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Abstract: Sophisticated Text Mining features such as visualization, summarization,
and clustering are becoming increasingly common in software applications. In Text
Mining, documents are processed using techniques from different areas which can be
very expensive in computation cost. This poses a scalability challenge for real-life ap-
plications in which users behavior can not be entirely predicted. This paper proposes
a decoupled architecture for document processing in Text Mining applications, that
allows applications to be scalable for large corpora and real-time processing. It con-
tributes a software architecture designed around these requirements and presents TML,
a Text Mining Library that implements the architecture. An experimental evaluation
on its scalability using a standard corpus is also presented, and empirical evidence on
its performance as part of an automated feedback system for writing tasks used by real
students.
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1 Introduction

The growing availability of textual information comes with an increasing need

to obtain useful information from it. Although search engine products are recog-

nized as one of the strongest areas in the software industry, new functionalities

are required to move this frontier further, allowing for more effective ways to clas-

sify, visualize, and summarize the mass of unstructured content available. The

importance of this type of innovation is reflected in the vast number of projects

on different aspects of Computational Linguistics and Information Retrieval.

Beyond search engines, Text Mining (TM) technologies are at the heart of

many of the novel functionalities incorporated in real-world applications. For

example, Fan et. al. reported the discovery of novel relationships between mag-

nesium deficiency and depression using automatic concept extraction to link dif-

ferent documents with shared concepts, and by connecting more than one level

of indirection [Fan et al., 2006]. Another tool by Osinski helps dealing with hun-

dreds of search results by clustering them into tens of labeled clusters reducing

information overload [Osinski and Weiss, 2005].
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However, the techniques required to process documents and extract patterns

can be very expensive in computational cost, affecting the possibilities of appli-

cations to scale up in real scenarios. The scalability of TM applications can be

mapped in three dimensions: the size of the document corpora (going from one

short document to millions of long documents), the time available to process the

documents (going from an occasional execution to very high frequency real-time

execution) and the computational cost of the technique required by the applica-

tion. The first dimension can be found in statistical techniques that use previ-

ous knowledge like Latent Semantic Analysis [Deerwester et al., 1990], in which

computational time is quadratic to the size of the corpus. The second dimension

comes from real-life scenarios in which users expect an immediate response from

the system and also behave in waves, demanding high usage peaks for short peri-

ods of time, like educational scenarios in which TM tools are used to provide feed-

back on writing assignments that have a due date. The third dimension comes

from the complexity of Computational Linguistic techniques, in which complex

constructs are built on top of more simple constructs, therefore the whole chain

of techniques must be processed before obtaining a single pattern. An exam-

ple of such constructs are ’typed dependencies’ [de Marneffe et al., 2006], which

require sentences to be parsed in depth, which in turn requires part of speech

information from each token in the sentence.

We propose a decoupled architecture in which the processing of documents

is separated according to the demands of different techniques, while at the same

time is fast enough so basic patterns can be obtained immediately for user con-

sumption. The architecture contributed in this paper is implemented in a soft-

ware library called ’Text Mining Library’ (TML), which integrates information

retrieval, indexing, clustering, part-of-speech tagging and latent semantic anal-

ysis. We have used the area of automatic feedback for writing as a case study

to demonstrate how the architecture behind TML and its Java implementation

performs in this area. The use of TML within Glosser [Villalon and Calvo, 2011],

a tool for automatic feedback of writing assignments is described.

Section 2 describes the TM process and outlines the architectural require-

ments for TM tools. Section 3 presents the design and implementation of the

TML architecture and how challenges are tackled for each sub-step. Section 4

describes a case study of the architecture applied to a real application. Section

5 discusses an evaluation of this architecture and subsequent results. Section 6

concludes.

2 Background

Text Mining (TM) aims to develop methods and tools for the discovery of non

trivial patterns within text. This aim overlaps with the broader field of Data
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Mining (DM), but focuses the object of study on unstructured data and par-

ticularly text. TM was originally proposed as ’Knowledge Discovery from Text’

by Feldman, and after more than a decade, its exact definition is still being ar-

gued among researchers, particularly with regard to a precise definition of ’non

triviality’ [Feldman and Dagan, 1995].

Non-triviality is the degree of novelty of the information extracted, which in

turn allows humans to make valuable interpretations. A key aspect of TM tools

is that they must link together extracted information to form new facts or new

hypotheses, that will then be analyzed by humans in more conventional ways

[Hearst, 2003]. In other words, the extracted (and linked) information is valuable

when it allows humans to form new hypotheses or discover new facts. Even

though some authors consider TM to be limited to the extraction of relevant

information [Hotho et al., 2005], many leading researchers insist that the TM

process corresponds to the whole of exploratory data analysis [Hearst, 2003].

The growing demand for TM technologies and its integration into real-life

applications have posed important challenges on the scalability of such systems.

Text processing techniques from Information Retrieval and Computational Lin-

guistics can have a very high computational cost, making real-life scenarios a

difficult challenge to tackle for developers from the TM area.

2.1 Previous work on architectures for TM

Only a few academic studies analyze the requirements for the architecture of

their own TM tools. Holzman presented the design of a TM tool developed in

C++ that implements part of the TM process, not focusing on an iterative

approach but on a single execution of a model [Holzman et al., 2004]. Garcia

proposed an Object Oriented architecture which defines a clear structure for the

logical modules that every TM tool should have [Garcia Adeva, 2006]. In both

cases the designs do not tackle the scalability issue.

Several TM tools have been described in the academic literature, while others

are commercially available. All these tools have been designed for a specific pur-

pose and do not describe their architectures. Some of them report the inclusion

of parallel programming techniques for better efficiency.

OpenNLP [Baldridge et al., 2002] is a collection of open source tools for Nat-

ural Language Processing, its focus is feature extraction via the annotation of

text. It is openly available and it implements a multi-threaded design to speed

up text annotation. OpenNLP does not implement the whole TM process but

contributes a flexible design for the integration of several other technologies.

Mallet [McCallum, 2002] is a complete package for Text Mining that imple-

ments several steps of the TM process, and includes DM algorithms for applica-

tions such as document classification. Mallet was not designed as an extensible
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library but as a complete application, it includes several relevant algorithms

including both NLP and statistical methods.

RapidMiner [Mierswa et al., 2006] is a complete application suite, it is pro-

prietary but a community version is available for research with limitations to its

performance and features.

LingPipe [Alias-I, 2011] is an open source library, that can be extended,

however its license does not allow any commercial use for applications that were

built with it. A common problem of open source projects that are limited by

their licensing options is a lower participation from the research community,

hence the incorporation of new algorithms depends on the available resources of

the company that maintains it.

A different type of tools are Data Mining applications that include plugins

for using text as incoming data. Weka [Holmes et al., 1994] , Matlab and R

[Feinerer et al., 2008] are good examples of this approach. These applications

focus on the implementation of DM algorithms, and have big communities of

both developers and researchers that contribute to their code quality and new

algorithms.

Only two academic studies describe general requirements for TM libraries

and frameworks [Silic et al., 2007, Williams, 2003], which can be summarized

as:

– Simplicity for the developer: This aspect includes characteristics such as

rapid application development (the structures and the methods of the library

should enable intuitive and fast integration into end-user applications), code

reuse (facilitating reusing already implemented methods), and modularity

(the modules should be able to change without affecting other modules).

– Rapid research cycle for researchers: Users should be able to easily integrate

and test new methods within the library.

– Scalability (Computational efficiency): Design and implementation should

be efficient in memory usage and CPU time.

Despite the growing number of TM tools, none of them has yet focused on

the scalability problem that certain scenarios pose to real-life applications.

2.2 Writing feedback: an example application

Writing is an important activity in most professions and university graduates

are expected to show proficiency across different genres. Regrettably, assessing

written assignments and providing students with timely and useful feedback, are

time consuming tasks. As a consequence, many researchers are building tools for

automatic assessment and feedback.
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Producing useful feedback for students requires the recognition, processing

and visualization of textual patterns that are related to the writing quality of

essays. The nature of the problem of generating automatic feedback encompasses

many text mining techniques making it an apt case study for a TM architecture.

Early automated feedback systems included ’Writers Workshop’, a system

developed by Bell Laboratories, and ’Editor’. However, both systems had a focus

on surface features of writing quality (grammar and style), which have been

shown to have limited pedagogical benefits [Beals, 1998].

Modern tools that implement pedagogically sound methodologies require

complex TM techniques in order to provide useful feedback. For example, Select-

a-Kibitzer (SaK) [Wiemer-Hastings and Graesser, 2000], a more recent writing

tutoring system is based on Flower’s notion of voices that speak to the writer

during the process of composition [Flower, 1994]. SaK uses avatars to give the

impression of giving each voice a face and a personality. It uses Latent Semantic

Analysis (LSA) described later to calculate the average distance between consec-

utive sentences and provide feedback on the overall coherence of the text. It can

also analyze the topic of a sentence, identifying clusters of topics amongst the

students so when a new topic arises the student can be asked for an explanation

or reformulation. In this paper we present the case study of the TM features

behind Glosser [Villalon and Calvo, 2011]. From a pedagogical standpoint, the

feedback provided by it aims at triggering students’ reflection on their writing.

3 A decoupled architecture for Text Mining

TM can be seen as an iterative process with five main steps: Document se-

lection, document pre-processing, feature extraction, model creation (corpus

analysis), and data manipulation (operate models) [Hearst, 1999, Hearst, 2003,

Hotho et al., 2005]. Figure 1 shows the standard TM process in which the steps

form a loop. First, a set of documents is selected as a corpus from a repository

of documents. Second, each document is decomposed in its most basic compo-

nents called tokens, and some basic statistics are computed (e.g. term frequency).

Some optional sub-steps can be performed at this time, like term stemming and

removing non semantic terms. The result of this stage is every document rep-

resented as a term frequency vector. Third, each document is represented as a

set of common features for the whole corpus. Features can be obtained from the

term frequency vectors or extracted from the text using Information Retrieval

and Computational Linguistics techniques. A common feature from IR is the

combination of the frequency of words in a document and their frequency in the

whole corpus, while a common feature from CL is the grammatical/syntactical

structure of sentences among others. Fourth, the corpus is processed using Data

Mining methods which create a model of it that can be operated to extract
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information. One example is to create a Semantic Space using Singular Value

Decomposition so semantic distances can be calculated between documents or

terms. Finally, the model is operated to obtain useful information that will help

the user on selecting the documents for the next iteration of the TM process.

Common tasks in this step are the clustering of documents by topics, and the

prediction of categories for unclassified documents.

Figure 1: Text Mining process

3.1 Decoupling the TM process

An important aspect of the architecture is the decoupling of the processes, so

they can be run in parallel. Figure 2 shows how the process was separated, so the

initiators change. In a standard TM process, the user initiates it by selecting a

corpus, in TML there are three initiators: The user selecting a corpus, adding a

document and an independent process. This change allows the three processes to

run in parallel, possibly in different hardware platforms, facilitating scalability.
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Figure 2: Text Mining process decoupled in TML’s architecture

3.2 Document selection

Document selection must be very efficient and scalable as it is the first step to be

performed when users interact with a system. Selecting documents can be done

in two ways: by matching their content or meta-data to the user requirements,

or as the result of a previous TM iteration, for example selecting all documents

that belong to a particular cluster.

The first architectural decision in TML was the use of a search engine as the

container for all documents used in the analysis. Search engines are optimized

for managing large number of documents and retrieving them based on queries.

TML is integrated with Apache’s Lucene search engine, a popular open source

search engine written in Java which is highly scalable.

Therefore, the most basic structure in the architecture is a Repository, which

represents all available documents and their meta-data at three levels of gran-

ularity: documents, paragraphs and sentences. Repositories are implemented in

TML using a Lucene index. When a new document is added it is split into para-

graphs and then into sentences, each passage is then indexed so basic statistics

are calculated for all of them. Basic information is stored in seven Lucene fields

for each passage, table 1 shows a description for each field. The three granularity

levels allow to create corpora from a single document, which can be very useful

for processing books and/or analyzing essays.

Document selection is therefore performed by searching documents within

a Repository. A set of documents is called a ’Corpus’, and corresponds to a

collection of search results obtained from running a query on the search en-
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Table 1: Meta-data stored as default in a TML Repository.

Field Description

External Id An id that identifies the document uniquely

Type If the passage is a document, paragraph or sentence

Content The text of the passage and a vector with its calculated term

frequencies

Parent External id of the document to which the passage belongs

(null if it is a document)

Reference External id of the passage to which the passage belongs. A

paragraph if it is a sentence, a document if it is a paragraph

or null otherwise

Insertion

Time

A time stamp indicating when the passage was created

URL A URL indicating how to access the document (could be a

path in a filesystem)

Title Name of the file or page for the document. Paragraphs and

Sentences have an automatically assigned title indicating its

number and the document to which they belong.

gine. Queries are expressed using Lucene’s query syntax and can use any of the

fields, for example the query ’type:document AND content:English’ will find all

documents containing the word ’English’.

3.3 Document preprocessing

Document Preprocessing includes several sub-steps including: Tokenization, Stop-

words removal, Stemming and terms counting. It also corresponds to the second

step in a common TM process, and deals with the creation of the most basic rep-

resentation of text as a set of tokens. These processes are very efficient and are

implemented in several TM tools and libraries, in TML these are implemented

by Lucene which has a very good performance on preprocessing documents at

insertion time. However, even though preprocessing a single document can be

very fast with modern libraries, a large number of documents to be preprocessed

simultaneously may affect the whole system performance.

In order to tackle the problem of a large number of documents to be pre-

processed by the system, document preprocessing was decoupled from the TM

process in the proposed architecture. Preprocessing is performed whenever a new

document is added to the repository, and not as part of the TM process itself.

In this way, a user can upload a new document that will be immediately prepro-

cessed before it is inserted in the repository, and therefore will be immediately
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available for document selection in the process.

By decoupling this process, concurrency, a major issue for large scale systems

is tackled. Concurrency problems occur when two processes are demanding the

same resource, for TM the only shared resource are the documents, and the

problematic scenario would be when a user is inserting a new document while

at the same time another user is selecting documents to build a model. The

proposed architecture solves this problem because reading and writing from the

repository are separated processes, with different initiators. In TML every query

performed to select documents uses a ’read-only’ version of the repository which

contains all the documents committed before the query was run, documents

being inserted at that time will be available in subsequent queries.

As repositories in TML are implemented using Lucene, it also provides de-

tailed configuration for the tokenization process, for example, it can be cus-

tomized for different types of documents identifying term within the text, includ-

ing abbreviations, URLs, email addresses and other tokens. Other customizations

include the stemming rules, or replacing a word by its stem, that change across

languages. Lucene also implements a range of preprocessing techniques such as

Porter’s stemmer and stop-word removal, and it can be extended by implement-

ing an ’Analyzer’ interface. TML benefits from Lucene’s flexibility by allowing

any analyzer implemented in that way to be plugged into its TM process.

3.4 Feature Extraction

Feature extraction (FE) is used to reduce a text passage to set of features.

Features can be ’statistically based’, where the text is represented as a number,

such as the frequency of its terms, or ’linguistically based’, where the features

may be based on the syntactical function of its terms.

Feature extraction can be one of the most expensive processes due to the

complexity of some of its algorithms. Counting terms for example can be done

in a very efficient way, as text is traversed in a single direction while tokens are

identified. Probabilistic grammar parsing on the other hand can be very costly

because text must be traversed back and forth depending on the probabilities

found as new tokens appear. In our own experiments, statistically based features

can be calculated in less than a second for a short document of 500 words, while

parsing its sentences may take up to one minute.

As it is impossible to predict what features would be required in a specific

application, the scalability of a TM application will depend on the features

required by the TM process initiated by the user.

3.4.1 Statistically based features

The most basic statistical approach is known as ’bag of words’ because it repre-

sents a text passage as a vector indicating the frequency of its terms, not taking
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into account word order. In this way, a set of documents (corpus) can be rep-

resented in a Vector Space Model (VSM), a collection of vectors representing

the documents with their dimensionality defined as the collection of terms rep-

resenting the whole vocabulary used in the corpus. A VSM is represented by a

m ∗ n matrix A with aij calculated as the weight of term i in document j.

Several term weighting schemes are used for specific purposes, and TML

implements a set of weights by combining a local and a global component, par-

ticularly those reported in [Dumais, 1990]. In order to calculate such weights,

term counting must be done at document (or passage) and corpus levels. These

computations present scalability challenges when big corpora is used, however,

the proposed architecture with the document preprocessing decoupled from the

TM process present performance savings over traditional approaches.

3.4.2 Linguistically based features

Linguistic features are those obtained from a linguistic analysis of the text.

The purpose of Linguistic Analysis is to understand a piece of text, in order

to transform it into a new form which is useful for some purpose. An example

is word disambiguation, as many words and phrases are ambiguous, a deeper

knowledge is required in order to properly identify its meaning.

From a linguistic perspective language is seen as a layered structure in which

larger textual units are understood as a combination of smaller ones. Linguistic

Analysis aims to understand each layer, process that is usually subdivided in two

subtasks: Syntax and semantics. Syntax describes how the different elements of

a textual unit can be combined, while semantics describes how to calculate the

’meaning’ and is represented using grammars.

The most basic level in Linguistic Analysis is the identification of words’

Parts of Speech (POS). POS are linguistic categories defined by the syntactic and

morphological behavior of words, such as ’nouns’ and ’verbs’. For example, the

sentence ’John loves Mary’ contains three words, its POS annotated equivalent is

’John/NNP loves/VPZ Mary/NNP’ which indicates that both John and Mary

are nouns, particularly proper nouns, and loves is a verb in its third person

singular present form.

Recent studies in LA are obtaining more semantic information from gram-

matical trees. An example of this are ’typed dependencies’ which identify how

words are related to each other from the argumentative perspective. The gram-

matical tree is parsed using rules that determine the argumentative roles of each

word in a sentence [de Marneffe et al., 2006].

The hierarchical layered structure of linguistic features forces the calculation

of lower levels in order to obtain the higher ones, making the process computa-

tionally expensive. For example, a short document of 500 words can take over a

minute to be grammatically parsed at the sentence level, if an application has to
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wait all this time before presenting an interaction with the user it will not meet

minimum usability standards.

In TML, scalability has been addressed by hierarchically decoupling extrac-

tion processes according to their complexity (see Figure 2). In this way, easier

and less expensive processes are run immediately, while more expensive processes

can be set to run offline according to computer power availability.

The core concept in FE are ’Annotations’, which correspond to the extracted

information of a text through NLP means. Annotations in TML are textual

data obtained by running an Annotator on a text passage, for example given

the text passage ’John Loves Mary’, its corresponding POS Annotation will

be ’John/NNP loves/VPZ Mary/NNP’ that can be obtained running a POS

parser Annotator. Annotators in TML can be easily extended by implementing

the ’Annotator’ interface, which requires two levels of information for basic and

more complex annotations. All annotators require a name (e.g. ’PennTree’) and

to implement a method to obtain the string with the annotated version of a

string passed as parameter. An optional initialization method will be called once

when TML is firstly executed in case the annotator requires it. If the annotator

requires structured info, the returned string will correspond to XML, and an

extra method allows the author to provide a schema to validate and interpret

the data. Finally, an easy method to extract pieces of text from the passage

given a label is also provided, this allows a simple way to extract for example

all nouns from a sentence.

TML also separates the process of reading and writing annotations in order

to improve scalability as shown in Figure 3. Reading annotations happen when

an application requires annotated text. At this point it will use the Annota-

tor’s interface to get the annotated text, if it is available in TML’s annotations

database it will be returned immediately, if it is not TML will throw an excep-

tion. This architecture allows modern applications to use asynchronous calls to

TML that would never freeze while performing heavy calculations, allowing pro-

grammers to create highly responsive applications. Writing annotations on the

other hand must happen when computer power is available, and as the processes

are decoupled, it could run in a completely different hardware (or in many). Both

processes are linked through a relational database TML uses to store annota-

tions. As databases manage concurrency very efficiently, several applications (or

instances of one application) can be reading from the same source, while the

slower processes make new annotations available.

Writing annotations is performed by an Annotator Manager that runs ac-

cording to a configuration file, indicating what annotators to use. Whenever a

new document is added to a Repository, the new document is also added to

the annotations database, then when the manager runs it will look for all new

documents that have no annotations yet and run all the annotators for each
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Figure 3: TML’s asynchronous reading and writing operations for annotations

document. An atomic locking at the package level managed by the database al-

lows many instances of the annotator manager to run simultaneously, facilitating

horizontal scalability.

3.5 Model creation

In DM a model correspond to a representation of the ’knowledge’ extracted from

a data set, for TM it corresponds to the knowledge obtained from a corpus.

Models can be created using DM methods such as neural networks, bayesian

networks and support vector machines, or IR methods such as Semantic Spaces

and Topic models.

Regardless of their type, models are computationally expensive to create

because most algorithms are highly complex and the amounts of data are of a

considerable size, therefore the biggest challenge for model creation is scalability.

3.5.1 Data Mining models using Weka and Matlab

In order to create models based on DM methods, TML can integrate in its

process methods from two of the most important DM packages available today:

Matlab and Weka. Matlab is a popular commercial tool used for DM both in the

417Villalon J., Calvo R.A.: A Decoupled Architecture for Scalability ...



industry and in academic environments, Weka is also a very popular package that

is open source and it is also integrated in other tools such as Rapid-Miner. TML

can use Matlab methods in two ways: Using TML from Matlab or vice versa.

For the former, a simple class serves as an interface from Matlab that returns

any dataset from TML obtained with previous steps. The latter is implemented

through the Java interface for Matlab, with which any Java program can invoke

the Matlab runtime. TML can also use Weka methods in two ways: Using TML

exported data from Weka or using Weka from TML. The former can be easily

done executing all previous processes using TML and then exporting the data

set into the Weka format. The latter is used by using Weka’s Java interface from

a new TML functionality.

An integration with Weka from TML was made using the last method men-

tioned. Every set of documents and their corresponding features obtained with

TML can be represented as a set of Weka instances, and therefore any of its

method can be invoked to build a model.

3.5.2 Semantic Spaces

A second type of models are Semantic Spaces (SS), which are derived from the

VSM using matrix factorization techniques. SS models were initially proposed in

the statistical technique known as Latent Semantic Analysis, developed by Deer-

wester et. al. to improve document retrieval performance [Deerwester et al., 1990]

. By deriving a SS, two linguistic problems in IR were overcome: synonymy and

polysemy. The former occurs when two words share the same meaning and the

latter when a single word has more than one meaning. In a SS these meaningful

relations can be inferred from a corpus.

A SS is created from a VSM’s term-document matrix which is then fac-

torized using linear algebra techniques such as Singular Value Decomposition

(SVD) and Non Negative Matrix Factorization (NMF). After the factoriza-

tion terms and documents that are semantically related are clustered together

[Deerwester et al., 1990]. When used for IR, user queries are projected in the

semantic space as pseudo documents, hence are placed close to all other concep-

tually related documents.

Mathematically the creation of a semantic space comprises three basic steps:

First, it starts from the VSM of a corpus, this is a term by text passage matrix

A with values ai,j indicating the weight of the ith term for the jth text passage.

Second, the matrix is decomposed using a factorization technique (e.g. SVD)

in three other matrices, as shown in equation 1, which represent an orthogonal

space where the vectors are sorted by the amount of information they provide
1. The columns from matrices U and V are orthogonal, and form a new base for

1 NMF decomposes the matrix A into two other matrices, however it can be written
in the same way as SVD taking Σ as the identity.
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the space. Finally the dimensions of the space are reduced, which is the key step

in this technique. This is done by keeping only k values in matrix Σ and setting

the rest to 0, so when multiplying back an approximation of the original matrix

is obtained as shown in equation 2.

A = U ∗Σ ∗ V t (1)

Ak = Uk ∗Σk ∗ V
t
k (2)

The resultant model is again a VSM but in which terms and documents were

projected only on the k most important dimensions.

Factorization algorithms are computationally expensive, and such cost grows

exponentially with the size of the corpus. For example, given a m ∗ n matrix,

SVD’s complexity is O(mn2 +m2n+ n3), while NMF’s is O(nmk) per iteration

until it converges.

3.5.3 Model caching for scalability

Regardless of the model type (IR or DM), its computation is generally expen-

sive, however, in real-life scenarios such models can be reused. For example, if

several essays are going to be projected on a semantic space to calculate dis-

tances between their paragraphs and prescribed readings, the space containing

the prescribed readings should be calculated only once for all students in the

same course.

In TML, whenever a model is required, a unique label based on its corpus

(selected documents) and model parameters is calculated, then a file system

based cache is checked for its existence and if the model was already calculated

it is read from the file system, otherwise it is calculated and the saved on the

file system cache.

3.6 Operations on models

The execution of a model correspond to exploit the information obtained in

the model for a particular application. This is the most common activity for

programmers that want to use TM techniques in their applications. For example,

a Semantic Space created with all the sentences from a document can be used

to rank the sentences by their importance in the space for summarization, or

to calculate the semantic distances between consecutive sentences in order to

calculate how cohesive a paragraph is.
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4 Case study: Glosser

The flow of information in Glosser and how it interacts with TML is as follows:

Students upload their document (or commit a new version in an online writing

environment) and ask for feedback immediately. After the students reflect on

the feedback, they react to it by revising their document and producing a new

version, and starting a new iteration by asking for feedback again. Such a scenario

must cope with the immediacy expected by the users and the high load that

occurs when the assignment’s due date approaches.

This feedback is in the form of descriptive information about different as-

pects of the document. For example, by analysing the words contained in each

paragraph, it can measure how ’close’ two adjoining paragraphs are. If the para-

graphs are too far this can be a sign of a lack of flow or what is called lexical in

cohesiveness and Glosser flags a small warning sign.

Glosser provides feedback on several aspects of the writing: structure, co-

herence, topics, keywords. It also has a section that analyzes participation of

individuals in a group. Each of these areas is identified by a tab on the home-

page of the web application. The Questions section contains triggers to prompt

student reflection on a particular set of features of the composition, and can be

customized for each course or activity. The instructions section describes how

to interpret the feedback, which is provided as ”gloss” on the lower half of the

page. The feedback is an alternate type of visual or textual representation of

features that have been automatically sourced from the text. The history of ver-

sions provides a record of the writing process , which includes information on

the time of each revision and the author responsible for it.

Glosser uses TML to implement all its tabs, and as its process is decoupled,

it is separated in two parts: Indexing and Operating. Indexing is the process

of retrieving the documents so they can be glossed, it has two steps. Firstly,

Glosser harvest all versions of documents from Google Docs through its API,

and inserts them in a database. This happens on demand, every time a user clicks

on a document to gloss it. Secondly, an independent and parallel process which

runs every 15 seconds inserts the documents in a TML Repository. Operating

corresponds to the selection of a corpus, creating a model and operating it.

One example is the ’Coherence’ tab. In this tab, a semantic space is created

using the paragraphs of the essay, the semantic distances between each consecu-

tive paragraph are then calculated. The paragraphs are shown on the screen, and

whenever the distance between two consecutive paragraphs is above a thresh-

old, a warning signal between the paragraphs will be shown and both will be

highlighted as shown in Figure 4.
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Figure 4: Glosser coherence tab

5 Evaluation

Scalability has a standard evaluation method, which is to measure the time it

takes the system to perform a single but complete task. The task is executed

using a growing number of documents so its growth can be analyzed. Each exe-

cution must be repeated to avoid external influences from the operating system

such as memory management or I/O problems.

To evaluate the architecture’s design, we compared TML with a standalone

Weka [Holmes et al., 1994] implementation as a baseline. Weka has a built-in

text mining feature that produces a VSM representation of a Set. Although

the processing of text in the two architectures follows a similar sequence, the

differences on storage and indexing strategies produce significant performance

differences. Next is a discussion of the sequence and the computational complex-

ity of each step and results from experiments using two different textual corpora

are used to evaluate the implementation.
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5.1 TM process time

We can summarize the TM process time separated in its sub-steps in the follow-

ing equation:

Ttotal = Tsel + Tpre + Tfe + Tmod + Top (3)

Where Tsel is the time for obtaining the Set, Tvsm is the time to create the

VSM and Tmod the time to compute the model and store it if the algorithms

allows, Tuse is the time of using the model and using it within the business logic

of a real system. Where Tsel is the time for selecting the corpus, Tpre is the

time to pre-process the documents, Tfe is the time to extract the features and

Tmod the time to compute the model and store it if the algorithms allows, Top is

the time of operating the model and using it within the business logic of a real

system.

In the present analysis we compare two architectures, Weka and TML with

their respective times Tw and T t. The Weka architecture consists of the Weka

application connected directly to the content repository used by TML.

Document selection can be performed in Weka in three ways, reading the

content from the file system, from a pre-built arff (Weka native format) file and

from a database, the best performance is achieved using a relational database

so we used this option in our experiments. For this task Weka uses a JDBC

connection to a relational database. Most modern databases implement full text

searching using inverted files indexing, the time for this task is O(log(N)) with

N the total number of documents in the corpus. TML uses the Lucene index

searching capabilities that also implements an inverted file index for searching,

for this we expect that the time to obtain the contents of a Set to be the same

in both architectures, this is shown in equation 4.

Tweka
sel ≈ T tml

sel (4)

Document pre-processing and Feature extraction are implemented in

Weka as a filter, which is applied once the content from the documents has been

loaded on the previous step. As this two steps are the ones decoupled in TML,

and run when documents are added or in parallel, this is where time savings are

maximum, equation 5 shows the expected relation.

Tweka
pre + Tweka

fe > T tml
pre + T tml

fe (5)

Creating the model and Operating the model have no differences be-

tween the architectures. Both use similar or identical implementations for any

particular algorithm. But some techniques (e.g. KNN classification) don’t need

to train a model so it all happens at runtime. With others (e.g. Neural Network

classification) a model is built and this task is highly time consuming. In both
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architectures this time is exactly the same, and at the date of submission both

share the same method to store a model, serializing the data structure as a bi-

nary object. Since in both architectures the time requirements are the same we

expect the relations shown in equations 6 and 7.

Tweka
mod = T tml

mod (6)

Tweka
op = T tml

op (7)

Finally, the total savings of time given the architecture can be calculated as

the difference between Tweka and T tml , simplified using all previous equations

as shown in equation 8.

∆T = ∆Tsel +∆Tpre +∆Tfe (8)

5.2 Theoretical analysis of savings

In order to analyze if the savings will be relevant, the computational complexity

of the pre-processing and feature extraction steps were calculated. The first step

is to pre-process the documents, assuming N documents, each with an average

length in characters of L and an average length in words ofW , the complexity for

processing each document is the sum of the complexity for tokenizing, stemming

and removing stop-words. Given that tokenizing complexity is O(Ld), stemming

the words complexity is O(W ) (the size of the stemming dictionary is constant)

and removing stop words complexity is a constant, the complexity for processing

all the documents is shown in equation 9.

Tpre is O(N ∗W +N ∗ L) (9)

The time saved depends on the length of the documents, both in characters

and in words. It is known that for every language there is a relation like W ∗α ≈

L, α ≥ 1 with α the average word length in characters for the language. For the

experiments, the same Set of documents for each architecture will be compared,

therefore the average length of the document is a constant. As a consequence

the asymptotic behavior of the difference of time between architectures can be

expected to b e linear against the number of documents as shown in equation

10.

Tfe is O(N) (10)

Another question that raises is if the time saved is relevant within the whole

time, for this we analyzed the remaining steps. The second step is building the

dictionary, this is the process of identifying all the different terms that exist in
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the Set and building a common group, usually the terms has to be sorted within

each document according to the same order the words appear in the dictionary.

The complexity of checking every term and sorting them is O(W ∗ log(W )) per

document. At the end of this process the dictionary contains a reduced set of

terms. Finally the weighting process affects only the resultant terms but they

have to be updated for each document so its complexity is O(D ∗W ).

The relevance of the difference can be calculated then as the ratio R∆ shown

in equation 11.

R∆ =
1 + α

2 + α+ log(W )
(11)

Given that α and W are constant for the corpus, measured for the Upp-

sala collection we have α = 7.54 and W = 196 so we could expect a rough

approximation of the theoretical improvement of 49.78% in running time.

5.2.1 Performance

Overall time was measured for document selection, document preprocessing and

feature extraction using two corpora: Reuters21578 [Hayes and Weinstein, 1990]

and USE - Uppsala Student English [Axelsson and Berglund, 1999] corpora.

Reuters21578 [Yang and Pedersen, 1997] is a corpus widely used by text mining

researchers to explore performance of different classification algorithms, param-

eters, etc. For the experiment the training set included 7,769 documents with

an average document length of 770 characters (short news stories). The Upp-

sala corpus contains 1,489 essays written in English by swedish students at the

Uppsala University in Sweden. The documents have an average length of 4,746

characters.

We measured the computation time for each of the two corpus. The time it

takes to create the VSM was calculated by repeating an experiment 10 times

for each architecture. In each run the number of documents was processed in

batches of 100, after which time was measured.

Figure 5 shows the graph with the results from the experiment with the

Uppsala corpus, we can see clearly how both architectures show a linear behavior

when the number of documents increase. This is what we expected from our

theoretical analysis, we also can see that the overall time for TML is always

lower than the time for Weka, averaging an improvement in time of 57%. The

results for Reuters21578, where similar with TML being around 50% faster.

6 Conclusion

Text mining applications are becoming ubiquitous. Document summarization,

clustering and visualization are some of the areas in which commercial devel-

opers and researchers are increasingly working. However, most of the required
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Figure 5: TML vs Weka on USE corpus

techniques can be computationally expensive posing scalability challenges for

real-life applications.

This paper proposes a decoupled architecture for the TM process that allows

scalability issues to be tackled as several of the computation costly sub-processes

can be run in parallel. It also introduces TML a Text Mining library that im-

plements the proposed architecture. A process description of whole TM process

has been used to describe the scalability challenges and the solutions used for

each sub-process.

An important aspect of the TML implementation is to bring together state of

the art tools from different data processing and computational linguistics areas.

TML integrates a search engine (i.e. Apache Lucene), using it for pre processing,

handling the corpus and selecting documents. It also integrates linguistic features

for operations that require them such as named entity recognition or typed

dependencies.

A case study of applications for automatic feedback of writing was used to

describe how the TML architecture can be used. Automatic feedback of academic

writing is a challenging area that encompasses many of the text mining domains.
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Figure 6: TML vs Weka on Reuters21578 corpus
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