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Abstract: An n-dimensional vector of natural numbers is said to be prime if the great-
est common divisor of its components is one. A word is said to be Parikh prime if its
Parikh vector is prime. The languages of Parikh prime and of Parikh non-prime words
are investigated (they are neither semilinear nor slender, hence are not context-free or
D0L languages; both of them can be generated by matrix grammars with appearance
checking).
Marking in the plane the points identi�ed by prime (2-dimensional) vectors, interesting
patterns of non-marked ("free") points appear (they are similar to the territories in the
game of GO). The shape of such possible territories is investigated (with an exhaustive
analysis of tro-, tetro-, pento- and hexominoes). Some open problems are formulated
(both concerning the mentioned languages and the "GO territories theory").
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1 Introduction

The investigation here starts from the already (in)famous open problem asking
whether or not the set Q of all primitive words is context-free or not. (A word
is primitive if it cannot be written as a power of a di�erent word.) Many things
are known about this language and about its complement (see [6], [9] and their
references), but not the answer to the mentioned question. The conjecture is
that Q is not context-free. The topic is part of a more general area of interest
in language theory and combinatorics on words [10]: investigate languages con-
sisting of words containing or not containing given patterns. The history of the
problem goes back to Axel Thue [15], who considered words without adjacent
repeats. From pumping lemmas, a language consisting of such words cannot be
context-free. For a while the problem was open whether or not the language of
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repetitive words (words containing adjacent repeats, that is of the form x1x2x2x3,
with non-empty x2) is context-free. It was conjectured in [1] that the answer is
negative and, indeed, this has been con�rmed in [12].

In view of the di�culty of the context-freeness problem for the language Q,
it is natural to look for variants of it. If w is a non-primitive word, w = zk; k � 2,
then its Parikh vector, 	(w), will be of the form 	(w) = k �	(z). Consequently,
also 	(w) is non-primitive, in the sense that all its components are multiples of
an integer greater than or equal to 2. The converse is not true: 	(aabb) = (2; 2),
but aabb is primitive. Anyway, this suggests to consider the language of all words
having "primitive" Parikh vectors, in the sense that the greatest common divisor
of their elements is one. We call them prime vectors and Parikh prime words,
respectively.

The place of the languages of Parikh prime and of Parikh non-prime words
in the Chomsky hierarchy and in the L hierarchy is investigated in the following
section. Then, the patterns of points identi�ed by non-prime 2-dimensional vec-
tors are examined. Being surrounded by points identi�ed by prime vectors, these
patterns are reminiscant of the notion of a territory in the celebrated game of
GO, de�nitely one of the most interesting games ever invented. (GO is probably
the oldest signi�cant logical game, and yet considered the ultimate challenge for
arti�cial intelligence: although spectacular progresses were recently made con-
cerning the mathematical theory of parts of a game { of the end games in [2] {
the GO programs are still far from being competitive, a quite di�erent situation
compared to that in chess. We do not present here the rules of GO, every real
scientist knows the game...) A series of surprising results are obtained about
such territories (if a pattern appears once, then it appears in�nitely many times,
there are arbitrarily large territories, etc.), and a complete study of territories
with less than seven free points is done. However, a series of challenging problems
remains unsettled.

2 Parikh primality versus Chomsky and L hierarchy

As usual, for an alphabet V we denote by V � the set of all words over V ; the
empty string is denoted by � and V � � f�g by V +. The length of x 2 V � is jxj
and jxja is the number of occurrences of the symbol a 2 V in the string x 2 V �.
The left derivative (of a string x with respect to a symbol a) is denoted by @a(x)
and it is de�ned by @a(x) = x0 i� x = ax0.

If V = fa1; : : : ; ang, then the Parikh mapping 	V : V � �! Nn is de�ned by
	V (w) = (jwja1 ; : : : ; jwjan); w 2 V �, and it is extended to languages L � V � by
	V (L) = f	V (w) j w 2 Lg.

For (other) basic elements of formal language theory (including L systems),
we refer to [13], [14]. We denote by CF;CS the families of context-free and of
context-sensitive languages, respectively; by 0L;D0L;E0L;ET0Lwe denote the
families of languages generated by 0L systems, D0L, E0L, and ET0L systems,
respectively.

We introduce now some new notions.
A vector (v1; : : : ; vn) 2 Nn is said to be prime if gcd(v1; : : : ; vn) = 1.
A word w 2 V �; V = fa1; : : : ; ang, is called Parikh prime if 	V (w) is prime.

For an alphabet V , we denote by PV the set of all Parikh prime words over V
and by �PV its complement, �PV = V � � PV .
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Remark. By de�nition, � 2 �PV . Considering that gcd(n) = n for all n � 1,
we get Pfag = fag and �Pfag = f�g[ fai j i � 2g, hence this case is trivial. From
now on, we will assume that the alphabet we work with contains at least two
letters.

It is a natural question to �nd the place of languages PV ; �PV in the Chomsky
(and in the L) hierarchy. We shall do that using the notion of semilinearity (and
of slenderness).

A set M � Nn is called linear if there are v0; v1; : : : ; vp 2 Nn such that
M = fv0 +

Pp
i=1 viri j ri 2 Ng: A set M � Nn is semilinear if it is the union

of a �nite number of linear sets. A language L � V � is semilinear if 	V (L) is
semilinear.

The well-known Parikh theorem says that every context-free language is semi-
linear. However, we have

Theorem 1. For all V with card(V ) � 2, the language PV is not semilinear.

Proof. Take the semilinear set M = f(v1; v2; 0; 0; : : : ; 0) j v1; v2 2 Ng. For
each V with card(V ) � 2, if 	V (PV ) is semilinear, then 	V (PV )\M is semilinear
(the class of semilinear sets of vectors is closed under intersection [7]). Therefore
it is enough to prove that 	V (PV ) \M is not semilinear, hence it is enough to
consider the case of two-letter alphabets. We denote simply by P the language
PV for V = fa; bg (we also write a; b instead of a1; a2).

Assume that 	V (P ) is semilinear, hence 	V (P ) = [lj=1Tj , for Tj ; 1 � j � l,

linear subsets of N2. Assume

Tj = fv0j +

kjX

i=1

vijri j ri 2 Ng (�)

for given vectors v0j ; v1j ; : : : ; vkjj 2 N
2; 1 � j � l:

All strings of the form apbn for p a prime number and n 2 N� p �N are in
P , hence (p; n) are in 	V (P ). For each such (p; n) there is j; 1 � j � l, such that
(p; n) 2 Tj . For each prime p, the number n as above can be arbitrarily large,
hence (p; n) 2 Tj implies that there is vij with i > 0 and rj > 0 in the expression
(�) for (p; n). More precisely, for a �xed prime p and arbitrarily large n, we need

a vector vi0j = (0;m) with m > 0 used in the writing (p; n) = v0;j +
Pkj

i=1 vijri.
This implies that all vectors of the form

(p; n) + r(0;m) = (p; n+ rm) (��)

for r 2 N are in 	V (P ).
The set of prime numbers is in�nite, the set of vectors (0;m) used in writing

	V (P ) as above is �nite. Consequently, there are such p and m with p > m.
For such p and n we have gcd(p;m) = 1, hence there are s; t 2 Z such that
sp + tm = 1. Without loss of generality we may assume that s > 0; t < 0
(otherwise we replace s with s � mq and t with t + pq, with negative q, large
enough in absolute value to have s�mq > 0 and t+ pq < 0). Write

1 + jtjm = sp
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and multiply by n:
n+ njtjm = nsp:

For r = njtj in (��) we obtain

(p; n) + njtj(0;m) = (p; n+ njtjm) = (p; nsp);

which must be in 	V (P ), a contradiction with gcd(p; nsp) = p. In conclusion,
	V (P ) cannot be semilinear. 2

Also �PV is non-semilinear, and the proof for this language is much easier.

Theorem 2. For all V with card(V ) � 2, the language �PV is not semilinear.

Proof. As above, it is enough to consider the case of V consisting of two
letters. We denote by �P the language �PV for V = fa; bg.

Assume that 	V ( �P ) is semilinear and consider it as the union of �nitely
many linear sets Tj as in the previous proof. All vectors (p; pn), with prime p
and n � 1, are in 	V ( �P ). In order to write such vectors (p; pn) with given p and
arbitrarily large n we need a vector (0;m);m > 0, in the writing of some set Tj .
All vectors

(p; pn) + r(0;m) = (p; pn+ rm);

r � 0, are in the corresponding set Tj . Because gcd(p; pn+ rm) must be greater
than 1, we must have gcd(p; pn + rm) = p, which implies that m must be a
multiple of p (n and r can be arbitrary). However, there are only �nitely many
vectors (0;m) in the writing of sets Tj , they cannot contain as divisors all prime
numbers, a contradiction. 2

Corollary. For all V with card(V ) � 2, the languages PV and �PV are not
context-free, simple matrix, matrix of �nite index, unordered vector languages.

For de�nitions of the mentioned families, other than that of context-free
languages, as well as for the proof that they contain only semilinear languages,
the reader is referred to [4] and to its bibliography.

We recall now from [4] the de�nition of a matrix grammar.

A matrix grammar (with appearance checking) is a system

G = (N;T; S;M; F );

where N;T are disjoint alphabets (of nonterminal and terminal symbols, respec-
tively), S 2 N , M is a �nite set of sequences (A1 ! u1; : : : ; An ! un); n � 1,
of context-free rules over N [ T (called matrices), and F consists of some rules
appearing in M .

For x; y 2 (N [ T )� we write x =) y if there is (A1 ! u1; : : : ; An !
un) 2 M and w1; w2; : : : ; wn+1 2 (N [ T )� such that x = w1; y = wn+1 and
for each i = 1; 2; : : : ; n either wi = w0

iAiw
00
i ; wi+1 = w0

iuiw
00
i or jwijAi

= 0; wi =
wi+1 and Ai ! ui 2 F . (The rules of a matrix are used consecutively, in the
order indicated, possibly skipping rules appearing in F , providing they cannot
be applied to the current string.) Then L(G) = fx 2 T � j S =)� xg.

We denote byMATac the family of languages generated by matrix grammars
as above, with �-free rules. If F = ; (hence all rules must be e�ectively used),
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then we say that the grammar is without appearance checking. The correspond-
ing family of languages is denoted by MAT (again �-rules are not allowed).

It is known that CF � MAT � MATac � CS, all inclusions being proper,
and that MAT contains non-semilinear languages.

For saving space, in the following theorems we consider only the languages
P and �P (hence over V = fa; bg), but similar constructions can be obtained also
for general alphabets.

Theorem 3. P 2MATac:

Proof. We construct the matrix grammar

G = (N; fa; b; cg; S0;M; F );

where

N = fS0; S; A;A
0; A00; �A;B; �B;X; Y; Z; Z 0; Z 00; Z 000; U; U 0; U 00; V;#g;

F contains all rules with the right-hand member equal with #, and M contains
the following matrices:

1: (S ! XS);

(X ! X;S ! AS);

(X ! X;S ! BS);

(X ! Y; S ! A);

(X ! Y; S ! B):

(One produces a string Y w;w 2 fA;Bg+:)

2: (Y ! Z;A! A0; A! A0):

(One introduces two occurrences of A0; we shall check whether or not 2 is a com-
mon divisor for jwjA and jwjB . In general, the current number of A0 occurrences
will be checked as a possible common divisor of jwjA and jwjB .)

3: (Z ! Z;A0 ! A00; A! �A);

(Z ! Z 0; A0 ! #);

(Z 0 ! Z 0; A00 ! A0);

(Z 0 ! Z;A00 ! #):

(In the presence of Z one marks by a bar as many occurrences of A as there are
occurrences of A0 in the current string; the operation is iterated.)

4: (Z ! Z 00; A0 ! #; A! #):

(One �nishes at the same time both the A0 occurrences and the A occurrences,
hence jwjA is divisible by the number of A0 occurrences.)

5: (Z ! Z 000; A0 ! A0; A! #):
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(The number jwjA is not a multiple of the number of A0 occurrences.)

6: (Z 000 ! Z 000; A00 ! A0);

(Z 000 ! Z 000; �A! A);

(Z 000 ! Z;A00 ! #; �A! #; A! A0):

(One returns to a string containing only symbols A0 and A, with the number of
A0 occurrences increased by one. Matrices in groups 3 { 5 are now applied for
the divisibility by the new number of A0 symbols.)

7: (Z 00 ! Z 00; A00 ! A0);

(Z 00 ! U;A00 ! #);

(U ! U;A0 ! A00; B ! �B);

(U ! U 0; A0 ! #);

(U 0 ! U 0; A00 ! A0);

(U 0 ! U;A00 ! #):

(Having concluded in 4 that the number of A occurrences is a multiple of the
number of A0 occurrences, one now checks whether the number of B occurrences
is a multiple of the number of A0 occurrences.)

8: (U ! U 00; A0 ! A0; B ! #):

(The number of B occurrences is not divisible by the number of A0 occurrences.
Only in this case we can continue, otherwise # is introduced.)

9: (U 00 ! U 00; �B ! B);

(U 00 ! Z 000; �B ! #):

(One returns to group 6, for continuing the process with an increased number
of occurrences of A0.)

10: (Z 000 ! V;A00 ! #; �A! #; A! #);

(V ! V;A0 ! a);

(V ! V;B ! b);

(V ! c):

(When all occurrences of A were replaced by A0 and still jwjB is not divisi-
ble by this number, the string is "accepted", the nonterminals are replaced by
terminals.)

>From the explanations above we have

P = @c(L(G)) [ b
�ab�

(the grammar G produces all strings cw with w 2 P; jwja � 2). As MATac is
closed under left derivative and union, we have P 2MATac. 2

Theorem 4. �P 2MATac:
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Proof. We construct the matrix grammar

G = (N; fa; b; cg; S0;M; F );

with
N = fS0; S; A;B;A

0; A00; X; Y; Z; Z 0; U; U 0; V;#g;

F containing all rules introducing the symbol #, and M consisting of the fol-
lowing matrices:

1: (S ! XS);

(X ! X;S ! AS);

(X ! X;S ! BS);

(X ! Y; S ! A);

(X ! Y; S ! B):

(As above, one produces a string Y w;w 2 fA;Bg+:)

2: (Y ! Y;A! A0);

(Y ! Z;A! A0; A! A0):

(At least two occurrences of A are replaced by A0. The derivation will end cor-
rectly if and only if jwjA and jwjB are both divisible by the number of A0 occur-
rences.)

3: (Z ! Z;A0 ! A00; A! a);

(Z ! Z 0; A0 ! #);

(Z 0 ! Z 0; A00 ! A0);

(Z 0 ! Z;A00 ! #):

(The number of A occurrences is checked for divisibility with the number of A0.)

4: (Z 0 ! U;A00 ! #):

(After introducing U , the symbols A cannot be rewritten, hence their number
must have been multiple of the number of A0 occurrences.)

5: (U ! U;A0 ! A00; B ! b);

(U ! U 0; A0 ! #);

(U 0 ! U 0; A00 ! A0);

(U 0 ! U;A00 ! #):

(The symbols B are terminated, in blocks of size equal to the total number of
occurrences of A0.)

6: (U 0 ! V;A00 ! #):

(No further B will be rewritten, hence their number must have been a multiple
of the number of A0 occurrences.)

7: (V ! V;A0 ! a);

(V ! c):
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We have
�P = @c(L(G)) [ a

� [ b�;

hence �P 2MATac. 2

Consider now the place of languages P; �P in the L hierarchy.
A language L � V � is called slender [11] i� there is a constant k such that

card(L \ V n) � k for all n 2 N (the number of words in L of any given length
is bounded).

In [5] it is proved that each D0L language is slender. Clearly, P and �P are
not slender: for any prime numbers p; q, all permutations of apbq are in P and all
permutations of apb2p are in �P . Consequently, P and �P are not D0L languages.
Moreover, we have

Theorem 5. P =2 0L:

Proof. Assume that P = L(G) for some 0L system G = (fa; bg; w; �) (� is
a �nite substitution, but we consider it as a set of rules of the form c ! u for
u 2 �(c); c 2 fa; bg).

1. G must be propagating.
Assume that a! � 2 �. There is at least one rule b! x. If jxja � 1; jxjb � 1,

then aaabb =) xx, which is not in P . If we have both b ! ai and b ! bj in
�, i; j � 1, then abbbb =) b2ib2j , again not in P . If we have b ! ai and
a ! bj ; i; j � 1, or b ! bi and a ! aj ; i; j � 1, then aaabb =) a2ib2j or
aaabb =) a2jb2i, which are not in P . If the only b-rule is b ! �, then we must
have a ! x in �, with jxja � 1; jxjb � 1 and then aab =) xx, not in P . In all
cases (because we need rules introducing both a and b) we reach a contradiction.

Consequently, G is propagating, hence its axiom must be one of the shortest
strings in P . These strings are

a; b; ab; ba; aab; aba; baa; abb; bab; bba:

Assume that the axiom is a. The case of w = b is symmetric.
Then the rule a! b must be in � (in order to obtain b 2 P ).

2. No rule c ! di; c 2 fa; bg; d 2 fa; bg; i � 2, is possible: take e 6= c such
that fe; cg = fa; bg and a rule e! x. Then eic =) xidi, which is not in P .

3. Assume that we have the rule a! ab in �. Then:
{ if a! a 2 �, then aaabb =) (ab)(a)(b)xx =2 P;
{ if b! a 2 �, then aabbb =) (ab)(b)(a)(a)(a) =2 P ,
{ if b! b 2 �, then aaab =) (ab)(ab)(b)(b) =2 P .

All cases are contradictory.

4. Examine now the case of the string aab. It cannot be produced starting
from a string of length three, because, as we have seen above, we cannot use
rules a ! a; b ! a; b ! b. Moreover, it cannot be produced from a string of
length two: we need either a! a or a! aa in the case of ab =) aab, and either
b! a or b! aa in the case of ba =) aab, and this is contradictory.

If b! aab 2 �, then aab =) (ab)(b)(aab) =2 P . Consequently, we must have
the rule a! aab in �.

Consider now the case of the string abb. As above, it cannot be produced from
strings of length three. If ab =) abb, then we need b ! b or b ! bb, a contra-
diction. If ba =) abb, then we need b! ab and aaab =) (ab)(ab)(ab)(ab) =2 P .
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They remain two cases:
a! abb 2 �; then a4b3 =) (a2b)(a2b)(ab2)(ab2)xxx =2 P;
b! abb 2 �; then ab =) (a2b)(ab2) =2 P .

All cases are contradictory, the assumption that a! ab 2 � cannot be true.

5. If b! ab 2 �, then:
{ if a! a 2 �, then aabbb =) (a)(b)(ab)(ab)(ab) =2 P;
{ if b! a 2 �, then aaabb =) (b)(b)(b)(a)(ab) =2 P;
{ if b! b 2 �, then abbb =) (b)(ab)(ab)(b) =2 P:

All cases are contradictory.

6. Examine the possibilities to produce the string aab. We cannot obtain it
from strings of length three (we cannot use rules as above) and also not from
strings ab; ba (in both cases we need rules already discussed: a! a; a! aa; b!
a; b! aa).

If a! aab 2 �, then aab =) (aab)(b)(ab) =2 P:
If b! aab 2 �, then abb =) (b)(ab)(aab) =2 P:
The string aab cannot be generated, a contradiction with L(G) = P , hence

P =2 0L. 2

Open problems. Is �P a 0L language ? Which are the relationships between
P; �P and E0L;ET0L and MAT ?

The syntactic monoid (of course, in�nite) of the languages �PV has a nice
property: it is isomorphic with Nk, for k =card(V ).

Indeed, take V = fa1; : : : ; akg. For x; y 2 V � we de�ne

x � y i� (uxv 2 �PV , uyv 2 �PV ); for all u; v 2 V �:

Lemma 1. For all x; y 2 V �; x � y if and only if 	V (x) = 	V (y):

Proof. If 	V (x) = 	V (y), then for all u; v 2 V � we have 	V (uxv) = 	V (uyv),
therefore uxv 2 �PV if and only if uyv 2 �PV .

Conversely, suppose that x � y, but 	V (x) 6= 	V (y). Assume 	V (x) =
(i1; : : : ; ik), and 	V (y) = (j1; : : : ; jk).

Without loss of generality, we may assume that there is r; 1 � r � k, such
that ir < jr (if necessary, we interchange x and y). Denote D = jr � ir.

Take two consecutive prime numbers p1; p2 such that p2 � p1 > D and such
that p1

3
> maxfih j 1 � h � kg:

Denote q = p1 � ir. Because

p1 = ir + q < jr + q = p1 + (jr � ir) = p1 +D < p2;

it follows that jr + q is not a prime number. Therefore, jr + q = df for some

numbers d > 1; f > 1 such that d <
p1
2
.

Let d1; : : : ; dk be such that (jh + dh) � 0 (mod d), 1 � h � k. We can take
these numbers such that 0 � dh < d; 1 � h � k.

Consider the words

u = ad11 ad22 : : : a
dr�1
r�1 a

q
ra

dr+1
r+1 : : : adkk ;

v = �:
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We have

	V (uyv) = (j1 + d1; : : : ; jr�1 + dr�1; jr + q; jr+1 + dr+1; : : : ; jk + dk):

>From the previous construction, d divides all components of this vector, hence
uyv 2 �PV .

On the other hand,

	V (uxv) = (i1 + d1; : : : ; ir�1 + dr�1; ir + q; ir+1 + dr+1; : : : ; ik + dk) =

= (i1 + d1; : : : ; ir�1 + dr�1; p1; ir+1 + dr+1; : : : ; ik + dk):

For all h; 1 � h � k; h 6= r; we have

ih + dh <
p1
3
+
p1
2
< p1:

Consequently, p1 does not divide any of the components ih + dh; h 6= k, that is
gcd(i1 + d1; : : : ; ir�1 + dr�1; p1; ir+1 + dr+1; : : : ; ik + dk) = 1. This means that
uxv =2 �PV , a contradiction to x � y. 2

Consequently, for each x 2 V �, the equivalence class of x, denoted by x̂,
consists of all permutations of x.

Theorem 6. The monoidM = V �=� is isomorphic with the monoid (Nk;+; (0;
: : : ; 0)).

Proof. We de�ne ' : M �! Nk by '(x̂) = 	V (x) for all x 2 V �. From the
previous lemma, if x � y, then 	V (x) = 	V (y), hence ' is well de�ned.

Because for all x; y 2 V � we have

'(x̂ŷ) = '(x̂y) = 	V (xy) = 	V (x) + 	V (y) = '(x̂) + '(ŷ);

this is a morphism.
If '(x̂) = '(ŷ), then 	V (x) = 	V (y), and according to Lemma 1 we have

x̂ = ŷ, hence ' is injective. The surjectivity is obvious: for each vector t 2 Nk

there is a word w 2 V � such that 	V (w) = t; hence '(ŵ) = t. In conclusion, '
is an isomorphism of monoids. 2

3 Prime vectors in the plane

Let us mark by a dot the points of coordinates (n;m) with gcd(n;m) = 1. We
have done this in Figure 1 for n;m positive and with n < m; 1 � n � 19; 1 �
m � 23. It is obvious that the arrangements of dots is symmetric with respect
to the axes and with respect to the diagonals of the plane, hence it is enough to
examine only the region of points (n;m); n;m 2 N; with n < m (as in Figure
1).

If we interpret the dots as (say black) GO stones, we �nd in this �gure a series
of territories: regions of empty points, connected horizontally or vertically, and
surrounded by occupied points.

Which shapes can these territories have ? Which is their relative distribution
? Are there territories of an arbitrarily large size (as regards the number of
points) ?
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These questions and other related ones can be formulated starting from Fig-
ure 1. We shall answer part of them, after introducing some more formal termi-
nology.

Every vector (n;m) 2 Z2 is called a point. Two points (n1;m1); (n2;m2)
are neighbors if jn1 � n2j + jm1 �m2j = 1 (two diagonally adjacent points are
not considered neighbors). A point (n;m) with gcd(n;m) = 1 is called marked/
occupied (the marked points correspond to Parikh prime strings over two letters).
A point (n;m) with gcd(n;m) > 1 is called free (point of territory). A sequence of
points (n1;m1); (n2;m2); : : : ; (nk;mk) is called a path (from (n1;m1) to (nk;mk))
if for all j = 1; 2; : : : ; k�1, the points (nj ;mj); (nj+1;mj+1) are neighbors. A set
M � Z2 is said to be connected if for all two points (n1;m1); (n2;m2) inM there
is a path from (n1;m1) to (n2;m2) using only points ofM . A maximal connected
set of free points is a territory (maximality means that no further free point can
be added without losing the connectedness). Of course, every one-point set is
connected.

Before examining the possible territories, let us consider their size (the num-
ber of free points).

Obviously, the points on the plane axes are all free (by convention, gcd(0; n) =
n for all n), hence they form together an in�nite territory. This is the only in�nite
territory:

Theorem 7. Outside the axes, there are arbitrarily large territories, but no
one of them is unbounded.

Proof. For a given n 2 N, take n consecutive natural numbers, m + 1;m+
2; : : : ;m+n;m � 1. For q =

Qn
i=1(m+i), consider all points (m+i; q); 1 � i � n.

They are clearly in the same territory: gcd(q;m + i) = m + i; 1 � i � n, and
(q;m+ j); (q;m+ j+1) are adjacent for each j. We have found a territory of at
least n points, thus proving the �rst assertion.
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Figure 1

All points (n;m) with either jnj = 1 or jmj = 1 are marked. Moreover, all
points (n;m) with jjnj�jmjj = 1 are marked. Therefore, it is enough to prove that
there is no unbounded territory in the region corresponding to Figure 1, of points
(n;m) with 0 < n < m. For every prime number p, all points (n; p); 0 < n < p,
are marked (gcd(n; p) = 1). Consequently, each territory from this region is
included in the horizontal stripe delimited by two consecutive primes, hence it
cannot be unbounded. 2

In fact, a stronger result is true.

Lemma 2. If M � Z2 is a �nite territory and (p; q) is an arbitrary point
in Z2 � f(0; 0)g, then there is a translation f : Z2 �! Z2 such that all points
f(n;m) for (n;m) 2M , as well as f(p; q) are free.
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Proof. AssumeM = f(n1;m1); : : : ; (nk;mk)g and denote gcd(ni;mi) = di; 1 �

i � k. For D =
Qk

i=1 di, de�ne the translation

ft1;t2(n;m) = (n+ t1D;m+ t2D);

for any given integers t1; t2.
For every point (ni;mi) of M we have ft1;t2(ni;mi) = (ni + t1D;mi + t2D)

and gcd(ni + t1D;mi + t2D) � di > 1. Therefore, all points ft1;t2(ni;mi) are
free, for all t1; t2.

Take now t1 = p; t2 = q. We obtain

fp;q(p; q) = (p+ pD; q + qD) = (p(D + 1); q(D + 1)):

Because gcd(p(D + 1); q(D + 1)) � D + 1 > 1, it follows that also fp;q(p; q) is a
free point. 2

For a territory M , denote by w(M) and call the width of M , the size (of the
edge) of the largest square contained in M . (In Figure 1 we have only territories
of width 1, with the only exception of the territory containing the point (14; 20),
whose width is 2.)

Theorem 8. There are territories of arbitrarily large width.

Proof. Take an arbitrary �nite territory M0 and a point (n;m), neighbor
to a point in M0 and marked. Whichever this point is, using the procedure in
Lemma 2, we can �nd a translation f : Z2 �! Z2 such that all points in M 0

1 =
f(M0)[ff(n;m)g are free and M 0

1 is connected (if two points (n1;m1); (n2;m2)
are neighbors, then also f(n1;m1); f(n2;m2) are neighbors). Denote by M1 the
territory which includes M 0

1 (it is possible that further marked points around
M0 are translated to free points around f(M0)). We can continue this procedure
arbitrarily many times, choosing the marked point (n;m) in such a way to obtain
territories with larger and larger widths. 2

Consequently, for every territory there are arbitrarily many territories of the
same shape or larger. Can we �nd arbitrarily many territories precisely of the
same shape ? Surprisingly, the answer is a�rmative.

We say that two territories M1;M2 are (strongly) congruent if there is a
translation f : Z2 �! Z2 such that f(M1) = M2. Given a territory M , we
denote by F (M) the frontier ofM , that is the set of all marked points (n;m) for
which there is a free point (n0;m0) in M such that (n;m); (n0;m0) are neighbors.
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Theorem 9. Given a �nite territory, there are in�nitely many territories
congruent with it.

Proof. Consider a territoryM = f(n1;m1); : : : ; (nkmk)g, denote di = gcd(ni;mi);

1 � i � k, and d =
Qk

i=1 di. Assume that F (M) = f(p1; q1); : : : ; (ps; qs)g.
Clearly, all pi; qi are non-zero numbers and we have gcd(pi; qi) = 1 for all
i; 1 � i � s:

Consider the translation f : Z2 �! Z2 de�ned by

f(n;m) = (n+ pqd;m);

where

p =

sY

i=1

pi; q =

sY

i=1

qi:

Because gcd(ni + pqd;mi) � di > 1, each point f(ni;mi); 1 � i � k, is a free
point.

Moreover, for each (pi; qi) 2 F (M) we have

f(pi; qi) = (pi + pqd; qi) = (pi(1 +
p

pi
qd); qi);
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therefore gcd(pi + pqd; qi) = 1, hence f(pi; qi) is a marked point.

Clearly, if two points (n;m); (n0;m0) are neighbors, then also f(n;m); f(n0;m0)
are neighbors. Consequently, M 0 = f(M) is a territory and F (M 0) = f(F (M)).

The two territoriesM;M 0 are congruent (and di�erent). Continuing the pro-
cedure (starting now from M 0, then from the currently constructed territory),
we can �nd arbitrarily many congruent territories, all congruent with M . 2

1 2
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Figure 3

Observe that the previous Theorems 7 { 9 can be extended to the n-dimensional
space.

Therefore, according to Theorem 9, if a pattern appears, then it appears
in�nitely many times. However, the question arises: which patterns actually ap-
pear ? For instance, Figure 1 contains a series of patterns, but no domino (a
territory consisting of two points). As we shall see, only a few of the small poly-
ominoes are possible. We shall complete the analysis for the domino, trominoes,
tetrominoes, pentominoes (Figure 2), and hexominoes (Figure 3). We shall refer
to these polyominoes with the number associated to them in these �gures. (Lists
of polyominoes can be found in many places; we refer here to the monumental
book [3]. As usual, two polyominoes which can be obtained from one another by
rotations and mirroring are considered identical.)

Before discussing particular polyominoes, we give a simple and useful general
lemma.

Given a territory M , we say that a set E is a horizontal edge of M if
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1. E = f(n;m); (n+ 1;m); : : : ; (n+ k;m)g �M;
2. (n� 1;m) and (n+ k + 1;m) are marked points,
3. either all points (n;m � 1); (n + 1;m � 1); : : : ; (n + k;m � 1), or all points

(n;m+ 1); (n+ 1;m+ 1); : : : ; (n+ k;m+ 1) are marked.

Similarly we can de�ne a vertical edge.

Lemma 3. There is no territory having an edge of even length.

Proof. Assume that there is a territoryM having a horizontal edge of length
2k; k � 1; the case of vertical edges is similar. Assume that we have a situation
as in Figure 4; the case when the marked neighboring points are above is similar.

y

y

yy

ym+1

m

n n+1 n+2
. . .

n+2k n+2k+1

Figure 4

If m is even, because at least one of n + 1; n + 2 is even, one of the points
(n+ 1;m); (n+ 2;m) must belong to M , a contradiction.

If m is odd, then m + 1 is even. One of n; n + 2k + 1 is even, hence either
(n;m+ 1) or (n+ 2k + 1;m+ 1) belongs to M , again a contradiction.

In conclusion, M cannot be a territory. 2

Theorem 10. (i) No straight, horizontal or vertical, line of even length can
be a territory (hence the domino cannot appear).

(ii) Both trominoes appear as territories.
(iii) Only the tetromino 3 appears as a territory.

Proof. All the negative assertions are proved by the previous lemma (all the
mentioned patterns have an edge of even length). Both the trominoes and the
tetromino 3 are present in Figure 1. 2

Theorem 11. From pentominoes, only those with numbers 1, 4 and 5 in
Figure 2 appear as territories.

Proof. The pentomino 4 appears in Figure 1. An example of territory of the
form of pentomino 1 is f(2; 30); (3; 30); (4; 30); (5; 30); (6; 30)g. Figure 5 indicates
a place where the pentomino 5 appears. Because

103 = prime, 214 = 2 � 107,
104 = 23 � 13, 215 = 5 � 43,
105 = 3 � 5 � 7, 216 = 23 � 33,
106 = 2 � 53, 217 = 7 � 31,
107 = prime, 218 = 2 � 109;
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we have indeed a territory of the speci�ed shape.
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v

v

218

217

216

215

214

103 104 105 106 107

Figure 5

The pentominoes 2, 3, 6, 8, 9, 10, 11, 12 contain edges of even lengths, hence
they cannot appear.

There remains the pentomino 7. It is also impossible as territory (but it
cannot be refuted by Lemma 3). Consider the position in Figure 6; all other
orientations can be handled in the same way.

If m is odd, then m+ 1 is even; one of n+ 1 and n+ 2 is even, hence one of
the points (n+1;m+1); (n+2;m+1) belongs to the territory, a contradiction.

If m is even, then also m + 2 is even. If n is even, then (n;m + 2) must be
in the territory, which is contradictory. If n is odd, then n + 3 is even, hence
(n+3;m) must be in the territory. In conclusion, the situation in Figure 6 cannot
appear. 2

Figure 6

v

v v

v

v

v

v

v

vv

m+4

m+3

m+2

m+1

m

n n+1 n+2 n+3 n+4

Theorem 12. From hexominoes, only those with numbers 10, 11, and 28 in
Figure 3 are possible.

Proof. From Lemma 3 it immediately follows that the following hexominoes
cannot appear as territories: 1, 2, 3, 5, 7, 8, 9, 12, 15, 16, 17, 18, 20, 21, 22, 23,
24, 25, 26, 29, 30, 31, 32, 33, 34, 35.
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333231

89
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91

92

In Figure 1 the hexominoes 11 and 28 already appear. Also that with number
10 is possible, as indicated in Figure 7. We have

89 = prime, 31 = prime,
90 = 2 � 32 � 5, 32 = 25,
91 = 7 � 13, 33 = 3 � 11,
92 = 22 � 23, 34 = 2 � 17,

35 = 5 � 7,
36 = 22 � 32,
37 = prime,

and this shows that we have, indeed, a territory of the desired form.
It remains to consider the hexominoes 4, 6, 13, 14, 19, 27. The impossibility

of each of them to appear as a territory can be proved in the same way, by
examining the parity of coordinates. We consider only two cases:

Figure 8 shows that the hexomino 4 cannot appear: if m is even, then one
of (n + 1;m); (n + 2;m) is free; if m is odd, then m + 1 is even, hence one of
(n+ 4;m+ 1); (n+ 5;m+ 1) is free. A contradiction is obtained in each case.

Figure 8
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Figure 9 shows that the hexomino 6 is impossible, too: if m is even, then one
of (n+ 1;m); (n+ 2;m) must be in the territory. If m is odd, then both m+ 1
and m+ 3 are even. If n is even, then (n;m+ 1) is free, if n is odd, then n+ 3
is even, hence (n+ 3;m+ 3) is free. All cases are contradictory.
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Figure 9
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The reader can check in the same way the other cases. 2

We can conclude that only a few polyominoes of the speci�ed types can
appear as territories. What about larger polyominoes ? What about squares, for
instance ? (Of course, squares of even dimensions cannot appear.) Such problems
remain to be investigated.

As a challenge for the reader, we remark that the 3� 3 square appears as a
territory. Indeed, consider the situation in Figure 10. We have

103 = prime, 6203 = prime,
104 = 23 � 13, 6202 = 2 � 7 � 443,
105 = 3 � 5 � 7, 6201 = 32 � 13 � 53,
106 = 2 � 53, 6200 = 23 � 52 � 31,
107 = prime, 6199 = prime.

It is easy to see that the situation in Figure 10 is correct, the 3 � 3 square
is a territory. Other 3 � 3 squares can be found centered around the points of
coordinates (105, 150891), (105, 295581), (105, 440271), (105,584961), etc. Of
course, these examples have been found using a computer. Observe the places
where the squares appear; it seems that the �rst one is one of the closest to the
origin of the plane. (It is surely the lowest one on the vertical lines 104, 105, 106.

What about larger squares ? We conjecture that all squares (2k+1)�(2k+1)
are possible.

u u u

u

u

u

uuu

u

u

u

6203

6202

6201

6200

6199

103 104

Figure 10

105 106 107

A series of number-theoretic (the geometry of numbers) questions can be
formulated about the above free/marked points, starting with a problem similar
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to the famous Gauss' one (see problem F1 in [8], as well as the references of
[8]): how many free/marked points there exist inside the circle with centre in
the origin and radius r ? (In the case of Gauss' problem, all lattice points are
counted.) What about the presumably easier problem concerning the number
of free/marked points in a square centered in the origin and with a given size
? Which is the ratio of the number of free points over the number of marked
points in such a square ? Is this ratio convergent ? If yes, which is the limit ?
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