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Abstract: Activity recognition enables ambient assisted living applications to provide activity-

aware services to users in smart homes. Despite significant progress being made in activity 

recognition research, the focus has been on simple activity recognition leaving composite 

activity recognition an open problem. For instance, knowledge-driven activity recognition has 

recently attracted increasing attention but mainly focused on simple activities. This paper 

extends previous work by introducing a knowledge-driven approach to recognition of 

composite activities such as interleaved and concurrent activities. The approach combines the 

recognition of single and composite activities into a unified framework.  To support composite 

activity modelling, it combines ontological and temporal knowledge modelling formalisms. In 

addition, it exploits ontological reasoning for simple activity recognition and qualitative 

temporal inference to support composite activity recognition. The approach is organized as a 

multi-agent system to enable multiple activities to be simultaneously monitored and tracked. 

The presented approach has been implemented in a prototype system and evaluated in a number 

of experiments. The experimental results have shown that average recognition accuracy for 

composite activities is 88.26%.  

 

Keywords: Activity recognition, composite activities, interleaved activities, concurrent 

activities, temporal knowledge, ontology. agents 

Categories: H.1.2 

1 Introduction 

Ambient assisted living (AAL) utilizes Information and Communication 

Technologies (ICT) solutions to provide services, e.g. activity assistance, that address 

problems arising from ageing populations [Hoof, 2011]. Providing services to the 

elderly enables them to maintain autonomy and functional independence [AAL, 

2012]. Therefore, AAL technologies can improve the overall quality of life and to 

support independent and dignified living for the elderly persons in their preferred 

environments, e.g. homes. To provide activity assistance, an AAL application uses 

knowledge of the individual’s tasks, habits and preferences which enables the 
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application to help the individual to correctly execute activities. Smart Homes (SH) 

have emerged as a viable technology realization of the AAL metaphor [Chan, 2009]. 

In a SH inhabited by the elderly or disabled, the SH should identify the activities and 

behaviours of the inhabitants with a view to providing its inhabitants with relevant 

support services.  

In general, individuals perform routine activities that are collectively referred to 

as daily living activities (ADLs) [James, 2008]. The ability of individuals to perform 

ADLs is considered a key indicator of autonomy and functional independence [Katz, 

1970; Lawton, 1969; Bucks, 1996; Bucks, 2002]. Activity recognition is a process to 

infer activities from a series of observations collected from a user situated 

environment [Okeyo, 2012]. Accurate activity recognition is important in the 

provision of effective assisted living services. We have characterized activities as 

actions, simple activities and composite activities in a previous study [Okeyo, 2012]. 

To help understand this piece of work we briefly introduce the concepts here. An 

action refers to an atomic activity (or indivisible) activity, e.g. flushing a toilet. A 

simple activity is defined as an ordered sequence of actions, e.g. the actions executed 

while having a bath. A composite activity refers to a collection of two or more simple 

activities occurring within a given time interval, e.g. drinking juice while watching 

television. Further, composite activities can be grouped into sequential or multi-

tasked activities. A sequential composite activity occurs when two or more activities 

occur in consecutive time intervals. Conversely, a multi-tasked composite activity 

occurs when the user performs two or more activities simultaneously, i.e., interleaved 

and concurrent activities. In general, users perform both simple and composite 

activities, e.g. sequential activities, and interleaved and concurrent activities. For 

instance, an individual may perform several activities at the same time or following 

each other.  

There are three main categories of approaches used for activity recognition, 

namely, data-driven (DD) [Modayil, 2008; Gu, 2011; Patterson, 2005; Philipose, 

2004; Kasteren, 2008], knowledge-driven (KD) [Chen, 2011; Chen 2009; Chen, 2008; 

McKeever, 2010; Strorf, 2009; Saguna, 2011], and hybrid [Helaoui, 2011a; Helaoui, 

2011b; Steinhauer, 2010] activity recognition approaches. DD activity recognition 

approaches elicit activity models from pre-existing datasets using existing well-

developed machine learning techniques. Thereafter, activity inference is performed 

against the learnt activity models whenever sensor data becomes available.  In KD 

activity recognition approaches, knowledge engineers and domain experts specify 

activity models using a knowledge engineering process. In essence, the activity 

models encode commonsense and domain knowledge about activities.  The resulting 

activity models are used to support reasoning to infer activities whenever sensor data 

is obtained. The hybrid activity recognition approaches combine data-driven and 

knowledge-driven techniques.  

Both simple activity recognition and composite activity recognition have been 

explored within data-driven and hybrid activity recognition approaches. However, 

only simple activity recognition is researched in knowledge-driven activity 

recognition [Chen, 2011; Chen, 2008; Strorf, 2009], with composite activity 

recognition receiving very little attention. Therefore, addressing composite activity 

recognition is important in addressing real-world activity recognition. To this end, this 
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paper focuses on the problem of recognition of composite activities in a single-user 

environment from a knowledge-driven perspective. 

The use of ontologies in activity recognition [Chen, 2011; Riboni, 2011] has 

attracted increasing attention but existing research has mainly focused on simple 

activity modelling and recognition. In previous work, we have made effort to develop 

a knowledge-driven approach to composite activity recognition. Nevertheless, our 

earlier work concentrated on composite activity modelling, namely combining 

ontological and temporal knowledge modelling formalisms to create composite 

activity models [Okeyo, 2012]. This paper presents our follow-on work on 

knowledge-driven composite activity recognition, which is built upon previous 

research results of composite activity modelling. This paper makes three main 

knowledge contributions. Firstly, we propose a knowledge-driven approach to 

composite activity recognition and introduce a process and related methods for 

activity recognition.  Secondly, we conceive and develop a unified agent-mediated 

framework to support simple and composite activity recognition. Thirdly, we develop 

a prototype system and associated recognition algorithms that can support the 

application and deployment of the proposed approach. The approach, the agent-

mediated architecture and associated algorithms have been validated by experiments 

with impressive experimental results.  

The remainder of the paper is organized as follows. Section 2 discusses related 

work. Section 3 describes the unified activity recognition approach. The agent-

mediated architecture and recognition algorithms are discussed in Section 4. We 

present the system prototype and the experimental results in Section 5. Finally, 

Section 6 concludes the paper.  

2 Related Work 

Much of the research related to composite activity recognition has been based on 

data-driven [Modayil, 2008; Gu, 2011; Patterson, 2005] and hybrid [Helaoui, 2011b; 

Steinhauer, 2010] approaches to activity recognition. Patterson et al. [Patterson, 2005 

investigated the use of hidden Markov models (HMM) to recognize interleaved and 

concurrent activities from object use. Modayil et al. [Modayil, 2008] explored the use 

of interleaved HMMs for recognition of multi-tasked activities in mobile platforms. 

Both works highlighted the use of intra-and inter-activity dynamics, e.g. temporal 

relationships among activities, in activity modelling. Gu et al. [Gu, 2011] investigated 

the use of emerging patterns based approach, a data mining technique, to interleaved 

and concurrent activity recognition in a sensor-based platform. The approach by Gu et 

al. does not use temporal inter-activity relationships; instead, it uses feature relevance 

to segment the boundary of adjacent activities. In addition, it builds activity models 

for sequential activities then uses the models to support interleaved and concurrent 

activity recognition. In this way, it does not require data sets with interleaved and 

concurrent activities to be present in order to initialize the activity models. 

Helaoui et al. [Helaoui, 2011b] investigated the use of Markov logic networks 

(MLN), a statistical relational approach able to encode domain knowledge, to 

recognize interleaved and concurrent activities. The approach builds composite 

activity models from data sets and augments the models with domain knowledge to 

support composite activity recognition. Steinhauer et al. [Steinhauer, 2010] also 
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investigated the use of HMMs enhanced with qualitative temporal relationships based 

on Allen logic [Allen, 1983]. Basically, it uses contextual maps, e.g. qualitative 

temporal information, qualitative spatial information, etc., together with HMMs to 

support activity recognition. It uses Allen’s temporal relations to encode inter-activity 

relationships that denote interleaved and concurrent activities. In particular, it first 

uses HMM to identify the activity then checks if the identified activity satisfies the 

temporal constraints. It only reports the activities that satisfy the constraints. 

Data-driven and hybrid approaches are well supported since they are based on 

well-developed learning and probabilistic techniques. Nevertheless, large amounts of 

initial training data are still needed to learn the activity models, leading to the “cold 

start” problem. In addition, since users perform activities in a variety of ways, activity 

models for one user may not be applicable to the other, resulting in model reusability 

and applicability problems.  Since our approach uses only domain knowledge to 

specify activity models, it easily overcomes the “cold start” problem.  Moreover, by 

modelling common sense activity knowledge as part of domain knowledge, our 

approach addresses the model re-usability and applicability problem. Common sense 

activity knowledge includes activity characteristics that are common to most users, 

e.g. meal preparation activities occur in the kitchen; bathroom activities occur in the 

bathroom; grooming activities occur in the bathroom or bedroom; a person cannot be 

sleeping while preparing tea, etc.  

Even though the knowledge-driven approach solves the “cold start” problem, 

little research has been performed in composite activity recognition. So far, only the 

work by Saguna et al. [Saguna, 2011] addresses composite activity recognition. The 

work by Saguna et al. combines ontological and spatio-temporal modelling and 

reasoning to recognize interleaved and concurrent activities. However, it ignores the 

challenges that arise from spatio-temporal querying and reasoning from within 

ontologies. Other works that use ontologies to model pervasive computing 

environments are reported in [Wang, 2004] and [Fook, 2006]. The work by Wang et 

al., however, does not model temporal context; unlike our approach that uses temporal 

context as the primary means of modelling composite activities. The work by Fook et 

al. uses ontologies to model context for handling agitation behaviour in persons with 

dementia. It uses temporal context, but work it does not support qualitative temporal 

inference needed to infer inter-activity dependencies that characterize composite 

activities. In a nutshell, our work adopts a systematic method for modelling and 

processing temporal knowledge based on 4D-fluents [Welty, 2006] to address 

composite activity recognition. This ensures that we can integrate and exploit 

ontological temporal knowledge for activity recognition. In addition, this paper 

provides a scalable agent-mediated architecture that can be used to monitor and track 

several activities in real-time. 

3 Background and the Unified Activity Recognition Approach 

3.1 The approach 

Generally, in a dense sensing based SH each sensor is attached to a specific object 

and whenever a user interacts with an object in performing an activity, contextual 

information, e.g. time and location, will be captured as corresponding sensor data. 
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Suppose a user performs activities along a timeline, then the streaming sensor data 

can be analyzed to recognize the ongoing simple or composite activities. Recognizing 

composite activities involves three main tasks, namely, composite activity modelling, 

sensor data stream segmentation and composite activity recognition.  

Composite activity modelling creates two types of activity models, namely static 

activity and dynamic activity models. Static activity models use concepts that 

describe that an activity occurs at a specific time, i.e., a temporal reference, e.g. 

activity X occurs at time 10 am. Dynamic activity models encode inter-activity 

relationships that exist between the activities that constitute a composite activity. 

Therefore, dynamic activity models are characterized by both a temporal reference 

and the fact that the activities share a qualitative temporal relationship, i.e., reflects 

the notion of change), e.g. given three activities, X, Y and Z, then ‘X involves Y at 

10am followed by Z at 10.15 am’ shows a sequential relationship. To create dynamic 

models of composite activities, we have used the 4D-fluents [Welty, 2006]  to add 

qualitative temporal knowledge modelling, representation, and reasoning capabilities 

to Web Ontology Language (OWL) [Horrocks, 2005a; Grau, 2008] ontologies. The 

4D-fluents approach uses two fundamental building blocks, namely, time slices and 

fluents to provide a vocabulary to represent temporal knowledge. The time slices 

represent the temporal parts of a specific entity at a given time instant or time interval.  

To describe the entity over a given time interval, its time slices are aggregated.  On 

the other hand, fluents are properties that hold at specific moments in time, which 

could be time interval or time instant. In essence, the fluent property holds among two 

time slices. Therefore, an ontology that associates concepts using the fluent property 

is called a dynamic ontology. Because the ontology describes activity models, it 

results in dynamic activity models. A key advantage of the 4D-fluents approach is 

that it preserves OWL semantics when incorporating temporal knowledge into OWL 

ontologies and can therefore exploit existing OWL reasoning support. However, to 

support temporal inference and to perform reasoning with the dynamic activity 

models, we use entailment rules based on Allen’s qualitative temporal relations 

[Allen, 1983]. Further details on composite activity modelling including the 

entailment rules can be found in [Okeyo, 2012] whereby composite activity models 

are formulated using both ontological and temporal modelling formalisms.  

To segment streaming sensor data, we use a time window based segmentation 

method that dynamically segments the stream by using information (e.g. activity 

duration) from the activity models and the feedback from activity inference as 

described in [Okeyo, 2013]. The resulting segments are analyzed during activity 

recognition and mapped to corresponding simple or composite activities. 

To perform composite activity recognition, this paper introduces a unified 

approach that combines simple and composite activity recognition into a single 

framework. To this end, the approach divides the recognition task into three 

interdependent sub-tasks, namely, action recognition, simple activity recognition, and 

composite activity recognition.  Action recognition processes the sensor data available 

in sensor data segments using ontological reasoning to derive primitive actions. The 

action recognition task is performed as part of simple activity recognition. For simple 

activity recognition, we adopt and modify the ontological activity recognition 

approach described in [Chen, 2011; Chen 2009]. Ontological activity recognition uses 

a logic-based ontology language, e.g. OWL, to structure and describe activities during 
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activity modelling. It encodes activity models as activity ontologies, and then uses 

semantic reasoning (e.g. subsumption and equivalence reasoning or instance retrieval) 

to process sensor data against the ontological activity models during activity 

recognition. In this paper, we modify the ontological approach by including a step to 

generate activity descriptions. We define an activity description as a collection of 

primitive actions that together, partially or fully, describe a simple activity. An 

activity description can be created by grouping the primitive actions into one or more 

activity descriptions corresponding to the simple activities that are defined in the 

activity models. As more sensor data is obtained new activity descriptions are created 

or the existing ones are updated. The modified ontological approach then compares 

each activity description with activity models using semantic reasoning and reports 

the activity model that is closest to the activity description as the ongoing simple 

activity. The activity model returned by instance retrieval is considered the closest 

model. In the absence of a model returned by instance retrieval, then the model 

returned by equivalence reasoning is taken as the closest. Otherwise, the model 

returned by subsumption is the closest. Thereafter, the results of simple activity 

recognition are aggregated using the mechanism described in the next section. By 

separating activity recognition into interdependent tasks, it is possible to use different 

techniques for each task. In this work, instance retrieval or subsumption and 

equivalence reasoning is used for action and simple activity recognition. Instance 

retrieval determines which objects are instances of a given ontology concept. 

Subsumption reasoning finds all concepts that are sub-concepts of a given concept. 

Equivalence reasoning returns all concepts that are semantically equivalent to a given 

concept. For composite activity recognition, rule-based inference techniques are 

exploited.  

3.2 The Modular Architecture 

The approach is depicted in a modular architecture as shown in Fig. 1 that consists of 

a number of core components that interact with each other to provide intended 

functions. Core to the architecture is three knowledge bases (KB), namely, static 

activity model KB (StatSKB), dynamic model of composite activities KB 

(DynaCAKB), and context-driven rule-base (ContextRB), which are utilized by the 

different components during operation. StatSKB provides the static model of activities 

and includes definitions of activities of daily living as well as predefined composite 

activities. DynaCAKB encodes the dynamic model of activities. ContextRB encodes 

the rules for inferring qualitative temporal relations between activities and therefore 

deriving the ongoing composite activities. At runtime DynaCAKB and ContextRB are 

used to derive the temporal dependencies that exist among ongoing activities. The 

presence of temporal dependencies among activities implies the existence of 

composite activities. The knowledge bases are encoded as an activity of daily living 

(ADL) ontology. The data monitoring and segmentation component monitors and 

collects contextual and sensory data whenever a user interacts with objects in 

performing daily activities and then segments the sensor data stream. 

The integrated activity inference component performs three tasks, namely 

iterative action inference, activity inference and activity analysis and refinement. 

These tasks are performed in complex activity recognition unit (CARU) and simple 

activity recognition unit (SARU). CARU performs its task using iterative action 
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inference and fusion, and activity analysis and refinement components based on the 

StatSKB, DynaCAKB, and ContextRB. The iterative action inference and fusion 

component uses the sensory information contained in the data segment and the 

StatSKB to derive primitive actions and activity descriptions. The activity analysis 

and refinement component is used to discover complex dependencies among ongoing 

activities. It uses various elements of context information, e.g. task-related context 

and temporal context encoded in ContextRB. The analysis and refinement component 

outputs simple activities or composite activities together with feedback that is used in 

the segmentation component to modify the parameters used in the segmentation 

mechanism.  On the other hand, SARU performs the necessary activity inference 

autonomously and communicates its status. It uses its activity inference component to 

derive the activity that corresponds to a given activity description. Activity inference 

uses StatSKB as well as recognition algorithms described in [Chen, 2011; Chen, 

2009]. 

 

Figure 1: The modular architecture of the proposed approach 

4 Activity Recognition Mechanisms 

4.1 The process of composite activity recognition  

For ease of reference, we use ADL Ontology to refer to the entire collection of 

knowledge bases introduced in Section 3.2. Given a sensor data segment the 
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recognition of composite activities proceeds using the three-step process described 

below. In the first step, it derives activity descriptions using the algorithm in Fig 2.  In 

essence, the enclosed observations are converted into primitive actions by checking 

property restrictions specified in the ADL Ontology. Thereafter, the primitive actions 

are grouped together to form activity descriptions based on activity definitions in the 

ADL Ontology.  

 

Input: Segment (s), ADL ontology (ADL-O) 
Output: Set of activity descriptions (AD) /*partial or complete*/ 
DERIVE-ACTIVITY-DESCRIPTIONS (s, ADL-O) 
Begin: Extract observations from segment s, O={o1,o2,...oh} 
For each oi∊O Do //for each observation 

Determine all activities that are described by the observation A(oi)={A1, A2, ...An} 
End for 
Create a set of all activities A=A(o1)⊔ …A(oi)⊔ … A(oh)  

For each x∊A Do/*for all activities*/ 
Collect all observations describing x as activity descriptions ADx 

Add ADx to AD End for   
Return AD 
End 

Figure 2: Algorithm to transform segment into activity descriptions (inside CARU) 

In the second step, simple activity recognition is performed to map activity 

descriptions into activity labels. Basically, this involves comparing activity 

descriptions with activity models in the ADL Ontology and returning the label of the 

closest model. If multiple activity descriptions are obtained for a given segment, the 

mapping into activity labels is performed simultaneously. The steps for achieving 

simple activity recognition are summarized by the algorithm listing in Fig. 3. 

 

Input: Activity description (ADi),ADL ontology (ADL-O) 
Output: Simple activity or failure report 
RECOGNIZE-SIMPLE-ACTIVITY (ADi, ADL-O ) /*Classify activity  through ontological 
inference*/ 
Begin: Map ADi to a simple activity /*use ontological inference*/ 
If a leaf activity is returned Then  

Report it 
Else   

If goal is still valid Then  
Wait for updated activity description (go to beginning) 

Else  Communicate status report and terminate  
End if  

End if 
End  

Figure 3: Algorithm to infer simple activities from activity descriptions (inside SARU) 
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In the final step, the results of simple activity recognition are analyzed and the 

aggregated results communicated to the user. If only one simple activity has been 

identified for a data segment, this can be reported to the user. Alternatively, if more 

than one simple activity is identified from corresponding activity descriptions, the 

results are processed to determine if ongoing simple activities share qualitative 

temporal relationships. The simple activities that share qualitative temporal 

relationships are inferred as components of a composite activity. However, before the 

composite activity is reported to the user, the ontology is checked for a corresponding 

instance in the static activity models. If a corresponding instance exists, it is reported 

to the user; otherwise, it is considered a novel composite activity and recommended 

for inclusion in the ontology. For instance, if it is found that there is a temporal 

dependency between two activities, say MakePasta and BrushTeeth, which occur in 

parallel, yet there is no matching description in the existing static activity model, a 

new composite activity MakePastaAndBrushTeeth will be recommended for inclusion 

into the ontology. To perform temporal analysis, the approach uses temporal 

entailment inference rules. The rules can infer qualitative temporal relationships, 

derive corresponding composite activities from the dynamic activity models, and then 

check for corresponding composite activities in the static activity models. Due to 

space limitations, the interested reader is referred to [Okeyo, 2012]  for details of rule 

specification and usage.  The steps for aggregating the results of simple activity 

recognition are summarized in the listing in Fig. 4. 

 

Input: Recognition statuses (RS), ADL ontology (ADL-O) 
Output: Composite activity (CA) or simple activity (A) 
AGGREGATE-RESULTS (RS, ADL-O) 
Begin: Define the set of time intervals TI 

For each sti∊RS Do   
Obtain temporal interval I and add it to TI  

End for 
If only one interval is present Then  

Return (A) /*A is activity associated with interval I*/ 
Else  

Infer interval relations 
Use inferred interval relations to derive ongoing composite activity relationships 
Check corresponding instances of static composite activities in ADL ontology 
IF obtained composite activity relationships are in ADL ontology Then  

Return (CA) 
Else  Recommend the activity ontology be updated to accommodate it.  
End if   

End if 
End 

Figure 4: Algorithm to infer interval relationships and aggregate the results (inside 

CARU). 
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The algorithm listing in Fig. 5 provides an aggregate for all three steps as 

described in Fig 2, 3, and 4 and depicts the tasks that occur during composite activity 

recognition. 
 

Input: sensor data stream (Ω), ADL ontology (ADL-O) 
Output: recognition result /*composite/simple activity label or failure status*/ 
RECOGNIZE-ACTIVITY (Ω, ADL-O) 
Begin: While data stream is active Do /*segmentation*/ 
Segment data stream into a set of segments S={s1, s2, ..., sn} 
For each si∊S Do /*for each segment map observations to activities*/ 

/*Create partial/complete activity descriptions to form set AD={AD1, AD2,...ADk}*/ 
DERIVE-ACTIVITY-DESCRIPTIONS (si, ADL-O) /* returns set AD*/ 
For each ADj∊AD Do /*for each activity description classify activity*/ 

RECOGNIZE-SIMPLE-ACTIVITY (ADj, ADL-O ) /*return recognition 
status*/ 
Update classification status into recognition status RS= { st1, st2,...stm } 
AGGREGATE-RESULTS (RS, ADL-O) /*Perform analysis and 
refinement*/ 
If results are conclusive Then  

Convey results 
Else  Update segment and window  End if  

End for  
End for  
End while 
End 

Figure 5: Algorithm depicting overall recognition strategy (inside CARU and SARU) 

4.2 The Multi-agent architecture for activity recognition 

To realize the modular architecture and the algorithms described above, we have 

formulated the unified activity recognition approach as a multi-agent system.  

An agent refers to a software system that is situated in a dynamic, complex 

environment, and is capable of sensing the changes in the environment and interacting 

with other entities in order to take actions that achieve its design objectives. An agent 

should exhibit four basic properties, namely, autonomy, social ability, reactivity 

(responsiveness) and pro-activity [Wooldridge, 1995]. An agent that is autonomous is 

able to act with no direct intervention from humans or other agents and has control 

over both its internal state and actions. Social ability refers to the ability of an agent to 

interact with other agents, including humans. Generally, an agent is situated in an 

environment, and the ability to perceive the environment and respond in a timely 

fashion to environmental changes is referred to as reactivity. Pro-activeness indicates 

an agent’s capability to exhibit goal-directed behaviour by taking initiative to achieve 

its set goals and design objectives. The four features and other features (e.g. 

adaptability, intelligence, rationality, mobility, flexibility, temporal continuity, etc.), 

can be exploited to design agents for use in applications in the AAL domain. 

Agents can be used to structure solutions in application areas that are 

characterized by complexity, ubiquity, and distributed data, control, expertise, and 
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resources [Jennings, 1998a]. One such application area is the smart home and by 

extension the task of activity recognition. The smart home is characterized by various 

components, e.g. sensors, actuators, people, activities, and interactions, making it 

complex. In addition, the smart home is by definition ubiquitous. Moreover, activity 

recognition can be characterised as distributed because it involves various 

interdependent tasks such as environment and behaviour monitoring, segmentation, 

and activity inference. Also, each task requires its own data, resources, control and 

expertise. A multi-agent system (MAS) refers to a system consisting of a group of 

agents capable of interacting with each other to achieve their design objectives 

[Jennings, 1998b].  Therefore, the multi-agent approach can be used to model, 

structure, and implement a complex software system as a collection of interacting, 

autonomous agents [Jennings, 2001]. From the foregoing, we adopt the multi-agent 

approach to specify a system for unified activity recognition.  

To realize the modular architecture shown in Fig. 1, four agent roles are 

identified, namely, segment the sensor data stream, generate activity descriptions and 

convey recognition results, infer simple activities, and manage inference rule 

execution and infer composite activities. The resulting multi-agent system consists of 

four types of agents that play the roles stated and the agents include monitor and 

segment agent (MSA), composite activity recognizer agent (CARA), simple activity 

recognizer agent (SARA), and activity analysis agent (AAA). Using the agents, the 

CARU component as described in Fig. 1 is implemented using the two agents, i.e., 

CARA, and AAA; SARU is implemented by the SARA agent; and the data 

monitoring and segmentation component implemented by the MSA agent.  

We have chosen agent as an implementation artefact because agents provide the 

different components with autonomy needed to perform their respective tasks. In 

addition, each component can continuously and proactively review and react to 

changes in its goals. There is also massive parallelism involved in executing the 

various tasks involved and the MAS can implement the tasks as parallel agent 

behaviours or tasks. The resulting multi-agent architecture is shown in Fig. 6. Each of 

the agents in the architecture is described below. 

Monitor and segment agent (MSA). The monitor and segment agent plays the 

role ‘segment the sensor data stream’. Essentially, MSA receives streaming sensor 

data from the environment and uses time windows to segment the stream in real-time. 

It then sends the resulting segments to the CARA agent for further processing. 

Composite activity recognizer agent (CARA). The composite activity recognizer 

agent plays the role ‘generate activity descriptions and convey recognition results’. 

The CARA agent obtains segments from MSA agent and processes them to determine 

the actions entailed. Consequently, it uses the actions to generate activity descriptions 

that approximate the activities that are likely to be occurring. The CARA agent then 

spawns the SARA agents, and provides each with the relevant activity description. It 

will keep updating the activity descriptions and communicating the descriptions to 

SARA agents. In addition, it receives feedback related to activity labels from SARA 

agents, and conveys activity data to AAA agent. Finally, it obtains the results from 

AAA agent and provides results, i.e., identified simple and composite activity labels, 

to applications. Moreover, it sends information about the recognition status to MSA 

agent to facilitate dynamic segmentation. 
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Figure 6: The multi--agent architecture for unified activity recognition. 

The messages exchanged convey the following: D1-data segments; D2-activity descriptions; 

D3-simple activity labels; D4-activity data; D5-simple and composite activity labels; D6-

recognition status; D7-identified activity labels. 

 

 

Simple activity recognizer agent (SARA). The simple activity recognizer agent 

plays the role ‘infer simple activities’. The SARA agent receives activity descriptions 

and their revisions from CARA agent and performs ontological inference to determine 

associated activity labels. It then conveys its recognition status - a specific or generic 

activity label - to CARA agent. In addition, the SARA agent continuously reviews its 

status and can terminate if a predefined upper temporal duration threshold is 

exceeded. At runtime, zero or multiple SARA agents can be created and executed, 

with each agent corresponding to exactly one activity description. Whenever activities 

are performed in parallel during a particular time interval, multiple activity 

descriptions will be derived and corresponding SARA agents will be executed thus 

allowing the entailed activities to be recognized. The results from these multiple 

SARA agents are used as input to composite activity recognition.  

Activity analysis agent (AAA).The activity analysis agent plays the role ‘manage 

inference rule execution and infer composite activities’. It receives activity data from 

the CARA agent, and executes inference rules to determine the presence of inter-
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activity dependencies, e.g. sequence or concurrency. It only signals the presence of 

composite activities if it can determine that inter-activity dependencies exist. Finally, 

the AAA agent conveys the results - simple or composite activity labels - to the 

CARA agent. 

5 Experiments and Evaluation 

5.1 Experimental environment 

We have implemented the presented approach to composite activity recognition as an 

agent-based application using Java Agents Development Framework (JADE) 

[Bellifemine, 2001]. JADE is a Foundation of Intelligent Physical Agents (FIPA) 

[FIPA, 2012]-compliant agent development environment. The basic standards for 

FIPA include agent communication, agent management, and agent/software 

integration. The standard for agent management is aimed at allowing agents to 

register, deregister, be searched, and be modified. The standard for agent 

communication is concerned with the message transport protocol, message content, 

and communication language.  

Four types of agents have been developed to play the following roles described in 

the previous section. Each agent advertises its capabilities by registering with JADE’s 

Directory Facilitator so that other agents can search for it.  The agents communicate 

with each other by exchanging messages represented as serialized objects. Each agent 

decides on the type of agent that should receive a particular message. In addition, the 

multi-agent system uses communicative act theory to manage conversations between 

agents.  

The ADL Ontology is designed using OWL 2 [Grau, 2008] in Protégé [Protégé, 

2011] ontology editor. This includes an implementation of the entailment rules as 

Semantic Web Rule Language (SWRL) [Horrocks, 2005b] rules as part of the ADL 

Ontology. Fig. 7 shows a snapshot of some concepts and instances in the ontology 

generated using OntoGraf protégé plug-in.  The right hand side of Fig. 7 shows a list 

of some of the relationships between concepts and individuals.  

The prototype system uses Java-based application programming interfaces (APIs) 

to interact with the Pellet [Pellet, 2011]  OWL reasoner for ontological reasoning.  To 

facilitate the execution of the inference rules we translated the ADL Ontology and the 

SWRL rules to Java Expert System Shell (JESS) [Jess, 2012] fact and rule bases. We 

used the OWL2Jess and SWRL2Jess translators based on the guidelines provided by 

Mei and Bontas [Mei, 2005]. In the prototype, the JESS fact and rules bases are 

accessed and processed by a JESS rule engine. The rule engine is accessed and 

manipulated by the AAA agent that is responsible for aggregating the results of 

simple activity recognition.  
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Figure 7: Snapshot of ADL Ontology captured using OntoGraf protégé plug-in 

 

5.2 Experiment design 

To evaluate the presented approach, we developed an ADL simulator to generate 

synthetic ADL data. Synthetic ADL data has been generated based on seven typical 

ADLs that are related to meals (i.e., MakeTea, MakeCoffee, MakeChocolate, and 

MakePasta), hygiene (i.e., HaveBath, WashHands) and recreation (i.e., 

WatchTelevision). We specified representative ADL patterns for both simple 

activities and composite activities. The simulator randomizes the ADL patterns to 

generate the synthetic ADL data. In addition, one or more patterns of sensor 
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activations are provided for each ADL pattern. The ADL patterns, including activity 

duration and temporal distance between sensor activations, are based on both 

common sense knowledge and guidelines from how-to websites, e.g. 

http://www.wikihow.com/. By having varied ADL patterns, the synthetic ADL data 

for any single ADL activity reflects the reality that the user can perform an activity in 

different ways. For instance, in making tea the user may use ‘milk before sugar’ in 

one instance, ‘sugar then milk’ in another, or even completely leave out sugar or milk. 

To incorporate more temporal meaning, each sensor in a pattern is activated after a 

given amount of time after the immediately preceding activation, e.g.  CupObj@20 

means the object should be activated 20 seconds after the previous observation. By 

implication, this ensures that duration information of activities is included when 

synthetic ADL data is generated.   

• MakeTea: KitchenDoorObj@0, KettleObj@20, CupObj@180, TeaObj@20, MilkObj@20, SugarObj@20 

• MakePastaAndMakeTea: KitchenDoorObj@0, CookerObj@20, SaucePanObj@20, KitchenTapObj@20, 

ItalianPastaObj@20, KitchenTapObj@20, KettleObj@20, SaltObj@600, DrainerObj@300, PlateObj@60, 

CupObj@150, WholeMilkObj@30, BritishTeaObj@20, SandSugarObj@20 

5.3 Experiments 

We generated eight weeks of synthetic ADL data consisting of 56 episodes of simple 

or composite activities to provide the ground truth. Table 1 provides a summary of the 

composite activities. The episodes contain simple activities that are performed in 

various combinations and orders. There are 23 episodes of interleaved and 

concurrent activities (46 simple activities), 25 episodes of sequential activities (50 

simple activities, and eight episodes of standalone simple activities. In summary, the 

episodes are based on 104 simple activities, including MakeTea (26), MakeCoffee(3), 

MakeChocolate (7), MakePasta (25), HaveBath (15), WachHands (10), and 

WatchTelevision  (18).  

Concurrent and interleaved Instances Sequential Instance
s 

MakePasta and MakeTea (a) 3 MakePasta then HaveBath(g) 6 

MakePasta and 
WatchTelevision(b) 

5 MakeTea then WashHands(h) 4 

MakePasta and HaveBath(c) 8 WashHands then MakeTea(i) 6 

WatchTelevision and MakeTea 
(d) 

5 MakeTea then WatchTelevision (j) 3 

MakePasta and MakeChocolate 
(e) 

1 WatchTelevision then MakeTea(k) 5 

MakePasta and MakeCoffee(f) 1 HaveBath then MakePasta(l) 1 

Total 23 Total 25  

Table 1: Summary of composite activities in synthetic data set 

To facilitate experiments, the initial length of the time window was set tobe 

equivalent to the duration of the longest simple activity as provided in the ADL 
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Ontology, i.e., MakePasta. As provided in Okeyo et al. [Okeyo, 2013], the time 

window length would be modified at runtime either by being increased or reduced 

based on the prevailing status of activity recognition.   

The 104 activities were played back in real-time and processed by the system 

prototype for activity recognition. A snapshot of the runtime agent system is shown in 

Fig. 8 during the composite activity MakePastaAndHaveBath. Fig. 8 (a) shows five  

sensor observations for the MakePasta activity. At the same time Fig. 8(b) shows the 

agent instances as obtained from JADE’s remote management agent (RMA) facility. 

RMA provides a graphical user interface (GUI) facility for visualizing and managing 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8: A snapshot of the runtime agent system 
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JADE agents. In the main container, we can observe CARA agent 

(maincaru@193.61.148.129:1099/JADE), MSA agent (chunker@193.61.148.129: 

1099/JADE), and AAA agent (aggregator@193.61.148.129:1099/JADE). From the 

five sensor observations that have been obtained, the CARA agent has spawned 

various agents to monitor the ongoing activity or activities and these are launched in 

agent containers- i.e. Container-1 to Container-10.  For instance due to the fact that 

the user is in the kitchen (given by the observation Mon 18-Feb-2013 14:12:40 

KitchenDoorObj SensorOn), it can be observed that CARA launches various SARA 

agents to monitor kitchen-based activities e.g., MakeTea@193.61.148.129:1099/ 

JADE on Container-1, MakeSoup@193.61.148.129:1099/JADE on Container-3, 

MakePasta@193.61.148.129:1099/JADE  on Container-9, etc.  Fig. 8(c) shows the 

observation Mon 18-Feb-2013 14:15:00 BathroomDoorObj SensorOn has been made. 

At this stage the CARA agent is shown to launch further SARA agents to monitor 

bathroom-based activities as shown in Fig. 8(d), e.g. BrushTeeth@ 

193.61.148.129:1099/JADE on Container-12, Bathing@193.61.148.129:1099/JADE 

on Container-13, and WashHands@193.61.148.129:1099/JADE on Container-14. In 

the meantime, Fig. 8 (c) displays the result that the simple activity MakePasta has 

been identified, showing that it started at 14:12:40, when the first observation was 

made, and the current time is 14:15:14. This process proceeds as long as sensor data 

continues to be obtained. 

5.4 Results and discussion 

From the experiments, the results for precision, recall, and recognition accuracy are 

summarized in Table 2 and Fig. 9. The overall accuracy obtained for simple activities 

is 100% since all 104 simple activities were successfully recognized. This level of 

accuracy is attributed to the creation and use of activity descriptions as described in 

Section 3. An overall accuracy value of 88.26% was obtained for composite activities.  

We can observe that the individual recognition accuracy is lowest for sequential 

composite activities that involve location transitions, e.g. MakeTea then WashHands 

(kitchen then bathroom), WashHands then MakeTea (bathroom then kitchen), 

MakeTea then WatchTelevision (kitchen then lounge), and  WatchTelevision then 

MakeTea (lounge then kitchen).  It is important to note that we introduced the 4D-

fluents approach to support temporal modelling, representation, reasoning and 

querying for temporal knowledge in ontologies [Okeyo, 2012]. As a result we are able 

to model composite activities based on temporal inter-activity relationships and to 

infer composite activities from the temporal relationships. However, the modelling 

approach does not address reasoning and querying from spatial information. 

Therefore, we believe that the diminished recognition accuracy can be attributed to 

the inference and querying limitation for ontological spatial information. We believe 

the problem can be addressed by adopting a method for explicitly modelling spatial or 

location information in ontologies to facilitate spatial querying and inference. 
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Figure 9: Summary of precision, recall, and accuracy results for composite activities 

Composite Activity Alias Precision Recall Accuracy 

MakePasta and MakeTea a 100.0% 100.0% 100.0% 

MakePasta and WatchTelevision b 100.0% 100.0% 100.0% 

MakePasta and HaveBath c 100.0% 87.5% 87.5% 

WatchTelevision and MakeTea d 100.0% 100.0% 100.0% 

MakePasta and MakeChocolate e 100.0% 100.0% 100.0% 

MakePasta and MakeCoffee f 100.0% 100.0% 100.0% 

MakePasta then HaveBath g 100.0% 100.0% 100.0% 

MakeTea then WashHands h 100.0% 75.0% 75.0% 

WashHands then MakeTea i 100.0% 50.0% 50.0% 

MakeTea then WatchTelevision j 100.0% 66.7% 66.7% 

WatchTelevision then MakeTea k 100.0% 80.0% 80.0% 

HaveBath then MakePasta l 100.0% 100.0% 100.0% 

Average 100.0% 88.3% 88.3% 

Table 2: Precision, recall, and accuracy results of composite activity recognition 

6 Conclusion and Future Work 

This paper presented an agent-mediated approach based on hybrid ontological and 

temporal formalisms for composite activity recognition. It described the architecture 

and mechanism to support the recognition of composite activities, e.g. interleaved and 

concurrent activities. In addition, the algorithms and a multi-agent system to support 

unified activity recognition was described. The implementation of a prototype that 

consists of activity ontologies, entailment rules, and an agent-mediated activity 
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recognition system was also provided. Experimental results are presented with 

average recognition accuracy values of 88.26% and 100% for composite activities and 

simple activities, respectively. To the best of our knowledge, this research provides 

the first purely knowledge-driven approach that can infer both simple activities and 

composite activities. Future work involves conducting further experiments to assess 

the performance requirements, such as the time cost and memory requirements, of the 

algorithms and the agent-mediated system. We also plan to conduct additional 

experiments to compare the performance of our approach with other approaches using 

publicly available datasets. In addition, we will enhance the activity models to support 

the querying and inference with spatial information to address issues of reduced 

recognition accuracy for composite activities that involve location transitions. 
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