
Co-Allocation with Collective Requests in Grid Systems

Matija Cankar, Matej Artač, Marjan Šterk

(XLAB d.o.o., Ljubljana, Slovenia

{matija.cankar, matej.artac, marjan.sterk}@xlab.si)

Uroš Lotrič, Boštjan Slivnik

(University of Ljubljana, Slovenia

{uros.lotric, bostjan.slivnik}@fri.uni-lj.si)

Abstract: We present a new algorithm for resource allocation in large, heterogeneous
grids. Its main advantage over existing co-allocation algorithms is that it supports
collective requests with partial resource reservation, where the focus is on better grid
utilisation. Alongside the requests that must be fulfilled by each resource, a collective
request specifies the total amount of a required resource property without a strict
assumption with regard to its distribution. As a consequence, the job becomes much
more flexible in terms of its resource assignment and the co-allocation algorithm may
therefore start the job earlier. This flexibility increases grid utilisation as it allows
an optimisation of job placement that leads to a greater number of accepted jobs.
The proposed algorithm is implemented as a module in the XtreemOS grid operating
system. Its performance and complexity have been assessed through experiments on the
Grid’5000 infrastructure. The results reveal that in most cases the algorithm returns
optimal start times for jobs and acceptable, but sometimes suboptimal resource sets.

Key Words: Resource co-allocation, Grid computing, Parallel applications, Concur-
rency, Advance reservations

Category: C.2.4, C.2.m, C.3

1 Introduction

The ever-growing demand for more computer power has spurred the develop-

ment of distributed computing, which has resulted in grid and cloud computing.

With the rise of cloud computing [Garćıa-Peñalvo et al. 2012], it may appear

that grids are no longer of interest. However, cloud computing introduces a

virtualisation overhead by reducing the efficiency of computation and increas-

ing latencies [Younge et al. 2011], so grids are still used when high-performance

computation is needed.

Grid services ensure that jobs submitted into the grid are assigned proper

resources and maintain high utilisation of the system at the same time. Ser-

vices include modules for scheduling, resource provisioning and/or resource co-

allocation [Netto and Buyya 2010]. In this paper we assume that the first two

Journal of Universal Computer Science, vol. 19, no. 3 (2013), 282-300
submitted: 16/3/12, accepted: 28/1/13, appeared: 1/2/13 © J.UCS

services, essential to any system, are already in place. Our focus is on the co-

allocation service, which offers simultaneous access to resources hosted by au-

tonomous providers [Czajkowski et al. 1999].

In homogeneous grids co-allocation modules operate with uniformly config-

ured resources and usually handle requests such as “for a two-hour job, find ten

resources, each with at least 4 GB of memory”. This request might be too strict

for heterogeneous grids with non-uniformly configured resources. It is very likely

that a user would be satisfied with a request such as “for a two-hour job, find

ten resources that together have at least 40 GB of memory”. The latter request

is more flexible and can lead to the job being started earlier and, at the same

time, to better system utilisation.

We distinguish between two types of requests: simple requests consist only

of requirements for each independent resource, while collective requests consist

of at least one requirement for which the total quantity is specified regardless of

its distribution.

Simple requests can easily be serviced by well-known co-allocators such as

Gara [Foster et al. 1999], JSS [Elmroth and Tordsson 2007], HARC [MacLaren

2007], OAR [Nicolas et al. 2011], KOALA [Mohamed and Epema 2008] and Gri-

dARS [Takefusa et al. 2007]. The approach of describing requests with looser

constraints used by [Liu and Foster 2003] is general enough to handle collec-

tive requests. However, their resource matching implemented as a constraint

satisfaction problem does not focus on system utilisation. Another efficient on-

line co-allocation algorithm which only handles simple requests is based on range

searches to identify available resources simultaneously [Castillo et al. 2009]. If re-

sources can be partially reserved, provisioning of resources is even more flexible.

PlanetLab [Chun et al. 2003] enables sharing of resources but lacks the auto-

matic co-allocation module common to grids. OAR [Nicolas et al. 2011] provides

a kind of resource sharing between multiple users, but only within one reser-

vation. More advanced partial reservation is supported by XtreemOS [Cortes

et al. 2008,Nou et al. 2010].

The majority of the co-allocators cited here have deficiencies that we believe

can be overcome if co-allocation supports collective requests with partial resource

reservation and uses local optimisation of job placement. This approach ensures

that fewer jobs are rejected and accepted jobs are started earlier. The basic idea

behind the approach, with preliminary results, was presented in [Cankar et al.

2010].

Section 2 of the paper includes a formal definition of the co-allocation prob-

lem. Section 3 explains the proposed co-allocation algorithm and Section 4 de-

scribes the experimental set-up and the main results. The paper concludes with

the main findings and some ideas for future work.

283Cankar M., Artac M., Sterk M., Lotric U., Slivnik B.: Co-Allocation ...

2 Co-allocation

The problem of co-allocation is the selection of a set of resources that fulfil a given

request. A resource is the smallest unit that can function independently and is

described by a list of resource properties. Quantitative resource properties are

specified in standard units, while qualitative resource properties are described

with predefined labels. In a typical grid system, a resource is a computer node

that can be described by quantitative resource properties such as the amount

of memory and the CPU frequency, and by qualitative resource properties such

as the CPU architecture and the version of the operating system. Additionally,

a list of resource properties can include the price of the computation, latencies

or bandwidths between the resources and the data store. Each grid system has

its own list of resources and a pre-defined list of resource properties. The set of

all quantitative resource properties on the grid is denoted by P and the amount

of resource property Pi available on resource Rj is denoted by pij . The amount

of resource property Pi reserved at time t on resource Rj is given by timetable

Tij(t).

A job consists of the application, the input data, and the request that de-

scribes a relevant resource set. In our case a collective request consists of:

– the job duration tres for which the reservation is needed,

– the number of resources N to be allocated,

– the earliest and/or latest possible start time, te and tl,

– a set of values ei, where ei specifies the minimum amount of quantitative

resource property Pi available at each resource,

– a set of values di, where di specifies the minimal amount of quantitative

resource property Pi over all allocated resources, and

– a set of qualitative requirements.

It is mandatory to set tres and N . If te and tl are not specified, te equals the

time of submission and tl = te + tC , where tC is a predefined time constant. If

ei is undefined, a predefined small positive value of resource property is used. If

di is undefined, a request becomes a simple request where di = Nei.

An admissible solution to the co-allocation problem consists of the start time

ts and a corresponding set of exactly N resources that satisfy the request and

are available in a time slot defined by the interval [ts, ts + tres].

The utilisation of each quantitative resource property Pi at time t on a set

of resources R is defined as a ratio between the reserved amount of resource

284 Cankar M., Artac M., Sterk M., Lotric U., Slivnik B.: Co-Allocation ...

property and the total amount of the resource property

ui(R, t) =
∑

Rj∈R Tij(t)∑
Rj∈R pij

. (1)

Ideal utilisation is achieved when ui(R, t) equals 1 while values smaller than 1

indicate an excessive amount of the resource property Pi. Values larger than 1

characterise non-permissible situations, utilising more resources than available.

To ensure that resources are utilised well, values smaller than but close to 1 are

preferred. We have expressed overall utilisation of resources R in terms of the

utilisation factor

U(R, t) =
∏

Pi∈P
ui(R, t) . (2)

We chose the multiplication of utilisations because it favours admissible solutions

with high ui(R, t) more intensively than summation. The utilisation factor there-

fore encourages the placing of new jobs on resources with a higher utilisation

rate. This can lead to a smaller number of running resources and consequently

some energy savings.

The admissible solution is optimal if it has the earliest start time and no other

admissible solution with the same start time has a higher utilisation factor.

Even though the utilisation factor is obtained by multiplying utilisations,

optimal requirement fulfilment is still an NP-complete problem. The proof is

given in the Appendix.

3 The Co-allocation Algorithm

Based on the request the algorithm outputs a list of resources selected for the

job, the reservation time, and the updated timetables. If a solution is not found,

the list of resources is empty and the reservation time is undefined.

The proposed algorithm consists of six phases: in Phase I the algorithm

requests an initial set of resources from the resource discovery system; in Phase

II it checks whether the initial set of resources provides a sufficient amount of

resource properties; in Phase III it constructs a set of potential start times; in

Phase IV it examines the set of start times and tries to find the earliest admissible

solution; in Phase V it improves the admissible solution; finally, in Phase VI, it

reserves the resources and forms the output.

3.1 Phase I — Resource Discovery

The algorithm selects a set Rjob of resources that comply with all requirements

regardless of the timetables di, and passes the set to Phase II. For better chances

of success the algorithm requires M · N resources from a resource discovery

285Cankar M., Artac M., Sterk M., Lotric U., Slivnik B.: Co-Allocation ...

Phase II: Resource candidates examination

foreach Pi ∈ P do1

let Rω(1), Rω(2), . . . , Rω(M·N) be resources of Rjob

sorted by Pi in descending order2

if
∑N

l=1 piω(l) < di then3

M = 2M4

go to Phase I5

end6

end7

service, where M ∈ [Minit,Mmax] for Minit ≥ 1. Initially M is set to Minit but

can be increased on return from unsuccessful subsequent phases. Larger values

of M increase the search space and the possibility of finding a solution, but at

the same time they increase the algorithm response time.

If at least N resources are selected, the algorithm proceeds to Phase II.

Otherwise, a solution cannot be constructed, the job request is rejected, and the

algorithm terminates. The algorithm may later return from subsequent phases

to Phase I. In this case the job is also rejected if M > Mmax or if the algorithm

selects the same resource set Rjob again.

3.2 Phase II — Examination of the Resources

This phase checks whether the initial set of resources provides a sufficient amount

of resource properties, regardless of distribution.

As shown in Phase II, for each quantitative resource property Pi, the re-

sources are sorted in descending order and the first N resources are checked

to see whether they fulfil the given requirement di. If a check for any resource

property fails, the algorithm returns to Phase I with M doubled. Otherwise, the

algorithm proceeds to Phase III.

3.3 Phase III — Finding a Set of Potential Start Times

In this phase the potential start times are obtained from the timetables. As

shown in Phase III, the algorithm first computes functions aij(t), Aj(t), and

As
j(t) for each resourceRj . The function aij(t) expresses the amount of a resource

property Pi ∈ P of a resource Rj ∈ Rjob in time t. The function Aj(t) indicates

whether in time t the available amounts of resource properties of the resource

Rj are sufficient for the request. The function As
j(t) equals 1 if and only if

the resource Rj is continuously available in the time interval [t, t + tres], or 0

otherwise.

286 Cankar M., Artac M., Sterk M., Lotric U., Slivnik B.: Co-Allocation ...

Phase III: Finding a set of potential start times

foreach Rj ∈ Rjob do1

∀Pi ∈ P : aij(t) =

{
pij − Tij(t) t ∈ [te, tl + tres]

0 otherwise2

Aj(t) =

{
1 ∀i : ei ≤ aij(t)

0 otherwise3

As
j(t) = mint′∈[t,t+tres] Aj(t

′)4

end5

T = { t ; ∃Rj ∈ Rjob, Pi ∈ P : As
j(t) = 1 ∧ aij(t) increases}6

 0

 1

 2

 3

 4

C
P

U
 [G

H
z]

aCPU,j(t)
eCPU

 0

 2

 4

 6

 8

 10

M
em

or
y

[G
b]

aMemory,j(t)
eMemory

0

1

 0 500 1000 1500 2000 2500 3000 3500

A
va

ila
bi

lit
y

of
 R

j

Time

trestres

Start-time candidate

te tl

 Aj(t)

 Aj
s(t)

Figure 1: Construction of start-time candidates in Phase III – start time filtering.

Using these functions a set T containing all possible start-time candidates

is constructed and passed to Phase IV as shown in Figure 1. The job can be

started at any time within the grey interval, but only times in which the amount

of a resource property of any resource increases must be considered. Note that

any increase of a resource property at any node can result in the fulfilment of

requirements di.

3.4 Phase IV — Construction of an Admissible Solution

In Phase IV the algorithm constructs an admissible solution based on the earliest

possible start time.

287Cankar M., Artac M., Sterk M., Lotric U., Slivnik B.: Co-Allocation ...

For each t ∈ T , from the earliest to the latest, it first computes the minimal

amounts atij = pij − T t
ij of resource properties available during the whole reser-

vation interval [t, t + tres] where T t
ij = maxt′∈[t,t+tres] Tij(t

′). It then constructs

a set Ra of available resources and tries to find a set Rs of N resources forming

an admissible solution. If more than N resources are available, the set Rs is

constructed by the SelectAndSwap function Phase IV. If the set Rs is admissi-

ble, the algorithm proceeds to Phase V; otherwise it returns to Phase I with M

doubled.

The SelectAndSwap function only returns a non-empty set Rs of resources

when the condition ui(Rs, t
′) ≤ 1, t′ ∈ [t, t+ tres] is valid for all resource prop-

erties Pi after the job is placed. To simplify the computation of the condition,

only the worst-case utilisation

ũi(R, t) =
di +

∑
Rj∈R T t

ij∑
Rj∈R pij

(3)

is considered. The SelectAndSwap function first tries to form an admissible

resource set Rs by selecting N resources with high amounts of available resource

properties. It cyclically sweeps through the resource properties and in each cycle

selects the resource from Ra with the highest amount of the current resource

property (lines 3 to 7). WhileRs is not admissible, the algorithm tries to improve

it by swapping the resources from Rs with those from Ra (lines 9 to 22). In each

iteration it determines the resource property Pv for which the resources from Rs

are most severely violate the utilisation. The function prefers to select Rm ∈ Ra

with a high amount of resource property Pv, while it selects the resource from

Rs at random. Resources are only swapped if no unfulfilled resource property

gets worse and no previously fulfilled resource property becomes unfulfilled. The

function gives up the search for an admissible solution when all resources from

Ra have been tested for the same Pv or after L1 · N attempts, where L1 is a

constant set by a system administrator.

Random swapping provides a wider sweep across multiple resource properties

while keeping the algorithm simple. Furthermore, the randomness prevents the

algorithm from getting stuck (as occurs, for example, when swapping of the

same two resources in two consecutive iterations results in repetitive switching

between two inadmissible solutions).

3.5 Phase V — Solution Optimisation

In Phase V the algorithm tries to improve the admissible solution by increasing

the utilisation factor while retaining the same start time. As we are interested

in the utilisation of the grid after the job is placed, the estimation Ũ(R, t) =∏
Pi∈P ũi(R, t) of the utilisation factor is used as a criterion.

288 Cankar M., Artac M., Sterk M., Lotric U., Slivnik B.: Co-Allocation ...

Phase IV: Construction of an admissible solution
for t ∈ T ordered in the ascending order do1

Ra = {Rj ∈ Rjob;A
s
j(t) = 1}2

∀Rj ∈ Ra, ∀Pi ∈ P : atij = pij − T t
ij3

switch |Ra| do4

case < N : Rs = ∅5

case = N : Rs = Ra6

case > N : Rs = SelectAndSwap(Ra)7

end8

if ∀Pi ∈ P :
∑

Rj∈Rs
atij ≥ di then9

go to Phase V10

end11

end12

M = 2M ; go to Phase I13

function Rs = SelectAndSwap(Ra)1

Rs = ∅;2

for k = 1 to N do3

k′ = (k − 1) mod |P|+ 14

select (randomly) Rk from {Rj ∈ Ra; ∀Rj′ ∈ Ra : atk′j ≥ atk′j′}5

Rs = Rs ∪ {Rk}; Ra = Ra \ {Rk}6

end7

c = 1; m = 08

while (∃Pi ∈ P : ũi(Rs, t) > 1) ∧ (c ≤ NL1) ∧ (m ≤ |Ra|) do9

m = m+ 1; k = 110

let Pv be a random resource property from11

{Pi ∈ P ; ∀Pi′ ∈ P : ũi(Rs, t) ≥ ũi′(Rs, t)}
let Rm ∈ Ra be the m-th resource of Rω(1), Rω(2), . . . , Rω(|Ra|) sorted12

by Pv in descending order

let Rπ(1), Rπ(2), . . . , Rπ(N) be resources of Rs in a random order13

repeat14

R′
s = Rs ∪ {Rm} \ {Rπ(k)}15

canswap =
∧|P|

i=1

(∑
Rj∈R′

s
atij ≥ min(

∑
Rj∈Rs

atij , di)
)

16

if canswap then17

Rs = R′
s; Ra = Ra ∪ {Rπ(k)} \ {Rm}; m = 018

end19

k = k + 1; c = c+ 120

until (k ≤ N) ∧ (c ≤ NL1) ∧ (¬canswap) ;21

end22

289Cankar M., Artac M., Sterk M., Lotric U., Slivnik B.: Co-Allocation ...

Phase V: Solution optimisation

if |Ra| = 0 then go to Phase VI;1

for c = 1 to NL2 do2

let Rs be a random resource from Rs3

let Ra be a random resource from Ra4

R′
s = Rs ∪ {Ra} \ {Rs}5

if
(
∀Pi ∈ P : ũi(R′

s, t) ≤ 1
)
∧
(
Ũ(R′

s, t) ≥ Ũ(Rs, t)
)
then6

Rs = R′
s7

Ra = Ra ∪ {Rs} \ {Ra}8

end9

end10

The algorithm performs N ·L2 attempts to improve the admissible solution,

where L2 is a constant set by a system administrator. In each attempt it ran-

domly selects one resource from the admissible solution and one from the other

available resources. The resources are swapped if the new resource set forms an

admissible solution with an increased utilisation factor.

3.6 Phase VI — Resource Reservation

Finally, the algorithm reserves the resources constituting the solution, updates

the timetables, and returns the start time and the list of resources.

To reserve a quantitative resource property Pi on each resource in Rs, the

algorithm updates the timetables Tij(t
′) ← Tij(t

′) + ei + ri · (di −Nei), where

t′ ∈ [t, t+ tres] is the reservation time interval and ri = (atij−ei)/
∑N

j=1(a
t
ij−ei).

The reservation might fail because some of the selected resources have been

reserved in the meantime by another co-allocation service. In this case the algo-

rithm returns to Phase I without modifying the parameter M .

4 Experimental Work

The algorithm was implemented in the XtreemOS operating system and evalu-

ated on the Grid’5000 infrastructure in terms of solution quality, time complexity,

and operating system and infrastructure overheads.

4.1 Implementation

XtreemOS [Cortes et al. 2008,Nou et al. 2010] was used because of its modular

architecture, which allows us to easily incorporate the presented co-allocation

algorithm into the system. It also supports partial resource reservations.

290 Cankar M., Artac M., Sterk M., Lotric U., Slivnik B.: Co-Allocation ...

Resource property (Pi) Average (p̄i) Standard

deviation (σi)

Min Max

Number of CPU cores 2.90 1.51 1 8

CPU frequency [GHz] 2.68 0.36 1.40 3.60

Total amount of RAM [GB] 2.95 0.84 0.73 7.71

Table 1: PlanetLab resource-property statistics for 606 nodes

The XtreemOS resource management system consists of the Service/Resource

Discovery Service and the Application Execution Manager. It was built to sup-

port dynamic and heterogeneous grids where nodes can join and leave at any

time, and may consist of a mix of cluster and desktop nodes. The core services

run on dedicated nodes which can vary in number depending on the size of the

system. This approach allows the resource management system to better adapt

to changes in the grid and solve scaling and load-balancing problems [Foster

and Jennings 2004]. Service/Resource Discovery Service agents work in a peer-

to-peer fashion using a distributed hash table and provide resource information

to the Application Execution Manager. The co-allocation service was integrated

into the Application Execution Manager, which is responsible for managing jobs

and resources.

4.2 Test Data

Grid’5000 does not support partial reservations and workload is represented by

the list of accepted reservations. We therefore decided to use PlanetLab work-

load data instead, since these are measured and logged every five minutes. The

PlanetLab platform [Chun et al. 2003] is a research environment consisting of

diverse computer nodes, where each node can be used simultaneously by multi-

ple users. For the experiments we selected 606 PlanetLab nodes for which data

such as CPU frequency, number of CPU cores and memory were available. The

experiments are based on platform-usage data for the working day 18 August

2010, midnight-to-midnight. The basic statistics of the nodes are presented in

Table 1. The test cases were constructed from these data.

Each test case consists of a set of PlanetLab nodes already occupied according

to the given platform-usage data and a new request that must be fulfilled by

resources from this set. The same conditions were established on XtreemOS

deployed on the Grid’5000 infrastructure.

The duration of the new request tres was chosen from the set {10 min, 30 min,

1 h, 2 h, 3 h, 5 h} and the number of requested resources N from the set

{2, 5, 10, 15, 30, 60}. The earliest start time te and the latest finish time tl + tres
were selected randomly from the intervals [0 h, 5 h 50 min] and [18 h 10 min,

291Cankar M., Artac M., Sterk M., Lotric U., Slivnik B.: Co-Allocation ...

24 h], respectively. The value di of the resource property Pi in the new request

was chosen randomly from the interval

[N(p̄i − 2σi), N(p̄i + 0.5σi)] , (4)

where p̄i and σi are the average and the standard deviation of pij over all nodes,

respectively. By setting the upper boundary of the interval at an above-average

level, we permitted some requirements to be difficult to fulfil. AMD Opteron

nodes running XtreemOS were required by specifying qualitative resource prop-

erties.

For each number of requested resources we generated 90 test cases with simple

requests and 90 test cases with collective requests sharing the same requirements

except for ei. For simple requests we set ei = di/N to require uniform distribution

of resource properties, while for collective requests we set ei = di/2N to limit

unequal distribution of resource properties.

4.3 Algorithm Parameters

The administrator can regulate the quality of solutions and the responsiveness of

the system using the algorithm parameters Minit, Mmax, L1, and L2, described

in Section 3. Parameters Minit and Mmax limit the initial and the final size of

the search set. The influence of parameter L1 is only expressed in critical cases,

when it is hard to find the appropriate list of resources due to the highly utilised

grid system or a complex request. The parameter L2 regulates optimisation —

larger values allow the algorithm to spend more time optimising the admissible

solution computed in Phase IV at the expense of search time.

We set the parameters according to statistical data from the Nancy site of

Grid’5000 [Orgerie and Lefèvre 2010]. The average request on the site required

around 15 resources and had more than 25,000 reservations in its peak week.

On average this means one successful request every 24 seconds, but during the

busiest time of the day we can expect a new request every second.

We used a set of test cases requesting 15 resources to set Minit. To minimise

the effect of operating system interactions, we used a single pass of the algorithm.

We evaluated Minit for values 2, 3, 4, 6, and 8. The results show that Minit = 3

gives a good trade-off between solution quality and speed, as it provides 50%

more solutions than Minit = 2 and only 7% less than Minit = 4, with Minit = 4

taking 60% more time in test cases with no solution. With values of Minit > 4

the increase of the number of solutions does not justify the increase in time

consumption.

The algorithm consists of six phases, with the first and the last phase in-

teracting with other operating system modules. To eliminate the influence of

communication and infrastructure overheads in the experiments, only a single

pass of Phases II to V was considered, i.e., Mmax = Minit.

292 Cankar M., Artac M., Sterk M., Lotric U., Slivnik B.: Co-Allocation ...

Table 2: Comparison of collective and simple approaches in all 540 test cases.

Requested resources

Solutions found with: 2 5 10 15 30 60 Σ

Simple approach 28 27 24 19 27 21 146

Collective approach 49 59 56 55 54 49 322

Earlier start with collective approach 4 7 1 7 5 2 26

Equal start time 24 20 23 12 22 19 120

Better utilisation (simple approach) 0 2 4 5 6 4 21

Better utilisation (collective approach) 7 13 15 7 16 15 73

The parameters L1 and L2 linearly increase the time consumption of Phases

IV and V respectively (see Phase IV and V), while increasing the likelihood of

finding the earliest solution with a high utilisation factor. We tested parameters

L1 and L2 in a range from 2 to 50 and found that neither the number nor the

quality of the admissible solutions obtained improved significantly after L1 = 7

and L2 = 10.

With parameters Minit = 3, L1 = 7, and L2 = 10 the algorithm search time

for a 15 resource request is less than 0.1 s and for a 60 resource request less than

1 s on average on a 2.2 GHz CPU AMD Opteron 275. This ensures a good system

response at peak request times and a high probability of successful reservation

in Phase VI. The chosen parameter values were used in the experiments.

4.4 Quality of Solution

To assess the performance of the described algorithm, its outputs were compared

with solutions obtained by specifying simple requests. Due to the stochastic

nature of the algorithm, the search in each test case was repeated 1000 times.

The results in Table 2 show that the simple approach provided a solution in

27% of the test cases, while the collective approach is better since it provided

a solution in 60% of the test cases. The collective approach started jobs earlier

in 18% of the test cases in which both approaches obtained a solution. More

specifically, the results showed that jobs are started on average 3 h earlier. Fur-

thermore, in test cases where both approaches obtained solutions with the same

start times, the collective approach provided more than three times as many test

cases with a better utilisation factor than the simple approach. Detailed analysis

showed that the relative improvement of the utilisation factor also favours the

collective approach, by 8.5% on average. It is important to note that the results

show no correlation between the number of requested nodes and the probability

of finding a solution.

We also compared the results of the simple and collective approaches to op-

293Cankar M., Artac M., Sterk M., Lotric U., Slivnik B.: Co-Allocation ...

Table 3: Comparison of collective and simple approaches and optimal solutions

for 5 resources.

Collective Simple

Solution found 59 27

Suboptimal (later) start time/average delay [h] 3/1.5 7/2.5

Utilisation factor at same start times

(portion of the optimal utilisation factor) 0.92 0.84

Test cases where utilisation factor is above

99% of the optimal 22 4

timal solutions. Given the NP-completeness of the problem, a brute-force search

for the optimal solution is extremely time-demanding. To make the process fea-

sible, we limited the analysis to the test cases requesting five resources.

A brute-force search finds a solution in 59 test cases. Table 3 shows that

the collective approach is successful in all of these test cases. Only three of the

solutions have suboptimal start times, while others have an average utilisation

factor 92% of the optimal. Detailed analysis showed that the collective approach

found 22 test cases with a utilisation factor higher than 99% of the optimal.

Overall, the results obtained by collective approach are clearly better than those

obtained by the simple approach.

4.5 Time Complexity

The search time depends on grid utilisation, the number of requested resources

and request complexity. The average search times presented in Figure 2 increase

with the number of requested resources. The simple approach is faster, especially

in test cases without a solution. In these cases it gives up the search in the

early stages because of the high values of individual requirements preventing the

algorithm from collecting enough resources to form a solution.

The collective approach requires more time than the simple approach. The

search time of the collective approach in test cases without a solution is mainly

attributed to additional sweeps for possible start times in Phase IV. Search

times increase as the number of requested resources grows. Phase II reduces the

average search times of test cases without a solution. In test cases requesting 5

or 10 resources Phase II rejected about half of the test cases without a solution.

The relative time consumption of Phase II is less than 1%, while Phase III

needs around 5% of the total search time. The rest of the time is consumed by

Phases IV and V. If Phase IV is reached and if an admissible solution is hard to

obtain, Phase IV takes more time than Phase V. Otherwise the majority of the

search time is consumed by Phase V. The average improvement of the utilisation

294 Cankar M., Artac M., Sterk M., Lotric U., Slivnik B.: Co-Allocation ...

 1

 10

 100

 1000
 2500
 5000

2 5 10 15 30 60

S
ea

rc
h

tim
e

[m
s]

Number of requested resources

Simple with solution
Simple without solution
Collective with solution
Collective without solution (no Phase II)
Collective without solution

Figure 2: Average algorithm search times as a function of the number of re-

quested resources.

Table 4: Search time statistic of 90 test cases requesting 5 nodes.

Phases I-VI Phases II-V

Minimal [ms] 126.4 0.008

Maximal [ms] 324.9 9.167

Average [ms] 169.8 1.004

Standard deviation [ms] 29.4 1.664

factor in Phase V is about 10%.

4.6 Operating System and Infrastructure Overheads

To assess the total time consumption of the algorithm (including Phases I

and VI), we deployed the XtreemOS operating system on eight 2.6 GHz AMD

Opteron 2218 and seven 2.2 GHz AMD Opteron 275 Grid’5000 nodes. The Ap-

plication Execution Manager with our co-allocation module ran on one of the

2.2 GHz AMD Opteron 275 nodes. We preset the resource properties and the

reservations of each XtreemOS resource to reflect the same state of the resources

described in the test cases. The experiment was limited to test cases requesting

5 resources. After the algorithm performed the co-allocation, the timetables and

resource properties were reset to enable new independent tests. Each test case

was repeated 100 times.

The time consumption of XtreemOS is presented in Table 4. The overhead

of Phases I and VI, which amounts to almost 170 ms on average, is attributed to

network communication, request message processing and actions of other Xtre-

emOS modules such as user authentication, monitoring and logging.

295Cankar M., Artac M., Sterk M., Lotric U., Slivnik B.: Co-Allocation ...

5 Conclusion

The most common co-allocators today lack the ability to adapt to a heteroge-

neous and dynamic grid infrastructure. The co-allocation algorithm described in

this paper presents a novel approach to tackling these issues.

The main idea of the proposed co-allocation algorithm is to extend simple

co-allocation requests with collective requirements, support for partial resource

reservation, and optimisation of job placement in terms of grid utilisation. The

algorithm uses a heuristic approach and consists of six phases: it limits the search

to a reasonably sized resource set, checks the obtained resource set timetables,

selects possible start times, searches for admissible solutions and tries to find

the most appropriate, resource set. The algorithm cannot guarantee the optimal

solution, because the search may last longer than the user is willing to wait. To

obtain a compromise between the quality of the solution and the search time,

the search stops after a given number of iterations.

We implemented the proposed algorithm in the XtreemOS grid operating

system. The co-allocation module of any other operating system can use this

algorithm to support collective requests, although partial resource reservation

can only be used if the grid system supports this functionality.

The experiments on the Grid’5000 infrastructure clearly show that, despite

its simplicity, in most cases the algorithm finds an appropriate solution if one

exists. The algorithm finds twice as many solutions if collective requests are

used instead of simple requests. It thus contributes to better utilisation of the

system. The search time of the algorithm is dependent above all on the number

of requested nodes and current grid utilisation.

Each time it runs, the algorithm performs optimisation of grid utilisation on

a subset of all grid nodes. Since this subset change every time the algorithm is

invoked, local optimisation hopefully leads to global optimisation of grid usage.

In the future we intend to explore grid-usage tendencies to predict the prob-

ability of the existence of a solution for a given co-allocation request based on

the current state of a grid. By means of grid-usage evaluation, we plan to im-

prove the performance of the search. In addition, by including the possibility of

rescheduling existing reservations, it would be possible to achieve even better

utilisation and efficiency, as well as better management of resource failures.

Acknowledgements

This research was funded partly by the European Union (European Social Fund)

and partly by the European FP6 project XtreemOS under EC contract number

IST-033576. The experiments presented in this paper were carried out using the

Grid’5000 experimental test bed, developed under the INRIA ALADDIN devel-

296 Cankar M., Artac M., Sterk M., Lotric U., Slivnik B.: Co-Allocation ...

opment action, with support from CNRS, RENATER and several universities,

as well as other funding bodies (see https://www.grid5000.fr).

References

[Cankar et al. 2010] Cankar M., Hadalin P., and Artač M. “Co-allocation of compu-
tational resources in XtreemOS grids”; Proc. ERK’10, IEEE (2010), 10–13.

[Cappelo et al. 2005] Cappello F., Caron E., Dayde M., Desprez F., Jegou Y., Primet
P., Jeannot E., Lanteri S., Leduc J., Melab N.: “Grid’5000: a large scale and highly
reconfigurable grid experimental testbed”,GridComputing Workshop IEEE, (2005)
99–106.

[Castillo et al. 2009] Castillo C, Rouskas G, Harfoush K.: “Resource co-allocation for
large-scale distributed environments”; Proc. HPDC’09, ACM, (2009), 131–140.

[Chun et al. 2003] Chun B., Culler D., Roscoe T., Bavier A., Petterson L., Wawrzoniak
M., Bowman M.: “Planetlab: An Overlay Testbed for Broad-Coverage Services”;
Proc. ACM SIGCOMM 33, 3, (2003), 3–12.

[Cortes et al. 2008] Cortes T, Franke C, Jégou Y, Kielmann T, Laforenza D.: “Xtre-
emOS: a vision for a Grid operating system”; White paper, (2008);

[Czajkowski et al. 1999] Czajkowski K., Foster I., Kesselman C.: “Resource co-
allocation in computational grids”; Proc. HPDC’99, IEEE, (1999) 219–228.

[Elmroth and Tordsson 2007] Elmroth E. and Tordsson J.: “A standards-based Grid
resource brokering service supporting advance reservations, coallocation, and cross-
Grid interoperability”; Concurrency and Computation: Practice & Experience, 21,
18, (2009), 2298–2335.

[Foster et al. 1999] Foster I, Kesselman C., Lee C., Lindell B, Nahrstedt K., and Roy
A.: “A distributed resource management architecture that supports advance reser-
vations and co-allocation”; Proc. IWQoS’99 IEEE, (1999), 27–36.

[Foster and Jennings 2004] Foster I. and Jennings NR.: “Brain meets brawn: Why
grid and agents need each other”; Agents and Multiagent Systems, (2004), 8–15.

[Garćıa-Peñalvo et al. 2012] Garćıa-Peñalvo F.G., Forment M.A., and Lytras M.,
“Some Reflections about Service Oriented Architectures, Cloud Computing Ap-
plications, Services and Interoperability J. UCS Special Issue”; Journal of Universal
Computer Science, 18, 11, (2012), 1405–1409.

[Liu and Foster 2003] Liu C, Foster I.: “A constraint language approach to grid re-
source selection”; Proc. HPDC-12 (2003), 1–13.

[MacLaren 2007] MacLaren J.: “HARC: the highly-available resource co-allocator”;
Proc. 2007 OTM confederated international conference on On the move to mean-
ingful internet systems: CoopIS, DOA, ODBASE, GADA, and IS-Volume Part II,
(2007); 1385–1402.

[Mohamed and Epema 2008] Mohamed H, Epema D.: “KOALA: a coallocating grid
scheduler”; Concurrency and Computation: Practice and experience 20, 16, (2008),
1851–1876.

[Netto and Buyya 2010] Netto MAS, Buyya R.: “Co-Resource Co-allocation in Grid
Computing Environments”; Handbook of Research on P2P and Grid Systems for
Service-Oriented Computing: Models, Methodologies and Applications, chap. 20. 1
edn., Information Science Publishing - Imprint of: IGI Publishing: Hershey, PA,
(2010), 476–494.

[Nicolas et al. 2011] Nicolas C., Joseph E., and Martin S.. “OAR Documenta-
tion - User Guide”; Technical report, also appeared as electronic version
http://oar.imag.fr/documentation/.

[Nou et al. 2010] Nou R., Giralt J., Corbalan J., Tejedor E., Fitó J.O., Perez J.M., and
Cortes T., :“Xtreemos application execution management: A scalable approach”;
Proc. GRID’10, IEEE, vol. 2 (2010), 49–56.

297Cankar M., Artac M., Sterk M., Lotric U., Slivnik B.: Co-Allocation ...

[Orgerie and Lefèvre 2010] Orgerie, A. Lefèvre, L.: “A year in the life of a large scale
experimental distributed system: the Grid’5000 platform in 2008”; Technical Report,
INRIA, RR–7481, (2010).

[Takefusa et al. 2007] Takefusa A., Nakada H., Kudoh T., Tanaka Y., Sekiguchi S.:
“GridARS: An advance reservation-based grid co-allocation framework for dis-
tributed computing and network resources”; Proc. JSSPP’07, Springer-Verlag,
(2007), 152–168.

[Younge et al. 2011] Andrew J. Younge, Robert Henschel, James T. Brown, Gregor
von Laszewski, Judy Qiu, and Geoffrey C. Fox: “Analysis of Virtualization Tech-
nologies for High Performance Computing Environments”; Proc. CC’11, IEEE,
(2011), 9–16.

Appendix – NP-Completeness

Many scheduling problems are similar to the problem of co-allocation as defined

in Section 2. The list of similar NP-complete problems includes minimum flow

shop scheduling, minimum job shop scheduling, and minimum multiprocessor

scheduling [Garey and Johnson 1979]. Due to the specific form of the crite-

rion function, i.e. the multiplication of utilisations, we provide a proof that the

presented co-allocation problem is NP-complete. The proof is made for a sub-

problem where all resources are free and ei = di/(2N). If these two constraints

are removed, the problem does not become any simpler.

In the general case, we assume a setR of n resources and a set P ofm quanti-

tative resource properties, i.e., R = {R1, R2, . . . , Rn} and P = {P1, P2, . . . , Pm}.
The quantity of a resource property Pi provided by a resource Rj is denoted by

pij and a required amount of a resource property Pi is denoted by di. Further-

more, we assume pij ∈ N0 and di ∈ N0.

A requirement di is fulfilled by a subset of resources if their combined quantity

of the resource property Pi is greater than or equal to di. The goal is to find N

resources which together fulfil the requirements for all resource properties.

However, the minimal amount of a resource property provided by a single

resource should be not less than one half of the average provided by all the

selected resources. To avoid selecting resources that provide too much of any

particular resource property, the product of all the resource properties provided

by all the resources should not exceed the product of all the requirements by more

than a certain factor. The decision problem regarding the fulfilment requirements

is formulated as follows:

Optimal Requirements Fulfilment

instance: P ∈ N
m×n
0 of pij ’s and D ∈ N

n
0 of di’s; positive integers

N ≤ n, a and b where a ≤ b.

question: Is there a set S ⊆ {1, 2, . . . , n} such that |S| = N where∑
j∈S

pij ≥ di and ∀j ∈ S : pij ≥
di
2N

, (1)

298 Cankar M., Artac M., Sterk M., Lotric U., Slivnik B.: Co-Allocation ...

for all i ∈ {1, 2, . . . ,m}, and

∏
i : di �=0

(
di∑

j∈S pij

)
≥ a

b
? (2)

Theorem 1. The optimal requirements-fulfilment problem is NP-complete.

Proof: The optimal requirements-fulfilment problem clearly belongs to NP as

it takes time O(n ·m) to verify a solution.

To prove that the optimal requirements-fulfilment problem is NP-complete,

we reduce the minimum-cover problem, itself an NP-complete problem, to it.

The minimum-cover problem is formulated as follows:

Minimum Cover (SP5 in [Garey and Johnson 1979])

instance: Collection C of subsets of a finite set U , i.e., C ⊆ 2U ; positive
integer k ≤ |C|.
question: Does C contain a cover for U of size k or less, i.e. does there

exist a collection C′ ⊆ C such that ∪C∈C′C = U and |C′| ≤ k?

To reduce the minimum-cover problem to the minimal requirements-fulfilment

problem, we transform an instance 〈U , C, k〉 of the minimum-cover problem to k

instances of the minimal requirements-fulfilment problem, one instance for every

k′ ∈ {1, 2, . . . , k} (note that k ≤ |C| and so the value of k is polynomic in the

size of the input).

To construct an instance of the minimal requirements-fulfilment problem for

a particular k′, we consider all the elements ui of the set U as resource properties

and all the sets Cj ∈ C as resources. Hence, m = |U| and n = |C|. Furthermore,

let pij be defined as

pij =

{
1 ui �∈ Cj

2k′ ui ∈ Cj

and let di = 2k′. Finally, let a = 1 and b = k′|U|. The transformation can be

made in polynomial time: the collection C can be transformed in time O(m · n)
to yield P , and D can be generated in time O(n).

The instance of the minimal requirements-fulfilment problem for a particular

k′ has a solution if and only if C contains a cover for U of size k′. To see that, one

should make two observations. First, because
∑

j∈S′ pij ≤ 2k′2 and
∏

i : di �=0 di =

(2k′)m, condition (2) is always fulfilled as

∏
i : di �=0

(
di∑

j∈S′ pij

)
≥

∏
i : di �=0

(
2k′

2k′2

)
=

1

k′m
.

Second, if requirement di is fulfilled, then there exists at least one j so that pij =

2k′ and hence ui ∈ Cj for Cj ∈ C′ (if such j does not exist, then
∑

j∈S′ pij =

299Cankar M., Artac M., Sterk M., Lotric U., Slivnik B.: Co-Allocation ...

k′ ≤ 2k′); if ui is covered by some C′, than there exists some j so that pij = 2k′

and
∑

j∈S′ pij ≥ 2k′.
Finally, to solve an instance of the minimum-cover problem, at most k in-

stances of the optimal requirements-fulfilment problem must be checked. �

Corollary 2. The optimisation version of the optimal requirements-fulfilment

problem is NP-hard.

References

[Garey and Johnson 1979] Garey MR, Johnson DS.: “Computers and Intractability; A
Guide to the Theory of NP-Completeness”; W. H. Freeman & Co./New York, USA,
(1990).

300 Cankar M., Artac M., Sterk M., Lotric U., Slivnik B.: Co-Allocation ...

