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Abstract: We prove that grammar systems with (prescribed or free) teams (of constant
size at least two or arbitrary size) working as long as they can do, characterize the family
of languages generated by (context-free) matrix grammars with appearance checking;
in this way, the results in [P�aun, Rozenberg 1994] are completed and improv
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1 Introduction

A cooperating grammar system, as introduced in [Csuhaj-Varj�u, Dassow 1990]
and [Meersman, Rozenberg 1978], consists of several (usually context-free) gram-
mars, each of them working, by turns, on a common sentential form. A basic
protocol of cooperation is the maximal competence strategy: a component must
rewrite the current sentential form as long as it can do this (and hence never can
�nish, if it can work forever). In [Csuhaj-Varj�u, Dassow 1990] it is proved that in
this way exactly the family of ET0L-languages can be obtained. In [Meersman,
Rozenberg 1978] a variant of this stop condition is considered: a component must
work until it introduces a non-terminal which cannot be rewritten by the same
component.
In [Kari, Mateescu, P�aun, Salomaa 1994], a way to increase the power of cooper-
ating grammar systems has been proposed: the cooperation of the components of
a grammar system is increased by allowing (or forcing) some of the components
of the system to work simultaneously in teams on the current sentential form in
parallel, i. e. in each step, every member of the currently active team has to apply
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a rule. In [Kari, Mateescu, P�aun, Salomaa 1994], the condition for a team to stop
its work has been the following one: no rule of any member of the team can be
used any more. Even with such a strong stop condition, non-ET0L-languages
can be generated as it is proved in [Kari, Mateescu, P�aun, Salomaa 1994] (and
moreover, teams of size two are su�cient, as it is shown in [Csuhaj-Varj�u, P�aun
1993]).
Another stop condition has been considered in [P�aun, Rozenberg 1994]: a team
stops working if and only if at least one of its members cannot apply one of its
rules any more. For this stop condition as well as for that introduced in [Kari,
Mateescu, P�aun, Salomaa 1994], in [P�aun, Rozenberg 1994] it is proved that
both using prescribed teams (all of them being of given size or of free size) and
using free teams (of given size at least two or of arbitrary size at least two)
exactly the family of languages generated by matrix (or programmed) grammars
with appearance checking is obtained (thus strenghtening the results proved in
[Csuhaj-Varj�u, P�aun 1993] and [Kari, Mateescu, P�aun, Salomaa 1994]).
The stop conditions considered in [P�aun, Rozenberg 1994] are not the natural
extension of the maximal competence strategy from individual components of
grammar systems to teams of components: the simplest way for such an exten-
sion is to allow a team to become inactive when it is no longer able to rewrite the
current sentential form as a team, irrespective whether or not some or even all
rules of the components can be applied further. For instance, if the current string
contains only two occurences of the non-terminalA and we have a team consisting
of three components, each consisting of rules of the form A! � only, then none
of the conditions investigated in [Csuhaj-Varj�u, P�aun 1993], [Kari, Mateescu,
P�aun, Salomaa 1994], and [P�aun, Rozenberg 1994] is ful�lled, although the team
cannot be used any more. Yet the derivation is correctly terminated if we use
the natural extension of the maximal competence strategy mentioned above, but
not for the variants considered in [Csuhaj-Varj�u, P�aun 1993], [Kari, Mateescu,
P�aun, Salomaa 1994], and [P�aun, Rozenberg 1994] (the derivation is simply un-
acceptable for those variants, although it looks quite rationally considered from
the point of view of the team).
There is also another reason for considering the new stop condition, namely a
mathematical one: grouping sets of rules in teams may remind us of the mode of
working of matrix grammars; checking whether rules in a component of a team
can be applied may remind us of the appearance checking in matrix grammars.
All together, these aspects make the following result somehow non-surprising
(although the proof given in [P�aun, Rozenberg 1994] is, by no means, obvious):
grammar systems with teams (prescribed or free and of given size at least two or
of free size at least two) working with the stop conditions considered in [P�aun,
Rozenberg 1994] characterize the family of languages generated by (context-free)
matrix grammars with appearance checking. The new mode of stopping the work
of a team is not related to the appearance checking manner of work in such
an obvious manner, yet again all languages generated by matrix grammars with
appearance checking can be obtained by grammar systems with free teams of
given size at least two, but also with free teams of arbitrary size, which is an
improvement of the results obtained in [P�aun, Rozenberg 1994].
The study of teams, in general the study of classes of grammar systems in which
both the sequential and the parallel modes of working are present, requests and
deserves further e�orts (see also [Csuhaj-Varj�u 1994] for motivations of such
investigations).
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2 Preliminary de�nitions

We specify only a few notions and notations here; the reader is referred to [Sa-
lomaa 1973] for other elements of formal language theory we shall use and to
[Dassow, P�aun 1989] for the area of regulated rewriting.
For an alphabet V , by V � we denote the free monoid generated by V under the
operation of concatenation; the empty string is denoted by �, and V � � f�g is
denoted by V +. The length of x 2 V � is denoted by jxj, and for any U; U � V;
jxjU denotes the number of occurrences of symbols a 2 U in x.
A matrix grammar (with appearance checking) is a construct

G = (N; T; S;M;F )

where N and T are disjoint alphabets (N is the nonterminal alphabet, T is the
terminal alphabet), S 2 N is the axiom, and M is a �nite set of sequences
(called matrices) of the formm = (A1 ! x1; : : : ; As ! xs); s � 1; Ai ! xi being
a context-free rule over N [T with Ai 2 N and xi 2 (N [T )�; 1 � i � s; and F
is a subset of the rules occurring in the matrices of M .
For w; y 2 (N [ T )� we write w =) y if there are strings w0; w1; : : : ; ws in
(N [ T )� and a matrix (A1 ! x1; : : : ; As ! xs) in M such that w = w0; ws = y
and for each i with 1 � i � s either wi�1 = ziAiz

0
i and wi = zixiz

0
i or wi = wi�1,

the rule Ai ! xi is not applicable to wi�1, and Ai ! xi appears in F . (In words,
all the rules in a matrix are applied, one after the other in the given sequence,
possibly skipping the rules appearing in F , but only if they cannot rewrite the
current string.) If F = ;, then the grammar is said to be without appearance
checking (and the component F can be omitted).
By MAT �

ac; MATac we denote the families of languages generated by matrix
grammars with arbitrary context-free respectively �-free context-free rules. The
following relations are known ([Dassow, P�aun 1989]):

ET0L �MATac � CS �MAT�
ac = RE;

where CS and RE denote the families of context-sensitive respectively recursively
enumerable languages and ET0L denotes the family of �-free ET0L-languages
(i. e. languages generated by extended Lindenmayer systems with tables).
A cooperating distributed grammar system (CD grammar system for short) is a
construct

� = (N; T; S; P1; :::; Pn)

where N and T are disjoint alphabets (N is the nonterminal alphabet, T is the
terminal alphabet), S 2 N is the axiom, and P1; :::; Pn; n � 1; are �nite sets of
context-free rules over N [ T and are called the components of the system �:
For each component Pi; 1 � i � n; in the CD grammar system � we denote

dom(Pi) =
�
A 2 N j A! x 2 Pi for some x 2 (N [ T )�

	
:

Given w;w0 2 (N [ T )� and i; 1 � i � n; we write w =)Pi w
0 if w0 can be

derived from w by using a rule in Pi in the usual sense: w = w1Aw2; w
0 = w1xw2;

and A ! x 2 Pi: By =)+
Pi

and =)�
Pi
we denote the transitive respectively the

re
exive transitive closure of =)Pi :
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An important derivation relation for CD grammar systems is the maximal deriva-
tion mode t (see [Csuhaj-Varj�u, Dassow 1990]):

w =)t
Pi
w0 if and only if

w =)�
Pi
w0 and there is no w00 2 (N [ T )� such that w0 =)Pi w

00

(such a derivation is maximal in the component Pi; i. e. no further step can be
done). The language generated by the CD grammar system � in the maximal
derivation mode t is de�ned by

Lt (� ) = fx 2 T � j S =)t
Pi1

w1::: =)
t
Pim

wm = x;

m � 1; 1 � ij � n for 1 � j � mg :

The family of languages generated in this mode by CD grammar systems with
�-free rules is denoted by CD(t): From [Csuhaj-Varj�u, Dassow 1990] we know
that CD(t) = ET0L:

3 Teams in cooperating grammar systems

In [Kari, Mateescu, P�aun, Salomaa 1994] the following extension of CD grammar
systems is introduced:
A CD grammar system with (prescribed) teams (of variable size) is a construct

� = (N; T; S; P1; :::; Pn; Q1; :::; Qm)

where (N; T; S; P1; :::; Pn) is a usual CD grammar system and Qi � fP1; :::; Png ;
1 � i � m; the sets Q1; :::; Qm are called teams and are used in derivations as
follows: For Qi = fPj1; Pj2; :::; Pjsg and w; w

0 2 (N [ T )� we write

w =)Qi
w0 if and only if w = w1A1w2A2:::wsAsws+1;

w0 = w1x1w2x2:::wsxsws+1;

where wk 2 (N [ T )�; 1 � k � s + 1; and

Ar ! xr 2 Pjr ; 1 � r � s

(the team is a set, hence no ordering of the components is assumed).

In [Kari, Mateescu, P�aun, Salomaa 1994] the following rule of �nishing the work
of a team Qi = fPj1 ; Pj2; :::; Pjsg has been considered:

w =)t1
Qi

w0 if and only if

w =)+
Qi

w0 and jw0jdom(Pjr )
= 0 for all r with 1 � r � s:

(No rule of any component of the team can be applied to w0:)

Another variant is proposed in [P�aun, Rozenberg 1994]:
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w =)t2
Qi

w0 if and only if

w =)+
Qi

w0 and jw0jdom(Pjr )
= 0 for some r with 1 � r � s:

(There is a component of the team that cannot rewrite any symbol of the current
string.)
The language generated by � in one of these modes is denoted by Lt1(� ) and
Lt2(� ); respectively.
If all teams in � have the same size, then we say that � is a CD grammar system
with teams of constant size. If all possible teams are considered, we say that �
has free teams; the teams then need not be speci�ed. If we allow free teams of only
one size, we speak of CD systems with free teams of constant size. Obviously, if
we only have teams of size s � 2; then we cannot rewrite an axiom consisting of
one symbol only, hence we must start from a string or a set of strings as axioms.
Therefore, we consider systems of the form

� = (N; T;W;P1; ::; Pn; Q1; :::; Qm);

where W � (N [ T )� is a �nite set; the terminal strings of W are directly
added to the language generated by � : The others are used as starting points for
derivations. The languages generated by such a system � when using free teams
of given size s are denoted by Lt1(�; s) and Lt2 (�; s), respectively; when free
teams of arbitrary size are allowed, we write Lt1(�; �) respectively Lt2(�; �); and
if these free teams must be of size at least two, we write Lt1 (�;+) respectively
Lt2(�;+):
By PTsCD(g) we denote the family of languages generated in the mode g 2
ft1; t2g by CD grammar systems with prescribed teams of constant size s and
�-free context-free rules; if the size is not constant we replace s by �; when the
size must be at least 2 (no team consisting of only one component is allowed),
then we write PT+CD(g): If the teams are not prescribed, we remove the letter
P , thus obtaining the families TsCD(g); T�CD(g); and T+CD(g); respectively.
As we are interested in the relations with the family MAT�

ac; too, we also con-
sider CD grammar systems with prescribed (arbitrary) teams of constant size s
(arbitrary size, of size at least two) and arbitrary context-free rules; the corre-
sponding families of languages generated in the mode g 2 ft1; t2g by such CD
grammar systems are denoted by PTsCD

�(g); PT�CD�(g); PT+CD�(g); and
TsCD

�(g); T�CD�(g); T+CD�(g); respectively.

In [P�aun, Rozenberg 1994] it is proved that for all s � 2 and g 2 ft1; t2g

TsCD(g) = PTsCD(g) = PT�CD(g) = T+CD(g) = MATac and

TsCD
�(g) = PTsCD

�(g) = PT�CD
�(g) = T+CD(g)� =MAT�

ac:

The relations =)t1 and =)t2 as de�ned in [Csuhaj-Varj�u, P�aun 1993], [Kari,
Mateescu, P�aun, Salomaa 1994], and [P�aun, Rozenberg 1994] are not the direct
extensions of the relation =)t from components to teams. Such an extension
looks as follows (where �; w; w0; Qi are as above):

w =)t0
Qi

w0 if and only if

w =)+
Qi

w0 and there is no w00 2 (N [ T )� such that w0 =)Qi
w00:

The language generated by the CD grammar system � in this mode t0 is denoted
by Lt0(� ); the languages generated by such a system � in the mode t0 when using
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free teams of given size s; free teams of arbitrary size, free teams of size at least
two are denoted by Lt0(�; s); Lt0(�; �): and Lt0(�;+); respectively.

Obviously, if w =)
tj
Qi

w0; j = 1; 2; then w =)t0
Qi

w0; too, but, as we have pointed

out in the introduction, the converse is not true; we can have w =)t0
Qi

w0 without

having w =)
tj
Qi

w0 for j = 1; 2: Consequently, Ltj (� ) � Lt0(� ); j = 1; 2; without

necessarily having an equality; the same holds true for the languages Ltj (�; s);
Ltj (�; �); and Ltj (�;+): This means that we have no relations directly following
from de�nitions, between families considered above and the corresponding fami-
lies PTsCD(t0); PT�CD(t0); PT+CD(t0); TsCD(t0); T�CD(t0); and T+CD(t0):
However, in the following section we shall prove that again a characterization of
the familiesMATac and MAT�

ac is obtained, hence the new termination mode of
team work is equally powerful as those considered in [Csuhaj-Varj�u, P�aun 1993],
[Kari, Mateescu, P�aun, Salomaa 1994], and [P�aun, Rozenberg 1994].

In order to elucidate some of the speci�c features of the derivation modes tk;
k 2 f0; 1; 2g ; we consider some examples. The �rst example shows that the
inclusions, Ltj (� ) � Lt0(� ); etc., j 2 f1; 2g ; can be proper:

Example 1. Let

�1 = (fA;B;Cg ; fag ; fABg ; P1; P2; P3; P4)

be a CD grammar system with the sets of rules

P1 = fA! B;B ! Bg ;

P2 = fB ! C;B ! Bg ;

P3 = fB ! a;B ! Bg ; and

P4 = fC ! a;B ! Bg :

Obviously, Lt(�1) = ;; because the only way to get rid of the symbol A is to
apply the rule A ! B from P1; but because of the rule B ! B the derivation
can never terminate.
If we consider �1 together with the prescribed teams (of size 2)

Q1 = fP1; P2g and

Q2 = fP3; P4g ;

i. e. if we take the CD grammar system with prescribed teams

�2 = (�1; Q1; Q2);

then we obtain
Lt0(�2) = faag

because AB =)t0
Q1

BC =)t0
Q2

aa; yet still

Lti(�2) = ;

for i 2 f1; 2g ; because after one derivation step with Q1; i. e. AB =)Q1
BC; Q1

cannot be applied as a team any more to BC; although the rule B ! B; which
is in both sets of rules of the team Q1; is applicable to BC: This means that
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the derivation is blocked, although the stop condition for the derivation mode ti;
i 2 f1; 2g ; is not ful�lled!
As only teams of size at most two can be applied to a string of length two, we
also obtain

Ltj (�1; 2) = Ltj (�1;+) = Ltj (�1; �) = ; for i 2 f1; 2g ;

whereas
Lt0(�1; 2) = Lt0(�1;+) = Lt0(�1; �) = faag :

Example 2. Let

�3 = (fA;Bg ; fa; bg ; fAA;BBg ; P1; P2; P3; P4)

be a CD grammar system with the sets of rules

P1 = fA! aA;A! aB;A! bg ;

P2 = fA! aA;A! aB;A! ag ;

P3 = fB ! bB;B ! bA;B ! ag ; and

P4 = fB ! bB;B ! bA;B ! bg :

If we consider �3 together with the prescribed teams (of size 2)

Q1 = fP1; P2g and

Q2 = fP3; P4g ;

i. e. if we take the CD grammar system with prescribed teams

�4 = (�3; Q1; Q2);

then we obtain
Lti(�4) =

�
wawb;wbwa j w 2 fa; bg�

	

for i 2 f0; 1; 2g : Although this non-context-free language is obtained in each
derivation mode ti; the intermediate sentential forms (after an application of Q1

or Q2) are not the same:
Whereas for i 2 f1; 2g the intermediate sentential forms are wAwA and wBwB
with w 2 fa; bg� ; in the derivation mode t0 we also obtain wawA; wawB; wbwA;
wbwB; wAwa; wAwb; wAwB; wBwa; wBwb; and wBwA: These strings are
somehow hidden in the other derivation modes t1 and t2; because they can be
derived from a sentential form vAvA or vBvB with a suitable v 2 fa; bg� ; by
using the derivation relation =)Q1

of the team Q1; but then further derivations
with the team Q1 are blocked, although the stop conditions of the derivation
modes t1 respectively t2 are not ful�lled. This additional control on the possible
sentential forms is not present with the derivation mode t0; where a derivation
using a team stops if and only if the team cannot be applied as a team any
more, which does not say anything about the applicability of the rules in the
components of the team on the current sentential form. Nethertheless the same
generative power as with the derivation modes t1 and t2 can be obtained by teams
using the derivation mode t0; too, which will be shown in the succeeding section.
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4 The power of the derivation mode t0

In this section we shall prove that CD grammar systems with (prescribed or
free) teams (of given size at least two respectively of arbitrary size) together
with the derivation mode t0 again yield characterizations of the familiesMATac
respectively MAT�

ac:

The following relations are obvious:

Lemma 1. For all s � 1 we have

TsCD(t0) � PTsCD(t0) � PT�CD(t0);

TsCD
�(t0) � PTsCD

�(t0) � PT�CD
�(t0);

T�CD(t0) � PT�CD(t0);

T�CD
�(t0) � PT�CD

�(t0);

T+CD(t0) � PT+CD(t0) � PT�CD(t0);

T+CD
�(t0) � PT+CD

�(t0) � PT�CD
�(t0):

Lemma 2. PT�CD(t0) �MATac and PT�CD�(t0) � MAT �
ac:

Proof. Let � = (N; T;W;P1; :::; Pn; Q1; :::; Qm) be a CD grammar system with
prescribed teams and �-free rules. We construct a matrix grammar

G = (N 0; T [ fcg ; S0;M; F )

with �-free rules as follows.
For a team

Qi = fPj1; :::; Pjsg

consider all sequences of rules of the form

� = (A1 ! x1; :::; As! xs)

such that from each set Pjr exactly one rule is present in m: Let

f�i;1; �i;2; :::; �i;kig = Ri

be all such sequences associated with the team Qi:
Then

N 0 = N [ fA0 j A 2 Ng [ fS0;#; X;X0g [

f[Qi] j 1 � i � mg [
�
Ri;j; R

0
i;j j 1 � i � m; 1 � j � ki

	
and

M = f(S0 ! wX) j w 2Wg [

f(X ! [Qi]) j 1 � i � mg [

f([Qi]! [Qi] ; A1 ! x01; :::; As! x0s) j 1 � i � m;

Qi = fPj1 ; :::; Pjsg ; (A1 ! x1; :::; As! xs) 2 Ri;

x0r is obtained by replacing each nonterminal in xr
by its primed version, 1 � r � sg [
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f(A0 ! A) j A 2 Ng [ f([Qi]! Ri;1) j 1 � i � mg [�
(Ri;j ! R0

i;j+1; A1 ! �1; :::; As! �s) j 1 � i � m; 1 � j � ki � 1;

�i;j = (A1 ! x1; :::; As! xs); �r 2 fA
0
r;#g ; 1 � r � s;

and for at least one r; 1 � r � s; we have �r = #g [

f(Ri;ki ! X 0; A1 ! �1; :::; As! �s) j 1 � i � m;

�i;ki = (A1 ! �1; :::; As! �s); �r 2 fA
0
r;#g ; 1 � r � s;

and for at least one r; 1 � r � s; we have �r = #g [�
(R0

i;j ! Ri;j; A
0
1 ! #; :::; A0

p! #) j 1 � i � m;

1 � j � ki; fA1; :::; Apg = Ng [�
(X 0 ! X;A0

1 ! #; :::; A0
p! #) j fA1; :::; Apg = N

	
[

f(X ! c)g :

The set F contains all rules of the form A! # in the previous matrices.

The derivation starts form wX; w 2 W: In general, from a sentential form
wX;w 2 (N [ T )�; in a non-deterministic way we can pass to w [Qi] in order
to start the simulation of the team Qi. Using a matrix

([Qi]! [Qi] ; A1 ! x01; :::; As! x0s)

corresponds to a derivation step in Qi (the primed symbols in x01; :::; x
0
s ensure the

parallel mode of using the rules A1 ! x1; :::; As ! xs: The primed symbols can
be replaced freely by their originals using the matrices (A0 ! A): The symbol [Qi]
can be changed only by passing through Ri;1; :::; Ri;ki; which checks the correct
termination of the derivation in Qi; in the sense of the mode t0 of derivation: we
can pass from Ri;j to R0

i;j+1; if and only if the corresponding sequence �i;j of
rules cannot be used (otherwise a symbol # will be introduced, because for each
sequence

A1 ! �1; :::; As! �s;

at least one �k is #). After obtaining a sequence �i;j; we introduce the symbol
R0
i;j+1; which is replaced by Ri;j+1 only after having replaced all primed symbols

A0 with A 2 N by their original A: Then we can pass to checking the sequence
�i;j+1: If none of the sequences �i;j; 1 � j � ki; can be used, we can introduce the
symbolX 0 and then X; in this way the derivation in Qi is successfully simulated,
and we can pass, in a non-deterministic way, to another team.
When the matrix (X ! c) is used, the string must not contain any further
non-terminal, because no matrix can be used any more .
In conclusion, L(G) = Lt0(� ) fcg : As MATac is closed under right derivative, it
follows that Lt0(� ) 2MATac:

A similar construction like that elaborated above shows that for a CD grammar
system with prescribed teams and arbitrary context-free rules we can construct
a matrix grammar

G = (N 0; T; S0;M; F )

with arbitrary context-free rules such that L(G) = Lt0(� ); observe that we do not
need the additional terminal symbol c; because in the case of arbitrary context-
free rules we can simply replace the matrix (X ! c) by the matrix (X ! �): As
an immediate consequence, we obtain Lt0(� ) 2 MAT�

ac: 2
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Lemma 3. MATac � T2CD(t0) and MAT�
ac � T2CD

�(t0):

Proof. Let L � V � be a matrix language in MATac. We can write

L = (L \ f�g) [
[
c2V

�rc (L) fcg ;

where �rx(L) denotes the right derivative of L with respect to the string x.
The family MATac is closed under right derivative, hence �rc (L) 2 MATac: For
each c 2 V; let Gc = (Nc; V; Sc;Mc; Fc) be a matrix grammar for �rc (L); and
moreover, we suppose that Gc is in the accurrate normal form [Dassow, P�aun
1989]:

1. Nc = Nc;1 [Nc;2 [ fS;#g ; where Nc;1; Nc;2; fS;#g are pairwise disjoint.
2. The matrices in Mc are of one of the following forms:

a. (Sc ! w); w 2 V �;
b. (Sc ! AX); A 2 N1; X 2 N2;
c. (A! w;X ! Y ); A 2 N1; w 2 (N1 [ V )+; X; Y 2 N2;
d. (A! #; X ! Y ); A 2 N1; X; Y 2 N2;
e. (A! a;X ! b); A 2 N1; X 2 N2; a; b 2 V:

3. The set Fc consists of all rules A! # appearing in matrices of Mc:

Without loss of generality we may also assume that jwjfAg = 0 and X 6= Y in

matrices of the forms c (if we have a matrix (A ! w;X ! Y ) with jwjfAg 6= 0

or X = Y we can replace it by the sequence of matrices

(A! A1; X ! X1); (Ak ! wk; Xk ! Xk+1); 1 � k � m � 1;

(Am ! wm; Xm ! X);

where w = w1:::wm; wk 2 V; 1 � k � m; as well as Ak and Xk with 1 � k � m
are new symbols to be added to N1 and N2; respectively); in a similar way, we
can assume that X 6= Y in a matrix (A ! #; X ! Y ) of form d (a matrix
(A ! #; X ! X) can be replaced by the matrices (A ! #; X ! X1) and
(A! #; X1 ! X); where X1 is a new symbol to be added to N2;).
We take such a matrix grammarGc for every language �rc (L) 6= ;; c 2 V ; without
loss of generality, we may assume that the sets Nc;1; Nc;2; c 2 V; are pairwise
disjoint.
Assume all matrices of the forms c; d; e in the sets Mc to be labelled in a one-
to-one manner such that the labels used for Mc are di�erent from those used for
Mc0 ; c

0 6= c; and let Labc; Labd; Labe; be the set of all the corresponding labels
as well as

Lab = Labc [ Labd [ Labe:

Now consider the following sets of symbols

N1 =
[
c2V

Nc;1;

N2 =
[
c2V

Nc;2;

� = fAl; A
0
l j A 2 N1; l 2 Labg ;
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� = fXl j X 2 N2; l 2 Labg ;

� =
n
D(c); D

(c)
l ; E

(c)
l ; F

(c)
l ; G

(c)
l j c 2 V; l 2 Lab

o
;

	 = � [� [�; and

N = N1 [N2 [� [� [�:

We construct a CD grammar system � with N [ f#g as the set of non-terminal
symbols, V as the set of terminal symbols, the set of axioms

W = (L \ f�g) [ fwc j (Sc ! w) 2Mc; w 2 V �; c 2 V g [n
AXD(c) j (Sc ! AX) 2Mc; c 2 V; �rc (L) 6= ;

o

and the components Pl;1; Ql;1; Pl;2; Ql;2 for l 2 Lab constructed as follows:

A. If l : (A ! w;X ! Y ) is a matrix of type c with A 2 N1; w 2 (N1 [ V )+;
jwjfAg = 0; and X;Y 2 N2; X 6= Y; then we take the components

Pl;1 = fX ! Xl; A! Alg [ f� ! # j � 2 Ng ;

Ql;1 =
n
D(c) ! D

(c)
l ; D

(c)
l ! E

(c)
l

o
[
n
� ! # j � 2 (	 [N2)�

n
Al; Xl; E

(c)
l

oo
;

Pl;2 = fAl ! w;Xl ! Y g [ f� ! # j � 2 Ng ;

Ql;2 =
n
E
(c)
l ! F

(c)
l ; F

(c)
l ! D(c)

o
[
�
� ! # j � 2 (	 [N2)�

�
D(c); Y

		
:

B. If l : (A ! a;X ! b) is a matrix of type e; with A 2 N1; a 2 V; X 2 N2;
b 2 V; then we take the components

Pl;1 = fX ! Xl; A! Alg [ f� ! # j � 2 Ng ;

Ql;1 =
n
D(c) ! D

(c)
l ; D

(c)
l ! E

(c)
l

o
[
n
� ! # j � 2 (	 [N2)�

n
Al; Xl; E

(c)
l

oo
;

Pl;2 = fAl ! A0
l; A

0
l ! a;Xl ! bg [ f� ! # j � 2 Ng ;

Ql;2 =
n
E
(c)
l ! F

(c)
l ; F

(c)
l ! G

(c)
l ; G

(c)
l ! c

o
[ f� ! # j � 2 Ng :

C. If l : (A ! #; X ! Y ) is a matrix of type d (hence with A ! # 2 Fc); with
A 2 N1; X; Y 2 N2; X 6= Y; then we take the components

Pl;1 = fX ! Xlg [ f� ! # j � 2 Ng ;

Ql;1 =
n
D(c) ! E

(c)
l

o
[
n
� ! # j � 2 (	 [N2 [ fAg)�

n
E
(c)
l ; Xl

oo
;

Pl;2 = fXl ! Y g [ f� ! # j � 2 Ng ;

Ql;2 =
n
E
(c)
l ! D(c)

o
[
�
� ! # j � 2 (	 [N2) �

�
D(c); Y

		
:

Let us give some remarks on these constructions:

{ The intended legal teams of two components are fPl;1; Ql;1g and fPl;2; Ql;2g
for arbitrary labels l 2 Lab (which would already solve the problem for
prescribed teams of size two); all other pairs of components cannot work
in the mode t0 without introducing the trap-symbol #:

{ The symbol # is a trap-symbol and every component contains rules � ! #
for "almost all" symbols � 2 N ; the termination of a derivation sequence
with a legal team is only guaranteed by the "exceptions" in the components
of type Q:
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{ In order to assure the correct pairing of components, we use variants of the

control symbol D (D(c); D
(c)
l ; E

(c)
l ; F

(c)
l ; G

(c)
l ), as well as subscripts added

to symbols in N1 (leading to symbols in �) and to symbols in N2 (leading
to symbols in �).

We now show that � with free teams of constant size two in the same way as
with the prescribed teams of size two described above generates L :

Claim 1. L � Lt0(�; 2):
As the "short strings" in L are directly introduced inW; it is enough to prove that
every derivation step in a grammarGc can be simulated by the teams of �: More
exactly, we shall prove that if z1 =)Gc

z2 is a derivation step in Gc; where z2
is not a terminal string, then z1D

(c) =)�
� z2D

(c) in a derivation sequence using
teams of size 2 from �; and that if z2 is a terminal string, then z1D

(c) =)�
� z2c

in a derivation sequence using teams of size 2 from � .
If

z1 = x1Ax2X =)Gc
x1wx2Y = z2

by a matrix l : (A! w;X ! Y ) of type c; then

x1Ax2XD
(c) =)fPl;1;Ql;1g x1Alx2XD

(c)
l =)fPl;1;Ql;1g x1Alx2XlE

(c)
l

and no more step is possible with this team fPl;1; Ql;1g, hence

x1Ax2XD
(c) =)t0

fPl;1;Ql;1g
x1Alx2XlE

(c)
l :

Now, also in two steps, we obtain

x1Alx2XlE
(c)
l =)t0

fPl;2;Ql;2g
x1wx2Y D

(c) = z2D
(c):

In a similar way, if for a terminal string

z1 = x1Ax2X =)Gc
x1ax2b = z2

by a matrix l : (A! a;X ! b) of type e; then we obtain

x1Ax2XD
(c) =)fPl;1;Ql;1g x1Alx2XD

(c)
l =)fPl;1;Ql;1g x1Alx2XlE

(c)
l

and

x1Alx2XlE
(c)
l =)fPl;2;Ql;2g x1ax2XlF

(c)
l =)fPl;2;Ql;2g x1ax2X

0
lG

(c)
l

=)fPl;2;Ql;2g x1ax2bc

i. e.

x1Ax2XD
(c) =)t0

fPl;1;Ql;1g
x1Alx2XlE

(c)
l =)t0

fPl;2;Ql;2g
x1ax2bc = z2c:

If
z1 = xX =)Gc

xY = z2

by a matrix l : (A! #; X ! Y ) of type d; then

xXD(c) =)t0
fPl;1;Ql;1g

xXlE
(c)
l =)t0

fPl;2;Ql;2g
xY D(c):

116



Observe that from xXlE
(c)
l no further derivation step with the team fPl;1; Ql;1g

is possible if and only if jxjfAg = 0:

In conclusion, every derivation in a grammar Gc can be simulated in � by ap-
plying a suitable sequence of appropriate teams of pairs of components, which
completes the proof of claim 1.

Using legal teams, i e. the teams fPl;1; Ql;1g and fPl;2; Ql;2g ; we can only obtain
the following sentential forms not containing the trap symbol # (we call them
legal con�gurations):

1. xXD(c); with x 2 (N1 [ V )+; X 2 N2; c 2 V (initially we have x 2 N1).

2. xAlx
0XlE

(c)
l ; with x; x0 2 (N1[V )�; A 2 N1; X 2 N2; c 2 V; l 2 Labc[Labe;

i. e. l being a label of a matrix of type c or e:

3. xXlE
(c)
l ; with x 2 (N1 [ V )+; X 2 N2; c 2 V; l 2 Labd; i. e. l being a label

of a matrix of type d:

Claim 2. Starting from an arbitrary legal con�guration, every illegal team will
introduce the symbol #:

First of all we have to notice that in the following we can restrict our attention
to components associated with some matrix fromMc; because components asso-
ciated with some matrix fromMc0 with c0 6= c already at the �rst application of a
rule force us to introduce the trap symbol #: For the same reasons, we need not
take into account teams consisting of two components of type Q : they cannot
work together without introducing #; because they can only replace symbols in
� by symbols di�erent from #:

For the rest of possible illegal teams of size two we consider the following three
cases according to the three types of legal con�gurations:

Case 1: Con�guration xXD(c); i. e. of type 1.
Each component being of one of the types Pl;2 and Ql;2 will introduce # at the
�rst application of a rule; therefore it only remains to consider pairs of com-
ponents of the types Pl;1 and Ql;1 for di�erent labels from Lab associated with
matrices fromMc (the labels must be di�erent, because otherwise either the team
were legal or else the teams would not be of size two). Hence only the following
teams might be possible:

1. fPl;1; Pl0;1g ; where l 6= l0 : The intermediate strings coming up during the
application of such a team will contain at least one symbol Xl or Al as well
as at least one symbol Xl0 or Al0 for the two di�erent labels l and l0, hence
before the derivation with the team can terminate, at least one of the rules of
the form � ! # (i. e. Xl ! # or Al ! # respectively Xl0 ! # or Al0 ! #)
is forced to be applied in at least one of the components.

2. fPl;1; Ql0;1g ; where l 6= l0 : While the component Ql0;1 works on symbols
from �; the other component Pl;1 introduces at least one symbol Xl or Al:
As Pl;1 contains all rules � ! # for � 2 � (and no other rules for � 2 �)
and Ql0;1 contains all rules �! # for � 2 fXl; Alg (and no other rules for
Xl; Al), the derivation with the team fPl;1; Ql0;1g cannot terminate without
a step introducing the symbol # by at least one of the components.

117



In all cases, further derivations are blocked (they never can lead to terminal
strings) because the trap-symbol # has been forced to be introduced.

Case 2: Con�guration xAlx
0XlE

(c)
l ; for l 2 Labc [ Labe:

The only components that may not be forced to introduce # by the �rst rule
they can apply are Pl0;1 for any arbitrary l0 2 Labc [ Labe as well as Pl;2 and
Ql;2: Hence only the following teams might be possible:

1. fPl0;1; Pl00;1g ; where l0 6= l00 (otherwise the team would not be of size two):
Pl0;1 will introduce some Al0 ; A 2 N1; and Pl00;1 will introduce some Bl00 ;
B 2 N1; therefore further derivations are blocked by introducing the trap
symbol # with Al0 ! # or Bl00 ! # in Pl0;1 or in Pl00;1:

2. fPl0;1; Pl;2g : Pl;2 (in two or three steps) can replace Al and Xl; in the mean-
time Pl0;1 must introduce some Bl0 ; B 2 N1:

(a) If l0 6= l; then from xAlx
0XlE

(c)
l in two steps (if a second step in Pl0 ;1

is possible without introducing #) we obtain y1Bl0 y2Bl0y3UE
(c)
l ; where

U 2 N2 if l 2 Labc and U 2 N2 [ fXlg if l 2 Labe:

i. If l 2 Labc; then in the third step at least Pl;2 now must use a rule
introducing the trap symbol #; e. g. Bl0 ! #; whereas Pl0;1; if not
also being forced to use such a trap rule, may be able to use B ! Bl0

once again or U ! Ul0 ; if it just happens that U is the right symbol
from N2 that can be handled by Pl0;1:

ii. If l 2 Labe; then Xl ! b or A0
l ! a from Pl;2 can be applied in the

third step, but even if Pl0;1 can replace a third occurrence of B by
B0
l ; at least in the fourth step Pl;2 now is forced to introduce the trap

symbol #; e. g. by B0
l ! #:

(b) If l0 = l; i. e. if we use the team fPl;1; Pl;2g ; then again we have to
distinguish between two subcases:

i. If l 2 Labc; then Pl;1 can replace all occurences of A by Al; while
Pl;2 can replace Xl by Y and Al by w: As we have assumed Y 6= X;
no other rule not introducing # than A ! Al can be used in Pl;1:
Moreover we also have assumed the rule Al ! w to be non-recursive,
i.e. jwjfAg = 0; hence after a �nite number of derivation steps with the

team fPl;1; Pl;2g the occurrences of A will be exhausted, so �nally a
rule introducing the trap symbol # must be used by Pl;1 (one possible

candidate is E
(c)
l ! #), while Pl;2 can use Al ! w or Xl ! Y (if

this rule has not yet been used before).
ii. If l 2 Labe; we face a similar situation as above except that from Al

two steps are needed in Pl;2 in order to obtain a from Al:

3. fPl0;1; Ql;2g : While E(c)
l ! F

(c)
l is used in Ql;2; Pl0;1 must introduce some

Al0 ; A 2 N1; if no more non-terminal symbol A is available in the current

sentential form, when Ql;2 uses its rule for replacing F (c)
l
; Pl0;1 will have to

use a trap rule like Al0 ! #; if Pl0;1 can introduce one more Al0 ; then �nally
a trap rule like Al0 ! # must be applied by at least one of the components
Pl0;1 and Ql;2 before the derivation can terminate.

Case 3: Con�guration xXlE
(c)
l ; for l 2 Labd:
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The only components that do not introduce # by the �rst rule they can apply
are Pl0;1 for any arbitrary l0 2 Labc [ Labe (and therefore l0 6= l) as well as Pl;2
and Ql;2: Hence only the following teams might be possible:

1. fPl0;1; Pl00;1g ; where l0 6= l00 (otherwise the team would not be of size two):
Pl0;1 will introduce some Al0 ; A 2 N1; and Pl00;1 will introduce some Bl00 ;
B 2 N1; therefore further derivations are blocked by introducing the trap
symbol # with Al0 ! # or Bl00 ! # in Pl0;1 or in Pl00;1:

2. fPl0;1; Pl;2g : Pl;2 can only replace Xl by Y ; in the meantime Pl0 ;1 must
introduce some Al0 ; A 2 N1: In the second derivation step, in Pl;2 the trap
rule Y ! # can be used, whereas from Pl0;1 at least Al0 ! # can be applied.

3. fPl0;1; Ql;2g : While E
(c)
l ! D(c) is used in Ql;2; Pl0;1 must introduce some

Al0 ; A 2 N1; but then Ql;2 has to use a trap rule like Xl ! #; while Pl0 ;1
can use A! Al0 once more or at least Al0 ! #:

In conclusion, only the legal teams can be used without introducing the trap
symbol #; they simulate matrices in the sets Mc; c 2 V; hence also the inclusion
Lt0(�; 2) � L is true, which completes the proof of MATac � T2CD(t0):

Now let L � V � be a matrix language in MAT�
ac. As �-rules are allowed in this

case, we need not split up the language L in languages �rc (L); c 2 V ; hence, for a
matrix grammar G = (N 0; V; S;M;F ) with L(G) = L we can directly construct
a CD grammar system � such that Lt0 (�; 2) = L: Again the matrix grammar G
can be assumed to be in the accurrate normal form [Dassow, P�aun 1989] like in
the previous case:

1. N 0 = N1 [N2 [ fS;#g ; where N1; N2; fS;#g are pairwise disjoint.
2. The matrices in M are of one of the following forms:

a. (S ! w); w 2 V �;
b. (S ! AX); A 2 N1; X 2 N2;
c. (A ! w;X ! Y ); A 2 N1; w 2 (N1 [ V )�; jwjfAg = 0; X; Y 2 N2;

X 6= Y ;
d. (A! #; X ! Y ); A 2 N1; X; Y 2 N2; X 6= Y ;
e. (A! a;X ! b); A 2 N1; X 2 N2; a; b 2 V [ f�g :

3. The set F consists of all rules A! # appearing in matrices of M:

In contrast to the �-free case, matrices of the form c can also be of the form

(A! �;X ! Y )

and matrices of the form e can also be of the forms

(A! �;X ! �); (A! �;X ! b); (A! a;X ! �), where a; b 2 V:

Assume all matrices of the forms c; d; e in the sets M to be labelled in a one-to-
one manner and let Labc; Labd; Labe; be the sets of all the corresponding labels
as well as

Lab = Labc [ Labd [ Labe:
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Now consider the following sets of symbols

� = fAl; A
0
l j A 2 N1; l 2 Labg ;

� = fXl j X 2 N2; l 2 Labg ;

� = fD;Dl; El; Fl; Gl j l 2 Labg ;

	 = � [� [�; and

N = N1 [N2 [� [� [�:

We construct a CD grammar system � with N [ f#g as the set of non-terminal
symbols, V as the set of terminal symbols, the set of axioms

W = fw j (S ! w) 2M; w 2 V �g [ fAXD j (S ! AX) 2Mg

and the components Pl;1; Ql;1; Pl;2; Ql;2 for l 2 Lab constructed like in the
previous case:

A. If l : (A ! w;X ! Y ) is a matrix of type c with A 2 N1; w 2 (N1 [ V )�;
jwjfAg = 0; and X;Y 2 N2; X 6= Y; then we take the components

Pl;1 = fX ! Xl; A! Alg [ f� ! # j � 2 Ng ;

Ql;1 = fD ! Dl; Dl ! Elg [ f� ! # j � 2 (	 [N2)� fAl; Xl; Elgg ;

Pl;2 = fAl ! w;Xl ! Y g [ f� ! # j � 2 Ng ;

Ql;2 = fEl ! Fl; Fl ! Dg [ f� ! # j � 2 (	 [N2)� fD;Y gg :

B. If l : (A ! a;X ! b) is a matrix of type e; with A 2 N1; X 2 N2; a; b 2
V [ f�g ; then we take the components

Pl;1 = fX ! Xl; A! Alg [ f� ! # j � 2 Ng ;

Ql;1 = fD ! Dl; Dl ! Elg [ f� ! # j � 2 (	 [N2)� fAl; Xl; Elgg ;

Pl;2 = fAl ! A0
l; A

0
l ! a;Xl ! bg [ f� ! # j � 2 Ng ;

Ql;2 = fEl ! Fl; Fl ! Gl; Gl ! �g [ f� ! # j � 2 Ng :

C. If l : (A ! #; X ! Y ) is a matrix of type d (hence with A ! # 2 F ); with
A 2 N1; X; Y 2 N2; X 6= Y; then we take the components

Pl;1 = fX ! Xlg [ f� ! # j � 2 Ng ;

Ql;1 = fD ! Elg [ f� ! # j � 2 (	 [N2 [ fAg)� fEl; Xlgg ;

Pl;2 = fXl ! Y g [ f� ! # j � 2 Ng ;

Ql;2 = fEl ! Dg [ f� ! # j � 2 (	 [N2)� fD;Y gg :

The intended legal teams of two components again are fPl;1; Ql;1g and fPl;2; Ql;2g
for arbitrary labels l 2 Lab; the legal con�gurations are

1. xXD; with x 2 (N1 [ V )
+; X 2 N2 (initially we have x 2 N1);

2. xAlx
0XlEl; for x; x0 2 (N1 [ V )�; A 2 N1; X 2 N2; l 2 Labc [ Labe; and

3. xXlEl; for x 2 (N1 [ V )
+; X 2 N2; l 2 Labd:

In contrast to the �-free case we can use the �-rule Gl ! � in the component
Ql;2 associated with a matrix l : (A ! a;X ! b) of type e; which allows us to
avoid the splitting up of the language L into the right derivatives �rc (L); c 2 V;
yet again we obtain L � Lt0(�; 2) : If z1 =)G z2 is a derivation step in G;
where z2 is not a terminal string, then z1D =)�

� z2D in a derivation sequence
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using appropriate teams of size 2 from �; and if z2 is a terminal string, then
z1D =)�

� z2 in a derivation sequence using the appropriate teams of size 2 from
� .

Similar arguments as in the �-free case can be used to show that Lt0(�; 2) � L:
Hence again we obtain Lt0(�; 2) = L; which proves MAT�

ac � T2CD
�(t0); too.

2

Lemma 4. MATac � TsCD(t0) and MAT �
ac � TsCD

�(t0) for s 2 f+; �g :

Proof. For a language L inMATac respectively MAT �
ac we just take the adequate

CD grammar system � already constructed in the proof of the previous lemma.
As the legal teams of size two still are available, we obviously obtainL � Lt0(�; s):
On the other hand, we still have Lt0(�; s) � L; too, although the possibilities
for forming teams from the constructed components have increased considerably.
Yet we have to adapt our arguments according to this new situation.
As in the previous proof we still have to notice that in the following we can restrict
our attention to teams where all components are associated with matrices from
only one set Mc; because components associated with some matrix from another
set of matrices Mc0 with c0 6= c already at the �rst application of a rule force us
to introduce the trap symbol #: Hence in the following it is su�cient to consider
the case where L in MAT�

ac:

As the legal teams of two components again are fPl;1; Ql;1g and fPl;2; Ql;2g for
appropriate labels l 2 Lab; the legal con�gurations are

1. xXD; with x 2 (N1 [ V )+; X 2 N2 (initially we have x 2 N1),
2. xAlx

0XlEl; for x; x
0 2 (N1 [ V )

�; A 2 N1; X 2 N2; l 2 Labc [ Labe; and
3. xXlEl; for x 2 (N1 [ V )+; X 2 N2; l 2 Labd:

As teams of type Q cannot work together without introducing #; because they
can only replace symbols in � by symbols di�erent from #; we need not take into
account teams containing at least two components of type Q. Moreover, every
team of size one �nally is forced to introduce the trap symbol # when started on
a legal con�guration (i. e. the result for s = � is the same as for s = +). Hence
in the following we now take a closer look on every possible combination of
components yielding a team with at least three components and allowing at least
one derivation step on the legal con�gurations listed above without introducing
the trap symbol # :

Case 1: Con�guration xXD(c); i. e. of type 1.
Each component being of one of the types Pl;2 and Ql;2 will introduce # at the
�rst application of a rule; therefore it only remains to consider teams T where
each component is of one of the types Pl;1 and Ql;1:

1. T contains only components of the type Pl;1; where obviously all labels of
these components have to be di�erent. Then at most one label can be from
Labd; because such a component only once can use the rule X ! Xl, whereas
all the other components Pl;1 with l 2 Labc [ Labe can also apply a rule to
the symbol X at most once as well as the rule A ! Al to any occurrence
of the corresponding symbol A: Hence, before the derivation with the team
can terminate, at least one of the rules of the form � ! # (e. g. Xl ! # or
Al ! #) is forced to be applied in at least one of the components.
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2. T contains exactly one component Qm;1; wheras all the other components
are of the type Pl;1; i. e.

T = fQm;1g [ fPli;1 j 1 � i � kg ;

where k � 2: Denote LabP (T ) = fli j 1 � i � kg : Again, at most one label
in LabP (T ) can be from Labd: In the �rst derivation step with the team T;
D ! Dm for m 2 Labc [ Labe respectively D ! Em for m 2 Labd from
Qm;1 is used, while at most one component Plj can use the rule X ! Xlj ;
whereas all the others have to use the rules A ! Ali for the corresponding
non-terminal symbols A 2 N1:

(a) If m 2 Labd; in the next step Qm;1 has to use a trap rule.

i. If the rule X ! Xlj has been applied in the �rst step (observe that
lj 2 Labd if LabP (T ) \ Labd 6= ;), then even if lj = m; every com-
ponent of T can apply a rule, i. e. for Qm;1 we choose Ali0

! # for
some li0 2 LabP (T )�Labd; for Plj ;1 we can take Xlj ! #; fromPli0 ;1
at least Em ! # can be applied, and in the remaining components
Pli;1; li 2 LabP (T ) � flj ; li0g at least Ali ! # is applicable.

ii. If the rule X ! Xlj has not been applied in the �rst step, i. e. for
each li 2 LabP (T ) the rule A! Ali has been taken from Pli;1 (which
implies LabP (T ) \Labd = ; and therefore m =2 LabP (T ); too), again
a second step with T is possible: We can choose X ! # from Qm;1;
while at least Ali ! # is applicable in the remaining components
Pli ; li 2 LabP (T ):

(b) If m 2 Labc [ Labe; then one more derivation step may be possible
without Qm;1 being forced to use a trap rule, but again in any case the
trap symbol # must be introduced before the derivation can terminate,
even if T contains the legal team fQm;1; Pm;1g :

i. If LabP (T ) \ Labd 6= ;; i. e. lj 2 LabP (T ) \ Labd; then only one
derivation step with T is possible without introducing #; and in this
step Plj ;1 has used the rule X ! Xlj ; whereas all the other Pli;1;
li 2 LabP (T ) � fljg ; had to use A ! Ali for the corresponding
symbols A 2 N1; and Qm;1 used D ! Dm: Pli;1 now is forced to
use a trap rule like Xlj ! # (observe that m 6= lj), whereas Qm;1

can use its rule for replacing Dm and the other components Pli;1;
li 2 LabP (T )� fljg ; at least can apply Ali ! #:

ii. If LabP (T ) \ Labd = ;; then at most two derivation steps with the
team T are possible without introducing the trap symbol #; where
at most once one component Plj;1 can apply X ! Xlj ; whereas
otherwise the components Pli;1; have to use the corresponding rules
A! Ali ; while Qm;1 can use D ! Dm and Dm ! Em:

A. If two derivation steps without applying a trap rule have been
possible, then also a third step with the team T is possible, where
Qm;1 is forced to apply a trap rule, e.g. for Qm;1 we can choose
Ali0

! #; where li0 2 LabP (T ) such that X has not been re-
placed by Xli0

; whereas all the components Pli;1; li 2 LabP (T );
can at least apply Ali ! #:
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B. If only one derivation step without introducing # has been pos-
sible, i.e. at least one component Pli0 ;1 cannot apply a rule not
introducing # any more, then a second step with T is possible,
where Qm;1 uses Dm ! Em and Pli0 ;1 is forced to apply a trap
rule. If X has not been replaced in the �rst derivation step, Pli0 ;1
can apply Ali0

! #; while also the other components Pli;1 with
li 2 LabP (T ) � fli0g at least can use Ali ! #; if X ! Xli0
has been applied in the �rst step, in the second step from Pli0 ;1
we can choose Xli0

! # instead of Ali0
! #; if X ! Xljhas

been applied in the �rst step for some lj 6= li0 ; then we can choose
Ali0

! # from Pli0 ;1; from Plj ;1 at least Xlj ! # can be applied,
while from Pli;1 with li 2 LabP (T )� fli0 ; ljg at least Ali ! # is
applicable.

In all cases, further derivations are blocked (they never can lead to terminal
strings), because the trap-symbol # has been forced to be introduced.

Case 2: Con�guration xAlx
0XlEl; for l 2 Labc [ Labe:

The only components that do not introduce # by the �rst rule to be applied are
Pl0;1 for any arbitrary l0 2 Labc [ Labe as well as Pl;2 and Ql;2: Hence only the
following teams T might be possible:

1. T = fPli;1 j 1 � i � kg ; where k � 3 and fli j 1 � i � kg � Labc [ Labe:
The components Pli;1 cannot replace the symbols Al; Xl; El without intro-
ducing #; hence they will introduce Ali and therefore �nally at least one
component will have to use the trap rule Ali ! #:

2. T = fPl;2g [ fPli;1 j 1 � i � kg ; where k � 2 and fli j 1 � i � kg � Labc [
Labe:
Denote LabP (T ) = fli j 1 � i � kg :

(a) l =2 LabP (T ):While Pl;2 can replace Al or Xl in the �rst step, the compo-
nents Pli;1; li 2 LabP (T ); can only use the corresponding rules A ! Ali

in order not to introduce #: If some Pli0 ;1 cannot use a rule not intro-
ducing # any more after this �rst step, at least this component is forced
to use a trap rule like Ali0

! #; while also the other components Pli;1;
li 2 LabP (T ); can apply at least Ali ! # (and Pl;2 can replace the
symbol fromfAl; Xlg not a�ected in the �rst step). If two steps without
introducing # are possible with the team T; then all together 2k symbols
Ali have been introduced. As 2k > k + 1; these symbols guarantee that
a trap rule must be applied, before the derivation with T can terminate.

(b) l 2 LabP (T ); i. e. fPl;1; Pl;2g � T:

i. If l 2 Labc; then Pl;1 can replace all occurrences of A by Al; while
Pl;2 can replace Xl by Y and Al by w: As we have assumed Y 6= X;
no other rule not introducing # than A ! Al can be used in Pl;1:
Moreover, as we also have assumed the rule Al ! w to be non-
recursive, i. e. jwjfAg = 0; the occurrences of the symbol A will be

exhausted after a �nite number of steps with the team T; so �nally at
least Pl;1 will be forced to use a trap rule. The other components Pli;1;
li 2 LabP (T )�flg ; in the �rst step can only apply the corresponding
rules A ! Ali and in the succeeding steps one of these components
once also might be able to apply a rule to Y:
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Now let s be the number of steps that are possible with the team
T without introducing #: If s = 1; then Pl;2 has replaced Xl by
Y or Al by w; whereas all the components Pli;1; li 2 LabP (T ); have
introduced one symbolAli : Hence, in the current sentential form k�1
symbols Ali for li 2 LabP (T ) � flg are present as well as Y and two
symbols Al respectively Xl and Al; i. e. at least k + 1 non-terminal
symbols, which guarantees that a second derivation step is possible,
where at least one trap symbol # is introduced. If s � 2; then at
least one symbol from N2 [

P
; one symbol from � and s(k � 1) + 1

symbols Am with m 2 LabP (T ) occur in the current sentential form.
As s(k � 1) + 1 + 2 � 2(k� 1) + 3 � k + 1; again another derivation
step introducing # is possible in any case.

ii. If l 2 Labe; we face a similar situation except that for Al we need
two steps in order to obtain a from Al by using Al ! A0

l and A
0
l ! a

in Pl;2 (i. e. the symbols Al cannot be "consumed" so fast by Pl;2
as in the previous case) and moreover, after one step the symbol
from N2[

P
may have vanished, so no other Pli;1 can use a rule on a

symbol from N2[
P
: Let s again denote the number of steps possible

with T without introducing #; for all s exactly s(k� 1) symbols Ali ;
li 2 LabP (T )� flg ; appear in the current sentential form. For s � 3;
s(k � 1) � 3k � 3 � k + 1; which guarantees that after these s steps
another derivation step introducing the trap symbol# can be applied.
For s � 2; we have at least k � 1 such symbols as well as additional
non-terminal symbols appearing in the current sentential form, i. e.
one symbol from � as well as at least one symbol Xl; A

0
l or Al:

3. T = fQl;2g [ fPli;1 j 1 � i � kg ; where k � 2 and fli j 1 � i � kg � Labc [
Labe:
While Ql;2 uses El ! Fl etc. the components Pli;1; li 2 LabP (T ); can only
apply the corresponding rules A! Ali : Even if l 2 Labe; the symbol from �
can only vanish in the third derivation step with the team T; i. e. in any case,
after at most two (for l 2 Labc) respectively at most three (for l 2 Labe)
derivation steps without introducing # we are forced to use a trap rule in
a further derivation step, which is always possible, because the number of
non-terminal symbols in the current sentential form in all cases is at least
k+1 (observe that also for l 2 Labc we can always �nd a non-terminal symbol
=2 fD;Y g for Ql;2).

4. T = fPl;2; Ql;2g [ fPli;1 j 1 � i � kg ; where k � 1 and fli j 1 � i � kg �
Labc [ Labe; i. e. T contains the legal team fPl;2; Ql;2g :
Denote LabP (T ) = fli j 1 � i � kg :
Because of the presence of Ql;2; the legal subteam fPl;2; Ql;2g can only make
two (for l 2 Labc) respectively three (for l 2 Labe) derivation steps without
introducing #:
If at least one derivation step without introducing # is possible, besides Al;
Xl; and El in xAlx

0XlEl at least k non-terminal symbols must be present for
allowing the components Pli;1; li 2 LabP (T ); to use the corresponding rules
B ! Bli : Even after applying Al ! w (if l 2 Labc) respectively Xl ! b (if
l 2 Labe) in Pl;2, at least k + 2 non-terminal symbols are left to guarantee
another derivation step, if at least one component is already forced to apply
a trap rule after the �rst derivation step.
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(a) l 2 Labc: Then at most a second derivation step without introducing #
is possible. After this second derivation step, again at least k + 2 non-
terminal symbols are left in the current sentential form:

i. l 2 LabP (T ) :

A. If we have applied Al ! w in the �rst step from Pl;2; in the
second step again we may apply Al ! w; but all together we
have 2k� 1 � k non-terminal symbols from � left in the current
sentential form, i. e. together with Xl and D these are k+ 2 non-
terminal symbols allowing a third derivation step introducing #:

B. If we have appliedXl ! Y in the �rst derivation step, the current
sentential form contains two symbolsAl and k symbolsAli for the
labels li 2 LabP (T ) as well as the control symbol Fl: Even if some
lj 2 LabP (T ) can apply the rule Y ! Ylj in the second step, Ql;2

has to use Fl ! D; Pl;2 has to apply Al ! w (which consumes
only one of the two symbols Al), and all the other components
Pli;1; li 2 LabP (T ) � fljg ; have to use A! Ali ; so that at least
k + 3 + k � 1 � 1 � k + 2 non-terminal symbols are left in the
current sentential form after two derivation steps, which again
allows a third derivation step introducing #:

ii. l =2 LabP (T ) : The only di�erence to the previous case is that the
components Pli;1; li 2 LabP (T ); cannot generate Al; i. e. similar ar-
guments like those used above show that the derivation with the team
T cannot terminate without introducing the trap symbol #:

(b) l 2 Labe: In this case, at most three derivation steps without introducing
# are possible.
Like in the case with l 2 Labc; if after the �rst derivation step at least
one component Pli;1; li 2 LabP (T ); can only use a trap rule, a further
derivation step is possible, because at least k+2 non-terminal symbols are
available in the current sentential form. Whereas the components Pli;1;
li 2 LabP (T ); in every step "produce" a non-terminal symbol Ali ; Pl;2
can use Xl ! b; Al ! A0

l and A0
l ! a; and Ql;2 uses its rules on the

symbols from �: After two steps, a symbol from � is still occurring in
the current sentential form, and Pl;2 can only have been responsible for
the changing of Xl or of Al to a terminal symbol.
In the third step, the symbol from � is eliminated by Ql;2 and Pl;2 has
the possibility to have eliminated Xl as well as one symbol Al: Yet in
three steps by the components Pli;1; li 2 LabP (T ); 3k � k + 2 symbols
Ali have been generated, which guarantees a fourth step with introducing
# to be possible before the derivation with the team T can terminate.

The special case of a team fPl;1; Pl;2; Ql;2g for some l 2 Labe also shows the
necessity of delaying the generation of a fromAl by Pl;2; l 2 Labe (i. e. l being
the label of a terminal matrix l : (A ! a;X ! b)), with two rules Al ! A0

l

and A0
l ! a instead of using only one single rule Al ! a:

Case 3: Con�guration xXlEl; for l 2 Labd:
The only components that do not introduce # by the �rst rule they can apply
are Pl0;1 for any arbitrary l0 2 Labc [ Labe (and therefore l0 6= l) as well as Pl;2
and Ql;2: Hence only the following teams might be possible:
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1. T = fPli;1 j 1 � i � kg ; where k � 3 and fli j 1 � i � kg � Labc [ Labe:
Each component Pli;1 introduces symbols Ali ; until the non-terminal symbols
for at least one component are exhausted, therefore �nally one rule of the form
Ali ! # has to be applied in at least one of the components of the team.

2. T = fPl;2g [ fPli;1 j 1 � i � kg ; where k � 2 and fli j 1 � i � kg � Labc [
Labe:
Pl;2 can only replace Xl by Y ; in the meantime, the other components Pli;1;
1 � i � k; must introduce symbols Ali : In the second derivation step, in Pl;2
the trap rule Y ! # can be used, whereas all the other components at least
can apply Ali ! #:

3. T = fQl;2g [ fPli;1 j 1 � i � kg ; where k � 2 and fli j 1 � i � kg � Labc [
Labe:
While El ! D is used in Ql;2; the other components Pli;1; 1 � i � k;
introduce symbols Ali ; but in the second derivation step Ql;2 has to use a
trap rule, e. g. Xl ! #; while the other components Pli;1 at least can apply
Ali ! #:

4. T = fPl;2; Ql;2g [ fPli;1 j 1 � i � kg ; where k � 1 and fli j 1 � i � kg �
Labc [ Labe; i. e. T contains the legal team fPl;2; Ql;2g :
While Pl;2 uses Xl ! Y and Ql;2 uses El ! D; the other components Pli;1;
1 � i � k; introduce symbols Ali : Ql;2 now has to use a trap rule like Ali0

!
# for some li0 2 fli j 1 � i � kg ; Pl;2 can useD ! #; Pli0 ;1 can apply at least
some rule on Y; and all the other components Pli;1; li 2 fli j 1 � i � kg�fli0g
can at least apply Ali;1 ! #:

In conclusion, again we have proved that only the legal teams can be used without
introducing the trap symbol #; which completes the proof. 2

Lemma 5. MATac � TsCD(t0) and MAT �
ac � TsCD

�(t0) for every s � 3:

Proof. Let L � V � be a matrix language in MAT�
ac and let G = (N 0; V; S;M;F )

be a matrix grammar with L(G) = L: Again the matrix grammar G can be
assumed to be in the strengthened accurrate normal form described in the pre-
ceeding two lemmas:

1. N 0 = N1 [N2 [ fS;#g ; where N1; N2; fS;#g are pairwise disjoint.
2. The matrices in M are of one of the following forms:

a. (S ! w); w 2 V �;
b. (S ! AX); A 2 N1; X 2 N2;
c. (A ! w;X ! Y ); A 2 N1; w 2 (N1 [ V )�; jwjfAg = 0; X; Y 2 N2;

X 6= Y ;
d. (A! #; X ! Y ); A 2 N1; X; Y 2 N2; X 6= Y ;
e. (A! a;X ! b); A 2 N1; X 2 N2; a; b 2 V [ f�g :

3. The set F consists of all rules A! # appearing in matrices of M:

We can construct a CD grammar system � such that Lt0(�; s) = L using the
ideas already known from the preceeding proofs for the case s = 2; i. e. we add
s � 2 additional control variables in every legal sentential form as well as s � 2
additional control components to every legal team.
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Assume all matrices of the forms c; d; e in the sets M to be labelled in a one-to-
one manner and let Labc; Labd; Labe; be the set of all the corresponding labels
as well as

Lab = Labc [ Labd [ Labe:

Now consider the following sets of symbols

� = fAl; A
0
l j A 2 N1; l 2 Labg ;

� = fXl j X 2 N2; l 2 Labg ;

� = fD;Dl; El; Fl; Gl j l 2 Labg [

fHk;Hk;l;i j 1 � k � s� 2; l 2 Lab; 1 � i � 4g ;

	 = � [� [�; and

N = N1 [N2 [� [� [�:

We construct a CD grammar system � with N [ f#g as the set of non-terminal
symbols, V as the set of terminal symbols, the set of axioms

W = fw j (S ! w) 2M; w 2 V �g [ fAXDH1:::Hs�2 j (S ! AX) 2 Mg

and the components Pl;1; Ql;1; R1;l;1; :::; Rs�2;l;1; and Pl;2; Ql;2; R1;l;2; :::; Rs�2;l;2;
for l 2 Lab :

A. If l : (A ! w;X ! Y ) is a matrix of type c with A 2 N1; w 2 (N1 [ V )
�;

jwjfAg = 0; and X;Y 2 N2; X 6= Y; then we take the components

Pl;1 = fX ! Xl; A! Alg [ f� ! # j � 2 Ng ;

Ql;1 = fD ! Dl; Dl ! Elg[

f� ! # j � 2 (	 [N2)� fAl; Xl; El;H1;l;2; :::;Hs�2;l;2gg ;

Rk;l;1 = fHk ! Hk;l;1;Hk;l;1 ! Hk;l;2g [ f� ! # j � 2 Ng ; 1 � k � s � 2;

Pl;2 = fAl ! w;Xl ! Y g [ f� ! # j � 2 Ng ;

Ql;2 = fEl ! Fl; Fl ! Dg [ f� ! # j � 2 (	 [N2)� fD;Y;H1; :::;Hs�2gg ;

Rk;l;2 = fHk;l;2 ! Hk;l;3;Hk;l;3 ! Hk;l;4g [ f� ! # j � 2 Ng ; 1 � k � s � 2:

B. If l : (A ! a;X ! b) is a matrix of type e; with A 2 N1; X 2 N2; a; b 2
V [ f�g ; then we take the components

Pl;1 = fX ! Xl; A! Alg [ f� ! # j � 2 Ng ;

Ql;1 = fD ! Dl; Dl ! Elg[

f� ! # j � 2 (	 [N2)� fAl; Xl; El;H1;l;2; :::;Hs�2;l;2gg ;

Rk;l;1 = fHk ! Hk;l;1;Hk;l;1 ! Hk;l;2g [ f� ! # j � 2 Ng ; 1 � k � s � 2;

Pl;2 = fAl ! A0
l; A

0
l ! a;Xl ! bg [ f� ! # j � 2 Ng ;

Ql;2 = fEl ! Fl; Fl ! Gl; Gl ! �g [ f� ! # j � 2 Ng ;

Rk;l;2 = fHk;l;2 ! Hk;l;3;Hk;l;3 ! Hk;l;4;Hk;l;4! �g[

f� ! # j � 2 Ng ; 1 � k � s� 2:

C. If l : (A ! #; X ! Y ) is a matrix of type d (hence with A ! # 2 F ); with
A 2 N1; X; Y 2 N2; X 6= Y; then we take the components

Pl;1 = fX ! Xlg [ f� ! # j � 2 Ng ;
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Ql;1 = fD ! Elg[f� ! # j � 2 (	 [N2 [ fAg)� fEl; Xl;H1;l;2; :::;Hs�2;l;2gg ;

Rk;l;1 = fHk ! Hk;l;2g [ f� ! # j � 2 Ng ; 1 � k � s� 2;

Pl;2 = fXl ! Y g [ f� ! # j � 2 Ng ;

Ql;2 = fEl ! Dg [ f� ! # j � 2 (	 [N2)� fD;Y;H1; :::;Hs�2gg ;

Rk;l;2 = fHk;l;2 ! Hkg [ f� ! # j � 2 Ng ; 1 � k � s� 2:

The intended legal teams of two components again are

fPl;1; Ql;1; R1;l;1; :::; Rs�2;l;1g as well as fPl;2; Ql;2; R1;l;2; :::; Rs�2;l;2; g

for arbitrary labels l 2 Lab; the legal con�gurations are

1. xXDH1:::Hs�2; with x 2 (N1 [ V )
+; X 2 N2 (initially we have x 2 N1);

2. xAlx
0XlElH1;l;2:::Hs�2;l;2; for x; x0 2 (N1 [ V )�; A 2 N1; X 2 N2; l 2

Labc [ Labe; and
3. xXlElH1;l;2:::Hs�2;l;2; for x 2 (N1 [ V )+; X 2 N2; l 2 Labd:

Again we obtain Lt0 � L(�; s) : If z1 =)G z2 is a derivation step in G; where z2
is not a terminal string, then z1DH1:::Hs�2 =)�

� z2DH1:::Hs�2 in a derivation
sequence using appropriate teams of size s from �; and if z2 is a terminal string,
then z1DH1:::Hs�2 =)�

� z2 in a derivation sequence using the appropriate teams
of size s from � .
As the additional components of type R contain the trap rules � ! # for every
� 2 N; these additional components will never be responsible for the termination
of a derivation sequence with a team containing such components. Hence, similar
arguments as in the previous proofs can be used to show that Lt0(�; s) � L; thus
again we obtain Lt0 (�; s) = L; which proves MAT�

ac � TsCD
�(t0):

If L � V � is a matrix language in MATac; we have to split up L :

L = (L \

0
@ [

0�i�s�2

V i

1
A) [

[
c;c1;:::;cs�22V

�rcc1:::cs�2
(L) fcc1:::cs�2g :

The familyMATac is closed under right derivation, hence �
r
cc1:::cs�2

(L) 2MATac:

For each of these languages �rcc1:::cs�2
(L) we consider a matrix grammarGcc1:::cs�2

in the strengthened accurrate normal form in order to construct a CD grammar
system � with Lt0(�; s) = L following the ideas described in the �rst part of this
proof and of Lemma 3. The details of this construction for proving MATac �
TsCD(t0) are obvious and therefore left to the interested reader. 2

As it is quite obvious, the proofs of the preceeding lemmas cannot be used for ob-
taining the results proved in [P�aun, Rozenberg 1994] for the derivation mode t2;
e. g. the components Pl;1 for l 2 Labc contain the rules � ! # for every � 2 N;
which means that Pl;1 still is applicable to every legal con�guration even after
the termination of a derivation sequence with the legal team fPl;1; Ql;1g : On the
other hand, the CD grammar systems � in the proofs of Lemma 3, Lemma 4 and
Lemma 5 were elaborated in such a way that they also work correctly in the der-
vation mode t1; which not only allows a new proof of some of the results already
obtained in [P�aun, Rozenberg 1994] for the derivation mode t1; but also yields
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an improvement of these results, because we now can allow teams of arbitrary
size without the restriction for these teams to be of size at least two.

Corollary. For every s 2 f�;+g [ f2; 3; 4; :::g ;

MATac � TsCD(t1) and MAT �
ac � TsCD

�(t1):

Proof. As we have already pointed out in the previous section, Lt1(�; s) �
Lt0(�; s) for every s 2 f�;+g [ f2; 3; 4; :::g and every CD grammar system �:
Therefore this relation also holds true for the CD grammar systems � constructed
in the previous proofs for the matrix languages inMATac andMAT �

ac:Moreover,
whenever z1 =)t0

T z2 with a legal team T from �; where z1 is a legal con�gu-
ration and z2 is a legal con�guration or a terminal string, then we also have
z1 =)t1

T z2; because in any case from the component of type Q in the team T
no rule can be applied any more when the derivation sequence started from z1
terminates with z2 according to the derivation mode t0; which implies that the
derivation sequence terminates in the derivation mode t1; too. Therefore we con-
clude Lt0(�; s) � Lt1(�; s); which all together implies Lt1(�; s) = Lt0(�; s) and
completes the proof of the corollary. 2

Combining the main results obtained in this paper we get the following

Theorem. For every s 2 f�;+g [ f2; 3; 4; :::g and i 2 f0; 1g;

MATac = PTsCD(ti) = TsCD(ti) and

MAT�
ac = PTsCD

�(ti) = TsCD
�(ti):

Proof. For the derivation mode t1 all the results stated in the theorem follow
from the results already proved in [P�aun, Rozenberg 1994] as well as from the
corollary proved above.
For the derivation mode t0 all the results stated in the theorem follow from
the results proved in this section: From Lemma 1 we know that PT�CD�(t0)
(respectively PT�CD(t0)) is an upper bound for all the other families of languages
generated by CD grammar systems (without �-rules) with teams in the derivation
mode t0; and in Lemma 2 we have proved PT�CD

�(t0) � MAT �
ac (respectively

PT�CD(t0) � MATac). On the other hand, in Lemma 3, in Lemma 4 and in
Lemma 5 we have proved that MAT �

ac � TsCD
�(t0) (and MATac � TsCD(t0))

for every s 2 f�;+g[ f2; 3; 4; :::g ; which all together proves the results stated in
theorem. 2
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