Journal of Universal Computer Science, vol. 1, no. 1 (1995), 23-34
submitted: 8/10/94, accepted: 19/12/94, appeared: 28/1/9501Springer Pub. Co.

On Implementing EREW Work-Optimally
on Mesh of Trees

Ville Leppanen
(University of Turku, Finland
Ville.Leppanen@cs.utu.fi)

Abstract: We show how to implement an ¢; x nlog n-processor EREW PRAM work-
optimally on a 2-dimensional n-sided mesh of trees, consisting of n processors, n mem-
ory modules, and O(n2) nodes. Similarly, we prove that an f£2 x n?log n-processor
EREW PRAM can be implemented work-optimally on a 3-dimensional n-sided mesh
of trees. By the work-optimality of implementations we mean that the expected rout-
ing time of PRAM memory requests is O(1) per simulated PRAM processor with high
probability. Experiments show that on relatively small £; and £3 the cost per simulated
PRAM processor is 1.5-2.5 in the 2-dimensional case, and 2-3 in the 3-dimensional
case. If at each step at most %’th of the PRAM processors make a reference to the
shared memory, then the simulation cost is approximately 1. We also compare our
work-optimal simulations to those proposed for coated meshes.

Key Words: EREW, mesh of trees, shared memory, simulation, work-optimal, ran-
domized, coated mesh.

Category: C.1.2 C.2.1 F.1.2 F.2.2 G.3.

1 Introduction

PRAM is an abstract model of parallel computation. It consists of p proces-
sors and a single shared memory of size m. The shared memory concept of the
PRAM is generally believed not to be directly implementable as an extension of
the conventional memory technique to the p-port memory technique (this does
not seem to hold for relatively small p [Forsell 93]). Therefore, the implementa-
tion of PRAM is usually considered on distributed memory machines (DMMs),
where processor&memory pairs are connected by some interconnection network
[Abolhassan et al. 91, Karp et al. 92, Leppénen and Penttonen 94a, Ranade 91,
Valiant 90].

Simulation of PRAM on a 2-dimensional Mesh of Trees (MT) based DMM
has been considered previously in [Luccio et al. 88, Pucci 93] probabilistically
and in [Luccio et al. 90, Pucci 93] deterministically. The probabilistic simulation
of an n-processor EREW PRAM on an n-processor (O(n?)-node) MT is proved
to work in time O(logn) with high probability. The deterministic scheme is

respectively proved to work in time O(%zgin). Thus, the work per simulated

PRAM processor is O(logn) and O(%‘igin), respectively.

In this paper, we show how to decrease the work per simulated processor to
O(1) with high probability. We prove this result for both 2-dimensional and 3-
dimensional MTs. The method is, of course, increasing the multithreading level of
each processor so that the cost caused by routing delay decreases — i.e., we make
each of the N real processors to simulate p/N EREW processors, and require
that the number of PRAM processors p is sufficiently large. In our simulations,

23

we implement each virtual processor as a light-weight thread (= fixed set of
registers). For ease of reference, we call the multithreading level of processors
simply by load, and increasing the load by overloading.

The work-optimality of our simulations can be questioned, since the number
of MT-nodes is O(n?) (or O(n?) in the 3-dimensional case) while the number of
real processors is only O(n) (respectively O(n?)). We adopt the approach taken
by Valiant in [Valiant 90] for the work-optimal simulation on the butterfly: If
the nodes of the routing machinery are very simple (and fast), then it might be
fair to ignore their work-complexity. The nodes of MT are required only to do
elementary switching operations, and thus we are willing to ignore their work
and hardware complexity. We return to this subject [Section 5].

Next, we give some necessary definitions [Section 2], and describe work-
optimal EREW PRAM simulation on 2-dimensional and 3-dimensional mesh
of trees [Section 3]. Then, we give experimental EREW simulation results [Sec-
tion 4], and compare [Section 5] the MT results to those obtained for similar
work-optimal simulations on coated meshes [Leppanen and Penttonen 94b]. We
conclude [Section 6] by proposing some topics for further research.

2 Definitions

2.1 EREW PRAM

Definition1. EREW (Exclusive-Read-Exclusive-Write) PRAM model consists
of p processors and a shared memory M of size m. Each of the processors
Py, P1, ..., Po_1 has some local memory and registers. During one step a PRAM
processor can either do a local operation, read a shared memory location, or
write to a shared memory location. The phases of each step are executed syn-
chronously, and the next step is not started until all processors have finished the
current one. The EREW PRAM does not allow concurrent reading or concurrent
writing of a shared memory location. However, a shared memory location may
be read and written during the same step. A read operation returns the value of
the memory location in question before the current step.

2.2 Mesh of Trees

Definition2. An n-sided d-dimensional Mesh of Trees (MT) is a graph, which is
based on an n-sided d-dimensional mesh of nodes (without grid edges). For each
tower of mesh nodes {Vi, i, 1,0,i;51,..ia>- > Vit,oijo1,n—1ij41,..,ia) it contains

a complete binary tree T/ whose leaves are the nodes of the

21,...,ij_1,ij+1,...,id’
tower. The edges of complete binary trees are bi-directional, and have a queue
of length ¢ packets for both directions. The MT contains no other edges. The
degree of MT is maxz(3,d), and the number of nodes is |[V| = (d + 1)n? — dn?1L.

Respectively, the diameter is 2d logn.

In the 2-dimensional case [see Fig. 1], we call T} the i’th row tree RT;, and
T? the i'th column tree C'I;. In [Luccio et al. 88, Luccio et al. 90], the roots
of RT; and CT; are joined for each ¢, but here we do not assume that to be
the case. We assume that processor P;, . ;, is in the root of Tz'12,...,z'd for each

is,...,1g € {0,...,n — 1}. Similarly, we assume memory module M;, _;

y8d—1 to

24

reside at the root of Tfi Thus, the n-sided d-dimensional mesh of trees

d—1

yoetd—1"

consists of N = n processors and memory modules.

@ = processor = memory module

© =nodeof underlying grid O = intermediate node

Fig.1. A 2-dimensional 4-sided mesh of trees.

3 Simulation

Initially, the shared memory is hashed according to some randomly chosen hash
function h € H. Memory references are translated to reed and write pack-
ets, which are routed to the memory module on whose custody the referenced
shared memory cell is. Each packet is routed along the obvious route as in
[Luccio et al. 88, Pucci 93]. The memory modules in turn reply to each read
request as they arrive, and route the replies back to the requesting processor.
Proper information about the target and the origin are carried in the packets.
Before a write packet is “executed”, the old value is copied to a backup table
(a hash table within each memory module). Those values are used to generate
replies to read packets arriving after a write packet with the same target.
For hashing, we use the following family H of polynomial hash functions.

He = {h‘h(x) = Z aiz’ mod q) mod m;0 < a; < g m<q= O(m)},
0<i<(

25

where ¢ is a prime and ¢ > 2. The family X, is not the best possible, be-
cause we would like to define mappings owner : Z,, — {0,...,n — 1} and
location : Zpy — Ly by owner(z) = (h(z) div m’) mod n, and location(z) =
h(z) mod m/. This does not work in practice, since a randomly chosen h € H, is
not bijective. However, the secondary hashing techniques within memory mod-
ules (as in [Ranade 91]) can be used to solve the problem. Notice that the serial
evaluation time of h(z) is O((), but if processors have a certain pipeline of length
0O((), then the amortized evaluation time can be pushed down to O(1).

Lemma 3. [Kruskal et al. 90, Corollary 4.20] If a randomly chosen h € H; is
used for hashing a set S of uniqgue memory locations into n modules, for which

|S| = s> (n/2, then for all j (0 < j < n):
¢
g e(s \?
2 \2ne?)

where by = [{x € S| h(z) = j}|, and lne = 1.

IN

Pr(b; > s/n+e)

3.1 2-dimensional Mesh of Trees

In the 2-dimensional case, the routing is straightforward, since the processors
are on the roots of row trees and the memory modules are on the roots of
column trees. In fact, the path from P; to M; via mesh node (7, j) is unique.
Moreover, if q is sufficiently large, no collisions can happen, when read and write
packets traverse “down” along row trees, or when replies traverse down along
column trees. Collision, and thus queuing, happens only, when replies traverse
“up” along row trees, or read and write packets traverse up along column trees.
If s packets are destined to some memory module M;, then a packet destined
to M; is delayed (queued) at most s — 1 times. Lemma 3 gives a good bound
for the number of packets destined to each memory module, and consequently
we have Theorem 4.

Theorem4. For properly chosen (small) constants k and £, there exists such a
constant o > 1 that a 2-dimensional n-processor MT with Ho(1ogn) addressing
and ¢ = O(Llogn) can simulate an ¢ x nlogn-processor EREW PRAM work-
optimally in O(£logn) expected routing steps with probability at least 1 —n=?
if ¢ = klogn and Llogn > (/2.

?

Proof. We assume that each processor simulates {logn EREW processors.
For the time being, assume that ¢ = co. According to Lemma 3 (s = £ x nlogn;

€=2s/n)

< (5)

26

for some positive constant o, if { = £2(logn). Since b; tells how many requests
memory module M; receives at most with high probability, we know that every
request reaches its destination in 71 = 2logn + 3¢logn steps with probability at
least 1 —n='+1, Routing the packets back is easier, since each processor receives
at most flogn replies. Thus, the last reply is received at most 2logn + £logn
steps after some memory module received the last read request.

The queues do not need to be infinite. If ¢ > 3¢logn, then according to the
above reasoning none of the queues becomes full with high probability. Thus,
setting ¢ = 3flogn + 1 guarantees that the queue length will not affect the
routing time with high probability.

How do we know, when to start simulating the next EREW step? We could
assume that we first check whether all processors have received all replies. How-
ever, we do not actually need such a global control, if we proceed in the following
way. Assume that after the last memory reference packet, each processor sends
an End-Of-Stream packet. The row tree nodes can spread this EOS-packet to
both branches, and respectively the column tree nodes let all other packets go
before they combine two EOS-packets, and forward the result upwards. Now,
each memory module knows when it has issued the last reply, and can thus
send an End-of-Replies packet. Assume that the EOR-packets are transferred in
the same way as the EOS-packets. Clearly, each processor can start simulating
the next step, when it has received an EOR-packet. In principle, a processor
could start simulating the next round right after it has injected its EOS-packet.
However, in practice this can cause problems with the coordination of virtual
processors. Acting like this, the simulation of at most two consecutive EREW
steps are overlapped, but never mixed.

As in [Luccio et al. 88, Pucci 93], we can protect ourselves against some re-
peatedly occuring bad memory reference patterns, by requiring that the whole
shared memory is rehashed, if some memory module receives more than ex/£logn
packets for a carefully chosen constant ¢. Clearly, a memory of size m = n® can
certainly be redistributed in time O(n? + logn). By now we know that if ¢ > 3,

the redistribution takes place at most with probability n=o". Thus, if o’ > 8,
the effect on the expected number of routing steps is negligible. O

3.2 3-dimensional Mesh of Trees

To extend the result of Theorem 4 to the 3-dimensional mesh of trees, we only
need to describe how to route the packets, and how to keep the simulation of
two consecutive PRAM steps separated. Using Lemma 3, it is again easy to
prove that each memory module M; ; receives at most 3flogn packets with
high probability.

Let us again call those trees, where the processors and the memory modules
are connected, the row and the column trees respectively. Let depth tree D15 ,
denote tree Tﬁyy. Now, a packet is sent from processor P; ; to memory module
M, 1 so that the packet goes along RT; ; to mesh node Vj, ; ;, then up along DT}, ;

27

and down to mesh node V3 ;;, and finally up along C7T}; to My ;. Similarly,
replies go back the same way. Notice that it is not wise to put all the packets to
go trough the root of some DT .

Can we guarantee that there is no congestion in the depth tree nodes? A
read or a write packet entering to a depth tree DT} ; is from one of the n
processors P; ; and is destined to one of the n memory modules M} ;, where
i, €{0,...n—1}. By Lemma 3 (s = £ x nlogn; the number of different banks
of n memory modules is n?/n = n; ¢ = 2s/n), we know that at most ¢ x £logn
packets enter to DT}, ; with probability at most

¢
¢ e\ _¢e —a
Pr(b; > 3s/n) < 2 <8£logn) = 2 (Z) sn

for some constant o, if { = 2(logn). Clearly, this also sets a sufficiently large
upper bound for q.

As in the 2-dimensional case, we can keep the simulation of consecutive steps
separate by sending EOS- and EOR-packets. However, we must require that
when they traverse the depth trees, they always go via the root. Based on the
above discussion, we have Theorem 5.

Theorem 5. For properly chosen (small) constants k and £, there exists such a
constant o > 1 that a 3-dimensional n®-processor MT with Ho(logn) addressing

and ¢ = O(Llogn) can simulate an ¢ x n? logn-processor EREW PRAM work-

optimally in O(Llogn) expected routing steps with probability at least 1 — n~2,
if ¢ = klogn and Llogn > (/2.

3.3 Practical Remarks

It is straightforward to extend the EREW simulation result to higher dimensional
mesh of trees. However, finding an efficient layout for d-dimensional (d > 3) mesh
of trees is obviously very difficult, if not impossible.

We did not pay much attention to the impracticality of family H,, since we
are mainly interested about the routing cost. We believe that simpler families
(e.g., H1) can be used in practice [Engelmann and Keller 93], since the number
of all possible different reference patterns

()

is so huge that it is not necessary to guarantee success with high probability
for all of them. After all, what is wanted is that in the long run the average
simulation time of one PRAM step is O(£logn).

Although the rehashing method proposed earlier in this paper is sufficiently
good for asymptotic complexity results, it is likely to be too “rough” in practice.
Undoubtly, it is good to have a rehashing mechanism, but its triggering criteria
should be chosen very carefully. We believe that one should make the decision
on the basis of a long (bad) simulation sequence.

28

If we ignore the effect of rehashing on the expected routing cost per PRAM
processor, by [Section 3.1] and [Section 3.2], we know that the cost is at most

llogn + 2logn + 3flogn + 2logn + flogn

4 0/ =
4450/ Llogn

in the 2-dimensional case and (6 + 11¢)/¢ in the 3-dimensional case. In practice,
we suspect that the cost caused by queuing is not as big as indicated by our
naive analysis. Especially, the cost (2 + 6¢)/¢ that comes from the depth trees
in the 3-dimensional case is too big. In the next section, we confirm this to be
the case.

4 Experimental Results

Full details of our routing experiments on the mesh of trees are documented
in [Leppanen 94b]. Here, we only give an overview of the test setting and the
results.

The integration of processors and the memory modules to the mesh of trees
based routing machinery is as described before. We assume that the processors
and the routing machinery nodes can send and receive at most one packet in one
time unit. We assume that the memory modules can generate a reply in one time
unit, and there is a FIFO queue of a fixed length {, associated to each directed
edge. Our experiments indicated that the size of {; will not significantly affect
on the routing time as long as [, > 2 [Leppéanen 94b]. In the following, [, = 2.

We did not use H, to define the destinations of packets, since we did not
know how to produce typical access patterns (it makes no sense to apply H, to
randomly produced access patterns). Instead, we used destinations generated by
Unix random function random. The packets we perceived as read packets, and
thus all the packets were each time routed to their destination and back to their
source.

We made about 30 experiments with each chosen parameter combination.
Altogether about 2400 routing experiments were conducted on 2-dimensional 64-
, 256-, and 512-processor MTs [see Fig. 2], and on 3-dimensional 256-, 1024-, and
4096-processor MTs [see Fig. 3]. We measured only the time to complete a single
experiment — as mentioned earlier, overlapping of consecutive steps is likely to
decrease the total simulation cost. In each case, the variation of routing times was
small. The curves describing our experiments show the dependency of simulation
cost ¢ (average simulation time per Load) as a function of ¢ (Load = £ x logn).

We see that for 2D MT sizes 64, 256 and 512, value £ & 3 yields cost ¢ & 5.
When ¢ & 8, then the cost ¢ < 2. Furthermore, it seems that the larger the mesh
of trees the lower the simulation cost per processor. Even though our experiments
deal only with relatively small MTs, we would like to claim that the simulation
cost 1s very small on large MTs with load 2 x logn.

In the 3-dimensional case, we found out that value £ & 4 yields cost ¢ ~ 4.
When £ & 7, then the cost ¢ &~ 3. As in the 2-dimensional case, it seems that the
larger the mesh of trees the lower the simulation cost.

29

500 n-si ded 2D-MI; n=64, 256, 512

40

30

20

10 \\\\\
0 5 10 15 20 25!

Fig. 2. The simulation cost as a function of £ in 2D MT.

The highest and at the same time the longest of the curves represents a 2D MT of size
64. The next highest (and longest) curve corresponds to a 256-processor 2D MT, and
the lowest curve represents a 512-processor 2D MT. The Y-axis shows simulation cost
¢ per simulated processor (in terms of routing steps per simulated processor), and the
X-axis shows the load as a function of £, where £ = Load =+ log n.

c N-processor 3D MI, N=256, 1024, 4096

60

50

40

30

20

10t

10 20 30 40 50 60

Fig. 3. The simulation cost as a function of £ in 3D MT.

The highest and at the same time the longest of the curves represents 3D MT of size
256 processors. The next highest (and longest) curve corresponds to a 1024-processor
3D MT, and the lowest curve represents a 4096-processor 3D MT.

30

5 Comparison with Coated Mesh

As observed, the simulation cost is very small for the 2-dimensional and 3-
dimensional mesh of trees. However, other parameters of EREW PRAM imple-
mentations are also important. In the following, we present a comparison with
the simulation cost on the coated meshes [Leppanen and Penttonen 94b].

@ = processor = memory module

Q = node of arouting machinery

Fig.4. A 2-dimensional coated mesh with 20 processors.

A coated mesh [see Fig. 4] consists of a mesh connected routing machinery
coated with processor&memory pairs. Both the coated mesh and the mesh of
trees have a routing machinery of size O(N?) in the 2-dimensional case, and
O(N?3/?) in the 3-dimensional case. For parameters of our comparison [Tab. 1],
we take the routing machinery size with respect to the number of processors and
memory modules; simulation cost on a quite moderate load; simulation cost on
a heavy load; and the minimum physical distance between logical neighbors. We
note that there exist “tricks” to improve efficiency, like integration of the routing
machinery nodes; faster clockrate in the routing machinery than in the proces-
sors; and delayed memory access operations. All of them can obviously be used

31

to further improve the simulations both cases. We feel that the distance between
neighboring nodes is important, since it might limit the clockrate of the routing
machinery. So far, increasing the clockrate has been a major source of perfor-
mance improvements. For the coated mesh structure, we use the experimental
results documented in [Leppanen 93, Leppanen 94a].

| Property || MT | CM ||N = 103|N = 106|
2-dimensional case
Cost 225 910 7 7
Load 5-Tlog N EIN 6 3100
Cost 1.5 6 4 4
Load 20log N 2N 9 4700
Number of nodes 3N? —4N N%/16 48 48
Distance Q([%U 1 87 | 43000
3-dimensional case
Cost 34 1314 7 7
Load 3log N 0.7vV'N 1.4 12
Cost 1.5 8 5 5
Load 60log N 3VN 6 2.5
Number of nodes 4N32 5N (N/6)2/2 56 59
3
Distance Q([%]) 1 5 80

Table 1. Mesh of Trees versus Coated Mesh.

N 1s the number of real processors in each case. Distance tells the lower bound for
the minimum (physical) distance between two logical neighbors (measured in routing
machinery nodes). To our knowledge, no layout achieving the lower bound is known.
Cost tells the simulation cost on a given Load. The two rightmost columns compare
the two PRAM implementations with N processors. An emphasized number x means
that MT is « times better than CM in this respect. Respectively, plain x means that
CM is times better.

In [Tab. 1], we have chosen two load values for both comparisons. In all cases,
the simulation cost depends on the available load in a very similar way. The
load values of MT and CM are chosen from similar positions of the load-cost de-
pendency curves [Leppanen 94b, Leppanen and Penttonen 94b]. Especially, we
attempted to choose the measure points so that the relative position on the MT
curve and on the corresponding CM curve is the same. The first values are cho-
sen from an area, where the load-cost curve begins to show asymptotic behavior,
and the second values are chosen from an area were the behavior is asymptotic.

The mesh of trees is clearly better [Tab. 1] in terms of the simulation cost and
the load in the 2-dimensional case. In the 3-dimensional case, the mesh of trees
is only slightly better in this respect. Moreover, the routing machinery nodes
are a little bit simpler in the mesh of trees (less inputs and outputs). However,
what 1s gained in the simulation cost and in the required load, is lost in the size
of the routing machinery and in the distance between routing machinery nodes.
Especially, in the 3-dimensional case it seems that the coated mesh 1s actually

32

better than the mesh of trees.

A 10%-processor 3-dimensional coated mesh has only \/N/61'5 ~ 70 times
more routing machinery nodes than processors. For a corresponding mesh of trees
this ratio is about 4000. Remember that this PRAM simulation approach relies
on the assumption that the routing machinery nodes are considerably simpler
than the processors (and the memory modules). We do not know the actual
difference of the routing machinery nodes and the processor&memory pairs in
the hardware complexity, but ratio 70 does not seem to be totally unacceptable.
Especially, if a bunch of routing machinery nodes (e.g., 8 x 8 x 8) are integrated
together to form a building block of a routing machinery.

6 Conclusions and Future Work

We have presented a work-optimal EREW PRAM implementation for the 2-
dimensional and 3-dimensional mesh of trees. The simulation uses a novel tech-
nique to keep the simulation of consecutive PRAM steps separated. Although the
proved simulation costs are small, our experiments show the real simulation costs
to be about 2-3 times smaller in practice. We compared the properties of the
presented simulations to those proposed for the 2-dimensional and 3-dimensional
coated meshes. Neither a mesh of trees nor a coated mesh is strictly better than
the other, but our conclusion is that in the 3-dimensional case the coated mesh
is better, when all the mentioned properties are considered.

We would like to learn more about the hardware complexity of the routing
machinery nodes, and the ability to fast support a large number of virtual pro-
cessors (how large systolic register set arrays can be built). Tt would also be
interesting to compare these EREW PRAM simulations to those proposed for
other logarithmic networks. Extending our work-optimal EREW simulation to
an efficient work-optimal CRCW simulation is also an open problem.

References

[Abolhassan et al. 91] Abolhassan, F.; Keller, J., Paul, W.J.: “On the Cost-
Effectiveness of PRAMs”; Proc. 3rd IEEE Symposium on Parallel and Dis-
tributed Computing, ACM Special Interest Group on Computer Architecture,
and IEEE Computer Society (1991), 2 — 9.

[Engelmann and Keller 93] Engelmann, C., Keller, J.: “Simulation-Based Comparison
of Hash Functions for Emulated Shared Memory”; Proc. PARLE’93 Parallel
Architectures and Languages Europe, Springer, LNCS 694 (1993), 1 — 11.

[Forsell 93] Forsell, M.J.: “Are Multiport Memories Physically Feasible?”; Techni-
cal Report A-1993-1, University of Joensuu, Department of Computer Science
(1993).

[Karp et al. 92] Karp, R.M., Luby, M., Meyer auf der Heide, F.: “Efficient PRAM Sim-
ulation on a Distributed Memory Machine”; Proc. 24th Annual ACM Sympo-
sium on Theory of Computing (1992), 318 — 326.

[Kruskal et al. 90] Kruskal, C.P., Rudolph, L., Snir, M.: “A Complexity Theory of
Efficient Parallel Algorithms”; Theoretical Computer Science, 71 (1990), 95—
132.

[Leppinen 93] Leppéanen, V.. “PRAM Computation on Mesh Structures”; Technical
Report R-93-9, University of Turku, Computer Science Department (1993).
Ph.Lic. thesis.

33

[Leppdnen 94a] Leppinen, V.: “Performance of Four Work-Optimal PRAM Simulation
Algorithms on Coated Meshes”; Manuscript (1994), submitted for publication.

[Leppinen 94b] Leppédnen, V.: “Experimental Results on Simulating EREW PRAM
Work-Optimally on Mesh of Trees”; Technical Report R-94-10, University of
Turku, Computer Science Department (1994), also appeared as electronic ver-
sion, anonymous FTP cs.utu.fi, in pub/techreports/1994/R-94-10.ps.Z.

[Leppinen and Penttonen 94a] Leppanen, V., Penttonen, M.: “Simulation of PRAM
Models on Meshes”; Proc. PARLE’94 Parallel Architectures and Languages Eu-
rope, LNCS 817 (1994), 146 — 158.

[Leppinen and Penttonen 94b] Leppanen, V., Penttonen, M.: “Work-Optimal Simu-
lation of PRAM Models on Meshes”; Technical Report R-94-1, University of
Turku, Computer Science Department (1994), submitted for publication.

[Luccio et al. 88] Luccio, F., Pietracaprina, A., Pucci, G.: “A Probabilistic Simulation
of PRAMs on a Bounded Degree Networks”; Information Processing Letters, 28
(1988), 141-147.

[Luccio et al. 90] Luccio, F., Pietracaprina, A., Pucci, G.: “A New Scheme for the
Deterministic Simulation of PRAMs in VLSI”; Algorithmica, 5, 4 (1990), 529 —
544.

[Pucci 93] Pucci, G.: “Parallel Computational Models and Data Structures”; Technical
Report TD-13/93, PhD thesis, Dipartimento di Informatica, Universitd di Pisa
— Genova — Udine, Italia (1993).

[Ranade 91] Ranade, A.G.: “How to Emulate Shared Memory”; Journal of Computer
and System Sciences, 42 (1991), 307-326.

[Valiant 90] Valiant, L.G.: “General Purpose Parallel Architectures”; Algorithms and
Complexity, Handbook of Theoretical Computer Science A (1990), 934-971.

Acknowledgements

The author would like to thank Martti Penttonen for guidance and helpful com-
ments. This work was possible due to a grant provided by the computer science
department of the University of Turku.

