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Abstract A new internal structure for simple polygons, the straight skeleton, is in-
troduced and discussed. It is composed of pieces of angular bisectores which partition
the interior of a given n-gon P in a tree-like fashion into n monotone polygons. Its
straight-line structure and its lower combinatorial complexity may make the straight
skeleton preferable to the widely used medial axis of a polygon. As a seemingly un-
related application, the straight skeleton provides a canonical way of constructing a
polygonal roof above a general layout of ground walls.

1 Introduction and basic properties

The purpose of this paper is to introduce and discuss a new and interesting
internal structure for simple polygons in the plane. The new structure, called the
straight skeleton, is solely made up of straight line segments which are pieces of
angular bisectors of polygon edges. It uniquely partitions the interior of a given
n-gon P into n monotone polygons, one for each edge of P .

The straight skeleton, in general, di�ers from the well-known medial axis of
P which consists of all interior points whose closest point on P 's boundary is
not unique; see e.g. Lee [L]. If P is convex then both structures are identical.
Otherwise, the medial axis contains parabolically curved segments in the neigh-
borhood of reex vertices of P which are avoided by the straight skeleton. If P
is rectilinear then the straight skeleton is the medial axis of P for the L1-metric.
Skeletons have numerous applications inside and outside computer science as is
documented e.g. in Kirkpatrick [K].

While the medial axis is a Voronoi-diagram-like concept, the straight skeleton
is not de�ned using a distance function but rather by an appropriate shrinking
process for P . Imagine that the boundary of P is contracted towards P 's in-
terior, in a self-parallel manner and at the same speed for all edges. Lengths of
edges might decrease or increase in this process. Each vertex of P moves along
the angular bisector of its incident edges. This situation continues as long as the
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boundary does not change topologically. There are two possible types of changes:

(1) Edge event : An edge shrinks to zero, making its neighboring edges adja-
cent now.

(2) Split event : An edge is split, i.e., a reex vertex runs into this edge, thus
splitting the whole polygon. New adjacencies occur between the split edge and
each of the two edges incident to the reex vertex.

After either type of event, we are left with a new, or two new, polygons which
are shrunk recursively if they have non-zero area. Note that certain events will
occur simultaneously even if P is in general position, namely three edge events
letting a triangle collapse to a point. The shrinking process gives a hierarchy of
nested polygons; see Figure 1(a).

The straight skeleton, S(P ), is de�ned as the union of the pieces of angular
bisectors traced out by polygon vertices during the shrinking process. S(P ) is a
unique structure de�ning a polygonal partition of P . Each edge e of P sweeps
out a certain area which we call the face of e. Bisector pieces are called arcs,
and their endpoints which are not vertices of P are called nodes, of S(P ). See
Figure 1(b).

Figure 1: (a) Polygon hierarchy and (b) straight skeleton

As far as it is known to the authors, no attention has been paid to the straight
skeleton in the literature. We show that S(P ) has several useful properties. For
example, its tree structure implies that, if P is non-convex, S(P ) is of smaller
combinatorial size than the medial axis of P . The latter, though also being a tree,
has to distinguish between curved and straight parts of arcs. To be precise, if
P is an n-gon with r reex vertices then S(P ) realizes 2n � 3 arcs whereas the
medial axis of P realizes 2n+ r� 3 arcs, r of which are parabolically curved. As
a particularly nice property, S(P ) partitions P into monotone polygons.

A three-dimensional interpretation of S(P ), the roof model, is discussed in
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Section 2 and Section 3. This leads us to the interesting and practically relevant
question of constructing a roof of �xed slope above a given layout P of ground
walls. The roof model allows us to gain more insight into the structure of straight
skeletons and, in particular, gives a way to de�ne S(P ) non-procedurally. On the
other hand, S(P ) provides a canonical way of constructing a roof above P . We
show that the roof corresponding to S(P ) exclusively has the property that rain-
water runs o� from each roof facet to its de�ning edge of P . We also disprove
the obvious conjecture that roofs can be expressed as lower envelopes of simply-
shaped linear functions. Hence S(P ) is no Voronoi-diagram-like structure, a fact
that complicates its algorithmic construction. Section 4 o�ers a short discussion
of the presented topic.

The rest of this section describes some basic properties of S(P ).

Lemma1. S(P ) is a tree and consists of exactly n connected faces, n� 2 nodes
and 2n� 3 arcs.

Proof. The construction of a face f(e) starts at its edge, e, of P . f(e) cannot be
split even if e happens to be. The construction of f(e) is completed when (every
part of) e has shrunk to zero. As e cannot reappear again, f(e) is connected,
and S(P ) is acyclic. That is, S(P ) is a tree with the n vertices of P as leaves,
and has n� 2 nodes and 2n� 3 arcs. ut

Two types of arcs of S(P ) can be distinguished. Each arc is a piece of the
angular bisector of two edges e and e0 of P or, more precisely, of the lines `(e)
and `(e0) supporting these edges. Note that the angular bisector of `(e) and `(e0)
actually consists of two lines that intersect at `(e) \ `(e0). We single out the one
relevant for S(P ) as follows. Each line `(e) de�nes a halfplane h(e) that contains
P near e. One of the bisector lines intersects the wedge h(e) \ h(e0) while the
other avoids it. We call the former the bisector of the edges e and e0 and will
ignore the latter in our considerations. An arc a de�ned by this bisector is called
a convex arc or a reex arc depending on whether its wedge contains e and e0

in its boundary or not. We also consider a as labeled by the ordered pair (e; e0).
The order reects the side of a where `(e) contributes to the boundary of the
wedge.

Each convex (reex) vertex of P obviously gives rise to a convex (reex) arc
of S(P ). While convex arcs can also connect two nodes of S(P ), this is impossible
for reex arcs.

Lemma2. Reex arcs of S(P ) only emanate from reex vertices of P .

Proof. Let vu be an arc emanating from some vertex v of P . Then u is a node
which corresponds either to an edge event or to a split event. It su�ces to show
that, after the event, S(P ) continues at u with convex arcs only.

In the former case, let vw be the vanishing edge. Since the arc wu meets
vu at u, u is a convex vertex of the shrunk polygon at the moment the event
takes place. In the latter case, the polygon splits at u. It is obvious that, at that
moment, u is a convex vertex of both new polygons.

In conclusion, each new vertex generated during the shrinking process is
convex. Hence the arcs continuing at u are convex, too. ut
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2 Graph model and roof model

It seems hard to give a non-procedural de�nition of the straight skeleton, as it is
available for the medial axis using distances from the boundary. The shrinking
model suggests to de�ne the distance of a point x 2 P from an edge e as the
normal distance from x to the supporting line `(e). This de�nition fails as e
might have vanished before `(e) sweeps across x. Below we discuss two other
approaches, the graph model and the roof model, that allow us to gain more
insight into the structure of straight skeletons.

S(P ) can be seen as a geometric graph whose arcs are pieces of bisectors
de�ned by the edges of P , each arc being labeled by an ordered pair of edges.
Arcs are bounded by P 's vertices, which have degree 1 in the graph, and by
S(P )'s nodes which have degree 3. Each node is the intersection point of three
bisectors. (To ease the discussion, we exclude degeneracies caused by special
shapes of P .) Its three incident arcs have labels of the form (a; b), (b; c), (c; a),
and the ordering of each label (a; b) indicates the position of the faces f(a) and
f(b) relative to the arc. We call a graph with these properties a bisector graph
for P .

Figure 2: Bisector graphs; self-intersection and ambiguity

However, these properties are by far to weak to imply uniqueness. A bisector
graph need not even de�ne a partition of P (and thus a face structure) as long
as we do not require it to be plane. Restriction to plane graphs, even to plane
trees (as it is the case for S(P ), see Lemma 1) still gives no unique structure;
see Figure 2.

Alternatively, and more intuitively appealing, a plane bisector graph for P
can be viewed as the projection of a three-dimensional object.

Let P be contained in the horizontal plane �0, and associate each edge e of
P with a halfplane �(e) in three-space. �(e) is bounded by `(e), has a �xed
slope (say 45 degrees) with respect to �0, and is inclined towards P . For any
two distinct edges e and e0 of P , the haline �(e) \�(e0) projects vertically to
the (relevant haline of the) bisector of e and e0.
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We now de�ne a roof for P as a terrain (graph of a piecewise-linear con-
tinuous function) over P whose facets are from the halfplanes above and whose
intersection with�0 is the boundary of P . Intuitively speaking, this is a 45-degree
roof with P 's edges as ground walls; see Figure 3.

Figure 3: Roof model for straight skeleton in Figure 1

Theorem3. Every roof for P corresponds to a unique plane bisector graph for
P , and vice versa.

Proof. Let R be a roof for P . By the choice of the halfplanes supporting R's
facets, the edges of R project vertically to pieces of edge bisectors. Bisectors are
labeled correctly, as each node of the resulting graph is the projected intersection
of three halfplanes. Finally, the graph is plane as R is a terrain.

Let G be a plane bisector graph for P . Each node u ofG is the center of a circle
that touches three lines supporting the three edges of P that de�ne u. We lift up
u vertically by the radius of this circle, getting a point �(u) in three-space. Note
that, if u's arcs are labeled (a; b), (b; c), (c; a), then �(u) 2 �(a) \�(b) \�(c).
Let now f be a face of G. Each arc bounding f has a label of the form (x; e),
where e is a �xed edge of P , and x runs through the edges de�ning the faces
of G adjacent to f . Hence �(u) 2 �(e) for all nodes u of f . Clearly, e 2 �(e)
by de�nition. (Note, however, that e does not necessarily bound f .) This shows
that f is lifted up by � to a planar facet. As G is a plane graph, we obtain a
piecewise-linear function over P . This function is continuous as facets stemming
from faces f(e) and f(e0) touch along the lifted arc with label (e; e0). ut

In the unique roof of a plane bisector graph, convex arcs of the graph give
rise to ridges of the roof (both facets going downwards) and reex arcs give rise
to valleys (both facets going upwards). Note the impossibility of having one facet
upwards and the other downwards, as all facets have the same slope. Endpoints
of ridges or of valleys that are not polygon vertices are called corners of the roof.
They lie above plane �0 and project to the nodes of the graph.
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It is interesting { also from a practical point of view { to study which kind
of roofs are legitimate by our de�nition. Surprisingly, a halfplane may contribute
more than one facet to the roof. That is, an edge of P may yield several faces in
the bisector graph. Even local minima may arise; see Figure 4. The �rst anom-
aly indicates that, in contrast to the straight skeleton, the size of general plane
bisector graphs need not be linear. A trivial upper bound is O(n3), as each node
of the graph comes from a di�erent triple of edges of P . The second anomaly is
particularly undesirable for real-world roofs as rain water cannot run o�.

Figure 4: Disconnected faces and local minimum

Despite of the ambiguity of plane bisector graphs, their faces have a nice
property which is easy to prove using the roof model.

Lemma4. Each face f(e) of a plane bisector graph is monotone in direction of
its de�ning edge e. That is, the intersection of f(e) with every line normal to e
is connected.

Proof. Let F be the roof facet corresponding to f(e). Recall F � �(e) and
consider some line L in �(e) normal to e. Obviously, L has slope 1, which is
the maximum possible on the roof. Assume now that f(e) is not monotone in
direction e. Then L can be chosen so as to leave F at some point x and to re-enter
F at some higher point y. In between, the roof consists of facets contained in
halfplanes di�erent from �(e). Hence, when following the vertical projection of
the segment xy on the roof, one traces segments of slope less than 1, thus ending
up at a point vertically below y. This implies that the roof is not continuous { a
contradiction. ut
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3 Islands

The concept of straight skeleton S(P ) o�ers a unique way of constructing a roof
avoiding the anomalies mentioned above, for a general layout P of ground walls.
When viewing S(P ) as a roof, the shrinking process de�ning S(P ) has a nice
physical interpretation. The roof is interpreted as an island with P deliminating
the coast. Water level stands at plane �0 and rises steadily during the shrinking
process. Splits occur when the water surrounds local maxima of the island. The
unique roof for P corresponding to S(P ) will be called the island of P , I(P ), in
the sequel.

This ooding process gives sense for non-island roofs, too. In fact, each roof
for P de�nes a particular ooding process which is uniquely determined by a
sequence of events sorted by increasing height. This fact will allow us to charac-
terize I(P ) among all possible roofs for P .

Let R be an arbitrary roof for P . In the ooding process for R, we now may
encounter new types of events beside edge events and split events. For example, it
is possible that the water level reaches a local minimumof a facet at a corner c of
R. If c is no local minimum of R then { in the shrunk polygon { an edge parallel
to some edge of P starts expanding there (inverse edge event). Else a triangular
hole appears (three simultaneous inverse edge events). Compare Figure 4. This
list of events is not complete.

Lemma5. If R is a roof for P di�erent from I(P ) then R has a valley not
incident to a (reex) vertex of P . That is, R contains a valley that connects two
corners of R.

Proof. Note �rst that the ooding process starts in the same way for all possible
roofs for P . That is, P starts to shrink in a unique manner. Now consider the �rst
event that makes R di�er from I(P ). This event must come from a corner of R.
If it would come from a corner of I(P ) then an edge event or a split event would
miss in the ooding process for R, contradicting its terrain property. Let now c
be the corner of R that corresponds to this event. Immediately before reaching
c, water surrounds the part of R containing c and de�nes a shrunk polygon P 0

whose boundary deliminates the local coast. Obviously, the part of I(P ) above P 0

is I(P 0). As I(P 0) continues with the next-higher edge event or split event, and c
is no corner of I(P 0), c corresponds to a non-island type of event. In particular,
some edge that does not appear in P 0 must be involved in this event. That is,
some new edge(s) start(s) expanding. An expansion of edges, however, can only
take place at reex arcs. Hence some valley of R starts at c, and the lemma is
proved. ut

Theorem6. Let R be a roof for P . Then R = I(P ) if and only if each valley of
R is incident to P .

Proof. Combine Lemma 2 and Lemma 5. ut
It is easy to see that each roof for P has the same surface area. A natural

question to ask is whether I(P ) optimizes some other parameter among all pos-
sible roofs for P . However, I(P ) achieves neither the maximumnor the minimum
roof volume in general; see Figure 2 (shows I(P ) in the middle) and Figure 5,
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respectively. These examples also reveal that neither the maximum nor the min-
imum global roof height is guaranteed. Still, the facets of I(P ) obey a nice rule
which is particular to I(P ).

Let R be any roof for P . For a point x on R, let g(x) denote the path that
starts from x and follows the steepest gradient on R. We say that a facet F of
R has the gradient property if, for every x 2 F , g(x) reaches the edge e de�ning
F either in its interior or at a vertex.

Theorem7. A roof R for P is the island of P if and only if each facet of R
ful�lls the gradient property.

Proof. Assume R = I(P ). Let e be an edge of P , let F be its facet in R, and
consider a point x 2 F . By the monotonicity of faces stated in Lemma 4, g(x)
reaches the boundary of F exactly once, at point y, say. If y 2 e then we are done.
Else y lies in a valley V of R. This is because valleys correspond to reex arcs
of the bisector graph, and only these arcs form an angle larger than 90 degree
with e. It remains to be observed that g(x) follows V to its lowest point which,
by Lemma 2, is a vertex of e.

Now assume R 6= I(P ). By Lemma 5, R contains a valley V whose lowest
point is a corner c of R. Let F be a facet of R which has c as a local minimum,
and let e be its de�ning edge. Then we can choose a point x 2 F near V such
that g(x) reaches and follows V and ends at c =2 e. ut

A physical interpretation of Theorem 7 is that on I(P ), and only there, every
raindrop that hits a facet F runs o� to the edge de�ning F .

Theorem 6 and Theorem 7 can be used as de�nitions for I(P ) and thus for
S(P ). It would be elegant, however, to have a de�nition which does not resort
to the explicite structure of I(P ). One approach that suggests itself is to try to
express I(P ) as the lower envelope of partial linear functions, each function being
de�ned locally by an edge of P and its appropriate neighborhood. However, the
example in Figure 5 shows us that such functions do not exist.

Consider the reex vertex v, and let e be the edge incident to v whose facet
in R(P ) contains the point x. Let �(e) � �(e) be the graph of some partial
linear function for e. The facet of e in I(P ) does not contain x, as I(P ) is above
�(e) at x. So, if I(P ) is the lower envelope of the functions �, then �(e) must
not contain x. On the other hand, a change of P not in the neighborhood of e,
namely moving the reex vertex w slightly upwards, makes R(P ) the valid island
of P . Now �(e) has to contain x in order to ensure the envelope property for the
modi�ed polygon. This shows that �(e) cannot be de�ned without knowledge of
I(P ).

This undesirable property of I(P ) reveals that S(P ) is no Voronoi-diagram-
like structure. To be more precise, S(P ) cannot be interpreted as some Voronoi
diagram for the edges of P , if the underlying distance function is de�ned without
prior knowledge of S(P ).

4 Discussion

The contributions of this paper are two-fold: The introduction of a new internal
structure for simple polygons, and the �rst systematic treatment of the problem
of constructing a roof above a polygonal layout of ground walls.
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Figure 5: I(P ) (dotted) dominates another roof R(P ) (solid) at shaded area

The general advantages of the straight skeleton over the medial axis are its
straight-line structure and its lower combinatorial complexity. Both structures
reect the shape of a polygon in a compact manner. However, the straight skel-
eton is more sensible to changes of the shape. Adding a reex vertex with very
small exterior angle may alter the skeleton structure completly. If this e�ect is
undesirable then such vertices may be cut locally, without much changing the
polygon and achieving exterior angles of at least 90 degrees.

The straight skeleton provides a unique way of computing a polygonal roof,
given a general placement of ground walls. We have shown that roofs are highly
ambiguous objects, and that constructing a roof is a non-trivial task. To our
knowledge, the roof construction method presented here is the �rst one in the
literature.

A disadvantage of straight skeletons is the lack of a Voronoi diagram struc-
ture, which excludes the well-developed machinery of constructing Voronoi dia-
grams [A] from application, and makes tailor-made algorithms neccessary. Power-
ful techniques like divide-and-conquer or incremental insertion can be shown to
fail.

The most promising approach, which might work su�ciently well in practical
situations, is a simulation of the polygon shrinking process. The trivial method
would consider each pair of edges of the current polygon(s) to detect the next
edge event or split event. As each event corresponds to a node of S(P ), this leads
to an O(n3) time and O(n) space algorithm. Organizing the events in a priority
queue brings down the construction time to O(n2 logn), but at an expense of
O(n2) storage.

Of course, the determination of the next edge event is easy as it can be done
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locally, but �nding the next split event in low worst-case time is by no means
trivial. A heuristic that can be expected to be fast on the average is tracing
the reex vertices through a suitable partition of the shrinking polygon. This
would lead to an O(n) space algorithm whose running time depends (more or
less) on the number of reex vertices. The challange is to �nd an algorithm with
performance comparable to medial axis algorithms; for example,O(n logn) time.
We do not further persue this matter here.
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