be dofeifhit can be done ir; (and

thus can be simulated @), we just need to check th@f is capable of performing all

the communications df; which were unavailable 6. That this holds, follows once

we note that in our translation, sending and receiving are independent activities apart
from their need to synchronise. Thus the sender’s success in transmittibhguad
channel does not depend on knowing that the receiver is in the scope.otheally,

373

the receiver’s success is independent of whether or not the received chatiralinsl,
and if so of what the’s scope is.©

The later remarks in the above proof bring out with some force the fact that our graph
based formalism, by directly expressing connectivity in a communication network via
connectivity in the graph, handles easily issues that demand some technical pain in the
T-calculus.

Definition 7.10 LetE be art-calculus expression, and Ej(its translation. An execu-
tion such as the one described in theorem 7.9 is called a standard executi&. of Tr(

Theorem 7.9 says that the translation is complete in providing a standard execution of
any possible trace &. It is clear from the properties of standard executions that they
are in fact weak simulations of the trace&of

Soundness is rather harder. Given an arbitrary exeddtiafra system TE), we want

to show that there is a tradeof communications and replications enhanced by reduc-
tion to standard form frork, such thaH corresponds td in some acceptable way.
Given the standard executions furnished by theorem 7.9 fay §yétems, we regard it

as sufficient to manufacture frdrha standard executids that is equivalent tbl in a
convincing sense. This manufacturing process has to accomplish a number of things.
The actions corresponding to a successful run of the communications protocol have to
be clustered together (the reference points for this are the commit rewrites of the proto-
col, the rewrites governed by thelp_w normal rule); waste rewrites corresponding

to unsuccessful essays of the protocol must be eliminated; and rewrites using auxiliary
rules must be suitably clustered to ensure, for each successful commit point or replica-
tion point (say thé'th), before the initiation of the communication or replication, that

G; really does represeh;.

For future notational conveniencexifs a node of an execution gra@hof an execu-

tion G, we presuperscript it, writinx, to distinguish it from other nodes in other ex-
ecution graphs oB. So by definitionx 0 G;. I j =i we writeOx for 16, (%) =

re, (") where as in previous sectiong, . is the function which magéx in'G; to

its rddirection target if5;. Also when more than one execution is being discussed, we
additionally presubscript nodes with notation to indicate which execution they belong

to, eg.)ox 0 G, OG.

Definition 7.11 LetR be a rule system aXi= [Xy, X1, Xo, ...] andY = [Yg, Y4, Yo,
...] be two executions dR where bothX, andY, are the initial graph. We define the
relation= between nodes of execution graphgaindY as follows.

@) Oginit= Oy init, wherd®y init and©yinit are the initial nodes o6 andYy,
@ 1 Ox=0yi<iij<j, then@x =y,

3) 1f Ox= Oy, and®x andly are roots of redexes of the same Milef R, andXi, ;

andY;,; are the results of rewriting these redexes, thfHk 0 X;,.; and(* Ly
U Yj+1 are copies of the same contractum npdéthe full pattern of the rul®

introduced during these rewrites, tHex = (+1y .

By clause (1) of the above, any two execution® efe=-related to some extent. This
relationship may easily be a not very useful one if the two executions swiftly diverge

374

from one another, the-related parts becoming consigned to garbage. However, the
more closely the two executions follow one another disregarding inessential detail, the
larger the proportion of execution node instances in the first execution, that will be in a
useful non-garbage wa¥;related to counterparts in the second execution.

We can extend to arcs, connectivity, and other graph theoretic concepts as required.
For example.

Definition 7.12 With the provisions of definition 7.11 understood, # c) be an
arc ofX; and gy, Od) be an arc of. If Up = 0g, and®c = 0d then we say¥p,,
o) = Qg V).

Lemma 7.13 LetE be ar-calculus expression, and Ej(its translation. Leb =[G,
Gy, ...] andH = [Hg, Hy, ...] be two executions of TE} such that

(& G =HjforiO[O0..mmt2..].

(b) Gy contains two redexes rooted8;r;, and™gr, which satisfy the hypotheses
of lemma 6.10. Understood as nodesljy these roots are Writtéﬁ‘)Hrl and
Mm ¢
HF2-

(€©) InG, Gy — Gy rewrites the redex rooted @ gr; andGyy — Gz = Hieo
rewrites the redex rooted(ﬁf*l)Grz. While inH, H,, - H1 rewrites the redex
rooted af™r, andH .1 — Hmep = G rewrites the redex rooted &t D,r;.

Then

(1) Forevery nod&x 0 G; 0 G, Ux = Oy for somelly O H; O H, and ifOx s live
then(j)y is live. And conversely.

(2) For every arc®py, c) 0 G, 0 G, (Vpy, Oc) = (Wgy, Vd) for some arc@q,
0d) O H; O H. And conversely.

Proof. ForiO[0 ...m, mt2 ...] we can obviously sé&t to (the closure under the re-
cursive clause of definition 7.11 of) the identity relation on n8b&s G; = H; and cor-
respondingly for arcs. Far= m+1, for non-contractum nodes arising frofgx =

M, x, we sef™Bx = (M) % For contractum nodes fifis a contractum node of the
rule for ther, rewrite, we sef™Ygp = (™?2) 5 in an obvious notation for the intro-
duced copies, and likewi§&2-q = (m+1)Hq for a contractum nodgof the rule for the
r, rewrite. The results for arcs follow readily, and the converses are immediate.

Corollary 7.14 The results of Lemma 7.13 hold when one or botBof> G,,,,and
Gm1 — Gmyo are notifications.

Definition 7.15 LetG be an execution of a rule syst&n Let()x be an active node
of G;in G. Suppose for sonje= i the next execution step is either a notification by the
constructor/stateholdé?x or a rewrite of a redex whose roofiig. If for eachi and

for each activé’x in G; there is such p then we say the execution is weakly fair.

Note that standard executions as per theorem 7.9 are not necessarily weakly fair unless
the trace of satisfies additional “reasonableness” criteria.

375

Now for the main theorem.

Theorem 7.16 LetE be ar-calculus expression, and HE)(its translation. LeH =

[Ho, Hy, -..] be a weakly fair execution of H). Then there is a tradeof communi-

cations and replications froEy enhanced by reductions to standard form, such that for

a standard executidd = [Gg, Gy, ...] of Tr(E) corresponding via theorem 7.9Tofor

some prefixGg, Gy, ... ,Gy] of G, with 0OS N <o, ifi <N

(1) Forevery nodéx O G 0OG, 0y = (j)y for some(j)y UH; O H, and ifOx is live
thenOy is live.

(2) For every arcfp,,) 0 G, 0 G, (Dp,, Oc) = (W, Od) for some arclq,,
Od) O H, OH.

() IfHj - Hj O H is a rewrite of a redex rooted(jé(y U H; and governed by either
a rule for a replication symbol, or a communication commit rule, there is a cor-
responding rewrit&; — Gj,; 0 G of a redex rooted at a noflix O G;, which
is governed by the same rule, &= Oy. Further, it4; - Hy,q andH; - Hjq
are two distinct such rewrites, their corresponding. G;,; andG; - Gj,1 are
also distinct, and all such rewrites occur in the same orddrandG.
Thus on the one hand every part of the standard exe€utian be located ikl; on the
other, every replication or communication steg-o€an be found if5 also. On this

basisG, which faithfully depictsl, shows that the essence of any execution d&)Tr(
corresponds to a trace Bf giving soundness.

Proof. The proof proceeds through a number of phases, gradually transfdirivitg
the requireds, while retaining the properties (1) — (3). Most of the phases are fairly
similar so we treat the first in detail, and the others more curtly.

The first few phases eliminate “waste work” of various kinds from the exeddtion
Let X ©0=x,2C X,°0 ...] be a working name for the executidn

PHASE | — Elimination of failed write attempts. These arise from the following se-
quence of events. (Here and below, the communication protocol rules used in each
event are indicated by their reference numbers.)

(@) A proposer nod@‘)p rewrites to a proposer-intermediate né%l”el)p with a
Help_w child @*1h,

(b) TheHelp_w child ®h matches a noBusy_Unlocked channel nod®)c and re-
writes to aNo constructof®*bh using its default rule. [4]

() TheNo constructof®h notifies its suspended paréfip.

(d) The parenfd)p matches thélo constructof®h and reverts to a proposer node
(d+1)p

Weak fairness assures us that once such a sequence of events starts dtitinuns
to completion. So as indices of graphé(oﬁa'o, a<b<c<d. Suppose further that no

376

a < ais the first element of such a subsequen¥ed?, so we are dealing wrth the first
failed write attempt. LeX ©-1be the sequence of graphs obtained o g de-
leting the rewrites/nofifications mentioned in (a) — (d). 1= x 00 x,01=
X0V X0 1=x.00 x,,.O%is similar toXa |n that the latter hastdelp_w
node, and the symbol Iabelllng its par(éﬁtzop aX Ois agroposer intermediate
symbol, while the symbol Iabellrng its counter FtEi D Xa+1~ is the original pro-
poser s%mbol similarly foX @ andxabg Oetc.; Xbo is S|m|lar toXy.,° Y and so
on; X._q~ "~ is similar toXc+2 etc.; Xy~ "= up to garbage (since we have
reached the point where the failed wrrte attempt has aborted) and so on.

We claim thatX ©-1is an execution of TH). This is easy to see since no rewrite of

X ©Imatches a node whose symbol has been changed compérgd (the only such

node being mentioned above in (a) — (d), which being a proposer/proposer-intermedi-
ate node, has no parents by lemma 6.3.(1)). Therefore all traniftbhs. Xi,,°1 of

X ©-1are legal execution sequence steps: the notifications obviously so, and the rewrites
also legally so since no change of rule selection is necessitated by the change of symbol
of p.

We can now establish the conclusions (1) - (3) of the theore¥h %ok To get (1), we
see that for each nod&x 0 X°-1 we have

(), = (+9)

where(*)x 0 X;,s°-° and where

0 if 0<i<a,

if a+1<i < b-1,
if b<i<c-2,

if c-1<i < d-3,
if d-2<i.

Clearly if ;x is live then so i§*9x given the relatively slight changes made to the
execution.

ArWNEFLO

In a similar vein, for (2) we can see that arcs behave well, i.e.

(©1p Or0) = (g, +0)

for all arcs except those emerging from the affeptadde. For those we can see that

D1pe O10) = (@ Dp, @ 0)
where a+k i< d-3. And (3) becomes clear once we notice that we have not affected
any of the successful communication or replication rewrites.

Thus we have eIrmrnated the first failed write attempt (if there was indeed one at all)
from X 0 givi ((); . Likewise we can eliminate the first failed write attempt from

X O-1giving X 92etc. We get a sequence of executi¥nS' which it is easy to see
have a non-decreasing invariant prefix and such that for all reie¥aft is related to

X Oi*1py conditions (1) — (3).

If X ©0is finite then thrs process stops after a finite number of steps. Call the final ex-
ecution generate 0. If X ©-Ojs infinite then there are two possrbrlrtres Either the
non-decreasing invariant prefix is never eventually constant; in which ca¥e e

377

converge to an infinite execution. CalKit"? as before. (Note th¥ ° may not be a
weakly fair execution. This would arise if some particular proposer node consistently
failed to succeed in communicating. In such a case the gra}ﬁH would eventually

all contain an active node (the said proposer) that was never the root of a rewrite.) Oth-
erwise the the invariant prefix stops increasing after some poiiy§. shythis case all
active nodes of execution graphs beyond the prefi Of forj =iy are involved with
failing write attempts. (Such behaviour would be forced if say the exprdssion-
tained only writers at the top level, &= xz0.) In this case call the final stable prefix

X 10, Note that strictly speaking it is not an execution since its final graph will contain
active nodes. Nevertheless we will overlook this below. Finally, if there were no failed
write attempts at all iX ©-C we setX 0 =X 00

PHASE Il — Elimination of clashing read attempts. These arise from the following se-
quence of events.

(@) A proposer nod@)p rewrites to a proposer-intermediate né?dé)p with aHel-
p_r child @h, and instantiates the input channel ndéu.

(b) TheHelp_r child ®h matches a noEmpty channel nod&)c and rewrites to a
No constructof®*bh using its default rule. 2]

(c) TheNo constructofh notifies its suspended paréﬁp.

(d) The parent?p matches th&lo constructof®h and reverts to a proposer node
(L,

Since Phase | did not interfere with clashing read attempts, once such a sequence of
events starts, it will run to completion b)(the weak fairnesé 8f°. So we eliminate

the first such sequence frofn'C giving X 1. The technical details are as for Phase I.
Again we generate a sequence of executloh8, X 1, X 2 etc. with non-decreasing
invariant prefixes. Once more there are three cases depending on Whiettveas fi-

nite, and if not, whether the non-decreasing invariant prefix increased indefinitely or
not. In all cases we call the resulting execuoh®. As previouslyX .0 heed not be
weakly fair.

PHASE Il — Elimination of failed read attempts. These arise from the following se-
quence of events.

(@) A proposer nod&)p rewrites to a proposer-intermediate n6tiéh with aHel-
p_r child @1h, and instantiates the input channel nGdé.

(b) TheHelp_r child ®h matches aEmpty channel nod&c, and using its normal
rule, rewrites to &elp_r_test_chan function®*1h, rewriting the channdPc
to aBusy_Unlocked channef’*1)c. [1]

(cq) TheHelp_r_test_chan function ¢Vh matches th&usy_Unlocked channel
(¢ and rewrites to lelp_r_test_chan function(©1*Dh,. [5]

(c;) TheHelp_r_test_chan function ©2h matches th&usy_Unlocked channel
(€¢ and rewrites to &lelp_r_test_chan function(€2*Dh, 5]

378

(chy) TheHelp_r_test_chan function (€mh matches th&usy_Unlocked channel
(€mc and rewrites to &lelp_r_test_chan function(m*bh, [5]

(d) TheHelp_r_test _chan function®h matches th8usy_Unlocked channel(®c
and rewrites to &lo constructofd*Dh, rewriting theBusy_Unlocked channel
@c to anEmpty channel nod&+2k. [6]

(e) TheNo constructof®h notifies its suspended paré‘?}p.

(H The parenf?p matches thé&lo constructot?h and reverts to a proposer node
(f+1)
p.

Again once such a sequence of events starts, it will run to completion by the weak fair-
ness ofX ©0 although this time, it is possible that « and the events (d) — (f) never

take place. Apart from the fact that more events need to be dealt with in eliminating
such a sequence, the details are sufficiently similar that we can omit them. One point
to note is that unlike the previous phases, elimination of a sequence (a) — (f) changes the
state of the channel nodérom Busy_Unlocked to Empty between stages (b) and (d)
inclusive. Since channel nodes are shared, any rewrite explicitly matdhitigjs pe-

riod would find a different symbol and so would need to use a different rule. However,
we can deduce by lemmas 6.3 and 6.7, that any such rewrite must belong to a clashing
read attempt, and these have already been eliminated above. So the change of state goes
unobserved, and the elimination is safe.

So we generate a sequence of executions as previ¥ubi§, X 1, X 12 etc. with
non-decreasing invariant prefixes. Once more there are three cases depending on
whetherX "0 was finite, and if not, whether the non-decreasing invariant prefix in-
creased indefinitely or not. In all cases we call the resulting exedCtib.

PHASE IV — Elimination of useless work from successful read attempts. These are to
be found within sequences of events as follows; witered.

(&) A proposer nod@)p rewrites to a proposer-intermediate n&ﬁ”é)p with aHel-
p_r child @h, and instantiates the input channel ndé.

(b) TheHelp_r child ®h matches aEmpty channel nod®c, and using its normal
rule, rewrites to &lelp_r_test_chan function®+1h, rewriting the channéPc
to aBusy_Unlocked channef®*2c. [1]

(c) TheHelp_r_test_chan function(®Vh matches th&usy_Unlocked channel
(€)c and rewrites to &lelp_r_test_chan function(1*Dh, [5]

(c;) TheHelp_r_test_chan function ©2h matches th&usy_Unlocked channel
(€¢ and rewrites to &lelp_r_test_chan function(€2*Dh, [5]

379

(¢ TheHelp_r_test_chan function (€mh matches th&usy_Unlocked channel
(€mc and rewrites to &lelp_r_test_chan function(©m*bh, [5]

(d) TheHelp_r_test chan function®h matches th8usy_Locked[data] channel
(@c and rewrites to Belp_r_assign_data function@*1h. [7]

(e ...) The remaining steps of the communication protocol complete successfully.

In this case all we wish to do is to eliminate the steps(¢G,) without affecting the

rest of the communication. (This time we can asseriiligfinite, regarding all infinite

m cases as partially complete failed read attempts.) The elimination can be done with-
out complication, especially when we note that all the eliminated steps are actually null
rewrites modulo garbage: none of them changes the live graph at all. The same strategy
as before now applies. Once more we generate a sequence of exe¥utidns, "1,

X -2 etc. We call the resulting executin'-0.

At this point, we have eliminated all spurious activity from the execution. What re-
mains, is to standardige'-° by reordering the rewrites in a sensible way. This consists

of two subtasks. The first is to cluster the rewrites corresponding to a successful run of
the communication protocol at the commit points. The second is to ensure that the re-
writes of auxiliary and replication functions occur at suitable places so that we can iden-
tify execution graphs that actually represent the expresEjonisa trace fronk. All

this must be done in a way that preserves the order of communications and replications
so as not to fall foul of causality considerations that would prevent eg. a r@)fitan

being permuted to a place earlier in the execution than the rewjyitehfch created

(B)'s redex root as a contractum node. We start with the communications.

PHASE vV — Compression of successful communication sequences. We will standard-
ise on the following sequence of events for a successful communication.

(@) A proposer nod&pw rewrites to a proposer-intermediate néidbw with a
Help_w child @ Dhw

(b) A proposer nodéb)pr rewrites to a proposer-intermediate né?fé)pr with a
Help_r child ®*Dnr, and instantiates the input channel néddu.

() TheHelp_r child ©hr matches aEmpty channel nod&c, and using its normal
rule, rewrites to &lelp_r_test_chan function®*Dhr, rewriting the channébc
to aBusy_Unlocked channef¢*Yc. [1]

(d) TheHelp_w child @hwmatches th@usy_Unlocked channel nod&)c and re-
writes to aYes constructof*Dhw, rewriting the channel to Busy_Locked][-
data] channef9+1. [3]

(e) TheHelp_r_test _chan function ©hr matches th8usy_Locked[data] chan-
nel ®) and rewrites to dlelp_r_assign_data function©*hr, [7]

(f) TheHelp_r_assign_data function(hr matches th&€mpty input channefiu,
and rewrites to &lelp_r_unlock function D, rewriting the input channel to
the data channéd. [9]

380

T @)
o
® “ T (k)
T
e
I

Fig. 12

() TheHelp_r_unlock function ©@hr, matches th&usy_Locked[data] channel
¢ and rewrites to ¥es constructof9*Lhr, rewriting the channel to &mpty
channef9+1c, [11]

(h) TheYes constructofhr notifies its suspended proposer-intermediate node par-
ent™pr.

(i) TheYes constructof) hw notifies its suspended proposer-intermediate node par-
entOpw,

() The active proposer-intermediate par®pr matches th&es constructofhr
and rewrites successfully.

(k) The active proposer-intermediate pal(é)rpiw matches th¥es constructofhw
and rewrites successfully.

The above is one possible ordering compatible with causality. The general situation is
illustrated in [Fig. 12] where an arrow indicates that the higher event must causally pre-
cede the lower event. That this is indeed the case is easily shown on the basis of lemmas
6.3 and 6.7 and the form of the protocol rules. In fact [Fig. 12], with time flowing down
the page, is an elementary event structure for a successful communication according to
our protocol [Nielsen et al. (1981), Winskel (1986), Winskel (1988)].

For obvious reasons, the commit events (d) are regarded as pinpointing the position of
a communication within an execution. Thus even if the event sequences for two com-
munications overlap, they are still regarded as taking place in the order of their commit
events.

Remark 7.16.1 We recall the fact (also pertinent to Phases IIl and IV above), that be-
tween events (c) and (g) inclusive of a communication sequence, no function nodes oth-
er than those involved in the communication sequence itself explicitly match the
channek. This is because by lemmas 6.3 and 6.7 such nodes must be participating in
a clashing read or failing write attempt, and these have already been eliminated above.

To a communication with events (a) — (k) we apply the following transformation steps.

381

(1) Interchange event (c) with its succeeding events repeatedly until it becomes the
event immediately preceding event (d).

(2) Interchange event (b) with its successors until it immediately precedes event (c).
(3) Interchange event (a) with its successors until it immediately precedes event (b).

(4) Interchange event (e) with its predecessors until it immediately succeeds event
(d).

(5) Interchange event (f) with its predecessors until it immediately succeeds event
(e).

(6) Interchange event (g) with its predecessors until it immediately succeeds event

(f)-

(7) Interchange event (h) with its predecessors until it immediately succeeds event

(9).

(8) Interchange event (i) with its predecessors until it immediately succeeds event
(h).

(9) Interchange event (j) with its predecessors until it immediately succeeds event
().

(20) I_nterchange event (k) with its predecessors until it immediately succeeds event

OF

We must be sure that doing the above to a succesful communication sequence trans-
forms an execution of TH) into another execution of EJ. For brevity we pretend
that all intervening execution steps that we have to consider are rewrites, the case of no-
tifications being simpler by corollary 7.14. To justify step (1) we argue as follows.

If the event following (c) is (d), then we are done and step (1) yields an execution of
Tr(E). Otherwise the redex rewritten in rewrite (c+1)(c+2) already existed in exe-
cution graph (c), since the only redex that rewrite{cfc+1) creates is the redex for

the corresponding event (d). Consequently, both redexes exist in execution graph (c)
and by remark 7.16.1, satisfy the hypotheses of lemma 6.10. Therefore by lemma 6.10
we can do the rewrites in the other order. This yields a new execution which by lemma
7.13 has properties (1) and (2) of the present theorem; while property (3) is obviously
preserved since we do not move event (d).

The justifications for the other steps are similar and are omitted.

As in previous phases, we start with the first succesful communication sequence, and
the interchanges performed during the compression generate a number of new execu-
tion sequences which we resist the temptation of trying to catalogue. Upon completing
the compression of the first sequence we proceed to the second. And so on. We will
name the end product of this activXy"°.

PHASE VI — Compression of auxiliary rewriting sequences. These arise through a se-
quence of events such as the following.

(& An active function nod@ rewrites and creatdsactive compositiony, orRoot
nodes®th, @k, . (@*1h as copies of its contractum nodes.

382

(by) One of the active nod§§)n1, (bl)nl, ,(bl)nk, (bl)ni say, rewrites (if it is a com-
position orv node), or natifies (if it is Root node).

(b,) One of the remaining active nodes &2n,, ®n,, ... , ®2ny — {®2n} re-
writes or notifies.

(b) The last active nod@n,, rewrites or notifies.

In such a sequence we call (a) the auxiliary-parent event and)ttiee(auxiliary-child

events. There is a direct correspondence between such auxiliary-parent / auxiliary-chil-
dren configurations, and fragments of the parse tree of the onga#tulus expres-

sionE, because the auxiliary rules used, are generated directly from the parse tree in the
translation. Rather as in Phase V, such an auxiliary-parent / auxiliary-children config-
uration,akafragment of parse tree, can be regarded as a mini elementary event structure
for the collection of auxiliary rewrites generated, with the parent causally preceding the
children.

To such a sequence we can apply the following transformation.

(1) Interchange event {pwith its predecessors until it immediately succeeds event
(a).
(2) Interchange event fpwith its predecessors until it immediately succeeds event

(by).

(K Interchange event gpwith its predecessors until it immediately succeeds event
(by-2)-

Such a series of interchanges is easily justified by noting that no auxiliary node ever pat-
tern matches to rewrite since its rule is a default rule, so arguments like those used in
Phase V apply even more readily.

We apply the transformation above to the first or initial rewrit¥ o° if applicable

(i.e. if the initial rewrite, mterpreted as an auxiliary-parent event, generates any compo-
sition,v, or Root nodes) yielding(V- We then apply the transformation to the sec-
ond rewrite ofX V-1 if aE)phcabIe yleldlngX We then apply the transformation to

the third rewrite o if applicable yleldlngX And so on. The end product is

an executioX V-0 It obviously satisfies the propertles (1) and (2) of the theorem, also
(3) since no rephcatlon rewrite (or communication commit rewrite) is moved in Phase
VI. An important property oK 0 is that as a result of the order in which the trans-
formations are applied, the only events that can occur between an auxiliary-parent event
(a) and any of its auxiliary-child events)(kare sibling events of {} their own auxil-
iary-children etc. In fact following any auxiliary-parent event (a), there is a segment of
the execution which is a sequence of auxiliary rewrites corresponding exactly to the re-
writing of the root of the auxiliary-parent event redex to a collection of proposer nodes,
replication nodes, and idRoot nodes according to lemma 6.5, with no intervening oth-

er events. This sequence corresponds to a preorder listing of the sub parse tree rooted
at the vertex corresponding to (a), and truncated at summation and replication vertexes.

383

The order to which “preorder” refers, is constructed by, at each level of the sub parse
tree, ordering the child vertexes of a vertex in the same order as the corresponding aux-
iliary-child events appear in the original execution (this order is obviously preserved by
Phase VI). This truncated parse tree in turn corresponds to a larger elementary event
structure obtained by gluing together the mini event structures mentioned above. All of
this is easy enough to see by induction.

One important consequence of this transformation is that the last two events (j) and (k)
of a successful communication, which can both in principle rewrite their roots to auxil-
iary function nodes, can now both be immediately followed by rewrite sequences that
turn these functions into idiRoots, and active proposer or replication functions, i.e. the
events (j) and (k) have become separated. This prompts the last Phase.

PHASE VII — Reattachment of communication events (k). We just repeat step (10) of
Phase V.

(1) Interchange event (k) with its predecessors until it immediately succeeds event
()-

As before we apply this transformation to each of the successful communications in

turn, reattaching their (k) events. This yields the execOtidH-C.

ExecutionX V"0 which we rename &3, is the execution sought in the theorem. By
construction, it satisfies the properties (1) — (3) as required. Further we claim it is (a
possibly proper prefix of) a standard execution oEJigorresponding to a trace of
communications and replications frdf enhanced by reductions to standard form.
The proper prefix property arises since Phases | — Ill may individually or together dis-
pose of an infinite suffix dfl. For the rest we argue as follows.

Let Gy — Gg41 be an execution step Gfwhich is either a replication rewrite, or a re-
write corresponding to an event (a) of a successful communication. We call the graphs
G, of such steps witness graphs, including also the last grdprasfa witness graph

in caseG is finite. We claim that the sequence of witness graphs represent the expres-
sions in a trace of communications and replications Epenhanced by reductions to
standard form

We proceed by induction. First the base case Gl be the first witness graph. We
claim it represent& = Ey. For consider the parse treekgy. It will depict how the
TLPSEs ofEy are combined to forrkg. It is clear that:

(1) The initial rewrite and ensuing sequence of auxiliary rewrites (and notifications
by Roots) mirrors a preorder listing of this parse tree of the TLPSE;.of

(2) The collection of idl&Roots, active replication and proposer node&gf, gen-
erated, is in a bijective correspondepge Ey — G(4g) With the TLPSEs 0E,
as required by definition 7.2.(1).

(3) pgextends to an appropriate bijection between free channel names of TLPSEs of
Eo andEmpty channel nodes @q), again as required by definition 7.2.(2).

The above can be verified in detail by a subinduction on the structure of the derivation
of G40y from Onitial; using the structure of the “rewrites to” relation of definition 6.4

to ensure that the correct function nodes are generated, and the propertiédggsg-the
andblends functions of the translation to ensure that channel nodes are linked to the

384

correct function nodes. Now IE} =* F(be a reduction to standard form, performed
in case any of the subsequent communicatiofis refquire top level’s to have larger
scopes than they posses£fn By lemma 7.5 we know th&yo) representsg too,
viaamap'y: Fg - G(qo)-

For the induction step, assuiBg;) represents; through the bijectiop’; : Fj — Ggj).
There are two cases. Either the next reviiig) — G(qi)+1 IS a replication rewrite of

a replication nod® of G or not. If so, then there is a replication TLPSE {lp.df

E; corresponding t® viap;. LetE;., be ther-calculus expression obtained by repli-
cating {!...}p In general the replicated subexpression will not be a TLP&R pbut

will be a combination of TLPSEs & ., using | and’. The execution steps deriving
G(q(i+1)) from G(qiy+1 mirror a preorder listing of the appropriate sub parse tree. So the
next representatiop;1 : Ei+q - Gq(+1)) can be constructed. This is followed by a
reduction to standard forfg,, =* lgiﬂ for the usual reason. Using lemma 7.5 again,
we find the representatiqry.; : Fi+; - Gq(i+1y) In detail, this can be established us-
ing subinductions on the structure of the deriva@gg)+1 —* Gq(i+1), and of the re-
ductionEj;q =¥ Fi4q.

Otherwise the next rewri gy — G(qiy+1 IS event (a) of a successful communication
between proposer nodBsandQ of G(4j), using a channel nodesay as transmission

link. Then there are two TLPSEs {+...ghnd {+...+}q of F; corresponding t& and

Q viap';, and they are able to communicate via channel nameeause of the proper-

ties of F; andp’j; specifically the data channel of the communication does not escape
any scope it might be contained in becalisis in standard form. L, be thert
calculus expression obtained by doing the communicatiéf. inn general {+...+p

and {+...+}q will be replaced by two subexpressions which are not themselves TLPSEs
of Ej,4, but combinations using | ambf TLPSEs of;,,. The execution steps deriv-

ing Gg(i+1)) from Gqgjy+1 mirror preorder listings of the two relevant sub parse trees.
The execution will be such that the two sub parse tree roots are mirrored first, followed
by the two remainders of the preorder listings, one after the other. This is a consequence
of the detailed operation of Phases VI and VII. As before, the next represepiation

: Ei+1 » G(g(+1)) can now be constructed. This is followed by a reduction to standard
form Ej =¥ Fi,4 for the usual reason. Using lemma 7.5, we again find the represen-
tationp'i,q 1 Fi+1 — Gg(i+1)) As before, all of the above can be checked in detail using
a subinduction on the structure of the deriva@g.1 —* Gq(i+1), and of the reduc-

tion Ej+q = Fiyq.

EvidentlyG is a standard execution with the advertised properties, which corresponds
via theorem 7.9 to a tradeof E as required. We are done

We can modify the theorem in two significant ways. If we drop the fairness assumption,
then something like the original conclusion still holds true. The main problem is that
for any event in the execution, its logical successor may be absent, which substantially
messes up the technical details of the various early phases. Nevertheless, by discarding
partially completed event sequences, an analogue of a prefix of a standard execution
may be constructed. The main way in which it might fail to be standard, would be if
auxiliary rewriting sequences failed to run to completion, leaving auxiliary nodes which
did not rewrite to idldRoots, proposers and replicators, blocking the construction of a
representation, particulary when reductions to standard form were involved. One could
invent a modified notion of representation, or one could impose a more pernickety no-
tion of weak fairness that only applied to auxiliary symbols, in order to cope with this.

385

In the opposite direction, if we strengthen the fairness assumption by assuming that no
proper suffix of an infinitdd consists entirely of useless work, we can drop the caveat
about suffixes in the theorem. Viz.

Corollary 7.17 LetE be arrcalculus expression, and Ej(its translation. LeH =

[Ho, Hy, ...] be a weakly fair execution of HY. Suppose that Hl is infinite, it contains

an infinite number of commit rewrites. Then there is a tfasecommunications and
replications fromE, enhanced by reductions to standard form, such that for a standard
executionG = [Go, Gy, -..] of Tr(E) corresponding via theorem 7.9Tto

(1) Forevery nod&x 0 G 0 G, Ux = Oy for somelly O H; O H, and ifOx s live
thenOy is live.

(2) For every arc®py, c) 0 G, 0 G, (py, Oc) = (g, Vd) for some arc@q,
Wg) O H; OH.

() IfH; - Hjy O H is a rewrite of a redex rooted(jéty 0 H; and governed by either
a rule for a replication symbol, or a communication commit rule, there is a cor-
responding rewrit&; — Gi,; 0 G of a redex rooted at a nobi [G;, which

is governed by the same rule, &= U)y. Further, ifH; - Hj,p andH; - Hjryq
are two distinct such rewrites, their correspondg- G;.; andG; — Gy, are
also distinct, and all such rewrites occur in the same orddraindG.

Now that we have the preceding results, we remark that we can easily adapt them to the
more conventional view of the-calculus in which replication is viewed as a syntactic
congruence. All we need to do is to forget the replication steps in thd tremecen-

trating on the witness graphs that represent starting configurations of successful com-
munications. We do not repeat the relevant theorems.

8 OTHER ASPECTS OF THE PI-CALCULUS

Theorem 7.16 is the main objective of this paper. In pursuing it, we omitted mention of
a number of aspects of thecalculus present in the original description [Milner et al.
(1992)]. In this section, we return to some of these.

Other Syntactic Features

The original description features zero and parallel composition as before, but summa-
tion isunprefixed In a translation such as ours, we can deal with such more general
nondeterministic sums in much the same way as we did above. Namely, the symbol rep-
resenting the sum, nondeterministically rewrites to a symbol representing one of the
possibilities, which then attempts to engage in a transition corresponding to that possi-
bility. Enough information must be retained so that backtracking can take place, and
the system of choices may need to go (and if necessary to backtrack) several levels
deep. The reason for this is that whereas with the prefixed sums of [Section 3], a choice
followed by a successful communication commits the system irrevocably, with unpre-
fixed sums, a choice may not yield a possibility capable of committing the system im-
mediately, eg. the chosen summand may be itself an unprefixed sum. Worse, because
the prefixes in the original description are not restricted to just the communication prim-

386

itives, not all of them are committing. All of this offers much scope for optimisations
in a real implementation. Let us look through the prefixes now.

The prefixes divide into the committing ones whichta@ xy.Q, x(y).Q, and the non-
committing ones namelx [y].Q andvxQ. We discuss these in a convenient order.

The case of.Q is relatively easy. Since in thlecalculus one has the transition

Q-5 Q

one could introduce rules in the translation for symbols that “did nothing for one step”
easily enough. In the treatment of correctness, in an augmented theorem 7.16, the re-
writes for such rules would simply be left where they were.

The next easiest case is the noncommittng ¥].Q. In standard MONSTR, there is
no “pointer equality test”. However many systems find such a test extremely useful, so
in practice many MONSTR systems admit the additional pair of rules

PointersEqual[x x] => *Yes ;
PointersEqual[x y] => *No

the first being considered a non-default rule. An analysis of the architectural demands
of such rules reveals that they are not excessive so their inclusion is permissible, though
invevitably they clutter the case analysis of proofs about MONSTR systems, which ex-
plains why they are often omitted.

The natural way to incorporate the syntactic construct{f].Q} p into the translation

is thus to have symb#l call PointersEqual[x y], and depending on the result, to either
proceed to behave &5if x =y, or to backtrack t® (or an ancestor &) if not. Here

is one sense in which the equality test is noncommitting; if the test fails, it is still per-
fectly possible that some other process might subsequently>naaidy equal, allow-

ing the test to succeed. Furthermorerttfealculus transition rule

QL Q
x=x.Q -+ Q

gives us cause for concern, since it appears to demand the synchronisation of the equal-
ity test with the succeeding actian This is another sense in which the equality test is
noncommitting; any committment is contingent on the success ®he synchronisa-

tion poses no problem in a standard execution, but in an arbitrary execution the two sub-
actions may be separated in time. However, an augmented theorem 7.16 may exploit
the semantics of substitution and redirection, which both hold thabdraebeen sub-
stituted for / redirected ta, the action cannot be subsequently undone. Thus the re-
writes for a successful equality test can be postponed until they occur just before the
rewrites for the subsequemtaction. In this manner correctness may be extended to
include the equality test.

Interestingly, the same does not hold for a hypothetical inequalityxesy].Q, since
in the translation of the transition rule

o) o Q
xzyl.Q L Q

387

an arbitrary execution may perform the successful inequality test, and the critical action
of a, at distant points of the execution. A priori it is not permissible to move either ac-
tion to be close enough to the other, so the translated system could exhibit behaviours
incommensurate with the originedcalculus expression. Worse, the architectural ex-
igiencies of an inequality test are much more severe than those of an equality test, and
thus inequality tests are definitely excluded from the remit of MONSTR. Cf. also re-
marks on a hypothetical inequality test in [Milner et al. (1991)].

We now briefly mention the prefix forexQ. This would be implemented very much
as in [Section 3], by rules that instantiate the bound channel. As for the equality test,
the actions for ax-prefixed process are not committing eg.

Q*~Q
VXQ _(X_> Qr

Therefore, as with the input communication primitive, enough information must be re-
tained to enable backtracking to occur; and when it does occur, the instantiated bound
channel is garbaged.

The other prefix formsy.Q andx(y).Q, refer to the communication abilities oftaal-

culus expressioR. Up to a point we have dealt with these in our translation, insofar as
we have translated internal communications faithfully. However, the main reason that
the original formulation of the-calculus is interesting, is the fact that it deals also with
external communications, i.e. howraalculus expressida communicates with its en-
vironment. Once we have understood how environments can be modelled in the context
of our translation, we will be able to discuss the analogues of scope extrusion and intru-
sion within our framework.

Consider the question of environmentsEivis (at-calculus expression representing)
an environment fok, then one placds in the environmenEnv by forming

(E | Env.

If Tr(E) and TrEnv) are the corresponding translations, then assuming that subexpres-
sion labels have been renamed apagamdEnvto forestall unfortunate name clashes,
the analogue of the immersion can be viewed three ways.

One can first consider the ruleset B({En} 1) directly, whereT is a new top level
symbol.

Secondly one can regard it as having arisen frot) Bxd TrEnv) by discarding the

two initial rules, and introducing a new rule faitial which causeS&lnitial to rewrite

to a fresh functiof, this in turn rewriting as would any other rule for a composition
symbol, to activd 1 andT, nodes (with suitable channel correspondences), these being
the top level symbols for TE) and TrEnv).

Thirdly one can view the preceding ad-hoc procedure from a more formal perspective,
regarding it as a specific example of the modular composition of translated systems al-
luded to in [Section 5]. If T(E) and Tr(Env) are the modular translations Bfand
Envwithout initial rules but withArgsfunctions specifically mentioned, then we form

T [T, | [TrEM, 1)

388

where
{[]Tll[]TZ}T

is a specific labellet-calculus context, into the holes of which (the square brackets),
we are expected to “place” T+) rulesets, in order to subsequently translate the entire
expression to a MONSTR rule system. Depending on exactly how we view the com-
position of systems as taking place, this “placing” has a number of different interpreta-
tions. In the present case, we would just add the rult fand then either the rule for
Onitial, or theArgsy : Free[l) — args 1 function, as required).

Let us now examine this process for an arbitrary context, say
{Cq Irp [y o [) I

whereC is aTtr-calculus context expression, i.e. an expression-odilculus syntax

which is “syntactically non-ground” in thatleaves of its parse tree arealculus ex-
pression non-terminals. These non-terminals correspond i th]els holes into which

some Tr(E;) translations of systems are to be “placed”. For it to work as it should, we
need some restrictions on the behaviour of names and symbols in the different compo-
nents.

(1) There are no clashes of subexpression labels, either between labels coming from
the variouds;, or between labels coming from one of these and labels in the en-
closing contextC, exceptthat the symbols labelling the top-level constructs of
the E; match the symbols labelling the holes into which thei¢g) translations
are placed.

(2) TheArgsr. functions for the top-level construciisoutput by the translations of
the subcomponents in"TE;), must match thargsy. functions assumed for these
subcomponents by the translation of the context. More specifically, the two ver-
sions of thezfl\rgsri functions must agree in their domains i.e. the sets of free chan-
nel names involved, and in the argument positions of the varj@ysnbols that
these free channel names get mapped to. A byproduct of this is that capture of
subcomponents’ free names by binders in the interior of the context is permitted.

Elaborating a little on the second point, inspection of the translation in [Section 5]
shows that the various recursive constructsmtalculus expression act as transform-

ers ofArgs functions. The same must be true for “syntactically non-ground” compo-
sitions of recursive constructs, i.e. contexts. This leads us to view the translation of an
arbitrary context from two complementary perspectives.

Firstly the translation of the context may be “delayed” until the translations of the sub-
components to be inserted into the holes are available, (specifically till the top-level
Argsy, functions are available), and then the bottom-up translation may be completed.
In this case, the “placing” of the T#) translations we mentioned above, is simply set
union of the Tr(E;) translations with what is generated by the remainder of the transla-
tion.

Secondly, the translation may be done eagerly, before the translations of the subcompo-
nents are available, by abstracting away all information obtained froArdkge func-

tions within the body of the context’s translation. In this case, we obtain the concept of
a “standalone” translation of a cont€xwith holes, which as for a closed system, again

389

has two components. The first component i&rgs; function transformer, which takes

a collection ofArgsy. functions (to be eventually supplied by the(ly) translations for

its holes), and maps them into ¥eys; function of the top-level symbal of the con-

text. Abstracting away from lower level detail, this function constructs the union of the
free channel names mentioned in the domains oAther. functions, removes any
names that are captured by binder€jrand maps what remains (together with any
channel names that are mentione@iand occur free at the top level) to the argument
positions ofT. The second component is a partially instantiated set of MONSTR rules
for the syntactic structure @f The uninstantiated features of these rules (eg. their arity)
will depend upon which and how many free channels are input from T&) sub-
systems, which of them are captured by binders in the context, and which of them need
to be output in the top-level of the result. Again such a partially instantiated set of rules
can be viewed as a function, taking as input a collectidxrgs: functions, and map-

ping them into the fully instantiated set of rules. In this case, the “placing” of the Tr
(E;) translations corresponds to the composition of a top-level context modGle Tr(
with an appropriate number of input systemgH). This is accomplished by the ap-
plication of the context'a\rgsy transformer and rule generation function to Angsr.
functions of the input systems, and including the rules of the input systems. This yields
an Args; function for the top-level symbol of the new system, and a fully instantiated
set of rules for the system as a whole.

However, in this more general setting, we can contemplate composing a top-level con-
text with an appropriate number of input contexts (with holes). The composition of an
Argsr function transformer with a suitable collection of mpmgsr function transform-

ers is anothefrgs; function transformer. Similarly the composmon of a function from

a collection ofArgsy. functions to a fuIIy instantiated ruleset, with a suitable collection

of input Argsy. function transformers, is another function fr@rrgsT functions to a
ruleset. Performlng these compositions, and including the mput functions from the
Argsr, to rulesets in the latter, yields the resulting module

T CATACo ([D) g [T (G- D s - [TECCR(L--- D] 1) })

Pursuing this idea further would lead us to a graph rewriting based fibration semantics
for thetrcalculus (cf. [Coquand et al. (1989), Asperti and Martini (1992)]). However
we will not follow this up here.

We note that a closed system, regarded as a context with no holes, translates to a con-
stantArgsy function transformer (which just yields the top leseys function), and a
constant function yielding a fully instantiated set of rules, which is as we would expect.

Now that we understand environments, we can make sense of such transitions as
XyQ 2 Q

within the translation. Let us consider the more general form
E

which says that (it can be proved within the deduction systemcafculus thatf is

capable of evolving t& by virtue of engaging in a communication in which it ouputs
y onx when placed in an environment capable of inputting. ofihe natural analogue

390

of this in the MONSTR world is to say thaf{E) is capable of an equivalent commu-
nication in a modular composition

T [T, | [TrEMIT, 1)

in which Envhas channel namefree at the top level and is capable of inputing on it.

An alternative way of saying this is to consider a gr@pluhich representg (by re-
writing using TrE) as in lemma 7.4 for example). The representgijorE — G iden-
tifies nodes ofs which represent the free channels, and chanmeparticular. If we
have a grapl®,,,which represents a suitable environmieny, then the representation
Penv: ENV - Ggpy, picks out a node representingn Ggp,, If B is a graph consisting
exactly of as mangmpty channel nodes &andEnvhave free channel names in com-
mon, there are bijectiores: B — E andenv: B - Envidentifying nodes iB with the
relevant free channel namesHrandEnvrespectively. The compositions

peoe:B - G and pgp 0 env:B - Ggpy

are arrows in the category of MONSTR graphs and graph homomorphisms. We can
form the pushou6 [y G, of these two arrows, which just joins the graghand

Geny by identifying nodes representing the common free channel names Iikash-

outs in general are the appropriate analogue in the graph world of modular composition,
and it is not hard to see tHaffg Gg,, representsy | Eny).

The significance for the MONSTR world of transitions like
E Y
should now be clear. Essentially such a piece of notation refers to the possible behav-

iour of E in a suitable environment, but with the environment abstracted out. Accord-
ingly, we can do the same with the translation and write

G % H

to mean thaG, which representg, is capable of offering a write of chanryebver
channek, and upon successful completion, to perform some auxilliary rewrites in order
to get into shape to represéntia graphH. We justify this by an appeal to lemma 7.7
with the role of the environment abstracted away. (Note that it is preferable tG have
andH present in such a notation rather tharEfdnd Tr§) since the former are the
semantic objects which are engaged in any actual communications.)

We can take a similar approach to the input transition ofttt@culus involving the
prefix x(y).Q.

The main thing from the original description that remains undiscussed is the business
of scope extrusion and intrusion. There are no such notions in the system of [Section
3]. Inthat system, if a private changeh one part of thetcalculus expression is in-
tended to be communicated to some other part of the expression, the bindingt

have a scope large enough to enclose both parts, for which reason we introduced the
syntactic reductiog®. This means that if one subsystem wishes to send to another sub-
system a channgilthat it prefers to consider as private, the bingygust occur in the
context into which both subsystems are to be placed. Technically, the the data channel
y becomes free in the sending subsystem, and thus there is the risk of unintended name

391

capture unless the channel names in the subsystems and enclosing context are chosen
wisely.

Scope extrusion and intrusion delays the necessity of wise hame choice, by aflowing
to remain bound (and thus alpha-convertible), with scope initially within the sending
subsystem. The open rule

_RX Q
vwQ 2 Qluy
effectively cuts open the scope of thebinder by transforming the output actigrinto
x(u) (whereu is a fresh name), which indicates that the data channel mé&srt®und
and is not to be captured by other free names. The wise choice of channel names (im-

plemented now by alpha-converting the bound naamneeded), is thereby postponed
until the communication takes place via the close rule

pXp g
P1Q - vu(P |Q)
which demands that the bound channels in sender and receiver must match (thus fore-
stalling inappropriate name clashes), and binds the result of the communication within

a fresh binder whose scope is now large enough to enclose both subsystems, as in the
previous discussion.

To achieve this effect in the framework of our translation we need do nothing special.

A graph representing the sender subexpression can be generated as usual, but because
the data channel say, isv-bound,u does not appear in the domain of ATgsri func-

tion of the sender. Because the transmission link chaxsal, must be free in both
sender and receiverdoes appear in the domain of sy, functions of both sender

and receiver. Now when we perform the pushout to join the sender’s and receiver’s rep-
resenting graphs, the two nodes correspondimgnidl be identified, thoughu will re-

main private to the sender’s subgraph. As we said in theorem 7.9, which data channel
gets sent in a successful communication is purely the business of the sender and does
not depend on the data channel’s scope, and the receiver is equally indifferent to this.
Thus upon successful completion of the communication, the resulting graph would cor-
respond to ar-calculus expression in which the-binder had drifted into the context

via a=tt reduction. This is as we would expect.

Scope extrusion and intrusion are thus superfluous in the translation. This confirms our
earlier remarks, that graph connectivity is able to easily accomplish what is achieved
(and perhaps a little awkwardly at that) by subtle notions of scope manipulation in the
syntax of that-calculus. In the end, the whole of the theory ofrthealculus can be
translated into the world of the MONSTR representatives on the basis of the results in
[Section 7], albeit that the precise technical details become more intricate.

Equalities

Much of the theory of tha-calculus and similar systems is concerned with the formu-
lation of equality theories over the expressions of the calculus, formed by considering
various bisimulations [see Milner et al. (1992)]. Given that we can translatectite

culus faithfully into MONSTR, all such theories can be reformulated as properties of

392

the corresponding class of MONSTR graphs as we indicated above. Rather than do this
though, we make some comments about equalities that arise naturally in the context of
MONSTR rewriting. In general they will be weaker notions than those which arise
through thetcalculus bisimulations.

The natural notion of equality in the context of graph rewriting, is that of graph isomor-
phism (of live subgraphs). Because we are interested in the dynamics of systems, we
must ensure that the underlying notion of homomorphism includes equality of the node
and arc markings. Isomorphism is quite a weak notion compared to most of the ones
studied for thatcalculus, for example it distinguishes between different numbers of
copies of replicated processes. But it has some good points. Perhaps its main virtue is
that it clearly distinguishes concurrency from interleaving. Whenu, v are all dif-

ferent, the two expressioms | y(v) andxu.y(v) + y(v).xu, are strongly ground equiva-

lent in [Milner et al. (1992)], but in the MONSTR translation, the representatiug|of

y(v) has two function nodes whereas the representatieyg¥) + y(v).xu has only one

(of course this is a consequence of how we chose to do the translation). Opinions differ
on whether these expressions ought to be considered equal or not. That they are ground
bisimilar rests on the fact that bisimilarity depends on sequential observation. This in
turn can be laid at the feet of the inherently sequential rewriting model used to express
the transition relation. And that is as true of the MONSTR translation as it isTf the
calculus.

If one goes beyond the sequential rewriting model to a more concurrent one, in which
more than one redex may be rewritten simultaneously provided they don't interfere,
then a more concurrent environmentxg) | yb (as opposed (a).yb + yb.x(a)) could
distinguish between the two expressions. Thwpy(v) might rewrite to0 | 0 in one

step, whilexuy(v) + y(v).xuwould always require two steps to rewritétoTo explore

this in more detail though, would take us far beyond the scope of this paper.

Restricting attention once more to the syntax of [Section 3], another good thing about
our translation (up to graph isomorphism) is that it respects the various equivalences of
T-calculus systems that we introduced in [Section 3].

Let us mention the semigroup rules for + and |. For the former, we have commutativity
since summation of alternatives is translated into set union of rules for distinct function
symbols. (And insofar as in [Section 3] we informally permit ourselves to consider
summations such asg(Q, + 1,.Q,) + 15.Q3), the implied associativity thereof is just

a feature of this set union of rules.) For the latter we have commutativity since the par-
allel composition of a set of subprocesses is translated into the set union of the distinct
contractum nodes that represent them in the RHS of a rule for |. Associativity for | arises
since the derivation of the representing graph of a compound parallel composition dif-
fers from the derivation of the representing graph of its flattened version, by one or more
auxiliary rewrites (rather as in lemma 7.5). Itis clear that in standard executions, once
the garbage is removed, the two resulting representing graphs come out isomorphic, (or
even possibly equal if a convenient implementation of a premeditated suite of contrac-
tum building operations is adopted).

Another equivalence demanded in [Section 3] is alpha-convertibility. It is clear that this
is respected by the translation (up to graph isomorphism), since each bound channel
name get translated to &mpty contractum node of some rule, whose instantiations
will all be equivalent under graph isomorphism. Finally, our syntactic redutibas

been dealt with in lemma 7.5.

393

A slightly stronger notion of equality for MONSTR systems arises through the “inno-
cent” renaming of symbols. This is worth considering given that the tags that label sub-
expressions in the translation and ultimately correspond to function symbols in the
translated system are arbitrary.

Definition 8.1 LetR andS be two MONSTR rule systems. A substitut®bnS - S
on symbols is a system homomorphism iff forlak: (P, root, Red Act) O R, oD, in-
terpreted pointwise, is isomorphic to a rulé&ofit is a renaming dR iff R =S, where
6R is interpreted pointwise.

Thus a renaming of a rule system takes rulds to rules inS which “do the same
thing” modulo the renaming. Note that renamings automatically respect the constant
Initial, and ought to respect the constanbt if garbage collection is to be unchanged.

Definition 8.2 LetR be a MONSTR rule system ad= [Xq, X, X, ...] be an exe-
cution ofR. Likewise forS andY = [Yy, Y1, Yo, ...]. LetBR =S be a renaming. Then
we write

OxOx =z WyOy, iff Opgx) = Dy
where®8(x) is the nodd)x with its symbol substituted according@a.e. o("8(x)) =
8(a(")).
Theorem 8.3 LetR be a MONSTR system and BR =S be a renaming.
(1) For every executioX = [Xq, Xq, Xo, ...] of R there is an execution &f = [Y,,
Yy, Ya, ...] of S such that for ali, and all®x 0 X,

(i)X Ee (J)y
for a suitabldy O ;.

(2) Forany executiol =[Yg, Yy, Y,, ...] of S, there is an executioh= [Xg, Xy, X,
...] of R such that for i, and allly O'Y;

for a suitabldx 0 X;.

We regard the above as self-evident and do not bother proving it.

By altering the tags that label subexpressions during translation we end up with a sys-
tem that is renamed compared to if we had not done so. Theorem 8.3 confirms that we
do not alter the intrinsic behaviour thereby. Furthermore, there is one place where we
have evaded the necessity of considering renamed systems already. That is when early
in [Section 5], we allowed identical subexpressions ofcalculus expression to be
identically labelled. This was exploited in lemma 7.6 when a repliPands identi-

cally tagged to its originatind®! Had we been forced to tag the new copy with a fresh
label, we would have been forced to consider lemma 7.6 only up to a renaming, an un-
desirable complication in [Section 7].

Renaming thus provides a natural notion of bisimulation when node symbols are con-
sidered as arbitrary “user-supplied” names (as they are for the auxiliary symbols in the

394

translation), rather than universal constants (as applies to symbols $uithlaRoot,
and the symbols of the communication protocol). Further, it is clear that renaming is
still a weaker bisimulation than the strong ground equivalence of [Milner et al. (1992)].

Being well defined in conventional set theory, both graph isomorphism and renaming
provide adequate semantics for thealculus via the translation of [Section 5]. Unlike
most semantics for process algebras, they are not directly manufactured from the syn-
tactic components that constitute the original expression.

We note finally that [Milner et al. (1992)]'s strong equivalence, which asserts bisimilar-
ity under all substitutions, corresponds in the MONSTR world to a rather unusual rela-
tion on graphs given by externally imposed redirections, of channel nodes to other
channel nodes. Such a notion does not make any sense for arbitrary MONSTR graphs
but can be made to do so for those arising fror&)Tsystems.

9 CONCLUSIONS

The translation of tha-calculus into MONSTR brings out a number of useful points.
Firstly it necessitates the clear understanding of the issues of free and bound names and
of scoping, as they arise in very different styles of computational system. A good part
of the material above can be interpreted as an essay about this. Specifically, we have
seen that in a graph based language, where connections between parts of the computa-
tional structure are explicitly represented using arcs or edges, the ideas of bound vari-
ables and scope as used in the syntax of traditional languages become largely
superfluous; the structure of the graph and the notion of graph matching provide an in-
formation channel that supercedes the use of the parse tree for this purpose.

Secondly, by targetting our translation to a language designed with a very concrete im-
plementation in mind, the reasonableness in practice of the primitives of the source lan-
guage may be judged. This is a particularly valuable objective if one is interested in
bringing together notions of “process” in use in disparate areas of computer science, as
we, by dint of remarks in the introduction, are, at least implicitly. In the case mf the
calculus, we have seen that the amount of synchronisation implicit in the communica-
tion rule can make substantial demands of implementations. In MONSTR, in which the
capabilities of a single rewrite are rather closely geared to what is cheaply implement-
able in a single atomic action of a concurrent distributed system, we have seen that it is
realistic to have a quantity of state change in such an action, equivalent to the update of
the root function and of one other non-root node. Unfortunately, to implement the true
dynamic synchronised point to point communication ofrtizalculus, in a system fea-
turing maximal concurrency, we need to be able to update at least one further piece of
state within a single action. There is nothing to prevent us from doing so within the syn-
tax of graph rewriting (it is easy enough in DACTL, MONSTR’s parent), but there are
good operational reasons why it is prohibited in MONSTR. Given this state of affairs,
to stay within MONSTR, one has to either go for a protocol featuring some degree of
wastefulness, or for a much more heavily serialised implementation such as afforded by
a global semaphore. In this paper we have chosen the former course.

In the real world, “agents” are normally connected to a set of communication channels
of which they are well aware. Generally, the agents are active and the channels are pas-
sive. Even if the agents are hazy about which other agents are connected to their chan-
nels, little synchronisation hinges on the interactions with channels due to the latters’

395

passivity. Thatrcalculus communication primitive thus comes across as rather more
high level and abstract than might be expected of a basic communication primitive; this
particularly so since the collection of channels that an agent may use is a function of the
agent’s context and the dynamics of the system. In the real world, the closest that we
might get to a situation where mutually ignorant agents communicate over a shared me-
dium, is the internet. No one knows precisely who is connected to the internet at any
given moment. However, even in this situation, the internet is not used to effect seria-
lised and synchronised point to point communications between an arbitrary mutually ig-
norant sending/receiving pair of agents. On the contrary side, one cannot argue with the
syntactic and algebraic simplicity of the communication rule ofttbalculus, to which

its existence is largely attributable. Of course similar remarks apply to many other pro-
cess calculi, but we have been specific in this paper.

Thirdly, the treatment of correctness deserves comment. Essentially, a suitable weak
bisimulation has been set up but the techniques to construct it owe more to rewriting
theory and to serialisability theory than to the usual finitistic techniques frequently
found in process algebra. A fairly comprehensive and self-contained treatment of the
correctness issue has been given, and many of its aspects are to be found in correctness
arguments for any MONSTR program. In fact this paper contains the first such MON-
STR correctness argument to be written out in reasonable detail, which gives it inde-
pendent interest.

So in one sense this paper may be viewed as a concrete exercise in MONSTR program
verification, the program being the output of translatiorE)lr(In another sense, be-
cause of the generic nature of the proof, it is also an exercise in compiler correctness,
the compiler being the meta-level translation process. The correctness argument is vis-
ibly non-trivial, and not formal in the usual sense of the word, but it certainly sets the
agenda for what such a formal proof would have to address. A fully formal proof would
be a sizeable undertaking, but in reality, given suitable theories for a number of what
are well understood but properly higher order concepts such as “graph”, “execution”
etc., [Section 6] and [Section7] involved nothing other than what could be straightfor-
wardly expressed, in a logic in which the universal quantifiers occur bounded over some
well understood set, and the existential quantifiers refered to objects that were explicitly
constructed. So a formal proof would not be completely out of the question.

In a third sense, one can see the soundness proof in particular, as an exercise in serial-
isability theory, another case of a distant area of computer science concerned with no-
tions of process, namely concurrency control theory from the database world, having an
impact on a problem in process algebra. In this regard, the recent work on atomicity of
[Lynch et al. (1994)] (see also references therein), bears comparison with the contents
of this paper. Certainly the complexity of the serialisability proofs there is rather rem-
iniscent of what appears in the present paper. Pursuing the analogy for a moment, we
can view the communications ofracalculus expression as high level transactions
(from the viewpoint of the MONSTR system). Nevertheless, unlike normal database
systems, individual rewrites themselves have many features of transactions too, in that
serialisation is not just a matter of choosing a suitable order for them. The sheduling
strategy for rewrites is determined by MONSTR rule selection semantics, and any seri-
alisation performed, must be done within the constraints allowed by this. Up to a point,
this makes life harder in our case.

396

Viewed from yet a different perspective, one can see the serialisability proof of theorem
7.16 (and other serialisability proofs), as a particularly easy example of a forcing or pri-
ority or finite injury argument (to use recursion-theoretic jargon), in that the object of
interest, the executida, is constructed as the limit of a number of other executions, all
featuring a decreasing proportion of undesirable characteristics. Two things contribute
to the easy nature of the argument, the first being the explictly constructible nature of
the transformation process, and the second is the vital observation that the process can
be neatly split into phases, the earliest of which serve to simplify matters considerably
for their successors. A “one pass” version of the theorem would be perfectly feasable,
but the technical details would be considerably more intricate, as the reader is invited
to imagine.

The translation itself was inspired by other translations into term graph rewriting sys-
tems. In particular by those in [Banach and Papadopoulos (1993), Banach and Papa-
dopoulos (1995)], which are concerned with concurrent logic languages. Also [Glauert
(1992)] does related work on mapping a process calculus into a term graph rewriting
system, however with the crucial ommission of the guarded summation construct. Itis
precisely that which forces us to adopt a communication protocol and its synchronisa-
tion problems, due to the amount of atomic state change implicit in the general case of
a single comunication of thecalculus. It is also that which is the source of most of

the fun and games in [Section 6] and [Section 7].

10 References

[Aczel (1993)] Aczel P.H.G., Processes and Final Universes. Seminar, Dept. of Computer Sci-
ence, Manchester University, (1993).

[Asperti and Martini (1992)] Asperti A., Martini S., Categorical Models of Polymorphism. In-
formation and Computatid®9, (1992), 1-79.

[Banach and Papadopoulos (1993)] Banach R., Papadopoulos G., Parallel Term Graph Rewriting
and Concurrent Logic Programs: Proc. WPDP-93, Bulgarian Acad. of Sci., Boyanov
(ed.), (1993), 303-322. (North Holland, to appear.)

[Banach and Papadopoulos (1995)] Banach R., Papadopoulos G., Linear Logic Behaviour of
Term Graph Rewriting Progrania: Proc. A.C.M. SAC-95, (1995), 157-163.

[Banach et al. (1988)] Banach R., Sargeant J., Watson |., Watson P., Woods V., The Flagship
Project.in: Proc. UK-IT-88, (Alvey Technical Conference), 242-245, Information Engi-
neering Directorate, Department of Trade and Industry, IEE Publications, (1988).

[Banach and Watson (1989)] Banach R., Watson P., Dealing with State in Flagship: the MON-
STR Computational Modein: Proc. CONPAR-88, Jesshope, Reinhartz (eds.), 595-604,
B.C.S. Workshop Series, Cambridge University Press, (1989).

[Banach (1993a)] Banach R., MONSTR | — Fundamental Issues and the Design of MONSTR.
Submitted toNew Generation Computing, (1993).

[Banach (1993b)] Banach R., MONSTR Il — Suspending MONSTR SemaStibsiitted to
New Generation Computing, (1993).

[Banach (1993c)] Banach R., MONSTR: Term Graph Rewriting for Parallel Maching&srm
Graph Rewriting: Theory and Practice, Sleep, Plasmeijer, van Eekelen (eds.), 243-252,
John Wiley, (1993).

[Berry and Boudol (1990)] Berry G., Boudol G., The Chemical Abstract MadhinE7th An-
nual Symposium on Principles of Programming Languages, A.C.M., (1880)n The-
oretical Computer Scien@s$, (1992), 217-248.

397

[Coquand et al. (1989)] Coquand T., Gunter C., Winskel G., Domain Theoretic Models of Poly-
morphism. Information and Computati8f, (1989), 123-167.

[Corradini et al. (1994)] Corradini A., Montanari U., Rossi F., An Abstract Machine for Concur-
rent Modular Systems: CHARM. Theoretical Computer Scid2@(1994), 165-200.

[Degano and Montanari (1987)] Degano P., Montanari U., A Model of Distributed Systems
Based on Graph Rewriting. J.A.C.BY, (1987), 411-449.

[Glauert (1992)] Glauert J.R.W., Asynchronous Mobile Processes and Graph Reinritngc.
PARLE-92, Etiemble, Syre (eds.), LN®8563-78, Springer, (1992).

[Glauert et al. (1988a)] Glauert J.R.W., Kennaway J.R., Sleep M.R., Somner G.W., Final Speci-
fication of DACTL. Internal Report SYS-C88-11, School of Information Systems, Uni-
versity of East Anglia, Norwich, U.K, (1988).

[Glauert et al. (1988b)] Glauert J.R.W., Hammond K., Kennaway J.R., Papdopoulos G.A., Sleep
M.R., DACTL: Some Introductory Papers. School of Information Systems, University of
East Anglia, Norwich, U.K, (1988).

[Lynch et al. (1994)] Lynch N., Merritt M., Weihl W., Fekete A., Atomic Transactions. Morgan
Kaufmann, (1994).

[Milner (1979)] Milner R., Flow Graphs and Flow Algebras. J.A.C28].(1979), 794-818.
[Milner (1989)] Milner R., Communication and Concurrency. Prentice-Hall, (1989).

[Milner (1993a)] Milner R., The Polyadic Pi-Calculus: A Tutorial. Logic and Algebra of
Specification, Bauer, Brauer, Schwichtenberg (eds.), 203-246, Springer, (1993).

[Milner (1993b)] Milner R., An Action Structure for Synchronous Pi-Calcutugroc. FCT-93,
Esik (ed.), LNCS/1087-105, Springer, (1993).

[Milner et al. (1991)] Milner R., Parrow J., Walker D., Modal Logics for Mobile Processses.
Proc. CONCUR-91, Baeten, Groote (eds.), LNS2345-60, Springer, (1991).

[Milner et al. (1992)] Milner R., Parrow J., Walker D., A Calculus of Mobile Processes — | / Il.
Inf. and Comp100, (1992), 1-40, 41-77.

[Nielsen et al. (1981)] Nielsen M., Plotkin G., Winskel G., Petri Nets, Event Structures and Do-
mains, Part |. Theoretical Computer Scieh8e(1981), 85-108.

[Parrow (1994)] Parrow J., Interaction Diagrains A Decade of Concurrency, de Bakker, de
Roever, Rozenberg (eds.), LN@83477-508, Springer, (19949nd Manuscript, SICS,
Kista, Sweden.

[Watson and Watson (1987)] Watson P., Watson |., Evaluating Functional Programs on the Flag-
ship Machinein: Proc. FLCA-87, Kahn (ed.), LNC&7480-97, Springer, (1987).

[Watson et al. (1987)] Watson |., Woods V., Watson P., Banach R., Greenberg M., Sargeant J.,
Flagship: A Parallel Architecture for Declarative ProgrammimgProc. 15th Annual In-
ternational Symposium on Computer Architecture, Hawaii, ACM, (1987).

[Watson et al. (1989)] Watson I., Sargeant J., Watson P., Woods V., The Flagship Parallel Ma-
chine.in: Proc. CONPAR-88, Jesshope, Reinhartz (eds.), 125-133, BCS Workshop Series,
Cambridge University Press, (1989).

[Winskel (1986)] Winskel G., Event Structures.Petri Nets, An Advanced Course, LNESh,
325-392, (1986).

[Winskel (1988)] Winskel G., An Introduction to Event StructumesLinear Time, Branching
Time and Partial Order in Logics and Models for Concurrency. de Bakker, de Roever, Ro-
zenberg (eds.), LNCS54, 364-397, (1988).

398

