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Abstract: We propose constraints as the appropriate computational constructs for
the design of agents with the task of selecting, merging and managing electronic infor-
mation coming from such services as Internet access, digital libraries, E-mail, or on-line
information repositories. Speci�cally, we introduce the framework of Constraint-Based
Knowledge Brokers, which are concurrent agents that use so-called signed feature con-
straints to represent partially speci�ed information and can 
exibly cooperate in the
management of distributed knowledge. We illustrate our approach by several examples,
and we de�ne application scenarios based on related technology such as Telescript and
work
ow management systems.
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1 Introduction

New electronic sources of information, such as E-mail, Internet access and on-
line information repositories 
ood the desktop environment of users with an
evergrowing 
ow of information which, in order to be exploitable, demand ef-
�cient management. The inundation of electronic data coming from all kind of
sources must convert into real knowledge in order to bene�t the whole range of
users from business people to casual surfers and shoppers on the Internet. Intel-
ligent agents [CACM, 1994; Wooldridge and Jennings, 1995] interacting through
multiagent systems have been proposed as the appropriate answer to this de-
mand. Indeed, software processes of this kind may one day manage distributed
knowledge by \living on the network" and manipulating electronic information
on users' behalf.

A central question faces us in order to reach an e�ective deployment of such
technology: How intelligent agents can be best designed and customized to meet
users' individual information needs. The issue at stake concerns essentially one
of adequate computational support. However, the motivations di�er from those
underlying linguistic frameworks for multiagent systems such as Actors [Agha,
1986] and Agent-oriented Programming (AOP) [Shoham, 1993] as well as of mul-
tiagent architectures, either \reactive" (see e.g. [Brooks, 1991]) or \deliberative"
[Bratman et al., 1988] or \hybrid" [Kaelbling and Rosenschein, 1990]. In these
cases the agents are assumed to be situated in an environment which they can
modify while pursuing their own goals. These goals range from collecting empty
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cans, for simple robotic agents, or optimally solving scienti�c programmingprob-
lems, for software agents in massively parallel multiprocessing architectures, to
more complex types of activities for correspondingly more complex types of
agents. Furthermore, the agents communicate either by passing messages (as in
Actor languages) or by issuing, declining, or committing to requests, as well as
performing other speech acts (as in the higher-level AOP languages). Thus, these
agents explicitly communicate with their fellows and implicitly assume their sit-
uatedness in given environments. By contrast, agents primarily concerned with
the elaboration and manipulation of information must have a more direct and
explicit relationship with the environment since by its exploration they derive
their very raison d'etre. Communication with fellow agents will at times be im-
plicit and other times explicit: these agents e�ectively elaborate information and
then communicate it, either to other agents or to humans. The recipients of infor-
mationmay be unknown to the senders { communication resembles more a radio
broadcast or a conference presentation than a conversation between entities that
know each other.

A computational model should satisfy a few precise requirements in order to
support this notion of agency:

1. By de�nition these agents continually watch for information that meets pre-
established criteria. For instance, in a given company, they can routinely
scan news wires for breaking reports about the company's current customers,
whoever they happen to be. Thus, it must be possible to express and imple-
ment agents' behavior in terms of a set of criteria through which information
is �ltered and selected. These criteria act as a partial speci�cation of the in-
formation to come.

2. Electronic information domains are wide open lands where most of the times
we do not know exactly what we are looking for, nor what we are going to
�nd. In these conditions, a good way to guide our search is to explicitly
exclude things we are not interested in. This can be conveniently expressed
by freely mixing \positive" and \negative" requirements in the speci�cation
of the behavior of agents. Thus, users should be allowed to feed agents with
such requests and criteria as \�nd me all books written by Umberto Eco
which are not novels" or \I am not interested in reports on sales reps from
Canada Customer Operations".

3. The scope of exploration of agents should be dynamically readjustable to
optimize their work. As a minimal requirement, they should be capable of
\focusing on targets," thus incrementally reducing their scope as they pro-
ceed. More intelligence could plausibly come from long-term memory, that is
the remembrance of things past: They should be able to reuse the knowledge
they have gained from executing a certain request in the context of other
requests. Take for instance a request such as \�nd me all books by Umberto
Eco which are not novels" and a subsequent request such as \�nd me all
books by Umberto Eco which are literary essays."

4. We would also like to implement cooperative behavior of multiple agents
on given tasks. Cooperation should arise naturally from handling queries
involving the selection and composition of information from di�erent knowl-
edge repositories (often called backends) reachable through the Internet.
Another example is the creation of compound documents on the 
y from
preexisting documents, according to some hierarchical description language
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like SGML [ISO, 1986], with each part of the �nal document being assigned
to a speci�c agent.

5. Finally, it should be possible to tune interagent communication in terms
of di�erent communication protocols according to such parameters as the
nature of the problem to be solved, the underlying system architecture, etc.

In this paper we investigate these issues from the point of view of a computational
construct that has already found widespread application in arti�cial intelligence
and computer science, namely the notion of constraint. Constraints have been ex-
ploited mainly in the context of search and combinatorial optimization but their
signi�cance is more general and extends to the management and manipulation
of information. In fact, constraints can be used to provide partial speci�cations
on the possible values of variables. This paper illustrates how this capability can
be exploited to implement prede�ned criteria for �ltering and selecting informa-
tion. The speci�c constraint framework we shall adopt is the Constraint-Based
Knowledge Brokers (CBKBs) [Andreoli et al., 1994; Andreoli et al., to appear]
model, which exploits constraints to support knowledge-intensive tasks executed
by concurrent agents and views the management and manipulation of informa-
tion in distributed environments as a form of distributed problem solving. A
CBKB is capable of understanding and enacting both \requests" and \nega-
tions of requests," is self-su�cient in managing its own scope of exploration over
a given information domain and is capable of knowledge reuse. Furthermore, dif-
ferent communication protocols for CBKBs have been de�ned that can be used
to tune interagent communication and cooperation.

The remainder of this paper is organized as follows. In Sect. 2, we charac-
terize the notion of multiagent interaction in the context of distributed problem
solving. Agents are classi�ed and given a set of general requirements. Agent
cooperation is then illustrated in terms of CBKBs. Two di�erent protocols for
interagent communication are introduced and described, one supporting direct,
explicit communication and the other supporting group-oriented communication.
Sect. 3 introduces a speci�c type of constraints suitable for representing elec-
tronic information, namely signed feature constraints (SFC). In Sect. 4, SFCs
are used to illustrate a number of speci�c issues of information management,
such as interdependencies, thresholds, and reuse of information. Sect. 5 explains
related scenarios. In particular we discuss negotiation in the contract-net proto-
col, Telescript as a promising agent infrastructure, and work
ow management as
an interesting application domain for remote programming. In Sect. 6, related
work is discussed. Sect. 7 concludes the paper.

2 Multiagent Interaction

The area of Distributed Problem Solving (DPS) has led to various approaches
which allow distributed (semi-)autonomous agents to cooperate in order to solve
complex problems and accomplish tasks which might not be solvable by one
individual system. From the problem solving point of view, distribution implies
the decomposition of the problem into a set of subproblems and the dissemination
of the subproblems to the appropriate agents which solve them autonomously
and concurrently. The �nal solution of the global problem can be generated
by composing the solutions of the subproblems. Thus, agents can be viewed as
problem solvers which cooperate to generate the solution of the global problem.
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2.1 Classi�cation

We distinguish between passive and active agents. Passive agents act under
direct user control. The user explicitly triggers the execution of agent func-
tions, e.g. sorting and �ling electronic messages in the user's mailbox. Unlike
passive agents, active agents react to incoming messages, such as requests for
information or the execution of functions, autonomously or semi-autonomously.
Autonomous agents may perform actions without user involvement. They have
enough knowledge about the problem domain and the contextual constraints
to interpret received messages and react appropriately. During execution, the
user has no direct control over the agent's behavior. On the other hand, semi-
autonomous agents perform routine tasks for the user. Exceptional requests or
situations are referred to the user who handles them personally. The behavior
of semi-autonomous agents is directly controlled by the user who has read and
write access to the rules which specify the agent's behavior.

Agents are used in a wide area of di�erent application domains ranging
from robotics, distributed sensoring to Computer-Supported Cooperative Work
(CSCW) and informationgathering [Wayner, 1994]. The emerging �eld of CSCW
provides a demanding area for distributed problem solving. CSCW systems need
to support the interaction of humans and overcome the di�culties of tempo-
ral and spatial distribution. For instance, agents may be used to support the
scheduling of meetings (see [Sen and Durfee, 1991]). Another related application
domain is that of work
ow management and document processing where agents
might be used to coordinate the tasks and information exchange between tasks
and humans. The rapid growth of the Internet and the World-Wide Web have
demonstrated the need for innovative and e�cient ways of information gath-
ering, and this provides the main focus for this paper. The World-Wide Web
makes available an incredible amount of information; however, in many cases
the user is unable to �nd and extract the desired information e�ectively. In this
case agents may be used to collect relevant information, �lter the search results
according to contextual constraints, and present the resulting information to the
user in an appropriate form. Telescript [White, 1994b] is an example of system
providing infrastructural support for this type of agent application.

The contract-net protocol [Smith, 1980] was one of the �rst approaches to
provide a general framework for DPS. It supports an application protocol for
communication between problem solving agents and facilitates distributed con-
trol during the problem solving e�ort. Special emphasis is put on

{ localizing those agents which are eligible for solving the created subproblems;
{ the negotiation between agents for the information exchange with respect

to subproblem descriptions, required agent capabilities and subproblem so-
lutions [Davis and Smith, 1983].

The Rank Xerox Research Centre at Grenoble has developed the model of
Constraint-Based Knowledge Brokers (CBKBs) which uses constraints to pro-
vide computational support for DPS. CBKBs explicitly separate aspects of local
problem solving, based on computations speci�c to a single agent, from aspects of
global problem solving, deriving from the interaction of di�erent agents. CBKBs
model active agents which act autonomously and concurrently. In the following
sections some of the speci�c capabilities of the CBKB model will be discussed
in more detail.
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In order to e�ectively cooperate and participate in the problem solving e�ort,
an agent must satisfy the following requirements:

{ an agent must be able to communicate with other agents of the system (e.g.
send and receive request/answer messages);

{ an agent must be able to act upon receipt of messages.

2.2 Cooperation between Agents

The phenomenon of cooperation which is well-known in the human environment
may also be applied to agent interaction. A number of di�erent cooperation
strategies between agents have been proposed, ranging from strongly hierarchi-
cal master-slave relationship, to the less hierarchical contract-net [Smith, 1980],
to the sharing of common goals. In the latter case agents not only exchange
information with respect to their individual tasks and problems, but they also
communicate their goals. Thus, the agents follow shared goals when pursuing
the problem solving activities.

In general, cooperation between agents is based on explicit communication,
i.e. agents send messages to transfer knowledge and requests. The message con-
tent can range from values, formal and informal descriptions, to constraints. The
CBKB model uses values and constraints to represent knowledge and requests
for problem solving. The basic message types in the context of DPS are requests
and answers. Usually messages are completely structured and are only intended
for agent consumption; the messages are not in human-readable form. The mes-
sage structures can be tailored to reduce network bandwidth and interpretation
complexity by the agents. Both the contract-net protocol and the CBKB model
apply structured messages to model agent interaction. An example for a sys-
tem which uses semi-structured messages is Object Lens [Malone and Lai, 1988],
which provides intelligent �ltering and dissemination of electronic mail messages.
Semi-structured messages are based on the notion of a semi-formal system [Mal-
one, 1989] which:

{ represents and interprets information that is formally speci�ed,
{ permits the human user to create and interpret formal information infor-

mally,
{ allows the formal interpretation by the computer and the informal interpre-

tation by the user to be easily changed.

Semi-formal systems are especially useful in heterogeneous environments
where there is no clear separation between human tasks and agent tasks. They
support the co-existence of humans and agents in the same environment. For ex-
ample, some people use personal agents to cooperate in the distributed meeting
scheduling process, while other people perform the required requests manually.
Thus, semi-formal systems facilitate a smooth transition from a purely human-
oriented environment to a completely agent-based environment. However, semi-
formal systems use rather complex messages. This creates a signi�cant network
load and requires complex interpretation functionality by the agents.
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2.3 CBKB Interaction Protocols

Within the CBKB model, two di�erent agent interaction protocols have been
designed:

{ the request-subrequest protocol;
{ the local caching protocol.

2.3.1 The Request-Subrequest Protocol

CBKB's request-subrequest protocol exploits dependencies between agents: the
request carries an index that is added to all output information sent out as
answers to the original request. In this way, requester and requestee are directly
linked. Information is provided only if requested, and is sent only to the agents
that have explicitly requested it.

The initial request carries an index which acts as an address for the requesting
agents, as well as a description of the problem to be solved. A problem descrip-
tion in a request is instantiated as a constraint on the problem domain. Thus, a
request is basically a constraint (with some additional information such as the
index). An agent takes the problem description and simpli�es it into subprob-
lems. These descriptions of the subproblems are then submitted as subrequests
in the same way as the initial request. The subrequests are individually indexed
so that they can be collected into a solution by the requestee agents.

2.3.2 The Local-Caching Protocol

The local caching protocol does not link requesters with requestees. By contrast,
as soon as a solution for a particular subproblem is available, it is broadcast to all
existing agents. The initial request carries only a description of the problem to
be solved; no index is associated with it. As before, an agent takes the problem
description and simpli�es it into subproblems. However, as a consequence of
this protocol, for some of the subproblems solutions may already be known to
the agents. The description of yet unsolved subproblems are then submitted as
subrequests in the same way as the initial request, i.e. again without index. In this
way, we obtain a situation of local caching of information for all existing agents,
thus decreasing the overall amount of tra�c, as we avoid the re-generation of
the same requests from di�erent requesters. On the other hand, we may end up
storing information which never gets used.

2.3.3 Hybrid Schemes

Obviously, the two protocols above are at the very opposite ends of a spectrum
of possible protocols and intermediate cases are possible, for instance, when au-
tomatic deliveries are done for subsets of agents. For many practical applications
these cases seem to be the most useful, so we need techniques for assigning agents
to appropriate \interest groups," and for allowing 
exible tuning of group-based
communication. Furthermore, there are cases where the best strategy for dis-
tributed problem solving may involve splitting the problem into subproblems
which are optimally solved according to di�erent protocols. Again, we need 
ex-
ible ways for expressing such protocols, and for mixing them freely in the overall
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solution of a particular problem. Besides, we need ways of guessing the right
protocol, or the right melange of protocols, for speci�c problems. This calls for
contributions from such diverse �elds as programming linguistics, learning and
simulation.

3 Broker Agents and Constraints

In the CBKB model we formalize the problem-subproblem relationship which is
at the basis of DPS via the notion of generator. Intuitively, a generator de�nes the
decomposition of a given problem into subproblems and the composition of the
subproblem solutions into the �nal solution of the problem. Operationally, gen-
erators are associated with a special kind of agents, the so-called broker agents.
A broker incorporates the generator functionality together with the capability
of dynamically spawning other agents (clones of the broker) for solving subprob-
lems. The generator function g is implemented by applying input arguments to it
and producing corresponding output information which represents the answers
of the request to the broker.

3.1 Generator

Given an abstract domain of values D, representing pieces of knowledge, a gen-
erator is a mapping g : Dn 7! }(D), which produces new pieces of knowledge
from existing ones. The argument ai, i 2 f1; : : : ; ng of the generator g represents
a solution of the i-th subproblem. ai may be either a value which was computed
or retrieved from a database by the agent responsible for the subproblem, or a
constraint. The number of arguments n of the generator g speci�es the number
of subproblems created by the broker out of the initial request; the broker has
the arity n and is called broker/n. The arity n is only of local importance; it
solely depends on the number of subproblems of the decomposed initial request.
The sender of the initial request has no knowledge of the number of subprob-
lems created by the broker/n. With respect to the decomposition of requests and
composition of subanswers brokers act as autonomous agents. Thus, it is possible
that a broker/n sends a subrequest to a broker/m where n < m. This approach
to the hierarchical decomposition of requests and recomposition of answers ex-
ploits insights from deductive frameworks for parsing [Pereira and Warren, 1983]
and database querying [Vielle, 1986].

In the current prototype implementation of the CBKB model the generator g
needs solutions for all argument positions to apply its function, i.e. the appropri-
ate agents must have provided solutions for the assigned subproblems. However,
an extension of the current prototype is envisioned that incorporates more com-
plex generators which also handle partial solutions, i.e. the solution of the global
problem is generated from a subset of subproblem solutions. A simple example
is the creation of a document which consists of several document parts. The
generator g collects individual document parts and combines them into the �nal
document. If document parts are not available g inserts automatically \missing
subsection" into the �nal document.

As already mentioned earlier the generator g of a broker B composes answers
to its request r out of the subanswers to subrequests. For an individual subre-
quest several contacted agents may provide multiple subanswers which return
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independently at broker B. Even multiple answers from a single agent may be
received by the broker B at di�erent times. At the receipt of a subanswer the
generator g attempts to compose an answer to request r out of the newly re-
ceived subanswer and the already previously received ones. The resulting answer
will be checked by the broker B against the initial constraint of r in order to
decide if it represents a valid answer. If there are multiple subanswers for certain
subrequests available the generator g will construct all possible combinations
to compose answers for the request r. Suppose the broker B decomposed the
initial request r into two subrequests r1 and r2. For r1 the broker B received
two subanswers, and for r2 three subanswers. The generator g will construct a
solution space consisting of six potential solutions for r. By checking the initial
constraints of r, only valid solutions are extracted from the solution space and
propagated to the requester of r. In [Prasad et al., 1995], a related negotiation-
driven multiagent retrieval approach is proposed where inconsistencies between
di�erent subanswers are dynamically resolved.

A set of generators identi�es a class of subsets of the domain which are stable
under these generators, that is, if the arguments ai are within the subset, the
knowledge generated by g is also within the same subset [Andreoli et al., 1994].
The class of stable sets is closed under intersection, so that it has a smallest
element in the sense of inclusion, given by the intersection of all the stable
sets. This minimal stable set, also called minimal model, represents the intended
semantics of the set of generators.

3.2 Knowledge Representation

Brokers are agents which can process knowledge search requests. Knowledge is
taken here to be any piece of electronic information intended to be publicly
accessible. Di�erent, possibly distributed, information sources are assumed to
be available, from a simple �le in a user's directory to a database local to a site,
up to a wide area information service (WAIS) on the internet, for example.

When receiving a request, a broker may have su�cient knowledge to pro-
cess it, or may need to retrieve more knowledge. For that purpose, it releases
subrequests, aimed at other brokers. Thus, knowledge retrieval is achieved by
the collaboration of all the brokers which are alternatively service providers pro-
cessing requests and clients of these services generating subrequests. We are not
concerned here by the infrastructure required to support such collaboration, nor
by the way knowledge is stored locally within each broker, but rather by the
knowledge manipulations occurring within each broker.

In order to collaborate, the brokers must at least understand each other.
This means that all the requests must be formulated in a common language
(and also all the answers to the requests), even if the brokers may perform
local translations. Logic provides the adequate language for such a purpose. A
request can be expressed by a pair hx; P i where x is a logical variable and P
a logical formula involving x, meaning \Retrieve knowledge objects x such that
the property expressed by formula P holds". Interestingly, an answer to such
a request can be expressed in the same formalism, i.e. a pair hx;Qi, meaning
\There exists a knowledge object x satisfying the property expressed by formula
Q". The requirement here is that P must be a logical consequence of Q, so that
the answer contains at least as much knowledge as the request. Moreover, the
same logical formalism can be used to capture the scope of a broker, i.e. the
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area of knowledge it is concerned with: a broker with scope hx;Ri means \I am
not capable of retrieving knowledge objects x which do not satisfy the property
expressed by formula R". In many situations, the scope of a broker may vary,
because it gets specialized or, on the contrary, expands its capacities, either
externally or due to the knowledge retrieval process itself.

In other words, logic provides a common language where both requests, an-
swers and scopes can be expressed. Brokers then perform logical operations on
these three components. The most important logical operation, from which all
the others can be reconstructed, is satis�ability checking, i.e. deciding whether
some object could satisfy the property expressed by a formula, or, on the con-
trary, whether it is intrinsically contradictory. Unfortunately, it is well known
that this operation, for full Classical Logic, is not algorithmic, i.e. it is provably
impossible to write a program which implements it and always terminates. Given
this limitation, a lot of research in knowledge representation has been focused on
identifying fragments of Classical Logic in which satis�ability is algorithmically
decidable. The trade-o� here is between expressive power and tractability: the
empty fragment, for example, is obviously tractable, but it is not very expressive!
A very popular fragment which emerged from this research is known as \feature
constraints". The satis�ability problem in this case is also known as \feature
constraint solving".

Traditionally, feature constraints are built from atomic constraints which
are either sorts or features. A sort is a unary relation, expressing a property
of a single entity. For example, P:person expresses that an entity P is of sort
person. A feature is a binary relation expressing a property linking two entities.
For example, P:employer->E expresses that entity P has an employer, which
is an entity E. Apart from sorts and features, most feature systems also allow
built-in relations such as equality and disequality.

3.3 Constraints

The full fragment of feature constraints, where the atomic components men-
tioned above are allowed to be combined by all the logical connectives (con-
junction, disjunction, negation and quanti�ers), although very expressive, is
hardly tractable. Therefore, we consider a subfragment, called \basic feature
constraints" (BFC), where negation and disjunction are simply forbidden. Ef-
�cient constraint solving algorithms have been proposed for this subfragment.
However, completely disallowing negation puts strong limitations on the kind of
operations a knowledge broker may wish to perform.

In particular, we have identi�ed a very common and powerful operation
named \scope-splitting", which relies on the use of negation. Indeed, a broker
may wish to split its scope, speci�ed by a pair hx; P i according to a criterion ex-
pressed by a formula F , thus creating two brokers with scope P ^F and P ^:F .
Thus, a broker in charge of bibliographic information may wish to split its scope
into two new scopes: \books written after 1950", which can be represented by
the BFC

X
X : book,
X : year -> Y, Y > 1950
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and its complement, i.e. \books written before 1950 or documents which are
not books"; this latter scope cannot be expressed using BFC, because negation
and disjunction cannot be dispensed with. We have found that the scope split-
ting operation is needed in many situations, for example to implement brokers
capable of memorizing and reusing information gathered during their lifetime.
Our approach presents on the one hand a fragment of feature constraints, called
\signed feature constraints" (SFC), which allows limited use of negation, pre-
cisely capable of expressing the kind of scope splitting mentioned above, and on
the other hand, an e�cient constraint solving method for SFC.

3.3.1 Signed Feature Constraints

A signed feature constraint is composed of a positive part and a list of negative
parts, both of them being basic feature constraints. For example, the following
signed feature constraint

P
+ P : person,
P : employer-> E, E : "Xerox"

- P : nationality-> N, N : "American"
- P : spouse-> P',
P': person,
P': employer-> E', E': "Xerox"

speci�es a Xerox employee who is not American and is not married to another
Xerox employee. We can represent this SFC graphically as in Fig. 1. The round
boxes denote the entities (logical variables), the sort relations (unary) are rep-
resented by dashed arrows labeled by the name of the sort in a square box, the
feature relations (binary) are represented by plain arrows labeled by the name of
the feature in a square box. The built-in predicates (not present in the example)
are represented by rhombuses. The positive part of the SFC is contained in the
top box and marks the distinguished entity of the scope (P in the example) by
a double round box. The negative parts of the SFC are contained in the lower
boxes in grey.

The main interest of SFC comes from the following property:

If the scope of a broker is represented by an SFC eo, and this scope is
split by a BFC e, then the two resulting split scopes e+; e� are both
SFC.

Indeed, e+ is obtained by merging the positive part of eo with the BFC e; and
e� is obtained by extending eo with a new negative part containing e alone.
For example, assume a broker in charge of a bibliographical database contain-
ing various documents (books, videos etc.) about Art, but not authored by an
American. It is represented by the SFC

X
+ X : topic-> T, T : "Art"
- X : author-> A,
A : nationality-> N, N : "American"
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Figure 1: A signed feature constraint (the negative parts are in grey).

It may be split by the constraint \books written after 1950", expressed by the
BFC

X
X : book,
X : year-> Y, Y > 1950

The resulting scopes are simply

X
+ X : book,
X : topic-> T, T : "Art",
X : year-> Y, Y > 1950

- X : author-> A,
A : nationality-> N, N : "American"

i.e. \Art books written after 1950 but not by an American author" and
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X
+ X : topic-> T, T : "Art"
- X : author-> A,
A : nationality-> N, N : "American"

- X : book,
X : year-> Y, Y > 1950

i.e. \Art documents not authored by an American but not books subsequent to
1950".

3.3.2 Solving Signed Feature Constraints

Most constraint systems make a number of assumptions on the nature of sorts
and features, called the axioms of the systems. These axioms are crucial to
the satis�ability algorithm, since they determine when a feature constraint is
contradictory and when it is satis�able.

3.3.2.1 Feature Axioms

For the purpose of simplicity, we make use here of a slight variant of the ba-
sic axiom system used in [A��t-Kaci et al., 1994], although the principles of the
method apply to other sets of axioms as well.

1. Features are functional: this means that if two pairs of entities which are
constrained by the same feature have the same �rst term, they also have the
same second term. For example, we can consider that the feature spouse is
functional (within a speci�c cultural setting), meaning that a person cannot
have two spouses: if, for a person X, we have X:spouse->Y and X:spouse->Z,
then the entities Y and Z coincide (i.e., denote the same person). Other
systems allow multi-valued features.

2. Sorts are disjoint: this means that no entity can be of two distinct sorts. For
example, a book is not a person: we cannot have an entity X with X:book and
X:person. Other systems consider hierarchies of sorts where some entities
can have multiple sorts as long as they have a common denominator in the
hierarchy.

3. There is a distinguished subset of sorts, called \value" sorts, so that no
two distinct entities can be of the same value sort. Traditional basic ele-
ments (strings, numbers, etc.) are typical value sorts: for example, the string
"Xerox" or the number 1950 are value sorts. Value sorts are not allowed to
have features: this is the only axiom connecting sorts and features. Other
systems consider more re�ned connections between sorts and features.

4. There is a distinguished built-in binary predicate, equality, with the tra-
ditional congruence axioms (which involve sorts and features). The axioms
describing all the other built-in predicates are assumed to contain no mention
of sorts and features.

These axioms form a theory T .
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3.3.2.2 Constraint Satisfaction

First, we assume that satis�ability over built-in predicates is decidable. This
means that there is an algorithm which, given a formula F using only built-in
predicates (F is also called a built-in constraint), can decide whether F is a
logical consequence of the theory T (written `T F ).

Constraint satisfaction over BFCs is de�ned by a set of conditional rewrite
rules over BFCs which have the following properties

{ The system of rules is convergent and hence de�nes a \normal form" for
BFCs. This can be shown in a classical way by proving that the system is
\Church-Rosser" (critical pairs converge) and \Noetherian" (the size of the
terms strictly decrease by rewriting).

{ A BFC is satis�able if and only if its normal form is not reduced to a contra-
diction. One implication can be proved by showing that rewrite steps preserve
satis�ability. The reverse implication can be proved by displaying a model
which satis�es BFCs whose normal form is not reduced to a contradiction.

Thus the rewrite rules describe the steps of the constraint satisfaction algorithm.
The algorithm always terminates because the system of rewrite rules is conver-
gent. Notice that the de�nition of the rules rely on satis�ability tests of built-in
constraints, which has been assumed decidable. This means that our algorithm
is modular and can accommodate any kind of built-in constraints as long as a
proper built-in constraint satisfaction algorithm is provided.

Using rewrite rules for constraint satisfaction algorithm is quite traditional.
They can be implemented in a naive way is some symbolic language like Lisp or
Prolog or be optimized, taking into account the properties of the speci�c built-in
constraints which are used.

The algorithm for constraint satisfaction over SFCs can informally be de-
scribed as follows. Given an SFC, its positive component is �rst normalized by
the algorithm for BFCs. If the result is a contradiction, the whole SFC is unsat-
is�able. Otherwise, the positive component (normalized) is inserted in each of
the negative components, which are then normalized by the algorithm for BFCs.
If a resulting negative component has a contradictory normal form, it is elimi-
nated, and if it has a tautological normal form the whole SFC is unsatis�able.
The normal form for SFCs thus obtained has the following property:

An SFC is satis�able if and only if its normal form is not reduced to a
contradiction.

As in the previous case, the di�cult part of the implication can be proved using
model theory.

3.4 Implementation

The prototype implementation of the SFC solver is written in Prolog.
SFC are handled in a data structure sfc(CV,POSFL,NEGFLL) where CV rep-

resents the constraint variable, POSFL represents a list containing the feature
entries for the positive part of SFC, and NEGFLL represents a list of lists where
each list contains the feature entries for a single negative part of SFC. NEGFLL
may be empty; then it is speci�ed as empty list. In general, the SFC solver is
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realized as a list-transforming algorithm with additional checks for constraint
satisfaction.

The built-in predicate for equations is solved using the uni�cation mechanism
and the build-in test "==" of Prolog. The precedence constraints (>,<,�, and
�) are added through Prolog-predicates explicitly.

3.5 Searching the Backends and Caching of Information

Typically, at system initialization a set of initial brokers is provided. Each of
these brokers has a prede�ned scope covering a subset of the domain of some
backends. The sizes of the prede�ned scopes are application dependent and they
may range from very specialized constraints to general descriptions of a con-
straint space covering the minimal model. By processing requests new brokers
and agent specialists are cloned. Each of the newly cloned agents handles only a
subset of their parent scope. This results in a continuous re�nement of the scopes
until the requested subset of the domain is handled by an agent specialist.

The scope of a broker is represented by a single SFC. There are labels
a1; : : : ; an for each argument of the broker's generator. The label a0 corresponds
to the expected result.

Example 1. Assume a broker that is in charge of answering requests concerning
opera information. A requester has to submit the name of a composer, and will
receive all operas written by this composer in return. Assume further that the
broker need not generate subproblems to generate a solution, i.e. the labels for
a1; : : : ; an are not needed. Instead, in order to generate a solution it searches a
backend, in our case, an attached opera database.

The initial scope of this broker is

X
+ X : a0-> O,
O : opera

meaning that the broker is in charge of all possible operas (covered by the back-
end). The expected result is an opera. If the broker receives a request \Find me
all operas of Richard Wagner", written as a BFC

O
O : opera,
O : composer-> C, C : "Richard Wagner"

it spawns an agent specialist in charge of exploring \Richard Wagner", and, as
in the book example before, continues with an reduced scope.

As schematically illustrated in Fig. 2, the agent specialist in charge of ex-
ploring \Richard Wagner" searches an underlying opera database (or many
databases where appropriate) and answers the request. The answer is an ele-
ment of the domain and is represented by a BFC, e.g.

O
O : opera,
O : composer-> C, C : "Richard Wagner",
O : name-> T, T : "Parsifal",
O : number_of_acts-> NA, NA : 3
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Richard Wagner Siegfried 3
Richard Wagner Parsifal 3

Richard Wagner Tristan und Isolde 3
...

broker(‘‘all’’)

specialist(‘‘Richard Wagner’’)

...

scope reduction spawning of specialist

database search

cache creation/search

cache invalidate/update
w.r.t. coherence policy

broker(‘‘all \ Richard Wagner’’)

‘‘Richard Wagner  Parsifal  3’’

‘‘Richard Wagner  Siegfried  3’’

...

‘‘Find me all operas

   of Richard Wagner’’

specialist cache

opera database

COMPOSER             NAME        #ACTS
...

Giacomo Meyerbeer  Les Huguenots  5
...

Giuseppe Verdi  Otello  4
...

Richard Wagner  Siegfried  3

Richard Wagner  Parsifal  3

...

Richard Wagner  Tristan und Isolde  3
...

broker/0

Figure 2: Specialist creation, caching and searching the backends.

The set of features \�lled" by the answer depends on available information in
the attached database.

This agent remains active as a specialist for Wagner operas, i.e., whenever
another request for Wagner operas is sent, this specialist may simply return the
results it has already collected. It is worth to point out that, due to its scope
reduction, the parent broker will no longer react to requests concerning Wagner
operas. On the other hand, a request \Find me all operas of Giuseppe Verdi
with three acts" (provided the opera database has entries for act information),
written as

O
O : opera,
O : composer-> C, C : "Giuseppe Verdi",
O : number_of_acts-> NA, NA : 3

will lead to the spawning of a Verdi specialist for three-act-operas, and a corre-
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sponding (further) reduction of the broker's scope.
Now, we can show another characteristic of the approach: Imagine a follow-on

request \Find me all operas of Giuseppe Verdi". This request will be answered
by two specialists: First, the old Verdi specialists for three-act-operas will an-
swer (typically, using already obtained information). Moreover, a newly created
specialist for all Verdi operas not having three acts will answer. The requester
will, due to earlier requests, get answers from two di�erent specialists. Due to
the scope splitting mechanism, redundant work is avoided. Already generated
solutions for the overlapping part of the problem domain (three-act-operas of
Verdi) are reused.

To make things complete, assume now a request \Find me all operas". This
request will be answered by the three specialists already in existence. Moreover,
a newly created, rather unconventional \specialist" for all operas but the ones
by Wagner or Verdi (no matter whether three-acted or not) will answer. On the
other hand, the scope reduction of the parent broker will lead to an empty scope.
The parent broker will disappear.

The example raises some interesting questions. First, should a specialist send
out its answers one by one, e.g. a single answer-message for each opera found,
or should it collect all answers into a list, and send a single answer containing
this list?

The second question concerns the valid reuse of information. The agent spe-
cialist remains active as a specialist for its subset of the constraint domain.
Whenever, a request is sent concerning this domain, the specialist may reuse
the already collected information, e.g. the list of Wagner operas. For Wagner
or Verdi operas, this behavior seems appropriate. But assume a specialist for
a living composer whose most important operas are still to be composed. We
can see the specialist's domain as a cache, for which, of course, cache coherence
policies are needed. As soon as cache-related information is updated in its orig-
inal constraint store (e.g. updates in the underlying opera database concerning
the specialist's composer), the cached information must either be invalidated or
updated. Strategies concerning the valid reuse of information are discussed in
Sect. 4.2.

4 Broker Processing

As we already discussed in previous sections the main tasks of an agent are the
communication with other agents (e.g. sending and receiving of messages) and
the reaction upon receipt of messages which may be either requests or answers
to requests. The typical processing of a request submitted to a broker agent
(broker/n) is { cum grano salis { accomplished through the following steps:

1. checking the problem description of the request with respect to the scope of
the broker.

2. exploring the subset of the broker's scope that intersects with the constraint
given in the problem description and spawning an agent specialist handling
the subset currently under exploration. The broker itself continues to be in
charge of the reduced scope which is derived from the \old" scope without
the scope of the agent specialist.
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3. applying back-dependencies to each of the broker's argument positions of
the generator function g in order to simplify the problem description into
subproblems.

4. checking the conditions to verify for which of the argument positions the
simpli�ed problem description can already be submitted as a subrequest
(these conditions, which we call threshold conditions, will be discussed in
more detail in Sect. 4.1).

5. submitting these subrequests in the same way as the initial request, i.e. with
an index when using the request-subrequest protocol, or without when using
local caching.

6. updating the (local) constraint store upon receipt of answers to these subre-
quests. Other argument positions of g may reach their threshold conditions
and are submitted as in step 5.
Once a combination of answers satis�es the initial request (after applying the
broker's generator function), a solution is found. This solution is then sent
to the initial requester, when using the request-subrequest protocol, or to all
broker agents, when local caching is the protocol of choice. In addition to the
scope splitting mechanisms where the creation of redundant agent specialists
is avoided, local caching is of special interest when subproblems overlap.
Redundant work is reduced by communicating relevant results in advance.
As stated in [Oates et al., 1994], it is also interesting to see that a solution
or even a partial solution generated by an agent might facilitate (by focusing
or constraining) the problem solving of another agent. For instance, due to
an \unsolicited" solution to a subproblem, a threshold could be satis�ed and
a (possibly more re�ned) subrequest could be launched.

Obviously, the steps described above simply illustrate a sort of upper-layer
brokers providing solutions to a request. In another reading, we can see a bro-
ker/n as an agent that extends the functionality o�ered by lower-layer brokers.
The solutions of a broker/n are higher-level, composite and tailored to the scopes
of the lower-layer brokers. They re
ect the assembled knowledge processed by the
individual generators. However, someone has to provide real \basic" solutions.
Synthesizing and combining answers is only possible when there are brokers in
the CBKB model that need not further decompose the problem description into
subproblems, but answer a request (immediately) by other means, e.g. by search-
ing some backends. This is achieved by so-called brokers of an arity 0, written
as broker/0. A typical example of a broker/0 might be an agent which handles
queries to a database as shown in Example 1 or an agent that gets in contact
with some service provider in the Internet.

A broker/0 reacts to an incoming request as in steps 1 and 2. However, instead
of steps 3{6, the simpli�cation of the problem description into subproblems, a
broker/0

{ searches/retrieves, e.g. by inspection of database �les, or
{ activates, e.g. by starting a calculation task within a spreadsheet application,

or
{ executes, e.g. by starting a process that evaluates some broker-internal sen-

soric data.

Of course, this is just a small fraction of possible activities a broker/0 may use to
provide a solution to the request. It is clear that the set of all brokers having arity
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0 forms the basis for searches over, most probably, heterogeneous data sources. A
broker/0 also provides the interface to external tools and applications. Thus, the
CBKB model can smoothly be integrated into an already existing application
environment without changing legacy applications (see [Borgho� and Schlichter,
1995] for more details).

The following example illustrates the interaction of a broker/3 and some
broker/0.

Example 2. Many people with an avocation for classic music may have asked the
following question to extend their private library.

\Find me all books, not written by a German author, where the title of
the book is the name of a Wagner opera."

Writing this problem description as a feature constraint yields to the following
BFC, constraining the request variable R:

R
R : req_opera-> O,
R : req_book-> B,
R : req_person-> P,
O : opera,
O : name-> T,
O : composer-> C, C : "Richard Wagner",
B : book,
B : title-> T,
B : author-> PN,
P : person,
P : name-> PN,
P : nationality-> N, N != N', N' : "German"

In order to answer the request, let a broker/3 compose results obtained from
three di�erent brokers, namely a broker/0 for operas, a broker/0 for books, and
a broker/0 to verify the nationality of a person. The initial scope of broker/3 be

X
+ X : a0-> R,
X : a1-> O,
X : a2-> B,
X : a3-> P,
O : opera,
B : book,
P : person,
R : req_opera-> O,
R : req_book-> B,
R : req_person-> P

The agent specialist cloned by broker/3 may decompose the problem domain
into the following requests: First

\Find me all operas of Richard Wagner".
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This request may involve a �rst broker/0 that searches, for instance, a marketing
server installed at Bayreuth. See Example 1 for more details.

Upon receipt of answers to this �rst request, the agent specialist extracts for
every opera O the name T (e.g. Parsifal, Siegfried, Tristan und Isolde, etc.) and
submits a second request of the form:

\Find me all books with title T."

This request may involve a second broker/0 that executes a script to get in
contact with a relevant service provider that may reside within the World-Wide
Web. For example, at http://lcmarc.dra.coma form is provided to allow searches
of the DRA-LCMARC database containing millions of relevant entries. If Tele-
script's visions [White, 1994a] become real it should also be possible to attach a
Telescript engine to such a broker/0.

Upon receipt of answers to this second request, the agent specialist extracts
for every book B the author P (e.g. for title \Parsifal", book authors are Piotr
Bednarski, Friedrich Oberkogler, Hans-J�urgen Syberberg, Peter Vansittart, etc.)
and submits a third request of the form:

\Find me the nationality of the author P".

This request may involve a third broker/0 that searches a commercial who's-who
server to get the nationality of the author.

Upon receipt of an answer N (assuming that a person has only one nation-
ality), the agent specialist feeds its generator with O, B, and N to generate a
result that is sent back to the requester. The result generation is quite simple.
If N is not German a solution is found, the answer B, i.e., the particular book, is
provided.

Composed and/or veri�ed using three di�erent broker/0, the following would
be a solution, and therefore be within the minimal model covered by CBKB:

Vansittart, Peter. Parsifal : a novel / Peter Vansittart. London : P. Owen;
Chester Springs, PA : U.S. distributor, Dufour Editions, 1988.

The �nal important aspect of broker processing discussed here refers to the
life span of agents. As already mentioned above a set of initial broker agents is
provided at system startup. By processing requests the system creates new agent
specialists and modi�es the scopes of its broker agents. The agents' life span is
application dependent and may range from one individual user query to one
user session to persistent existence. In the �rst case, agents are only created for
handling the initial query. After the �nal answer has been generated all agents are
removed. The reuse of cached information will be low. In the second case, agents
live until the session is explicitly ended. Requests within sessions may lead to an
increasing number of agents. Within one session the results of previous requests
are reused to generate the answers of new requests. In the third case agents
are persistent. Agents exist until they are explicitly removed from the system
(e.g. at system shutdown, or attaching expiration times to agents). Thus, agents
are similar to daemons in operating system environments. Again, agents reuse
cached results of previous requests. However, because of the extended agent life
span the cached information might be not up-to-date. Section 4.2 will discuss
that aspect in more detail.
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4.1 Interdependencies and Thresholds

The support of several interdependencies among subproblems models the gen-
eral case of distributed processing, as required by DPS. Constraints provide a
powerful and declarative approach to prune the search space of agents. Interde-
pendencies may be used to model the order of sending the subrequests and thus
the order of handling the subproblems. For example, the interdependency might
specify that the subrequests are handled in sequential order, i.e. the subrequest
k (argument position k of g) may sent only after the answers for the subrequest
k�1 (argument position k�1 of g) have been received. Thus, interdependencies
provide a powerful mechanism for modeling causal and temporal relationships
between subproblems.

What we need are interdependency constraints and information thresholds.

interdependency

...

broker/0 for operas broker/0 for books broker/0 for persons

 of Richard Wagner’’

‘‘Find me all operas ‘‘Find me the nationality

 of the author P’’

subrequest decomposition

subsolution composition and answer generation

‘‘Vansittart, Peter. Parsifal: a novel ...’’ ‘‘Find me all books, not written by a ...’’

broker/3

‘‘Find me all books

 with title T’’

threshold

Figure 3: Broker interaction.

Interdependency constraints are quite simple. They are part of the constraint
store. We have already used them in Example 2: Among other things, there is an
interdependency constraint stating that the name of the opera and the title of
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the book must coincide, that is O : name-> T and B : title-> T, and another
interdependency constraint forcing the coincidence of the author of the book and
the person's name, that is B : author-> PN and P : name-> PN.

Information thresholds, on the other hand, are associated with each argument
position. They are based on entailment tests, checking whether an argument
entails a given (basic) feature constraint. Whenever a threshold condition of an
argument position is satis�ed the associated subrequest is triggered and sent to
other brokers and agent specialists.

Example 3. In our example as illustrated in Fig. 3, it makes no sense to request
a book without the knowledge of its title, or to query the nationality of someone
who's name is not yet known.

Using the threshold mechanismand the interdependency constraint, broker/3
implements an argument ordering scheme, i.e., a request for argument position
a1 (Wagner operas) is sent �rst, a request for argument position a2 (books with
relevant title T) is sent whenever an answer for the �rst request arrives, i.e. when-
ever nonvar(T) (true if argument T is not a variable). Analogously, a request
for argument position a3 (nationality of a given author) depends on answers
received for argument position a2.

Thresholds may also be used to model repeated invocations of the same
subrequest with re�ned input constraint values. Suppose the subrequest k was
already sent and the associated answer has been received. After receiving the
answer for another subrequest j the threshold for subrequest k is satis�ed again;
however, this time with new, re�ned constraint values. An example in document
processing would be the following. Initially in the subrequest k an image of a
person on a bridge is requested. The size of the image is constrained to one page.
After performing the page layout subrequest the image size is constrained to a
smaller size to �t at the appropriate place on the page. The subrequest k is sent
again with the smaller size constraint.

4.2 Reuse of Information

Complex requests require interactions with many other agents and information
stores in the network in order to gather the desired information. However, the
execution of complex generator functions can be rather time consuming. Thus,
in large information networks, such as the World-Wide Web the reuse of gener-
ated and already collected information is especially important. There are certain
types of information which are quite stable. For example, the names and char-
acteristics of known operas of Richard Wagner do not change; only the number
of performances of them will change over time.

As a leitmotif, the interaction protocols of the CBKB model support the
reuse of information and the avoidance of redundant generation of solutions.
Actually, the constraint stores of agent specialists can be interpreted as caches
of information. The cached information are values and constraints of already
executed requests and subrequests to other agents. The quantity of reuse ranges
from minimal to maximal. For minimal reuse all generated information is made
potentially available, but it can be delivered only in response to speci�c requests
(request-subrequest protocol). For maximal reuse all generated information is
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immediately broadcast to all agents (local caching protocol). The notion of quan-
tity of reuse of information was formally introduced in [Arcelli et al., 1995]; it
discusses heuristics in order to provide criterias for choosing between the two
interaction protocols.

In static environments where knowledge does not change or is not extended,
the information in the agent caches remains valid over time and can be reused
by subsequent requests. On the other hand, in many applications the agents at-
tached to a database have to deal with database entries that evolve over time due
to updates. Older knowledge is replaced by newer knowledge or additional knowl-
edge is de�ned and appended to existing database entries. These modi�cations
must be propagated to the agent caches in order to provide reliable knowledge
in the information network. Two di�erent, basic cache coherence protocols are
applicable:

{ write-invalidate;
{ write-update

In the �rst approach an information change invalidates all caches which uti-
lize that information explicitly or implicitly, i.e. information derived from it by
using generator functions. The constraint stores of the a�ected agents must be
cleared. Thus, subsequent requests to an agent specialist with a cleared con-
straint store will require the renewed distribution of subrequests and the com-
position of all possible answers out of the newly received subanswers (see steps 5
and 6 for broker/n, or the activities of a broker/0 to interact with the external
environment).

The write-update protocol propagates the modi�ed information to all rel-
evant agents which incorporate the new information into the already existing
cache. The old cache entries must be identi�ed and replaced. Additionally the
execution of the generator function might be required and thus, new answers
are generated which are sent to the requesters of the agents. The association be-
tween old and new cache entries might require an extension of the current CBKB
model by assigning identi�ers to constraints and values. It seems that the write-
invalidate protocol �ts better with the current architecture of the CBKB model.

The requirement of cache consistency is application dependent and we can
identify three di�erent application domains: First, domains where no updates
occur at all and where all processed information remains up-to-date. Second,
domains that are update-tolerant. For a given period of time, the application does
not care about updates and reuses cached values even when already obsolete (e.g.
statistics concerning the sales force where the latest sold disc player should not
in
uence the results too much). In the World-Wide Web, location paths may be
cached locally and cache entries are not updated automatically. If a user follows
an invalid path then an error message is displayed (in some more user-friendly
cases the path to the new web page location is displayed). Finally, there are the
update-critical domain such as money brokering, tele-banking etc.

5 Related Technologies

In this section we try to explain how the proposed mechanisms of agent-based
interaction can be applied to or be seen in related scenarios. In particular we
focus on the contract-net protocol as a negotiation-based approach, Telescript
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as a promising agent infrastructure, and work
ow management as an interesting
application domain.

5.1 Contract-net

The contract-net protocol [Smith, 1980] can be seen as a particular instance of a
CBKB-system with two broker roles, namely a manager and a set of bidders. The
manager tries to localize a contractor among the bidders that solves a particular
problem. Therefore the manager is equipped with a very speci�c generator for
the bid selection.

The protocol is negotiation-based along �ve di�erent phases: In the �rst
phase, the manager announces the problem by sending a request for bids to
the set of bidders, e.g. by sending a request constraining the problem domain
and constraining the capabilities a potential contractor must have. In the next
phase, the bidders check the problem constraints and propagate their bids, e.g.
by tailoring the problem domain to the bidders' scope. The next phase com-
prises the selection of a contractor by the manager. Upon receipt of answers
the manager invokes its generator. The result generation is quite simple. If the
bid satis�es the initial constraint, a potential contractor is found. Among all
potential contractors, a \best" (according to some problem dependent criteria)
potential contractor is selected as contractor. In the fourth phase, the problem
solving task is transmitted to the contractor. The �nal phase concludes with the
problem solving itself.

5.2 Telescript

With General Magic's Telescript [White, 1994b] a promising technology is pro-
vided for the necessary infrastructure required to enable interacting autonomous
agents in the so-called electronic marketplace. The electronic marketplace rep-
resenting the Telescript world consists of a number of electronic places (e.g. a
user's communicator, an electronic shopping center, etc.). Carrying a script to
execute a particular task and permits that limit their capabilities, Telescript
agents may migrate to perform transactions related to the visited places (e.g.
a shopping order) or to simply search electronically provided information. The
electronic places are homogeneous in the sense that they are able to interpret
these scripts and to communicate with agents according to a de�ned protocol.
In our proposed framework of CBKB, Telescript can play a vital role to �ll the
gap between the broker/n that synthesizes and combines answers received with
respect to a complex request and the broker/0 that actually \gathers" informa-
tion in the electronic marketplace. Obviously, a broker/0 could use a Telescript
agent as its means to �nd and retrieve the information requested. On the other
hand, a Telescript agent itself could internally implement CBKBs. In this case
constraint handling, partial solution processing, and \agent specialist" creation
would be added to the Telescript infrastructure. The latter issue corresponds to
the Telescript ability the clone an agent (specialist) that does not migrate back
to the requester in order to deliver the results but awaits further tasks within
the place. One such task could be answering further requests using some locally
cached information.
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5.3 Work
ow Management

The previous examples and application domains had a strong emphasis on in-
formation gathering as it is often integrated into the user environment. The user
initiates a query by specifying the relevant feature constraints (e.g. in a form
template); the query is transformed into a request which is then sent to brokers
and agent specialists available in the system. However, the CBKB model may
also be embedded in other application environments. Applications might directly
communicate with brokers and agent specialists to gather and extract knowledge
necessary for their internal functionality. In the following we will brie
y discuss
some of the possibilities how the CBKB model may be embedded into the work-

ow management domain.

In recent years there has been considerable work and publication related
to work
ow systems, models and studies. Also the growing interest in business
process reengineering [Davenport, 1993] led to the development of commercial
work
ow systems [Abbott and Sarin, 1994] in order to support and improve
business processes. McCarthy and Bluestein [McCarthy and Bluestein, 1991]
de�ne work
ow management \as a proactive system which manages the 
ow
of work among participants according to a de�ned procedure consisting of a
number of tasks. It coordinates user and system participants, together with the
appropriate data resources which may be accessible directly by the system or o�-
line, to achieve de�ned objectives by set deadlines." In the context of work
ow
management, agents and constraints may be used in a variety of di�erent ways.
Some of the possibilities are discussed below.

In general, a work
ow consists of a task structure which models the tasks
of the associated business process, and the temporal and causal interdependen-
cies between tasks. Task structures are embedded into the organizational envi-
ronment, and thus must incorporate organizational information. Examples for
organizational information are the organizational structure (static information),
information about people's work load or time schedules (dynamic information),
information about organizational policies and strategies or other external and
internal documents of organizational importance. During the speci�cation and
execution phase of task structures brokers and agent specialists might be used to
gather the relevant organizational information and integrate it into task struc-
tures. For example, several brokers might access the static and dynamic informa-
tion of the organization database and assign people to tasks according to their
position in the organizational structure and their current work load. Addition-
ally brokers could �nd and retrieve the relevant documents in the database in
order to support the execution of individual tasks. In both examples, brokers
and agent specialists are used for information gathering (see also example 2)
to incorporate dynamically relevant information into task structures and thus
support more e�cient task execution.

Traditional work
ow systems are in
exible with respect to exception han-
dling and adapting to changing objectives. The goal-based work
ow model [Ellis
and Wainer, 1994] is an approach to improve that. In this model a work
ow
captures the goals of individual tasks and of the global business process in addi-
tion to the procedural steps. Goals and contextual information could be modeled
as constraints. Brokers and agent specialists could be used during the planning
phase to extract task structure templates and instantiate them appropriately to
satisfy given goals and contextual constraints. Using the generator functionality,
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simple task structures could be composed into more complex tasks structures
which incorporate interdependencies between tasks. The planning phase sup-
ported by brokers and the execution of tasks could take place intermittently to
achieve a more reactive behavior with respect to changing goals and contextual
constraints.

6 Related Work

Constraint-Based Knowledge Brokers (CBKBs) were �rst introduced in [An-
dreoli et al., 1994], where the request-subrequest protocol was also de�ned and
described, together with such notions as reuse of information, recursion control,
ordering of subrequest deliveries, and thresholds. In [Andreoli et al., to appear],
the CBKB model is described in more detail. Complexity analysis are given
concerning number of messages exchanged, number of agents cloned, and num-
ber of generations through the broker-attached generators. A simple example is
provided in the domain of parsing of feature-based grammars.

In [Arcelli et al., 1995], the local caching protocol for CBKBs is introduced
and compared with the request-subrequest protocol. Arguments are given, why,
in many cases, it would be best to make use of both protocol schemes, or even
devise hybrid schemes. Some examples, numerical values for the measure of reuse,
and graphical illustrations of reuse potentials are provided.

For a conceptual characterization of Distributed Problem Solving see [Decker
et al., 1989; Durfee et al., 1989]. However, so far DPS has been lacking a real
computational model. Our contribution can be seen as step in the direction
of providing a computational framework for DPS. More recently, a cooperative
information gathering (IG) approach using a multiagent system based on DPS
was illustrated in [Oates et al., 1994]. Additional relevant literature can be found
in [Lander and Lesser, 1992].

We have mentioned Telescript [White, 1994b] as a possible solution for the
infrastructural support of CBKBs on wide area networks. As for the imple-
mentation of the constraint solving aspects, a current prototype makes use of
ForumTalk [Andreoli, 1995], a distributed language based on the LO model [An-
dreoli and Pareschi, 1991] for object-oriented rules-based computations. The
built-in LO facilities for dynamic process spawning and broadcast communica-
tion are advantageously exploited in the de�nition of the agent interaction pro-
tocols. Other implementation choices are, however, possible [Borgho�, 1995]. A
promising alternative is given by languages based on the Concurrent Constraint
Programming model [Saraswat et al., 1991], such as Oz [Henz et al., 1995]. An
advantage of these languages is that they have a built-in notion of constraint, and
they come with ask-tell primitives for controlling the suspension/resumption of
the activities of concurrent agents depending on the availability of relevant infor-
mation. Thus, they provide a straightforward direction for the implementation
of information thresholds for CBKBs.

7 Conclusion

In the course of this paper, we have shown how constraints can provide appropri-
ate computational support for the management of electronic information, thus
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enabling a breed of intelligent agents that can help users to deal with the prob-
lem of "information over
ow". The coming of age of a number of complementary
technologies, e.g. programming languages for network navigation like Telescript,
make this framework not just an elegant formal solution but also a promising
practical approach.
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