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Abstract: The paper presents a concept drift detection method for unsupervised
learning which takes into consideration the prior knowledge to select the most appro-
priate classification model. The prior knowledge carries information about the data dis-
tribution patterns that reflect different concepts, which may occur in the data stream.
The presented method serves as a temporary solution for a classification system after a
virtual concept drift and also provides additional information about the concept data
distribution for adapting the classification model. Presented detector uses a developed
method called simulated recurrence and detector ensembles based on statistical tests.
Evaluation is performed on benchmark datasets.
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1 Introduction

Classification systems are often not able to observe all the characteristics of

data. E.g., due to lack of measurement instruments. As a result, some features in

data stay hidden and are not taken into account when training the classification

system and classifying new samples. In certain scenarios, some hidden features

of data may affect a concept model in data stream, making the classification

rules out of date. Such situation is called concept drift and it comes in many

forms, depending on the type of change.

Change impetuosity categorizes the concept drift as gradual (slow changes,

mild in nature) or sudden (abrupt changes, often referred to as ”concept shift”)

[Narasimhamurthy and Kuncheva, 2007] and if the changes affect the data or

class distribution, concept drift may be categorized as virtual or real respectively.

Real concept drift is a change in class-conditional likelihoods when the prior

distribution of input data patterns remains unchanged. Illustrative example of

a real concept drift in a two class problem for a two dimensional feature space

is presented in Fig. 1.
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Figure 1: Real concept drift

On the other hand, a virtual concept drift is considered when the underlying

data priors change [Yamauchi, 2010], as shown in Fig. 2. Such phenomenon can

affect spam filtering applications, when the meaning does not change, only the

data priors do (i.e., the relative frequency of the properties) [Wang et al., 2011].
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Figure 2: Virtual concept drift

In Fig. 3 an influence of a sudden virtual concept drift on the classification

accuracy of an unprepared classification system is presented. The moment of

concept drift is marked with a dotted red line. As it can be easily noticed, virtual

concept drift may pose a serious threat for the performance of a classification

system, which should be secured and minimized.

In general, approaches to cope with concept drift fit in one of the two cate-

gories [Greiner et al., 2002]:
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Figure 3: Classification accuracy with virtual concept drift (red dotted line sym-

bolizes the moment of virtual concept drift)

– Approaches, which adapt a learner at regular intervals without consider-

ing whether the changes have really occurred [Ramamurthy and Bhatnagar,

2007]

– Approaches, which first detect concept changes and then adapt the learner

to them [Lindstrom et al., 2011]

Adapting the learner is a part of an incremental learning approach [Muhlbaier

et al., 2009]. Depending on the type of used learner, the model is either updated

(e.g., neural networks [Cliff et al., 1992] or traditional decision trees [Gama and

Medas, 2005]) or needs to be partially or completely rebuilt (as CVFDT algo-

rithm [Hulten et al., 2001]). Ensebles of classifiers are also often evaluated [Sme-

tek and Trawinski, 2011] as they are easy to scale and parallelize and they can

adapt to change quickly by pruning underperforming parts of the ensemble [At-

tar et al., 2010].

In this article we focus on the methods, where detector and classifier are

designed separately. Many detection algorithms base on a knowledge of object

labels after the classification in order to detect concept drift, however as pointed

out in [Zliobaite, 2010], such approach does not fit in the real scenarios. In

general, concept drift detection algorithms can be divided into three types, de-

pending on the assumption about the amount of costly knowledge regarding the

true class labels available for the algorithm, namely:

– Supervised algorithms – assuming access to classification performance mea-

sures or true class labels, detecting concept drift on the basis of classifier’s
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accuracy or analysis of class likelihoods [Kifer et al., 2004]

– Semi-supervised algorithms – assuming limited access to classification per-

formance measures or true class labels, also detecting concept drift on the

basis of the properties of data when such knowledge is not available, e.g.

active learning [Kurlej and Wozniak, 2012] [Greiner et al., 2002]

– Non-supervised algorithms – assuming no access to classification perfor-

mance measures or true class labels and basing only on the properties of data,

detecting concept drift on the basis of attribute value distribution, cluster

memberships or classifier’s support levels [Lane and Brodley, 1999] [Spinosa

et al., 2008]

In this article, we explore the possibilities of detecting concept drift in data

streams without any supervision. It is worth noting, that such approach has

some limitations:

– firstly, it is suited only for virtual concept drift, as the real concept drift is

undetectable by analyzing solely the properties of data,

– secondly, there are certain situations when also virtual concept drift is im-

possible to detect, e.g. when classes swap places, as presented in Fig. 4.
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Figure 4: Special case of virtual concept drift

The main contribution of the article is an unsupervised concept drift detec-

tion method based on prior knowledge about the possible data distributions.

Problem of concept drift detection is extended to concept model selection and

the drop of classification accuracy is minimized by using temporary classification

models. Additional information regarding the data distribution can also improve

the process of the model adaptation.

The remainder of the article is organized as follows. Section 2 is an overview of

unsupervised concept drift detection algorithms, describing the methods used in
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the article. Section 3 presents a method for creating temporary concept models

on the basis of prior knowledge. Next, Section 4 covers the evaluation of the

method with a discussion on the results and the article concludes in Section 5.

2 Detecting virtual concept drift without supervision

Unsupervised detection of virtual concept drift is most often performed with

statistical tests [Markou and Singh, 2003], which check whether a data chunk (a

group of consecutive records in data stream, also referred as data window) comes

from the same distribution as the reference data. Obviously, not all statistical

tests are suited for this task, e.g. two-sample parametric tests such as a T2

statistic [Hotelling, 1931] assume a specific distribution, which might not be a

correct approach in the real data case, as the samples may include records from

several classes, each described by a different distribution. Also, the distributions

may not be similar to any standard distribution, what moreover suggest non-

parametric tests for the task of unsupervised concept drift detection. Examples

of such tests include:

– CNF test [Dries and Rückert, 2009]

Approach introduced in [Dries and Rückert, 2009], describes the data by

vectors of binary features, assigned by discretizing attributes into sets of

bins. It then creates a set of Boolean attributes A, which “covers” all of the

examples in the reference set of data X, meaning that each “true” feature in

set A is the same as in at least one of the vectors describing the data points

in X. Next, another set of data X is drawn from the same distribution as

the data in X, represented as binary vectors, and compared to set A, by

calculating parameter ci for each example x i in X , which is measured by

counting the number of clauses in set A, which do not “cover” x i. When

a data window DW is tested to check if it comes from the same distribu-

tion as X, a sequence of parameters ci is measured for all data samples in

the window and compared with the sequence of ci’s obtained by comparing

the distributions of data in X and X by applying a Matt-Whitney test. If

the difference is insignificant, all data is considered to come from the same

distribution, otherwise a difference in distributions is detected.

– The Wald-Wolfowitz Test [Friedman and Rafsky, 1979]

The multivariate version of the Wald-Wolfowitz test [Friedman and Rafsky,

1979] constructs a complete graph, with examples as vertices and distances

between them as edges. Graph is then transformed into a forest and a test

statistic is computed basing on the amount of trees.

Also, non-parametric univariate statistical tests are often used for detecting

concept drift in data distribution [Sheskin, 2011]:

– Two-sample Kolmogorov-Smirnov test,
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The two-sample Kolmogorov-Smirnov test [Smirnov, 1948] is non-parametric,

as it makes no assumption about the distribution of data and therefore can

be deployed on any data.

For the two-sample test, a Kolmogorov-Smirnov statistic is computed as

Dn,m = sup
x

|F1,n(x)− F2,m(x)| (1)

where F1,n and F2,m are the empirical distribution functions of samples

computed as:

Fn(t) =
1

n

n
∑

i=1

1{xi ≤ t}, (2)

where (x1, ..., xn) are independent and identically distributed (i.i.d.) random

variables laying in the real numbers domain with a common cumulative

distribution function. The statistic is used to perform a KS-test to reject the

null hypothesis at level α by computing:
√

nm

nm

Dn,m > Kα, (3)

where Kα calculated from:

Pr(K ≤ Kα) = 1− α, (4)

and K is a Kolmogorov distribution computed as:

K = sup
t∈[0,1]

|B(t)|, (5)

B(t) being the Brownian bridge [Revuz and Yor, 2004].

In short, the Kolmogorov-Smirnov test compares the distributions of two

samples by measuring a distance between the empirical distribution func-

tions, taking into account both their location and shape.

– Wilcoxon rank sum test,

Wilcoxon rank sum (also called Mann–Whitney–Wilcoxon) test [Wilcoxon,

1945] is a non-parametric alternative to the two-sample t-test, based solely

on the order in which the observations from the two samples fall.

The test assumes, that all observations are independent from each other and

can be ordered by their value, therefore if the test is performed on the data

which are categorical, it has to be mapped to the numerical values.

The test ranks all observations regardless of which sample they are in by

ordering them from the greatest to the lowest value. Then, a statistic is

computed for each of the samples as:

U = R−
n(n+ 1)

2
, (6)
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where n is the sample size and R is the sum of the ranks in this sample. In

order to reject the null hypothesis that both samples come from the same

population, a lower value of U from both samples is chosen and consulted

with the significance tables.

– Two-sample T-test.

Two-sample t-test is one of the most popular tests used in economics and

quality measures. It calculates the t-statistic on the basis of the means x1,

x2, standard deviations s1, s2 and the numbers of observations n1, n2 in

each sample by:

t =
x1 − x2

√

s21
n1

+
s22
n2

, (7)

which is then compared to the critical t− value taken from the significance

tables, with regard to the number of the degrees of freedom, k:

k = {n 1 − 1, if n1 < n2n2 − 1, if n1 > n2n1 + n2 − 2, if n1 = n2 (8)

The true outcome of the test means the rejection of the null hypothesis that

both samples originate from the same distribution.

There are many more algorithms for detecting concept drift in data streams

described in the literature, however vast majority of them bases on the knowledge

of class labels available after the classification [Alpaydin, 2010], what is against

the assumption of non-supervision. In this article, we are going to focus on the

methods which detect concept drift on the basis of the properties of data only,

using five mentioned above detection algorithms combined in an ensemble.

3 Simulated recurrence

Approach assumes that, although we should not have access to the expert’s

knowledge during the operation of the classification system, we still may have

some information regarding the nature of the problem available beforehand.

Namely, we assume that an individual interested in deploying a classification

system for classifying a stream of data, possess the knowledge about possible

concepts of distribution models which may arise in the data. A real life example

of such situation would be an owner of a grocery store, who knows generally

what types of data may be observed and therefore may provide the knowledge

about possible distributions among the classes of data e.g., one product may

become more popular (due to an aggressive marketing campaign or a new trend

in fashion), what may affect the demand on the other products. It is worth

noting, that usually every change has its own limitation, as a system for weather

prediction would not have to consider a glacier in July or floods in the middle

of desert.
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In this paper we are exploiting the opportunity created by the knowledge

about possible data and class priors. The method is called simulated recurrence

and it was first introduced as an extension to classification algorithms coping

with recurring concept drift in [Sobolewski and Woźniak, 2011]. Recurring con-

cept drift facilitates an assumption, that concepts may recur in the data stream,

namely after the concept shifts, the data may follow the same model as pre-

viously observed. When it happens, a classification system can use the gath-

ered knowledge regarding this model and quickly adjust the active classification

rules. The aim of simulated recurrence approach is to re-create such situation

in a non-recurring concept drift scenario, where recurring concepts are replaced

with artificially simulated concepts. The concepts are simulated on the basis of

available knowledge about the models.

The knowledge is represented by the data samples, on basis of which arificial

datasets are generated, representing different concepts. A method for simulating

the data distribution is described in Section 3.1.

On the basis of each simulated concept an artificial classification model is

created. Although an artificial model is not a perfect classification tool, it may

serve as a temporary solution for classifying samples following a concept model

similiar to the simulated one. The samples in the stream may also be used for

updating the artificial classification model or creating the new model with an

unsupervised learning approach. The method for selecting a concept model is

described in Secion 3.2.

The simulated recurrence [Sobolewski and Woźniak, 2012] is mainly used to

improve the overall efficiency of the classification system coping with concept

drift, solely by decreasing the error-rate. The approach has obtained promising

results, improving the performance of classification systems by around 25%. The

main contribution of this paper compared to our last work is the use of simulated

recurrence, namely we introduce it as a tool for concept drift detection and model

selection, rather than an extension for classification module. It does not affect

the classification system at all, working independently as an enhanced detector.

A typical concept drift detection system aims to determine whether the data

comes from the same distribution as the reference data by analyzing the p-values

returned by the statistical tests. If the null hypothesis is rejected, the data is con-

sidered to arise from a different distribution and a signal about possible concept

drift is passed to the classification system. Otherwise, the data is considered

to follow the distribution already known and the classification system is not

alarmed about a danger of decreasing accuracy. Such binary detection does not

carry much valuable information. Simulated recurrence extends the functionality

of a binary detector by including the information about the possible data dis-

tribution in the new concept, which may be used for enhancing the adaptation

of the classification model, responding more quickly to the change in concept.
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During the process of classification model’s adaptation, a temporary artificial

classifier may be used to minimize the drop of the system’s performance.

Classification system’s mode of operation with simulated recurrence is de-

scribed in Fig. 5 as a pseudo-code.

3.1 Simulating a data distribution

Simulated recurrence assumes, that before the system begins the classification

routine, partial knowledge regarding the possible data distribution patterns en-

counterable in the data stream is available. For the purpose of experiments we

assume that this knowledge consists of the samples which reside in the border

and in the centers of the the class clusters. An example of these points is pre-

sented in Fig. 7, with regard to the true distributions presented in Fig. 6. Basing

on these data points, class covariance matrices and the means are calculated and

remaining samples are generated following a Gaussian distribution. The method

for selecting data points on real data is explained in details in Section 4.1.3.

3.2 Selecting the concept model

As simulated recurrence replaces the detector with a model selector, we propose a

method for selecting the concept models based on the properties of data samples

in the data window as described in Fig. 8.

In the first step, each of the non-parametric statistical tests described in

Section 2 performs a check for every concept dataset whether the data in a

window comes from the same distribution as the corresponding concept data.

The checks are performed for the reference dataset and simulated data, and each

check results in a p-value representing the probability that both distributions

are the same. In the case of univariate statistical tests, one test is performed for

each single feature and the summary result for one concept is a sum of p-values

obtained for all features.

Notations:

DW - data window,

CMi - the i-th concept model,

CLi - the i-th classification model,

Algorithm:

Draw new DW from data stream,

Select CMi closest to DW,

Classify samples in DW using CLi.

Figure 5: Pseudo-code of classification with simulated recurrence
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Figure 6: An example of all possible concepts (data distributions) in a classifi-

cation scenario.

Next, the concept distribution which is the closest to the distribution of data

in a window according to one statistical test (namely, concept distribution which

has the lowest p-value), receives one vote from the corresponding test statistic.

Last step is a selection of the model which has the highest number of votes.

In the case when more than one concept model has the most votes, the selection

from performed randomly from the top candidates.

4 Experimental evaluation of algorithm

The aim of experiments is to evaluate the ability of the simulated recurrence

method to accurately select the classification models when concept drift occurs.

As a second step, the mean classification accuracy after concept drift is also

evaluated in order to estimate an influence of the simulated recurrence approach

on an unprepared classification system.
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Figure 7: Information provided to the classification system a priori, describing

the possible concept in Fig. 6.

4.1 Setup of the experiments

4.1.1 Measures

There are no universal measures for evaluation of concept drift detection algo-

rithms. The most intuitive metrics to estimate the efficiency of the proposed

method are:

– Concept model selection accuracy (sensitivity / specificity)

– Mean classification accuracy

The first measure, the model selection accuracy presents the ability of the algo-

rithm to accurately identify from which concept distribution the data window

origins.

The second one is the most often used metric for estimating the classification

algorithm’s performance, however in this case it is used mainly to show how the

temporary artificial classifiers manage to reduce drop of classification accuracy

compared to the unsecured classification system. In the meantime, the system

may adapt to the new concept model, what is not a subject of this article.
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Notations:

DW - data window,

STi - the i-th test statistic,

CMi - the i-th concept model,

Algorithm:

Draw new DW from data stream,

FOR i = 1 : n, n - number of test statistics

FOR j = 1 : m, m - number of concept models

Calculate p-valuej as a result of test that DW comes

from the same distribution as CMj,

ENDFOR

Give vote for CM, which has the lowest p-value,

ENDFOR

IF more than one CM has the most votes,

Select randomly CM from the ones having the most votes.

ELSE,

Select CM with the most votes.

ENDIF

Figure 8: Pseudo-code of model selection procedure

By combining both measures, it can be inferred e.g., which concept is the

most critical, difficult to detect and resulting in severe drops in classification

accuracy and which can be inored, producing minor drops in the system’s per-

formance.

4.1.2 Classifier

As a classification model, we use a standard Parzen classifier [Duda et al.,

2001], which bases on estimating probability density for each class using a non-

parametric approach. When computing output for a new observation, the con-

tribution of each training example is integrated. The contribution is modeled

by a kernel function (in our example, we use Laplace kernel as it is computa-

tionally less demanding than a popular Gaussian kernel) and is influenced by

the smoothing parameter (kernel width). The smoothing parameter is optimized

using EM algorithm optimizing cross-validated log-likelihood.

4.1.3 Datasets

Algorithm is evaluated on the benchmark datasets from UCI machine Learning

Repository [A. Asuncion, 2007]. These datasets contain samples which are fol-
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lowing a static distribution, what implies the need for simulating the changes in

concept model in order to evaluate a method for classification of data affected

by concept drift. There are several methods described in the literature which

solve this issue, e.g.:

– Switching features [Zliobaite and Kuncheva, 2009] - the method based on

switching the feature values for sets of data samples while keeping the class

labels, it simulates a virtual concept drift

– Rotating values [Wang et al., 2005,Ramamurthy and Bhatnagar, 2007] - the

method based on changing the values of certain features in a dataset for one

class with another, it simulates a real concept drift

– Treating class data as a single concept [Vreekenet al., 2007,Dries and Rückert,

2009] - the method based on picking two most populated classes from the

dataset and treating them as a single class, but in a different concept, it

simulates virtual concept drift

– Rotating data around the center of the feature space [Zliobaite, 2008]

– Simulating environment changes in a 3-D driving game [Lindstrom et al.,

2008]

Choice of the method for simulating concept drift is determined by the type

of concept drift aimed for evaluation in the classification scenario. Most of the

methods use parameters to control the way in which concept drift affects the

data. These parameters are often used to tune the concept drift to the classifi-

cation algorithm, making the results less credible. Also, many methods simulate

a real concept drift in data, not suited for an unsupervised system. The most

fair and independent way of simulating virtual concept drift described in the

literature seems to be a method pioneered in [Vreeken et al., 2007] and later

used in [Dries and Rückert, 2009], which takes data samples from the two most

populated classes and treats them as data from different concept models. Such

approach limits the classification problem to a single class and only two con-

cepts, therefore we extend this method to two classes per concept and number

of possible concept models to the number of classes in the dataset divided by

two.

First, the data is ordered descending by class population. Next, if the number

of classes in dataset is odd, the least populated class is removed. Lastly, the

classes are paired and divided into concept datasets, each representing a two-

class problem. This process has been shown in Table 1 on the example of the

”Page-blocks” UCI dataset.

Such concept simulation method determines the choice of UCI datasets, as

the original datasets need to have at least 4 classes in order to simulate at

least two concept model distributions. Concept 1 is a reference model used for

preliminary classifier training. The datasets chosen for experiments with the

number of features and number of samples in each class ares presented in Table 2.
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Table 1: Page-blocks dataset divided into concept datasets

Original Class Num. samples Concept Class

Original

dataset

text 4913 Class 1
Concept set 1

horiz. line 329 Class 2

picture 115 Class 1
Concept set 2

vert. line 88 Class 2

graphic 28 removed -

Table 2: Description of UCI datasets selected for experiments. (Cl.x denotes

number of elements from the x-th class)

Dataset
Num. Number of samples in classes

of feat. Cl.1 Cl.2 Cl.3 Cl.4 Cl.5 Cl.6 Cl.7 Cl.8 Cl.9 Cl.10

car 6 1210 384 69 65 0 0 0 0 0 0

heart-c 13 160 54 35 35 13 0 0 0 0 0

mfeat-mor 6 200 200 200 200 200 200 200 200 200 200

nursery 8 4320 4266 4044 328 2 0 0 0 0 0

optdigits 64 389 389 387 387 382 380 380 377 376 376

page-blocks 10 4913 329 115 88 28 0 0 0 0 0

pendigits 16 780 780 780 779 778 720 720 719 719 719

vehicle 18 218 217 212 199 0 0 0 0 0 0

yeast 8 463 429 244 163 51 44 35 30 20 5

In order to represent the knowledge available beforehand to create a simu-

lated recurrence, we assume that 10% of border points and a central tendency

of each class are available. In order to estimate a central tendency for a single

class of data, a following equation is deployed:

x(k,j) =
1

N

N
∑

i=0

x
(k,j)
i , (9)

x(k,j) is a sample mean vector of all N real observations belonging to class j

in the k-th reference concept dataset,

x
(k,j)
i is the i-th observation belonging to class j in the k-th reference concept

dataset.
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Next, the 10% border points for a class j are chosen according to the following

process:

First, find a point which is the most distant from the other points:

p
(k,j)
1 = arg max

x(k,j)

N
∑

i=0

d(x(k,j),x
(k,j)
i ) , (10)

where d(·, ·) denotes Euclidean distance. Afterwards, the remaining N
10 − 1

points are selected iteratively as the points which are the most distant from the

last selected point and the remaining points.

Covariance matrix Q for class j in the k-th reference concept dataset is

estimated according to the equation:

Q(k,j) =
1

3(N − 1)

N
∑

i=0

(x
(k,j)
i − x(k,j))(x

(k,j)
i − x(k,j))T , (11)

where x(j) is a class sample mean vector calculated according to equation

(1).

Having the covariance matrix and a mean, the samples in the k-th concept

dataset’s class j are generated according to a standard Gaussian distribution.

Number of generated samples is the same as the number of samples of the

corresponding class in the reference dataset.

Experiment plan.

Experiments are divided into test runs, which are performed independently

on randomly drawn samples, grouped into windows of data. A single test run

consists of performing the Model Selection procedure (Fig. 8) on one window

of data from a single concept dataset and classifying the data window with the

corresponding classification model (either reference or temporary, depending on

the concept model selection).

For a single scenario, 100 test runs are performed for each concept model. The

size of data window is constant and set to 15 samples. Model selection accuracy

is measured together with an average classification accuracy on the data window.

Results are gathered in two tables and each scenario is represented by a separate

row.

4.2 Results

Before calculating a mean accuracy, all test runs are compared and statistically

validated with a 5% significance level of rejecting the null hypothesis with a

paired t-test [Rubin, 1973]. Significantly better results are marked with a bold

font. Table 3 summarizes the specificity and sensitivity of the Model Selection

procedure. Table 4 compares the accuracy obtained by a system using a single
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Table 3: Concept model selection accuracy [%]

Dataset

Specificity Sensitivity

Reference Concept Concept Concept Concept

concept model 1 model 2 model 3 model 4

car 100 34 - - -

heart-c 100 56 - - -

mfeat-mor 98 86 78 88 76

nursery 99 53 - - -

optdigits 100 0 0 0 0

page-blocks 100 58 - - -

pendigits 100 99 95 98 96

vehicle 99 75 0 0 0

yeast 100 37 83 69 86

classification model trained on the reference concept dataset with the accuracy

of the system equipped with the concept drift detection module based on the

simulated recurrence.

4.3 Discussion of the results

Results of classification accuracy presented in Table 4 depend on several factors:

– Concept model selection accuracy

– Concept model representation

– Classification algorithm

– Difficulty of the classification scenario

The concept model selection accuracy depends on the degree to which the

concepts differ. Selected concept models might not represent directly the real

concepts, however if the data distribution patterns are similar, the drop in the

classification accuracy should not be major. In Table 4, the classification accu-

racy of the system without the model selection algorithm (only the base classi-

fier trained on the reference concept data), the proposed method and a system

equipped with a perfect selector is compared. The latter is a scenario where

model selection is always correct (100% accuracy) and it represents the degree

to which the classification models trained on the simulated concept datasets are

able to classify the corresponding concept data. The scores obtained by the per-

fect selector can be optimized either by improving the classification algorithm

or designing a better method for representing the real concept basing on the

provided knowledge a priori. Comparison of the three values for each concept
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Table 4: Classification accuracy [%]

Dataset

Reference Concept Concept Concept Concept

concept model 1 model 2 model 3 model 4

no with pr no with pr no with pr no with pr no with pr

sr sr sel sr sr sel sr sr sel sr sr sel sr sr sel

car 100 100 100 41 57 93 - - - - - - - - -

heart-c 78 78 78 48 53 54 - - - - - - - - -

mfeat-mor 97 96 97 59 59 65 18 76 93 48 84 84 91 90 91

nursery 100 100 100 32 67 97 - - - - - - - - -

optdigits 100 100 100 100 100 100 36 36 100 39 39 100 43 43 100

page-blocks 94 94 94 56 56 56 - - - - - - - - -

pendigits 100 100 100 90 99 99 30 97 100 93 100 100 51 96 99

vehicle 100 100 100 33 73 85 - - - - - - - - -

yeast 64 64 66 64 74 92 48 78 85 58 77 82 96 98 100

shows how the presented method protects the unprepared classification system

from the effects of the virtual concept drift and also how much better it could

perform if the model selection procedure was more accurate.

Standard Gaussian distribution is used to represent the corresponding data

distribution in the benchamrk datasets, which is a very simple method that

leaves a broad field for optimization. On the other hand, the classification accu-

racy scores obtained by the perfect selector show, that the classification models

trained on the simulated data achieve almost perfect results in most of the sce-

narios.

The classification algorithm is not within the scope of discussion in this

article, however a choice of a more proper method for each scenario could result

in higher accuracy scores.

The last factor is the difficulty of the scenario, which depends on the data

used. As benchmark data used in experiments does not condsider concept drift,

it has to be artificially implemented. A different method of applying concept

drift in bechamrk data would also result in different scores.

The results presented in Table 3 show how the presented method is able to

identify the concept model distribution, which describes the samples in the data

window. These values depend on:

– Model selection algorithm

– Real distribution representation

The model selection algorithm described in Section 3.2 is based on an ensem-

ble of statistical detectors. This approach leaves a field for optimization and fur-

478 Sobolewski P., Wozniak M.: Concept Drift Detection ...



ther research, as there are many other concept drift detection methods described

in literature, which could be also used for this purpose, such as [Kuncheva,

2011,Zhou et al., 2009].

Representing the real concept distribution by analyzing the prior knowledge

is also an open subject for discussion. First of all, knowledge available for the

system beforehand is not strictly defined and it does not leave much options for

the concept model simulation. The standard Gaussian distribution generalizes

the most true distributions and therefore is the most universal choice. Practical

application of the method would definitely require a more specific tuning.

The concept model selection accuracy is the most important in the cases

when reference concept and the new concept are very diverse. The degree of

the similarity of concept models may be represented by the drop of classifica-

tion accuracy in the system equipped only with a reference classifier. In several

scenarios the difference between the concepts is significant, making the model

selection meaningful, e.g. for mfeat-mor concept 2 and concept 3 or pendigits

concept 2 and concept 4. On the other hand, in some scenarios the classification

accuracy for the reference concept data and the new concept data almost does

not differ e.g., for mfeat-mor concept 4, optdigits concept 1, pendigits concept

1 and concept 3 or yeast concept 1 and concept 3, suggesting a low diversity of

the mentioned concept models.

The scores can be analyzed more specifically by taking into consideration the

characteristics of each experimental scenario.

Scenarios, which benefit the most from the proposed method are the ones,

which experience the most severe accuracy drops by the reference classification

system and also achieve a good model selection accuracy. Examples are mfeat-

mor and pendigits, which achieve very high model selection accuracy scores for

each concept, vehicle where the drop of classification accuracy is significant and

yeast, which is a special case because the reference classifier achieves significantly

better results for concept 4 data than for the reference data. Such situation is

caused mainly by the low number of samples available for each class in the

original dataset, what influences the ability of training the classification models.

Low model selection accuracy for car and nursery datasets result in a slight

accuracy increase compared to the reference model. A significant difference be-

tween the classification accuracy achieved by the simulated recurrence approach

and the perfect selector shows a major field for improvement and suggests, that

for this scenario a better model selection algorithm should be designed.

Low model selection accuracy can also be observed for heart-c, page-blocks

and concept 2 of yeast scenarios, while not each of these cases is critical. Each

of these scenarios has very imbalanced number of samples in classes. For heart-c

and page-blocks, the perfect selector did not improve the classification accuracy

of the system, therefore the influence of applied virtual concept drift has been
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minimized.

Better model selection scores have been achieved for the scenarios, where

number of classes is balanced, namely mfeat-mor, pendigits and vehicle, al-

though all these scenarios are characterized by the highest number of possible

concepts, what should rather suggest worse scores (higher number of possible

selections means higher probability of a mistake). Surprisingly, the results are

opposite. This suggests, that ratio of samples in each class has a high influ-

ence on the concept model selection algorithm’s performance. An exception is

optdigits, which is an interesting dataset, as it is characterized by a large num-

ber of features compared to the other experimental scenarios. It is also the only

scenario for which the model selection algorithm fails completely every time

for each of the concept models. These facts suggest, that the model selection

method presented in the article is not suited for the highly dimensional data.

This phenomenon needs to be analyzed more thoroughly and tested on differ-

ent highly dimensional scenarios, as the results presented by the perfect selector

show, that the classification accuracy drop can be minimized almost entirely

with the same classification algorithm and the same method for representing the

concept models.

5 Conclusions and Future Works

Proposed method enhances the detection of concept drift by providing addi-

tional information regarding the possible concept model distribution in the data

without supervision. Available prior knowledge regarding the possible data dis-

tributions is used to create temporary classification models, which decrease the

drop of classification accuracy when the data distribution is affected by a virtual

concept drift. This knowledge is also used for simulating the concept data, what

allows the use of statistical tests for concept model selection. In this paper a

majority voting ensemble approach is evaluated in order to minimize the influ-

ence of very sensitive test statistics and to improve the overall quality of the

insensitive detection algorithms.

The classification models are used based on model selected by the detector

ensemble. Trained beforehand on the simulated concept data, they are not up-

dated during the operation of the classification system. Adaptation of the models

is still an open issue, which will be explored in future.

The model selection procedure achieves better results for scenarios with bal-

anced classes. Although the models are selected on the basis of data generated by

the simple Gaussian distributions, the performance of an algorithm is relatively

high for all scenarios. Scores achieved for the reference concept model prove that

the model representation method has an influence on the efficiency of the model

selection algorithm and if the reference concept data reflects the data window
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distribution well, the algorithm is able to perform almost flawlessly. Other data

distribution representation methods are to be evaluated in future.

Future works include:

– Introducing adaptive classificationmodel techniques using unsupervised learn-

ing on the basis of the data properties and an information provided by the

model selection algorithm,

– Designing and evaluating other data distribution representation and dataset

simulation methods,

– Estimating the influence of the data dimensionality on the model selection

algorithm’s performance,

– Experimenting with the imbalanced class datasets and designing a method

to minimize the negative influence of the imbalanced classes,

– Evaluating other concept drift detection algorithms for the model selection

procedure.
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