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Abstract: Multi-label classification is a machine learning task that assumes that a
data instance may be assigned with multiple number of class labels at the same time.
Modelling of this problem has become an important research topic recently. This paper
revokes AdaBoostSeq multi-label classification algorithm and examines it in order to
check its robustness properties. It can be stated that AdaBoostSeq is able to result
with quite stable Hamming Loss evaluation measure regardless of the size of input and
output space.
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1 Introduction

In traditional classification the main objective is to learn a function f that maps

an input instances x ∈ X to an output space composed of binary variable. The

goal of mapping is typically focused on binary classification C = {c1, c2}, often

coded with {-1,1} numbers, or multi-class classification C = {c1, . . . , cm}. A

classical example of binary classification is a problem of predicting whether the

next day will or will not be rainy on the basis of historical weather data.

More sophisticated techniques allow solving classification problems with more

complex outputs than only single label. A particular complex classification prob-

lem is multi-label classification. By multi-label problem it is understood the

situation when particular data instance may be assigned with multiple num-

ber of class labels at the same time and these labels may be correlated. Two

approaches that can deal with such problem can be distinguished, algorithm

adaptation methods and problem transformation methods. Whereas the former

adapt existing algorithms providing binary and multi-class classification, the

latter transform the multi-label problem to multiple binary problems and then

solve them using traditional approaches.

The growing interest in learning algorithms operating over multiple labels has

arisen especially in last few years. Basic examples of multi-label problems abound

in learning to automated tagging, medical diagnosis, document categorization,

scene categorization and much more.

Journal of Universal Computer Science, vol. 19, no. 4 (2013), 502-520
submitted: 3/8/12, accepted: 20/2/13, appeared: 28/2/13  J.UCS



This paper addresses the problem of multi-label sequence classification, that

traditionally has been identified with sequence labelling. This approach corre-

sponds to the classification of a label sequence associated to observed input.

By means of sequence labelling the problem of multi-label classification will be

presented and considered in the following Sections. In particular, the paper pro-

vides related work specific to the topic (Section 2) and a nature of the sequential

labelling problem. After that, details and formalism of the boosting algorithm

for multi-label classification based on sequence-loss balancing function is revoked

according to proposal in [Kajdanowicz and Kazienko, 2011] (Section 3). In Sec-

tion 3.2 computational complexity of the method is assessed. The results of

experiments on the real data from multi-label classification task are presented

in Section 4.

2 Related Work

In general sequence labelling aims at solving the problem of learning a classifi-

cation function f : X → Y with a potentially high output space Y. For instance

considering sequence labelling particular y ∈ Y is the sequence of labels associ-

ated to the data instance x ∈ X .

According to the proposal in [Daume et al., 2009], it is assumed that a se-

quence labelling problem considered in this paper is a cost-sensitive classification

problem (eg. [Lee et al., 2011]), where classification results y have the structure

of a vector; y may be a sequence of l values (a l-length sequence): yi=(y1i , y
2
i , . . .,

yli), ∀ (µ=1,2,. . .,l) yµi ∈ {−1, 1}. The meaning of particular yµi value ({−1, 1})

is simple and denotes whether the µth label (λµ) is absent or present in the

label-set of ith data instance, respectively.

Additionally, the algorithms accomplishing sequence labelling can also make

use of chaining idea and extend input space in generalization of consecutive labels

from sequence. It means that while computing a given item value yµi , 1 < µ ≤ l,

from the l-length sequence yi=(y1i , y
2
i , . . . , y

l
i), the algorithms may utilize the

input data both from the original input xi ∈ X and from the partially produced

output y
Pµ

i , where y
Pµ

i is a part of the final yi obtained so far, e.g. y
Pµ

i =(y1i ,

y2i , . . . , y
µ−1
i ) [Kajdanowicz and Kazienko, 2009b], [Kajdanowicz and Kazienko,

2010]. This composition of xi and y
Pµ

i , i.e. (xi, y
Pµ

i ) remains an input vector, but

in opposite to the single xi it also depends on the output y
Pµ

i achieved so far.

This concept makes use of the typical nature of the sequential data, in which a

given item value yµi may depend somehow on the values of the previous items in

the sequence, namely y1i , y
2
i , ..., y

µ−1
i . For the purpose of the paper the notation

x
Pµ

i will denote the composed feature vector build as (xi, y
Pµ

i ).

For instance, in the domain of debt recovery sequence prediction (in such case,

a sequence consist of repayment indicators for the consecutive months) [Kaj-

danowicz and Kazienko, 2009b,Kajdanowicz and Kazienko, 2009a,Kajdanowicz
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and Kazienko, 2010], the input variables (xi, y
Pµ

i ) may be the combination of

business input information of the particular debt xi, i.e. xi’s profile, together

with the prediction output yPµ for the preceding periods.

Overall, sequence labelling is a research problem that emerges in many other

application domains, among others in protein function classification [Zhang and

Zhou, 2006], semantic classification of images [Boutell et al., 2004] or text cate-

gorization [Schapire and Singer, 2000].

The main goal of the paper is to present a new boosting method for multi-

label classification modelled as sequential output classification, in which the

boosting concept would be applied to particular sequence items. In the standard

binary classification, boosting is general machine learning concept that relies

on the improvement of the final learning result by iteratively training a set of

base classifiers on a weighted training set of data. Learning process results in a

weighted linear combination of classifiers, trained at each iteration, forming the

final meta classifier [Freund and Schapire, 1997,Punyakanok and Roth, 2000].

In order to adapt boosting scheme, it can be modified in two ways: the base

classifiers will be able to predict the whole structure (thus the base classifiers

need to be multi-label classifiers) or the boosting scheme will be able to transform

the problem and generalize it for each label using binary classifiers [Altun et al.,

2002].

Sequential output prediction is a particular type of structured prediction

because it is likely to be the simplest non-trivial structure. Formally, learning

label sequences is a kind of generalization to discover the discriminant function,

mapping instances from X to label sequences Y [Daume et al., 2009]. Consider-

ing the case, that an output vector yi = (y1i , y
2
i , . . . , y

l
i) is a sequence and can

be produced by predicting y’s all l labels, the boosting scheme may be itera-

tively revoked for each of l items independently, i.e. each label in the sequence

is classified autonomously using the typical boosting algorithm. An extension,

introduced in this paper assumes that the input space for the µth sequence item

(2 ≤ µ ≤ l) is extended with the output of classifications obtained so far for the

previous items (from 1 to µ − 1) [Kajdanowicz and Kazienko, 2011]. This is a

similar approach to classifier chains considered in the literature.

However another innovative idea is proposed in this paper. The boosting

concept is adapted to classify label sequences allowing dependent classification.

By treating classification in sequential manner rather than independently for

each label [Punyakanok and Roth, 2000], a new algorithm is able to focus on

error minimization in prediction of large spans of the output. This is done by the

appropriate adjustment of the cost function in boosting. A modified AdaBoost

scheme with a sequence-loss balancing cost function, called AdaBoostSeq, is

introduced and formally presented in the next Section of the paper.
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3 AdaBoostSeq Method for Multi-label Classification

3.1 Description of AdaBoostSeq Method

Based on the most popular boosting algorithm, AdaBoost [Freund and Schapire,

1997], a modification of the cost function has been introduced1. It is assumed

that there is a binary sequence classification problem with yµi ∈ {−1, 1}, for

i = 1, 2, . . . , n and µ = 1, 2, . . . , l, where n is the number of instances, l is the

length of the sequence. The general goal is to construct l optimally designed

linear combinations of K base classifiers of the form:

∀µ = 1, 2, . . . , l Fµ(xPµ ) =

K
∑

k=1

αµ
kΦ(x

Pµ , Θµ
k ) (1)

where: Fµ(xPµ) is the combined, final meta classifier for the µth label in se-

quence; Φ(xPµ , Θµ
k ) represents the kth base classifier, performing according to

its Θµ
k parameters and returning a binary class label for each instance x used

for learning; αµ
k is the weight associated to the kth classifier.

Values of the unknown parameters result from optimization done for each

classified label in the sequence, as follows:

arg min
α

µ

k
,Θ

µ

k
,k:1,K

N
∑

i=1

exp(−yµi F
µ(x

Pµ

i )) (2)

As a direct optimization of Eq. 2 is highly complex, a stage-wise suboptimal

method is performed. At each step optimization is carried out with respect to a

new parameter, leaving unchanged the previously optimized one. Therefore, let

us define the result of the partial sum up to m terms (the mth partial sum):

Fµ
m(xPµ) =

m
∑

k=1

αµ
kΦ(x

Pµ , Θµ
k ),m = 1, 2, . . . ,K (3)

According to the definition from Eq. 3, the following recursion is a natural

consequence:

Fµ
m(xPµ ) = Fµ

m−1(x
Pµ ) + αmΦ(xPµ , Θµ

m) (4)

Due to assumption, that before calculating Fµ
m(xPµ ), the value of Fµ

m−1(x
Pµ )

has already been optimized in the previous step, the problem at step m is to

compute:

(αµ
m, Θµ

m) = arg min
αµ,Θµ

J(αµ, Θµ) (5)

1 The following description is based on authors’ previous work [Kajdanowicz and
Kazienko, 2011].
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where the newly proposed sequence-loss cost balancing function J is defined as:

J(αµ, Θµ) =
N
∑

i=1

exp(−yµi (ξF
µ
m−1(x

Pµ

i ) + (1 − ξ)yµi R̂
µ
m(x

Pµ

i ) + αµΦ(x
Pµ

i , Θµ)))

(6)

where: R̂µ
m(x

Pµ

i ) is an impact function denoting the influence on classification ac-

cording to the quality of preceding sequence labels predictions; ξ is the parameter

that allows controlling the influence of impact function in weights composition,

ξ ∈ 〈0, 1〉.

R̂µ
m(x

Pµ

i ) is applied in computation for current sequence position, as follows:

R̂µ
m(x

Pµ

i ) =

m−1
∑

i=1

αµ
i R

µ(x
Pµ

i ) (7)

Rµ(x
Pµ

i ) =

∑µ−1
j=1 yji

Fj(x
Pµ

i
)

∑

K

k=1
αl

k

µ
(8)

where: Rµ(x
Pµ

i ) is the auxiliary function that denotes the average coincidence

between classification result Fj(x
Pµ

i ) and the actual value yji weighted with the

weights αj
k associated to the kth base classifier with respect to value of µ.

The impact function R̂µ
m(x

Pµ

i ), introduced in Eq. 7 and 8, measures the cor-

rectness of classification for all preceding labels in the sequence for each instance.

This function is utilized in the cost function and by minimizing it is able to pro-

vide smaller error deviation for the whole sequence. The greater compliance

between prediction and the real value, the higher the function value. Consider-

ing αµ as a fixed constant (Eq. 5 and 6), the cost function J may be optimized

with respect to the base classifier Φ(x
Pµ

i , Θµ) that is simplified to:

Θµ = argmin
Θµ

N
∑

i=1

wµ

i(m) exp(−yµi α
µΦ(x

Pµ

i , Θµ)) (9)

where:

wµ

i(m)
= exp(−yµi (ξF

µ
m−1(x

Pµ

i ) + (1− ξ)yµi R̂
µ
m(x

Pµ

i ))) (10)

As wµ

i(m)
depends on neither αµ nor Φ(x

Pµ

i , Θµ) for each x
Pµ

i , wµ

i(m)
can be

treated as a weight of sample instance x
Pµ

i . Due to binary nature of the base

classifier, minimization of Θµ is equivalent to:

Θµ = argmin
Θµ

{

Pµ
m =

N
∑

i=1

wµ

i(m)
I(1− yµi Φ(x

Pµ

i , Θµ))

}

(11)

where
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I(x) =

{

0 if x = 0

1 if x > 0
(12)

For the base classifier computed at step m, we have:
∑

y
µ

i
Φ(x

Pµ

i
,Θ

µ
m)<0)

wµ

i(m)
= Pµ

m (13)

∑

y
µ

i
Φ(x

Pµ

i
,Θ

µ
m)>0)

wµ

i(m)
= 1− Pµ

m (14)

and the optimum value of αm results from:

αµ
m = argmin

αµ
{exp(−αµ)(1− Pµ

m) + exp(αµ)Pµ
m} (15)

The derivation of Eq. 15 with respect to α equaled to zero, results in:

αµ
m =

1

2
ln

1− Pµ
m

Pµ
m

(16)

Once the base classifier Φ(x
Pµ

i , Θµ) and αµ
m are computed, the weights for

step m+ 1 may be calculated:

wµ

i(m+1)
=

exp
(

−yµi

(

ξPµFµ
m(x

Pµ

i ) + (1 − ξ)yµi R̂
µ
m(xPµ )

))

Zm

= (17)

=
wi(m) exp

(

−yµi ξα
µ
mΦ(x

Pµ

i , Θµ
m)− (1− ξ)αµ

mRµ(xPµ )
)

Zm

where Zm is the normalizing factor, as follows:

Zm =

N
∑

i=1

wµ

i(m)
exp

(

−yµi ξα
µ
mΦ(x

Pµ

i , Θµ
m)− (1 − ξ)αµ

mRµ(x
Pµ

i )
)

(18)

It is worth mentioning that the weight of the particular instance wµ

i(m+1)

changes with respect to its value at the previous iteration step m. Simultaneously,

the value of the impact function R̂µ
m(xPµ ), which denotes the correctness in

classification for the preceding labels in the sequence, changes as well. The pseudo

code of AdaBoostSeq for multi-label classification is presented in Algorithm 1.

The typical termination criterion used in the above algorithm is k ≤ K, where

K denotes the number of base classifiers. The final prediction after learning

according to Algorithm 1 is performed by calculation of Eq. 19.

∀µ = 1, 2, . . . , l Fµ(. ) = sign(

K
∑

k=1

αµ
kΦ(. , Θ

µ
k )) (19)
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Algorithm 1 The pseudo code of learning AdaBoostSeq algorithm for multi-

label sequential classification.

Input: K base classifiers Φ, data set (X ,Y)

Output: learned combined classifier F

1: for each label in sequence (µ = 1 to l) do

2: Initialize wµ

i(1)
= 1

N
, m = 1;

3: while termination criterion is not met do

4: Compute Θµ
m (parameters of Φµ

m) and Pµ
m (Eq. 11);

5: Compute αµ
m = 1

2 ln
1−Pµ

m

P
µ
m

;

6: Set Zm = 0;

7: for each instance (i = 1 to N) do

8: Compute wµ

i(m+1) = wµ

i(m) ·

9: · exp
(

−yµi ξα
µ
mΦ(x

Pµ

i , Θµ
m)− (1− ξ)αmRµ(x

Pµ

i )
)

;

10: Sum up Zm = Zm + wµ

i(m+1)
;

11: end for

12: for each instance (i = 1 to N) do

13: Normalize wµ

i(m+1)
= wµ

i(m+1)
/Zm;

14: end for

15: Set k = m, m = m+ 1;

16: end while

17: end for

Concluding, the general idea behind AdaBoostSeq algorithm is to perform

for each label in sequence a loop of four algorithmic steps done for all base

classifiers, see Fig. 1. Firstly the parameters of a base classifier are obtained

Θµ
m(considering weights assigned to instances) as well as the sum of weights of

incorrectly classified instances Pµ
m. Secondly the weight αµ

m for the base classifier

is computed. In the next step the weights wµ
m assigned to instances are recal-

culated and in final step - normalized. This four step process is realized for all

base classifiers. The number of base classifiers is a parameter of the algorithm.

3.2 Complexity of AdaBoostSeq Method

The computational complexity of AdaBoostSeq method depends outright on the

size of label set |L| (modelled here as a sequence). It can be quantified as O(|L|×

K×f(d+|L|, N)), where f(d+|L|, N) denotes the complexity of underlying base

classifier performing on data set with d attributes and N instances. According to

the nature of AdaBoostSeq method each label is generalized byK base classifiers.

In contrast to binary relevance classification approach AdaBoostSeq method

does not manifest ability to be easily parallelized in the training phase. This is
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Figure 1: General ilustration of the steps performed by AdaBoostSeq algorithm.

due to the requirement of calculating the weights based on the error obtained in

generalization of previous labels in the sequence.

4 Experimental Study of AdaBoostSeq Algorithm

The AdaBoostSeq algorithm was examined in order to check its properties in two

groups of experiments. First group of experiments was accomplished in order to

examine the robustness of the method by changing the amount of information

given in the training. Namely, there were conducted experiments in scenarios

where learning was based on 10%, 20%, . . . , 100% number of attributes from

the original input space. This kind of tests were carried out in order to observe

whether the proposed approach is very sensitive to incompleteness of input data.

The second group of experiments was performed to figure out how the approach

behaves for distinct size of output space. There were conducted experiments

examining the algorithm for distinct number of labels from label-space, from

10% of original number of labels in the original problem, up to 100% of labels.

4.1 Experimental Setup

The experiments were carried out on six distinct data sets from four diverse ap-

plication domains. Detailed description of data sets can be found in next Section.

The main objective of the performed experiments was to evaluate the accuracy

and efficiency of the Classifier Chain method in distinct scenarios of input and

output space. All scenarios were examining Hamming Loss (HL) [Schapire and

Singer, 2000], Classification Accuracy (CA) [Ghamrawi and McCallum, 2005],

Accuracy (ACC) [Godbole and Sarawagi, 2004], F-macro, F-micro and computa-

tion time spent on model training (TIME), separately for six distinct data sets.
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What needs to be explained are macro and micro label-based evaluation mea-

sures.Instead of being calculated separately for each instance, they are evaluated

separately for each label and averaged across all labels. Label based evaluation

measures can be divided into macro-averaging measures and micro-averaging

measures. The former measures are calculated as an average measure obtained

for each of labels separately. Using the notation where tp denotes true-positive,

fp - false-positive, tn true-negative and fn - false-negative [Bishop, 2006] each

macro averaging measure Mmacro can be calculated as in Eq. 20.

Mmacro =
1

|L|

|L|
∑

i=1

M(tpi, fpi, tni, fni) (20)

It is assumed that the particular measureM(tp, fp, tn, fn) is a binary evalua-

tion measure calculated on the contingency table. It means that macro-averaging

measures ordinary average a binary measure.

On the other hand, the latter, micro-averaging measures, are calculated for

all labels jointly. We can observe that in micro-averaging measures labels are

treated as different instances of the same global label. It is expressed by the the

summation term for each of tp, fp, tn and fn counts, see Eq. 21.

Mmicro = M(

|L|
∑

i=1

tpi,

|L|
∑

i=1

fpi,

|L|
∑

i=1

tni,

|L|
∑

i=1

fni) (21)

An example of evaluation measure that can be utilized to assess the multi-

label classification in its macro and micro version is F-measure [Bishop, 2006].

The performance of the analysed methods was evaluated on original, taken

from data source, training–test split of data sets. It was assumed that training

and testing data instances were obtained from carefully designed data gathering

process. Preserving the original data split enabled verification of obtained results

with independent research carried out by other scientists.

AdaBoostSeq as a ensemble algorithm [Smetek and Trawinski, 2011,Wozniak

and Krawczyk, 2012] required binary base learner. For that purpose three types

of classifiers were examined: the k-Nearest Neighbour (kNN) with k = 3, the

compound Random Forest classifier (RAND) with 200 trees and 20% of features

selected randomly at each tree stage, and Support Vector Machine SVM with

RBF kernel used with sigma and C parameters selected automatically based on

grid search. The experiments were implemented in the Matlab environment.

4.2 Data sets

In order to evaluate and compare all proposed approaches, the experiments were

carried out on six distinct data sets from four diverse application domains: se-

mantic scene analysis, bioinformatics, music categorization and text processing.
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The image data set scene [Boutell et al., 2004] semantically indexes still scenes.

The biological data set yeast [Elisseeff and Weston, 2001] concerns micro-array

expressions and phylogenetic profiles for genes classification. The music data set

emotions [Trohidis et al., 2008], in turn, contains data about songs categorized

into one or more classes of emotions. Themedical [Pestian et al., 2007] data set is

based on the Computational Medicine Center’s 2007 Medical Natural Language

Processing Challenge and contains clinical free text reports labelled with disease

codes. Another data set, enron, is based on annotated email messages exchanged

between Enron Corporation employees. The last data set, genbase [Diplaris et al.,

2005] refers to protein classification.

4.3 Evaluation of AdaBoostSeq for Distinct Size of Input Space

In order to evaluate the robustness on completeness of input data used for train-

ing the experiments examined accuracy of the method for distinct amount of in-

formation given in the training. There were conducted experiments where learn-

ing was based on 10%, 20%, . . . , 100% number of attributes from the original in-

put space. Selection of attributes was based on forward selection method [Guyon

and Elisseeff, 2003]. In general this method selects stated number of best at-

tributes from all available attributes. The decision is based on discrimination

abilities obtained in generalization using attributes selected in forward man-

ner [Guyon and Elisseeff, 2003]. For instance, when the learning phase was based

on 10% of attributes it meant that it used 10% of the best attributes provided

from forward selection method.

The results obtained from experiments are presented in Figures 2, 3, 4, 5, 6

and 7.

According to obtained results it can be observed that for examined data sets

collected majority of accuracy measures tend to be related to the amount of input

description provided to AdaBoostSeq. In general while increasing the number of

attributes used in training, the method obtains higher Classification Accuracy

(CA), F-micro and F-macro results. However, it is worth noting that the method

is not that much sensitive to input space description resulting with almoust

constant Hamming Loss (HL) measure in emotions, scene, yeast, medical and

enron data sets. This property is an advantage of the method.

The best results across all evaluation measures were obtained with AdaBoost-

Seq algorithm that utilized Random Forest compound classifier as a base clas-

sifier. Other two base classifiers, kNN and SVM obtained worse results then

Random Forest. It was surprising that SVM was performing the worst, provid-

ing inferior result while increasing number of attributes used for training.

Considering F-macro and F-micro measures it can be concluded that for

one part of data sets (emotions, yeast and enron) they seem to be weakly de-

pendent on amount of input attributes, whereas for other (scene, medical and
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Figure 2: Hamming Loss (HL), Classification Accuracy (CA), Accuracy (ACC),

F-micro, F-macro and computation time (Time) results obtained by AdaBoost-

Seq for distinct size (percentage) of input space for emotions data set.

genbase) increasing the number of input attributes improves them significantly.

This statement is valid for all three base classifiers.

Comparing all three examined base classifiers it needs to be emphasized

that all of them preserved linear scalability of computational cost measured

by execution time. SVM was the most demanding base classifier while kNN

outperformed other two classifiers requiring from one to two orders of magnitude

less time.

Summarizing, AdaBoostSeq method that utilizes Random Forest as base

classifier is the best choice from all three examined base classifiers. It provides the

best Hamming Loss, Classification Accuracy and F-measures among all data sets.

Even though it is quite demanding in computational resources in comparison to

kNN , it can be treated as the best and robust solution that is resistant to

incompleteness of input attributes to some extent.

4.4 Evaluation of AdaBoostSeq for Distinct Size of Output Space

The second group of experiments was performed in order to figure out how the

proposed method behaves for distinct size of output space. There were conducted

experiments examining the AdaBoostSeq method for distinct number of labels

from label-space, from 10% of original number of labels in the original problem,

up to 100% of labels. Each part of labels was obtained from random draw from

whole label-space.
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Figure 3: Hamming Loss (HL), Classification Accuracy (CA), Accuracy (ACC),

F-micro, F-macro and computation time (Time) results obtained by AdaBoost-

Seq for distinct size (percentage) of input space for scene data set.

Figure 4: Hamming Loss (HL), Classification Accuracy (CA), Accuracy (ACC),

F-micro, F-macro and computation time (Time) results obtained by AdaBoost-

Seq for distinct size (percentage) of input space for yeast data set.
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Figure 5: Hamming Loss (HL), Classification Accuracy (CA), Accuracy (ACC),

F-micro, F-macro and computation time (Time) results obtained by AdaBoost-

Seq for distinct size (percentage) of input space for medical data set.

Figure 6: Hamming Loss (HL), Classification Accuracy (CA), Accuracy (ACC),

F-micro, F-macro and computation time (Time) results obtained by AdaBoost-

Seq for distinct size (percentage) of input space for enron data set.
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Figure 7: Hamming Loss (HL), Classification Accuracy (CA), Accuracy (ACC),

F-micro, F-macro and computation time (Time) results obtained by AdaBoost-

Seq for distinct size (percentage) of input space for genbase data set.

Following the experimental results it can be noticed that for all evaluation

measures and for all data sets Random Forest compound classifier outperformed

both, kNN and SVM methods. Again it was less time demanding than SVM but

much more complex than simple kNN . The results obtained from experiments

are presented in Figures 8, 9, 10, 11, 12 and 13.

It can be observed in all the considered data sets that HL is generally con-

stant regardless of the number of labels the method generalizes. It can be noticed

that only in enron and genbase data sets it slightly rises. On the other hand CA

evaluation measure tends to be related to the size of generalized label-space.

While increasing the number of labels to be learnt it falls significantly, except in

scene data set.

Considering F-macro and F-micro evaluation measures it can be observed

that only for enron data set when increasing the number of labels being learnt,

AdaBoostSeq provides higher value of measures. For all the rest of data sets

measures decrease with more labels generalized.

Comparing all three examined base classifiers it needs to be emphasized

that all of them preserved linear scalability of computational cost measured by

execution time while increasing the number of generalized labels. However, again

the Random Forest outperformed kNN and SVM in all evaluation measures.

Concluding, AdaBoostSeq method that utilizes Random Forest as a base

classifier is again the best choice from all three examined base classifiers. It
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Figure 8: Hamming Loss (HL), Classification Accuracy (CA), Accuracy (ACC),

F-micro, F-macro and computation time (Time) results obtained by AdaBoost-

Seq for distinct size (percentage) of generalized output space for emotions data

set.

provides the best Hamming Loss, Classification Accuracy and F-measures among

all data sets for distinct parts of label-space. In general AdaBoostSeq algorithm

may be considered as resistant to the size of output-space while HL is the

criterion. Increasing the number of learnt labels unfortunately affects all other

evaluation measures and decreases its predictive performance.

5 Conclusions

An approach to mulit-label classification of label sequences using a concept of

boosting was examined in this paper. It requires a specific cost function to be

utilized in the new algorithm AdaBoostSeq. This function respects both the

classification error on the current sequence item and the average error on all

other preceding items while performing boosting iterations. Following the con-

sideration on the computational complexity as well as the examined predictive

performance, AdaBoostSeq is a valuable proposal for multi-label classification.

In general it can be stated that it is able to result with quite stable Hamming

Loss regardless of the size of input and output space.
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Figure 9: Hamming Loss (HL), Classification Accuracy (CA), Accuracy (ACC),

F-micro, F-macro and computation time (Time) results obtained by AdaBoost-

Seq for distinct size (percentage) of generalized output space for scene data set.

Figure 10: Hamming Loss (HL), Classification Accuracy (CA), Accuracy (ACC),

F-micro, F-macro and computation time (Time) results obtained by AdaBoost-

Seq for distinct size (percentage) of generalized output space for yeast data set.
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Figure 11: Hamming Loss (HL), Classification Accuracy (CA), Accuracy (ACC),

F-micro, F-macro and computation time (Time) results obtained by AdaBoost-

Seq for distinct size (percentage) of generalized output space for medical data

set.

Figure 12: Hamming Loss (HL), Classification Accuracy (CA), Accuracy (ACC),

F-micro, F-macro and computation time (Time) results obtained by AdaBoost-

Seq for distinct size (percentage) of generalized output space for enron data set.
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Figure 13: Hamming Loss (HL), Classification Accuracy (CA), Accuracy (ACC),

F-micro, F-macro and computation time (Time) results obtained by AdaBoost-

Seq for distinct size (percentage) of generalized output space for genbase data

set.
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