
Defining Distribution Constraints in Distributed User

Interfaces

Antonio Peñalver, José Juán López, Federico Botella

(Center of Operations Research University Institute

Miguel Hernández University, Elche, Spain

a.penalver@umh.es, jlopez@umh.es, federico@umh.es)

José Antonio Gallud

Interactive Systems Everywhere

Castilla la Mancha University, Albacete, Spain

Jose.Gallud@uclm.es)

Abstract: At present, the spread of hand held devices with growing computing power
and functionality allows that different interaction elements can be distributed among
a wide range of devices from different platforms, supporting interaction with one or
many users. To take advantage of the benefits this kind of devices provides, traditional
user interfaces have been evolving towards distributed user ones. The specification of
the constraints on the way in which these elements can be distributed is still an open
field and further research is needed. In this paper we propose a new schema-based defi-
nition of Distributed User Interfaces (DUIs), allowing the specification of the elements
to be distributed, defining constraints on the distribution process itself, independently
of the language selected to construct the interface. Thus, the interface distribution
process becomes the creation of an XML instance from a grammar specified in Schema
language. We also introduce two new definitions to complete the formalization of our
previous definition of DUI. Our previously defined Abstract User Interface (AUI) model
jointly with this new schema-based definition of DUIs will lead us to the full specifica-
tion of concrete DUIs. We provide some examples of the distribution process using the
proposed schema.

Key Words: Distributed User Interfaces, Formal Models, Schemas

Category: H.5.2 H.5.3

1 Introduction

As long as new surprising devices supporting new amazing interaction mecha-

nisms have been introduced, the way people interact with computers (and/or

mobile devices) has been changing accordingly. Nowadays, users can perform

different tasks through a wide variety of computational devices ranging from

mobile phones, Personal Digital Assistants (PDAs), Internet enabled televisions

(WebTV), tablet PCs, laptops or notebooks. New mobile devices allow ubiqui-

tous access to information and services as well as the opportunity to accom-

plish more and more desktop-related tasks with them almost at any time from

everywhere [Weiser 1999]. This fact is bringing new challenges to the Human-

Computer Interaction (HCI) community [Eisenstein et al. 2001]: (i) applications

Journal of Universal Computer Science, vol. 19, no. 6 (2013), 831-850
submitted: 30/9/12, accepted: 28/1/13, appeared: 28/3/13 © J.UCS

must be developed and maintained across multiple devices, (ii) consistency be-

tween versions for different devices must be guaranteed and (iii) versions must

dynamically respond to changes in the environment.

In this context of strong technological growth, the increasing use of differ-

ent displays managed by several users has improved user interaction. Combining

fixed displays with wearable devices allows interaction and collaboration between

users when they work together in a common task. This new scenario has been

recently defined as Internet of Things [Atzori et al. 2010], referring to the abil-

ity to interact with a network of interconnected everyday objects called MDE

(Multi-Device Environments).

In order to address these new challenges, user interfaces must be described

independently of any concrete device. A User Interface Description Language

(UIDL) is a formal language allowing to describe a particular user interface

independently of any implementation technology [Guerrero et al. 2009]. A UIDL

should be declarative so that it can be edited manually and it should also be

formal to be understood and analyzed automatically by specific software.

A common fundamental assumption of most UIDLs is that UIs are mod-

eled as algebraic or model-theoretic structures including a set of interaction

objects and the behavior over them. In the last few years, some authors have

proposed different UIDLs: UIML [Abrams et al. 1999, Helms et al. 2009], useML

[Reuther 2003], MariaXML [Paterno et al. 2009], UsiXml [Limbourg et al. 2004],

XIML [Puerta and Eisenstein 2002] or the new XAML [Microsoft 2006] interface

description language proposed by Microsoft for developing Metro-based applica-

tions. All of them have pros and cons, due to the goals they are mainly intended

to achieve. A deep review and a comparative analysis of some of them can be

found in [Luyten et al. 2004, Faure and Vanderdonckt 2010, Shaer et al. 2008].

Many UIDLs are based on the XML markup language, rendering and de-

scribing the graphical user interface and controls. In order to strictly define the

semantics of such UIDLs, various meta-models have been defined. These meta-

models adhere to the principle of separation of concerns and could be classified as

context of use (user, platform, environment), task, domain, abstract user inter-

face, concrete user interface, usability and accessibility, workflow, organization,

evolution, program, transformation and mapping.

Alternatively, user interfaces have been evolving towards “distributed” user

interfaces, offering new interaction possibilities in agreement with new technolog-

ical proposals. Distributed interfaces allow one or more interaction elements to be

distributed over different platforms in order to support interaction between one

or many users. Throughout the literature, we find several definitions of the con-

cept: a user interface where the components can be distributed across one or more

dimensions such as input, output, platform, space and time [Elmqvist 2011]; a

user interface with the ability to distribute part or all of its components between

832 Penalver A., Lopez J.J., Botella F., Gallud J.A.: Defining Distribution ...

multiple monitors, devices, platforms, screens and users [Melchior et al. 2009]

or an interface that can be divided into parts and migrate to various devices

around the user in order to facilitate user tasks [Vandervelpen et al. 2005]. Be-

fore the widespread acceptance of the Distributed User Interface, several terms

were used instead, such as: Migration, Migratory User Interfaces, Migratable

User Interfaces, Group / Ungroup, Portables, Transportable, Transformable or

Reconfigurable [Demeure et al. 2008]. In subsection 2.1.9 we provide our formal

definition of a DUI.

Starting from our Abstract User Interface [Gallud et al. 2012] and our formal

description technique for developing DUIs presented in [Peñalver et al. 2011],

we can produce unambiguous descriptions of complex interactions that occur in

DUIs (distribution of elements, including communication and distributed inter-

action), more accurate and understandable than descriptions using only natural

language. This method covered a wide range of descriptions from an abstract

point of view but lacks the ability to get an automatic implementation in any of

the previously cited UIDLs. Now we have developed a schema-based approach

that allows us to automatically construct the concrete distributed user interface

(DUI) regardless of the language selected to construct such interface, with the

only requirement that it is a language based on XML.

The rest of the paper is organized as follows. First we review some formal

definitions provided in [Peñalver et al. 2011], and the AUI model proposed in

[Gallud et al. 2012]. Then, new definitions required for the schema specification

of the interface are included. Next our schema driven distributed user interface

model is presented and discussed. Last section provides conclusions and further

work.

2 AUI model for DUIs

In this section we first review some formal definitions of distributed user in-

terfaces. In [López-Esṕın et al. 2011] we defined the specification of distributed

user interfaces (DUIs) that now we are going to reformulate partially. This for-

mal view covers a wide range of descriptions from the most abstract model to

the implementation-oriented models. Formal description techniques can provide

us unambiguous descriptions of the interactions inside a DUI (like distribution of

elements, communication and distributed interaction). This description of a DUI

will be more precise than a description obtained using only natural language. In

addition, formal description techniques provide the foundation for the analysis

and verification of descriptions. The analysis and formal verification can be ap-

plied to specific or abstract properties. Natural language is a good complement

to the formal notation for outlining a first idea of description.

833Penalver A., Lopez J.J., Botella F., Gallud J.A.: Defining Distribution ...

2.1 Formal definitions

We can state that the four essential properties of portability, decomposability

(and composability), simultaneity and continuity, will led us to the formal de-

scription of a distributed user interface. Next we are going to introduce several

definitions to settle the basis of these essential properties:

2.1.1 Definition 1: Interaction Element

An Interaction Element e ∈ E is defined as an element which allows a user u to

carry out an interaction through a platform p. We denote an interaction of the

user u though a platform p by ∼ep.

2.1.2 Definition 2: Functionality

Two elements of interaction e and e′ have the same functionality if a user can

perform the same action using any of them when he/she interacts with the

device. We will denote it by e =F e′. In this sense, a button in a ”Graphic

Interface Unit” has the same functionality as a hand movement if the computer

receives the same order.

2.1.3 Definition 3: Target

A set of interaction elements E0 ⊂ E have the same Target (e ∈T E0) if ∀e ∈ E0,

a user u ∈ U obtains, through the functionality of e, an action of the task whose

goal is to reach this target. In this paper we use target and goal indistinctly.

2.1.4 Defnition 4: User Interface

A User Interface i ∈ UI is a set of interaction elements e ∈ E such as i =

{e ∈ E / e ∈T i}, i.e., the user interface i is defined by the target for which these

elements were chosen. We can also define a User Interface (UI) as a set of inter-

action elements which let a user carry out a task in a specific context.

2.1.5 Property 1: Portability

A UI as a whole, or parts of it, can be transferred among platforms and devices

by means of easy user actions. For example, a user might be running a graphic

editor in his/her desktop computer and then he/she could decide to transfer the

color palette panel (UI element) to another platform (a portable device) with a

simple action.

Formally we can say that being p ∈ P and u ∈ U , a user interface i ∈ UI

/ u ∼i p is portable if there exists E0 = {e ∈ E/e ∈ i} ⊂ i such as u ∼E0 p′ and

834 Penalver A., Lopez J.J., Botella F., Gallud J.A.: Defining Distribution ...

u ∼Ē0 p (being p, p′ ∈ P) reaching the same target that i. This property can be

extended to more than one user. i ∈ UI has been ported if i is portable and this

property has been satisfied.

2.1.6 Property 2: Decomposability

A DUI system is decomposable if given a UI composed by a number of elements,

one or more elements of that UI can be executed independently without loosing

their functionality. For instance, the calculator application could be decomposed

in two UI elements, the display and the numeric keyboard. This property can be

used together with Portability in order to allow that the keyboard is executed

in a smartphone, while the display is showed in a public display. These two UI

elements can also be joined together in a unique UI (composability).

A user interface i ∈ UI is decomposable if there exists E0 ⊂ i such as E0 =

{e ∈ i/ e ∈T ′
E0} and Ē0 = {e ∈ i/ e ∈T ′′

Ē0} obtaining the same target that i.

Thus, if the target T is reached through i, then T ′ and T ′′ are two sub-targets

of T , and they can be reached through E0 and Ē0 respectively.

2.1.7 Definition 5: User Sub-interface

Let suppose that i ∈ UI is a user interface that allows a user u ∈ U to reach a

target T on a platform p ∈ P , i.e. u ∼T p. If T ′ is a sub-target of T , then the

set i′ = {e ∈T i/e ∈T ′
i′} is a User Sub-interface of i, and u ∼T ′

p.

Finally we can say that i ∈ UI has been decomposed if it is decomposable

and this property has been fulfilled.

2.1.8 Definition 6: Platform

We can define a platform as a physical or logical medium where the user interface

can be displayed. Thus, a user interface can be used in a platform if there exists

some kind of framework which makes it possible.

An interaction element e ∈ E exists in a platform p ∈ P (denoted by ∼e p),

if e can be implemented, supported or executed on p. A user interface i ∈ UI is

supported on p ∈ P (denoted by u ∼i p) if ∀e ∈ i then u ∼e p being u ∈ U . In

addition, i ∈ UI is supported on a set of platforms P0 ⊂ P (u ∼i P0) if ∀e ∈ i

then u ∼e p ∀p ∈ P0, being u ∈ U .

Therefore, a platform is a very general concept which can be particularized

according to certain properties. For instance, if Android is considered as a plat-

form, then it could be executed on a mobile smart phone or in a Tablet PC,

having each execution different conditions.

835Penalver A., Lopez J.J., Botella F., Gallud J.A.: Defining Distribution ...

2.1.9 Definition 7: Distributed User Interface

A Distributed User Interface di ∈ DUI is defined as a user interface which has

been decomposed and ported.

Thus, a distributed user interface is a collection of interaction elements com-

posed of a set of user interfaces, which are also sub-interfaces of the user’s dis-

tributed user interface. These user sub-interfaces are distributed in platforms

without loosing their functionality and their common target.

Using this new notation it is possible to express the user interaction through

traditional UIs as u ∼ ip, being i ∈ UI, the interaction of a user through DUIs

as u ∼ dip, being di ∈ DUI, and the interaction of some users through some

platforms through DUIs as {u/u ∈ U} ∼di {p/p ∈ P}.

2.1.10 Definition 8: State of a User Interface:

The State of a user interface i ∈ UI, denoted by S(i), is defined as the temporal

point in which i lies after the user has used part of his/her elements with the

goal of reaching the target associated to i. The State of i is the Initial State

(S0(i)) if none of the elements have been used or if they have been used without

contributing any step to reach the target of i. The Final State of i (SF (i)) is

reached when the target of i is reached. It is said that this target is achieved in n

steps or states, if through the sequence S0(i), ..., Sn(i), the target of i is reached

and this target is achieved without any of the referred states.

Note that moving from the state Sj(i) to Sj+1(i) requires to use the appro-

priate interaction element e ∈ i. Others used elements do not change the state.

There exists some elements which move from state Sj(i) to Sj−1(i), to SF (i) or

to S0(i).

2.1.11 Definition 9: State of a Distributed User Interface

The State of a Distributed User Interface di ∈ DUI, denoted by S(di) =

(S(i1), ..., S(in)), is defined as a n-tuple where each element corresponds to the

state of each user interface in which di has been decomposed. Note that S(di)

depends on the decomposition in sub-interfaces of di and those which have been

ported to different platforms.

We say that a DUI di is in the initial state if S0(di) = (S0(i1), ..., S0(in)),

and di is in the final state if SF(di) = (SF (i1), ..., SF (in)). The number of states

required to reach the target of di is the product of the number of states required

to reach each sub-target in each ported user sub-interface.

836 Penalver A., Lopez J.J., Botella F., Gallud J.A.: Defining Distribution ...

2.1.12 Property 3: Simultaneity

A DUI system is said to be simultaneous if different UI elements of the same DUI

system can be managed at the same instant of time on different platforms. For

instance, two or more users interacting simultaneously with the same DUI from

different platforms. This fact does not imply that all DUI systems are multiuser

as we will see later.

A distributed user interface di is simultaneous in p0, p1, . . . pn ∈ P with n > 1

for uk ∈ U with k = 1, ..., nu (nu ≥ 1) users, if di =
⋃N

j=1 ij with ij ∈ UI, and

uk ∼ij ps in the same temporal point, with j = 1 . . .N and s = 1 . . . n and

k = 1 . . . n.

2.1.13 Property 4: Continuity

A DUI system is said to be continuous if an element of the DUI system can be

transferred to another platform of the same DUI system maintaining its state.

For instance, a user could be on a call in his/her mobile phone walking on the

street and then transfer the call to the TV when he/she arrives at home without

interruption.

A distributed user interface di ∈ DUI is continuous in p0, p1 ∈ P if ∀e ∈ di,

u ∼e p0 and u ∼e p1, the state of di is maintained, i.e., if Sj(di) is the state of

di, then St(i) is reached in both cases (being able to be t = 0, j, j + 1, j − 1, F).

A DUI which satisfies the simultaneity property, having all the targets asso-

ciated to the user sub-interfaces with a common purpose can raise interaction

problems. For instance, a user might employ an interaction element which causes

a setback in the state of another user interface. Thus, it is required to provide

some kind of control between the user sub-interfaces in a concrete DUI.

2.1.14 Definition 10: Requirements function:

The Requirements function of a DUI obtains the necessary requirements of the

state of a sub-interface to reach the next state. This function has two parameters:

first, the sub-interface whose state is evaluated, and second, the point of the state

which is going to be reached.

A user sub-interface can move back from a state to the previous state if the

current state is not a requirement of any reached state in another sub-interface.

Let di ∈ DUI and E(di) = (E(i1), ..., E(in)) the state of di, we define the

requirements of the state of ij to move from m − 1 to m with E0(ij) ≤ m ≤
EF (ij), as R(ij ,m) = (E1, ..., En), being Ek the minimum state required in the

sub-interface ik ∀k = 1, ..., n. If the sub-interface ij is independent of ik then the

value of Ek in R(ij,m) is E0(ik).

837Penalver A., Lopez J.J., Botella F., Gallud J.A.: Defining Distribution ...

2.1.15 Definition 11: Concurrency Restriction

If the state of ij is r (denoted by Er(ij)) and Es(ik) is the value of the k-th

position of R(ij,m), i.e., it is necessary to get Er(ij) so that ik reaches the state

s, because it is a requirement of ij . Then, it is not allowed to use an element

which changes from Es(ik) to Es−1(ik).

2.2 The AUI model

The concept of Distributed User Interface is based on the concept of User In-

terface. In fact, we can consider that a DUI is a set of interaction elements

distributed across different platforms. We can consider a set of interaction el-

ements as a UI, if all these interaction elements have a common target. This

common target is connected with the user’s task, i.e. a UI is the way the user

achieves the result of the task. This result appears in the model as target. Figure

1 shows the abstract user interface (AUI) model used in this paper.

A User Interface is composed of an abstract interaction object (AIO) that can

be either an interaction element or a user sub-interface (uSubI). The interaction

element can be used to express input, output, navigation or control actions.

In this model two entities called “target” and “subtarget” can be found. These

entities are present in the model to remark the importance of the common target

that is inherent to the concept of user interface.

We can find a significative difference between this AUI model and the model

defined in [Limbourg et al. 2004] as we introduce target and subTarget entities

in the model. A DUI is a set of distributed interaction elements supporting a

common target. Before distributing a UI, we can check if a set of interaction

elements can be split and transferred to another platform with a simple veri-

fication. We have to test if the selected interaction elements have associated a

sub-target or not.

Let’s see the example of the calculator to explain the AUI model. The calcu-

lator as a whole is a UI so that the user can perform mathematical calculations

(his/her final target). The calculator consists of an abstract interaction object

which also contains an interaction element (the display) and a user sub-interface

(the keyboard). The display has a subtask related to the main target: to show

the calculations to the user. The sub-interface keypad consists of a set of in-

teraction elements (buttons) with a common sub-objective: to allow user input.

The display is framed within the output interaction elements, while each of the

keys can be considered as input elements. The “key” interaction elements share

a common sub-target: to allow data input, so it makes no sense to be distributed

separately, but framed within its sub-interface, since they share the same input

sub-target. To split or to distribute interaction elements that do not share a sub-

objective linked to the main purpose of the UI can jeopardize the attainment of

this objective.

838 Penalver A., Lopez J.J., Botella F., Gallud J.A.: Defining Distribution ...

Figure 1: Abstract User Interface with the DUI perspective

3 Schema Driven DUI Generation

Now we are going to outline our approach for generating a concrete DUI that

will be rendered on different devices. We get an AUI model in which the different

sub-interfaces have been defined considering that all the associated interaction

elements have a sub-target compatible with the common target of the user in-

terface. There are important considerations related to the specification of the

process: (i) the method should be independent of the selected UIDL and (ii) the

syntax must be easy to learn so that the developer can design the DUI with

minimal effort.

Another option may be to integrate the distribution properties in the UIDL

839Penalver A., Lopez J.J., Botella F., Gallud J.A.: Defining Distribution ...

directly. if we consider UIML, we could introduce the tags <distributable>

</distributable> to indicate that the sub-interfaces defined between these tags

can be split and thus distributed to other devices [Luyten and Coninx 2004].

However, this does not follow the current UIML specification and also imply

that UIML renderers should understand these new tags. We rather aim for a

more general solution to capture the distribution feature that is independent of

the used description language, assuming that it is an XML-based one.

According to our previous definition, a DUI is a set of distributed interaction

elements supporting a common target. As we said before, the process of dis-

tributing a UI, requires to check if a set of interaction elements can be split and

transferred to other platform (portability and decomposability properties) and

then, testing if the selected interaction elements have associated a sub-target or

not. We first design the interface as a whole to define a distributable interface

and then we define the distributable parts, taking into account if a sub-target is

associated.

In a context of a multimedia player, these parts could include for example

a “main” part, a “playlist” part and a “settings” part. We also need to impose

some constraints on the parts in order to introduce some information about the

structure of the interface. As all UIDLs considered are XML-based languages,

we can constrain the structure of the UI using some XML schema language.

Previous work in the development of distributed interfaces required new

methodologies [Bandelloni and Paterno 2004, Larsson and Berglund 2004] or on-

tologies [Balme et al. 2004]. We have discarded these approaches as we are look-

ing for a method independent of the UIDL language and a syntax easy to learn.

Here we consider that an XML document can be validated against a schema

to check if it accomplishes certain constraints. The process of validating an XML

document consists of several stages: analysis of the structure of the document,

analysis of the content of each node and its attributes and analysis of constraints

of relations between different nodes. These stages can be performed through some

schema language like Document Type Definitions (DTDs), W3C XML Schema

[W3C] or RelaxNG [Clark and Murata 2001]. There are many tools allowing us

to check if a concrete XML document matches a specific schema. Furthermore,

we could develop an algorithm that provides valid instances (XML documents)

from a schema. As schema languages allow “choices”, there are an infinite number

of instances that matches a concrete schema, so such an algorithm could not

deterministically generate a single instance based on random choices.

In [Fitch 2002], author introduces the use of a schema language for dynam-

ically generating HTML forms by means of a self-defined schema language in-

stead of any of the well-known standard ones. Rather than hard-coding forms,

the approach dynamically generates an HTML form using an XML document

representing the application data and an XML schema document describing the

840 Penalver A., Lopez J.J., Botella F., Gallud J.A.: Defining Distribution ...

<body>

...

<div>

This is

an example of mixed content

</div>

...

</body>

Figure 2: XML node with mixed content that cannot be constrained with RelaxNG

data and the way it may be operated upon by the user. The schema describes

the document so that an HTML form can be generated using Javascript DOM

API.

In [Vandervelpen et al. 2005] a framework for dynamically distribute applica-

tion UI’s among several devices is developed. In the approach, RelaxNG schema

language is used to describe the XHTML interface, defining constraints for each

element, attribute and text value in the XML file. They create a RelaxNG schema

file for each service an application provides. Then, a RelaxNG-based schema to

instance algorithm is developed in order to generate a concrete XHTML user

interface.

Although the RelaxNG schema language is simple and flexible, it has some

drawbacks in order to be used for defining a DUI: (i) it does not allow to con-

strain text values in mixed content nodes and (ii) it does not support datatype

validation, so it needs a datatype library to extend the RelaxNG functionality,

like W3C XML Schema Type Library.

Figure 2 shows an instance of an XML document with a <div> node con-

taining the texts “This is” and “of mixed content” and a <a> element that is so

called “mixed content”. Although it is just a simple example, the above situation

is very common and there are many situations that require multiple content in a

web interface. Both text values cannot be constrained with RelaxNG. Therefore,

we select XML Schema in order to define in a more accurate way the constraints

related to the distributions of the different elements of the interface in a more

accurate way.

The key idea is to use the XML Schema patterns like <sequence>, <choice>

and <all> to define constraints about the sub-interfaces that can be distributed

between different devices. We use the following XML Schema order container

841Penalver A., Lopez J.J., Botella F., Gallud J.A.: Defining Distribution ...

indicators:

– <sequence>: Each child node must occur in the order specified in the XML

file.

– <all>: Specifies that the child elements can appear in any order, and that

each child element must occur only once.

– <choice>: One of the child nodes of a choice node must be chosen. Thus,

there are n possible distribution options where n is the number of child

nodes.

Notice that the introduction of “choice” container indicators provides dif-

ferent paths that can be followed while generating an actual instance from the

schema. Each path results in a specific user distributed interface that incorpo-

rates a number of sub-interfaces. Combining the containers allows us to define

different constraints between sub-interfaces: we could say that sub-interfaces SI1
and SI2 must appear in the specified order (<sequence> container), or that sub-

interfaces SI1 and SI2 must appear in any order (<all> container) or that either

sub-interface SI1 or sub-interface SI2 should be included in the final instance

(<choice> container)...

Also we can constraint the minimum and maximum number of appearances

of an element in the container using the occurrence indicators. If no indicators

are defined then the element is required and must appear just once:

– minOccurs : Specifies the minimum number of times an element can occur.

If the value is “0” then the element is optional.

– maxOccurs : Specifies the maximum number of times an element can occur.

To allow an element to appear an unlimited number of times we use the

“unbounded” value.

3.1 Distributed Interfaces Examples

In order to test our proposal, some interfaces have been designed and their sub-

interfaces described using an XML schema. Here we provide a distributed calcu-

lator, based on classic XHTML and a distributed drawing tool, based on HTML5

that makes use of the advanced features of this new version of the standard for

managing graphical interfaces using the new <canvas> tag and Javascript. We

provide some screenshots of the final interfaces generated and displayed by the

Distributed User Interface Framework we are currently developing.

Figure 3 lists an XML Schema definition for DPaint, our distributed draw-

ing tool, with three available distributable parts: “canvas” sub-interface, “col-

ors” sub-interface and “sizes” sub-interface. Last lines include references to the

842 Penalver A., Lopez J.J., Botella F., Gallud J.A.: Defining Distribution ...

<?xml version=”1.0” encoding=”UTF-8”?>

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

<!– definition of ”html” node –>

<xs:element name=”html”>

<xs:complexType>

<xs:sequence>

<xs:element ref=”head”/>

<xs:element ref=”body”/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=”head”>

<!– definition of ”head” node –>

</xs:element>

<xs:element name=”body”>

<!– definition of ”body” node –>

<xs:complexType>

<!– UI parts –>

<xs:sequence>

<xs:sequence minOccurs=”0” maxOccurs=”1” >

<xs:element ref=”canvas”/>

</xs:sequence>

<xs:choice minOccurs=”0” maxOccurs=”1” >

<xs:element ref=”colors”/>

<xs:element ref=”sizes”/>

</xs:choice>

</xs:sequence>

</xs:complexType>

</xs:element>

<!– definition of ”canvas” sub-interface –>

<xs:include schemaLocation=”canvas.xsd”/>

<!– definition of ”colors” sub-interface –>

<xs:include schemaLocation=”colors.xsd”/>

<!– definition of ”sizes” sub-interface –>

<xs:include schemaLocation=”sizes.xsd”/>

</xs:schema>

Figure 3: XML Schema for an HTML 5 distributed paint application

843Penalver A., Lopez J.J., Botella F., Gallud J.A.: Defining Distribution ...

...

<xs:element name=”body”>

<!– definition of ”body” node –>

<xs:complexType>

<!– UI parts –>

<xs:all>

< xs:element ref=”canvas” minOccurs=”0” maxOccurs=”1” />

< xs:element ref=”colors” minOccurs=”0” maxOccurs=”1” />

< xs:element ref=”sizes” minOccurs = ”0” maxOccurs=”1” />

</xs:all>

</xs:complexType>

</xs:element>

...

Figure 4: XML Schema for a less constrained distribution of sub-interfaces for

the distributed paint application.

schema definitions for every sub-interface. The lines inside the “body” element

constrain the appearance of the sub-interfaces. The lines between the “html”

element define the standard structure of a standard XHTML-based document

with <head> and <body> tags.

The combination of <sequence> and <choice> elements with “minOccurs”

and “maxOccurs” properties specify that the “canvas” sub-interface is optional

and may appear just once and that the “colors” or the “sizes” sub-interfaces

may appear once in a valid distributed user interface instance, but if one of

them appears, then the other cannot. Moreover, if the “canvas” sub-interface is

selected, it will be placed before the “colors” and “sizes” sub-interfaces.

This schema is quite restrictive, since we have established that the “colors”

and “sizes” sub-interfaces cannot appear together in any generated DUI. In

general, DUIs should be more flexible, i.e. users may wish to select both, the

“colors” and ”sizes” sub-interfaces, which is not allowed according to the schema,

so it must be considered just as an instance of the power and flexibility of our

approach. Figure 4 shows a different schema specifying that each sub-interface

can appear (or not) in any position and combination just one time.

This strategy allows us to establish different constraints on the referred sub-

interfaces by changing the XML Schema elements and using different combina-

tions. It could be defined that a sub-interface must appear close to each other

844 Penalver A., Lopez J.J., Botella F., Gallud J.A.: Defining Distribution ...

Figure 5: Distributed Paint interface rendered in three different browsers

by placing them in an XHTML <table> or <div> tag, and so on. Although we

have selected an XHTML-based example, the method could be easily extended

to other UIDLs, just by changing the tags used in XML Schema to instance

algorithm.

Once the DUI has been defined, a schema to instance algorithm processes the

XML Schema files and generates a new XML instance encapsulating each user

sub-interface before sending it to each device. As we use choices in the definition

of the DUI, a potentially infinite number of instances could be generated, so

the algorithm should be able to decide the most suitable path to follow and

hence, the concrete instance to generate. On one hand we can generate a single

instance based on random selection. But also it could be better to define a metric

845Penalver A., Lopez J.J., Botella F., Gallud J.A.: Defining Distribution ...

...

<xs:element name=”body”>

<!– definition of ”body” node –>

<xs:complexType>

<!– UI parts –>

<xs:sequence>

< xs:element ref=”display” />

< xs:element ref=”keyboard” minOccurs=”0” maxOccurs=”1” />

</xs:sequence>

</xs:complexType>

</xs:element>

...

Figure 6: XML Schema for a classic calculator application with two different

sub-interfaces: the display and the keyboard.

that allows the algorithm to decide what sub-interface are distributed to each

device based on some distribution criteria. Furthermore, the schema does not

include any information about the number of simultaneous devices in which a

sub-interface can be distributed nor constraints related to concurrent access (as

it was defined in the formal definitions section) to the same sub-interface from

different users. Both aspects are out of the scope of this work and they will be

the focus of further research.

Figure 5 shows three different interfaces generated from the schema of figure

4. On the top we can see an instance of the schema including the three available

sub-interfaces. On the left, the instance only includes the “canvas” sub-interface.

On the right we can see the “colors” and “sizes” sub-interfaces rendered together

in a browser. All of them fulfill the constraints specified in the schema.

The well-known calculator program as a whole has a UI devoted to allow

users to perform mathematical calculations. According to our previous formal

definitions of Finality and User sub-interface, we could split the original inter-

face into two sub-interfaces: the display and the keyboard. In this easy example,

the keyboard and display sub-interfaces may be distributed together to a user,

but the display sub-interface could also be distributed alone to another user.

Figure 6 shows an XML Schema definition of the distributed calculator where

the “display” sub-interface must be always included and the “keyboard” sub-

interface is optional, but, if it is selected it must appear just once. Last, figure 7

846 Penalver A., Lopez J.J., Botella F., Gallud J.A.: Defining Distribution ...

Figure 7: Distributed calculator interface with full interface (top), “keyboard”

sub-interface (bottom-left) and “display” interface (bottom-right)

shows the full interface with both sub-interfaces on the top and only the display

sub-interface blue line) on the bottom-right image. The bottom-left image, in-

cluding only the “keyboard” sub-interface (red line), cannot be distributed with

the specified schema.

4 Conclusions and further work

In this paper, we have proposed a new W3C XML Schema-based definition for

user interfaces allowing different sub-interfaces being distributed between het-

erogeneous devices. We defined a DUI through a formal notation and after that

an Abstract User Interface (AUI) model as previous steps before the specification

of a concrete DUI. It is worth noting that the schema does not depend on the

UIDL selected and encapsulates constraints related to the distribution process

847Penalver A., Lopez J.J., Botella F., Gallud J.A.: Defining Distribution ...

itself.

After the DUI has been defined, an XML instance generator algorithm gener-

ates a new XML instance (concrete DUI) in some UIDL, taking into account the

constraints specified in the schema. The use of a formal notation to characterize

Distributed User Interfaces is necessary to understand the essential foundations

of DUIs and a previous stage to analyze different distribution mechanisms. The

AUI model introduces the target hierarchy associated to every user interface

and supports the distribution of user interface elements across different devices,

maintaining the coherence with the user task target. The model is based on

the characterization of the essential properties of Distributed User Interfaces:

decomposability, portability, simultaneity and continuity. We have employed a

formal notation to describe these properties.

Our future work includes the finalization of a user friendly model-based

framework software that using the AUI model as input, allows as to automat-

ically generate the XML Schema associated to the DUI. We are also working

on the definition of a metric in order to decide the most suitable distribution

scheme when the <choice> container is used. This metric will require the use of

device profiles and the formal definition of the “optimal distribution” concept.

Acknowledgments

This research is partially funded by the project 11859/2011 from Bancaja-UMH

of Miguel Hernández University of Elche.

References

[Abrams et al. 1999] Abrams, M., Phanouriou, C., Batongbacal, A., Williams, S.,
Shuster, J.: “Uiml: An appliance-independent xml user interface language”; Com-
puter Networks; 31 (1999), 1695–1708.

[Atzori et al. 2010] Atzori, L., Iera, A., Morabito, G.: “The internet of things: A sur-
vey”; Comput. Netw.; 54 (2010), 15, 2787–2805.

[Balme et al. 2004] Balme, L., Demeure, A., Barralon, N., Coutaz, J., Calvary, G.:
“Cameleon-rt: A software architecture reference model for distributed, migratable,
and plastic user interfaces”; Lecture Notes in Computer Science; 3295 (2004), 291–
202.

[Bandelloni and Paterno 2004] Bandelloni, R., Paterno, F.: “Flexible interface migra-
tion”; Intelligent User Interface 2004 (IUI 04); 148–155; 2004.

[Clark and Murata 2001] Clark, J., Murata, M.: “Relax ng specification. available at
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html”; (2001).

[Demeure et al. 2008] Demeure, A., Sottet, J.-S., Calvary, G., Coutaz, J., Ganneau, V.,
Vanderdonckt, J.: “The 4c reference model for distributed user interfaces”; Pro-
ceedings of the Fourth International Conference on Autonomic and Autonomous
Systems; ICAS ’08; 61–69; IEEE Computer Society, Washington, DC, USA, 2008.

[Eisenstein et al. 2001] Eisenstein, J., Vanderdonckt, J., Puerta, A.: “Model-based
user-interface development techniques for mobile computing”; J. Lester (Ed.), Pro-
ceedings of ACM International Conference on Intelligent User Interfaces IUI 2001,
Santa Fe; 69–76; ACM Press, New York, 2001.

848 Penalver A., Lopez J.J., Botella F., Gallud J.A.: Defining Distribution ...

[Elmqvist 2011] Elmqvist, N.: “Distributed user interfaces: State of the art”; Dis-
tributed User Interfaces; Human–Computer Interaction Series; 1–12; Springer Lon-
don, 2011.

[Faure and Vanderdonckt 2010] Faure, D., Vanderdonckt, J.: “User interface extensi-
ble markup language”; 2nd ACM SIGCHI symposium on Engineering interactive
computing systems(EICS ’10). ACM, New York, NY, USA; 361–362; 2010.

[Fitch 2002] Fitch, K.: “Schema driven user interface generation. available on-line at:
http://ausweb.scu.edu.au/ aw02/papers/refereed/fitch/paper.html”; (2002).

[Gallud et al. 2012] Gallud, J. A., Peñalver, A., López-Esṕın, J., Lazcorreta, E.,
Botella, F., Fardoun, H. M., Sebastián, G.: “A proposal to validate the user’s
goal in distributed user interfaces”; International Journal of Human Computer
Interaction; (To appear in 2012).

[Guerrero et al. 2009] Guerrero, J., González, J., Vanderdonckt, J., Muñoz, J. A.:
“Theoretical survey of user interface description languages: Prelimi-nary results”;
LA-Web/CLIHC’2009; 36–43; IEEE Computer Society Press, Los Alamitos, 2009.

[Helms et al. 2009] Helms, J., Schaefer, R., Luyten, K., Vermeulen, J., Abrams, M.,
Coyette, A., Vanderdonckt, J.: “Human-centered engineering with the user in-
terface markup language”; Seffah, A., Vanderdonckt, J., Desmarais, M. (eds.),
Human-Centered Software Engineering; 141–173; Springer, 2009.

[Larsson and Berglund 2004] Larsson, A., Berglund, E.: “Programming ubiquitous
software applications: requirements for distributed user interfaces”; 16th Interna-
tional Conference on Software Engineering and Knowledge Engineering (SEKE4);
2004.

[Limbourg et al. 2004] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L.,
López-Jaquero, V.: “Usixml: a language supporting multi-path development of user
interfaces”; 9th IFIP Working Conference on Engineering for Human-Computer
Interaction jointly with 11th Int. Workshop on Design, Specification, and Verifi-
cation of Interactive Systems EHCI-DSVIS’2004; 11–13; Kluwer Academic Press,
Dordrecht, 2004.

[López-Esṕın et al. 2011] López-Esṕın, J., Lazcorreta, E., Gallud, J., Peñalver, A.,
Botella, F.: “Formal specification of distributed user interfaces”; In Proc. of DUI
2011 Workshop; University of Castilla-La Mancha, 2011.

[Luyten et al. 2004] Luyten, K., Abrams, M., Vanderdonckt, J., Limbourg, Q.: “Devel-
oping user interfaces with xml: Advances on user interface description languages,
advanced visual interfaces, galipoli”; (2004).

[Luyten and Coninx 2004] Luyten, K., Coninx, K.: “Uiml.net: An open uiml renderer
for the .net framework. technical report, limburgs universitair centrum”; (2004).

[Melchior et al. 2009] Melchior, J., Grolaux, D., Vanderdonckt, J., Van Roy, P.: “A
toolkit for peer-to-peer distributed user interfaces: concepts, implementation, and
applications”; Proceedings of the 1st ACM SIGCHI symposium on Engineering
interactive computing systems; EICS ’09; 69–78; ACM, New York, NY, USA, 2009.

[Microsoft 2006] Microsoft: “Xaml language specification. available on-line at:
http://download.microsoft.com/download/0/a/6/0a6f7755-9af5-448b-907d-
13985accf53e/%5bms-xaml%5d.pdf”; (2006).

[Paterno et al. 2009] Paterno, F., Santoro, C., Spano, L.: “Maria: A universal, declar-
ative, multiple abstraction-level language for service-oriented applications in ubiq-
uitous environments”; ACM Trans. Computer-Hum. Interaction; 16 (2009), 4.

[Peñalver et al. 2011] Peñalver, A., López-Esṕın, J., Gallud, J., Lazcorreta, E., Botella,
F.: “Distributed user interfaces: Specification of essential properties”; J. A. Gallud,
R. Tesoriero, V. M. Penichet, eds., Distributed User Interfaces; Human-Computer
Interaction Series; 13–21; Springer London, 2011.

[Puerta and Eisenstein 2002] Puerta, A., Eisenstein, J.: “Ximl: a common representa-
tion for interaction data”; 7th international conference on Intelligent user interfaces
(IUI ’02). ACM, New York, NY, USA; 214–215; 2002.

849Penalver A., Lopez J.J., Botella F., Gallud J.A.: Defining Distribution ...

[Reuther 2003] Reuther, A.: “useml - systematische entwicklung von maschinenbedi-
ensystemen mit xml. fortschritt-berichte pak, band 8, kaiserslautern: Technische
universitt kaiserslautern”; (2003).

[Shaer et al. 2008] Shaer, O., Green, M., Jacob, R., Luyten, K.: “User interface descrip-
tion languages for next generation user interfaces”; Proc. of Extended Abstracts
of CHI’08; 3949–3952; ACM Press, New York, 2008.

[Vandervelpen et al. 2005] Vandervelpen, C., Vanderhulst, G., Luyten, K., Coninx, K.:
“Light-weight distributed web interfaces: Preparing the web for heterogeneous en-
vironments”; The 5th International Conference on Web Engineering (ICWE ’05);
2005.

[W3C] W3C: “World wide web consortium. xml schema.
http://www.w3.org/xml/schema.”.

[Weiser 1999] Weiser, M.: “The computer for the 21st century”; SIGMOBILE Mob.
Comput. Commun. Rev.; 3 (1999), 3, 3–11.

850 Penalver A., Lopez J.J., Botella F., Gallud J.A.: Defining Distribution ...

