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Abstract: The Model-Driven Development (MDD) paradigm has become widely spread in the 
last few years due to being based on models instead of source code, and using automatic 
generation techniques to obtain the final software product. Until now, the most mature 
methodologies that have been proposed to develop software following MDD are mainly based 
on functional requirements by following the Object-Oriented Paradigm. Therefore, mature 
MDD methodologies are required for supporting the code generation from models that specify 
non-functional requirements. The Aspect-Oriented Software Development (AOSD) approach 
was created to provide explicit mechanisms for developing non-functional requirements 
through reusable elements called aspects. Aspect-Oriented Software Architectures (AOSA) 
emerged to deal with the design of both, functional requirements and non-functional 
requirements, which opened an important challenge in the software engineering field: the 
definition of a methodology for supporting the development of AOSAs following the MDD 
paradigm. This new methodology should allow the code generation from models which specify 
functional and non-functional requirements. This paper presents a mature approach, called 
PRISMA, which deals with this challenge. Therefore, this contribution takes a step forward in 
the area presenting in detail the PRISMA MDD process, which has been applied to generate the 
code of several real applications of the tele-operated robotics domain. PRISMA MDD approach 
provides complete support for the development of technology-independent AOSAs, which can 
be compiled from high-level, aspect-oriented architectural models into different technology 
platforms and languages following an MDD process. This contribution illustrates how to apply 
the PRISMA MDD approach through the modelling framework that has been developed to 
support it, and a case study of a tele-operated robot that has been completely developed using 
this approach. Finally, the results obtained from the application of PRISMA MDD process to 
develop applications of the tele-operation domain are analyzed in terms of code generation. 
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1 Introduction  

The complexity of current software systems has increased the time and cost required 
in the development and maintenance processes of software. As a result, there is great 
interest in the software engineering area to fix this problem. Thus, to achieve the 
quality goals of software products and ensure market competitiveness, the Model-
Driven Development (MDD) paradigm emerged. 

MDD is a software development paradigm related to Model-Driven Engineering 
(MDE) [Schmidt, 06], which has become more and more widespread in the last few 
years [Beydeda, 05]. This is due to the fact that it improves the different stages of the 
software life cycle (requirements, analysis, software architectures, implementation, 
etc.) by automating their activities. It is mainly based on models for software 
development, techniques to improve reusability, and processes to support automation, 
traceability, and maintainability. It promotes a high level of abstraction of software 
artifacts (models instead of code) and the automation of most of programming tasks. 
The use of models to develop software provides solutions that are independent of 
technology, and whose source code can be obtained by means of automatic code 
generation techniques for different technologies and programming languages.  

Until now, the most mature methodologies that have been proposed to develop 
software following MDD are based on the Object-Oriented Paradigm (OOP)  [Meyer, 
98]. So, only OO software systems can take advantage of the reduction of time to 
market and cost that MDD provides. OO modelling approaches are mainly focused on 
the specification of functional requirements. However, non-functional requirements 
are acquiring much relevance in the current software systems: such as safety, security 
or distribution in embedded systems, or persistence, graphical-user interface or 
privacy in information systems or social network services, etc. These non-functional 
requirements increment the complexity of software, and their implementation requires 
software modules being decoupled and modularized in order to be maintainable and 
reusable. Several software development approaches have been defined to deal with 
this need, such as Aspect-Oriented Software Development (AOSD) [Chitchyan, 05] 
and Software Architectures [Perry, 92]. Therefore, to provide the advantages of MDD 
to those software systems where non-functional requirements are critical, MDD needs 
to deal with the modelling and the code generation of these software development 
approaches, such as AOSD and Software Architectures. Aspect-Oriented Software 
Architectures (AOSAs) emerged to take advantage of both, the Software 
Architectures and AOSD approaches [Cuesta, 05], [Chitchyan, 05], etc. PRISMA is a 
model that follows the AOSA approach by integrating the Software Architectures and 
AOSD approaches [Pérez, 06a]. It is described by its meta-model, provides a formal 
Aspect-Oriented Architecture Description Language (AOADL) [Pérez, 06b] and 
defines a methodology for specifying its AOSAs [Pérez, 08a]. 

An important challenge in the software engineering field is the integration of the 
AOSA approach into the MDD paradigm to support the development and 
maintenance of complex software systems in an efficient way. In this paper, we deal 
with this challenge by the definition of the PRISMA MDD process for supporting the 
MDD of AOSAs. 

From the PRISMA previous work, in this paper we take a step forward and we 
define a consolidated MDD process for AOSAs that wraps up all previous PRISMA 
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contributions. The construction of this AOSA MDD process is based on the results of 
the study that we have performed about “The main set of desirable properties that any 
AOSA MDD approach should fulfil”. These profitable results for the AOSA 
community are presented in this paper as the founding premises of the PRISMA 
MDD process. 

This paper presents a novel contribution for PRISMA: its MDD process. The 
main goal of this PRISMA MDD process is to provide complete support for the 
development of technology-independent AOSAs, which could be compiled to 
different technology platforms and languages using automatic code generation 
techniques. To make feasible the PRISMA MDD process, the development of a tool 
for supporting the complete code generation for AOSAs was necessary. The PRISMA 
CASE framework has been developed to cope with this need. The paper illustrates 
how the PRISMA CASE framework supports each one of the steps of the PRISMA 
MDD process. 

This PRISMA MDD process has been consolidated by means of its application to 
academic examples (such as: banking systems and auctions), and also by means of the 
generation of real applications from the robotic domain (such as: tele-operated robots 
and agriculture robots). From these applications of the PRISMA MDD process, we 
have obtained a set of code generation results, which analysis reveals that the 
complete automatic-code generation from AOSA models is feasible. 

In summary, the novel contributions of this paper are: (i) the results of the study 
of the MDD support of AOSA approaches, (ii) the PRISMA MDD process, (iii) the 
complete PRISMA CASE framework, and (iv) the results of the application of the 
PRISMA MDD process. These contributions are structured in the paper as follows.  
The background about MDD, AOAS, and PRISMA, and the study about properties of 
AOSA MDD approaches are presented in Section 2. The robot TeachMover and the 
piece of its architecture that is used as an example throughout the paper are 
introduced in Section 3. The MDD process of PRISMA is explained in detail in 
Section 4. Section 5 discusses this contribution by analyzing related work. Section 6 
describes and compares the experimental results obtained from the development of 
two applications using the PRISMA MDD process. Finally, conclusions and further 
work are presented in Section 6. 

2 Background 

2.1 Model-Driven Development (MDD) 

Most  mistakes that are made during software development come from the first stages 
of the software life cycle. Since these mistakes grow in an exponential way as the life-
cycle progresses, it is necessary to focus on improving these first stages instead of 
postponing the solution for later stages. Most proposals that try to solve these 
problems improve software development by automating its first stages following 
MDD. Our contribution also fits these ideas and challenges focusing at the 
architectural level.  

MDD is a software development paradigm of Model-Driven Engineering (MDE) 
[Beydeda, 05]. It is mainly based on models for software development, techniques to 
improve reusability, and processes to support automation, traceability, and 
maintainability. It promotes using models instead of code to automate software 
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development, guaranteeing solutions that are independent of the technology-platform, 
consistent and reusable. It is based on code generation techniques for generating the 
code of different technologies and languages from models (either models or 
metamodels (models of models)).  

The OMG Meta-Object Facility (MOF) 2.0. [MOF, 12] specification defines an 
architecture to support meta-modeling, MDD and model management (definition of 
transformations, traceability links, mappings, etc., between models). It is a four-level 
architecture, whose main purpose is the management of model descriptions at 
different levels of abstraction. The upper layer (M3) defines the abstract language 
used to describe the entities of the M2 layer (metamodels) (see layer M3, Figure 1). 
The metamodel layer (M2) defines the structure and semantics of the models defined 
at the M1 layer (see layer M2, Figure 1). The M1 layer comprises the models that 
describe data, i.e. the application of the M0 layer (see layer M1, Figure 1). These 
models are described using the primitives and relationships described in the 
metamodel layer (M2). The lowest level is the information layer (M0), which 
comprises the final application to be described (see layer M0, Figure 1), i.e. the 
instances of the models that are defined at the M1 layer. 

 

Figure 1: Meta-Object Facility (MOF) layers exemplified by PRISMA models 

2.2 Aspect-Oriented Software Architectures in MDD 

Software architectures and AOSD are the foundation of the AOSA approach. In this 
section, we provide an overview of AOSA by explaining the integration of Software 
Architectures and AOSD and their role in MDD, and the main properties that any 
AOSA MDD process should take into account for its construction. 

2.2.1 Software Architectures  

Software Architectures make software systems simpler and more understandable by 
hiding the low-level details. The works of Garlan [Garlan, 95] and Perry & Wolf 
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[Perry, 92] clearly define the role of software architectures in the software life cycle. 
The Software Architecture discipline bridges the gap between requirements and 
implementation stages of the software life cycle. The traceability between the 
resulting requirements of the requirements stage and developed code in the 
implementation stage is a key issue to prevent the failure of the software development 
process. 

Software architectures comprise a wide-scope of tasks [Perry, 92]. This work is 
focused on the design of the structural viewpoint of Software Architectures, i.e. the 
description of Software Architectures. This structure is usually represented in terms of 
computational elements and the interactions among them using Architecture 
Description Languages (ADLs). 

 Software Architecture Descriptions are critical to trace the requirements to code 
in software development in general, and in MDD in particular. However, despite the 
fact that a wide variety of formal ADLs [Cuesta, 02], [Medvidovic, 00] have been 
proposed, there is a lot of work to be done to integrate formal ADLs into MDD.  

2.2.2 Aspect-Oriented Software Development (AOSD) 

Non-functional requirements have acquired an important relevance in current 
software systems. Non-functional requirements are usually common concerns of a 
domain system that are scattered in the software units that a system is composed of 
(classes/objects [Meyer, 98], components [Szyperski, 98], modules modules [Meyer, 
03], etc.). These common concerns are crosscutting most software units of the system 
(crosscutting concerns). These crosscutting concerns are tangled with the other 
concerns that also modify the same software unit affecting most functionalities of the 
system. Hence, the support of software modularity and crosscutting-concerns are 
essential challenges to be faced in software development. The Separation of Concerns 
(SoC) helps to address these challenges [Parnas, 72].  The SoC principle promotes 
dealing with the different concerns of a software system separately and context-
unaware when possible. Aspect-Oriented Programming (AOP) [Kiczales, 97] has 
emerged as an innovative way of applying SoC in software development.  

AOP proposes the separation of the crosscutting-concerns of software systems 
into separate entities, which are called aspects. This separation avoids having tangled 
concerns scattered among the software units and allows the reuse of the same aspect 
in different software units of the software system. AOSD has emerged not only to 
apply AO to the implementation stage, but also to apply it to every stage of the 
software life cycle. For this reason, the integration of AOSD development with the 
MDD process has to be taken into account. 

There are some approaches that combine MDD and AOSD mechanisms such as 
[Aksit, 05], [Amaya, 05],[Kulkarni, 03], and [Simmonds, 05]. However, none of these 
AO approaches takes into account software architectures, and none of the original 
ADLs previously presented (see Section 2.2.1) explicitly distinguishes the 
conventional architectural elements from concerns, which crosscut multiple 
architectural elements of software architectures. 
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2.2.3 The most relevant properties for MDD support of Aspect-Oriented 
Software Architectures 

The combination of AOSD and software architectures permits the separation of 
concerns of architectural components. So, software architectures can take advantage 
of AOSD benefits. This section analyzes the main set of desirable properties that any 
aspect-oriented architecture MDD approach should fulfil. These properties are mainly 
founded on the MDD principles [Schmidt, 06] and on the key guidelines about 
software development the literature sets out: high-level languages for programming 
[Parnas, 85], software partitioning by dividing into views [Perry, 92], [Kruchten, 95] 
or the size of code (“divide and conquer”) [Dijkstra, 76] and software composition 
and decomposition [Parnas, 72] [Harrison, 02]. Hence, the premise, in which the 
study is based on, is the following: “An aspect-oriented software architecture 
approach should completely support the development and maintenance processes of 
software following the MDD approach”. And, the properties and the reasons for 
considering them as classification criteria of MDD aspect-oriented architectural 
approaches are described below: 
 Aspect-Oriented Model (AOM): This feature defines the kind of AOM that is 

integrated with the software architectural model, which may be mainly classified 
into asymmetric and symmetric [Harrison, 02]. This characteristic is important 
because the facilities of reuse and code generation can vary depending on which 
aspect-oriented model is used. An asymmetric model is based on a dominant 
decomposition, which is usually an OO-like functional decomposition. Models of 
this kind assume that aspects are non-functional concerns that crosscut the 
functional units of software (called base code). However, in symmetric models, 
everything is considered as a concern, and there is no dominant decomposition. As 
a result, functionality is considered to be another concern, and concerns crosscut 
each other. Therefore, symmetric models are considered to be more flexible and 
abstract. However, since the most extended AOM is the asymmetric model of 
AspectJ [Kiczales, 01], asymmetric models are more widely used because they are 
easier to integrate in current software development approaches.   

 Architectural model: This feature determines whether or not an architectural 
model provides connectors for modelling software architectures. The ones that 
have connectors provide features that improve the structure and maintenance of 
software architecture [Shaw, 94] . So, those architectural models that provide 
connectors make architectural elements more independent and facilitate their 
transformation in an MDD process, as well as their reusability and integration in 
other architectural models. 

 Formal ADL: Another feature that is necessary to take into account when 
comparing architectural models is whether or not their corresponding ADLs are 
formal languages. The formal nature of an ADL is an indispensable property of 
architectural models if the purpose of the approach is to generate code without 
ambiguity, to verify properties, to validate behaviour, to trace the different levels 
of abstraction in a suitable way, and to evolve software architectures preserving 
the consistency of the system.  

 Graphical support: The graphical specification of AOSAs greatly helps to avoid 
the complexity of using formal and technology independent ADLs. Graphical 
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support is achieved by defining the graphical metaphor for ADLs by means of a 
new language or by extending a well-known graphical language. 

 Definition of Aspects: The most distinguishable feature of AO architectural 
models is how they integrate aspects and software architectures. There are two 
ways of doing this: (i) by simulating the notion of aspect by means of another 
architectural concept, or (ii) by defining a new concept for aspects in software 
architectures. The first way refines the architectural concepts by varying their 
original semantics; and the second one requires understanding a new concept to 
model software architectures. Therefore, those proposals that define aspects as a 
new concept with its proper semantics facilitate their transformation and 
unambiguous integration with any architectural model. 

 Definition of Weavings: Weaving is a process that, in asymmetric AOM, consists 
of coordinating the base code and the aspect code. In symmetric AOM, weavings 
coordinate the different aspects. This is an important feature of AOMs and AO 
architectural models. The definition of weavings specifies where the weaving 
process between aspects and architectural elements is defined. If it is defined 
inside the aspect, the aspect is dependent on the context that the aspect is 
connected to. However, if it is defined outside the aspect, the behaviour of the 
aspect can be reused independently of where the aspects are connected to, and so, 
evolution and reuse are facilitated. 

 Aspect-Oriented Evolution: The support of aspect evolution is an important 
feature that can improve the design-time and run-time evolution of software 
architectures. Thus, an approach that provides mechanisms for easily adding or 
removing aspects is a great advantage to perform transformations between models 
for their modification. 

 Purpose: Since our premise of this analysis is the following: “An aspect-oriented 
software architecture approach should completely support the development and 
maintenance processes of software following the MDD approach”. The purpose 
of an approach is an essential feature to be able to compare the different AOSA 
approaches. There are AO architectural models that give complete support during 
the development process, others that analyze or evolve models, and still others that 
fulfil several purposes. 

 Technology: This is an important feature that distinguishes the wide variety of 
aspect-oriented software architectural approaches that exist. If the purpose is to 
take advantage of MDD, AOSAs should be specified in an abstract way by means 
of formal and technology independent ADLs. As a result, a single specification 
can be transformed to different platforms and different programming languages. 
However, if the AOSA specification depends on a specific platform and/or 
programming language, its application and flexibility are considerably reduced. 

 Tool support: A significant feature of a MDD AOSA approach is its support by 
means of a framework, which will guide the analyst during the development and 
maintenance processes. A framework can provide a wide variety of facilities such 
as modelling support, ADL generation, code generation, code execution, 
validation, verification, evolution, etc.  

 MDD support: The previous criteria are essential to achieve the MDD support, 
which is essential for this contribution. The support that the MDD approach offers 
is significant in the development and maintenance processes. A complete MDD 
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support should consist in: (i) automatically generating the code from models, (ii) 
guiding the analyst through all the stages, and (iii) providing mechanisms to 
facilitate the tasks (some of these mechanisms are: verification techniques, 
reusability mechanisms, integration facilities, code generation mechanisms, etc.). 

2.3 An Overview of PRISMA 

2.3.1 The PRISMA Model 

The PRISMA approach is based on the PRISMA model, its AOADL, its 
methodology, and its tool [Pérez, 06a], [Pérez, 06b], [Pérez, 08a]. PRISMA provides 
a model for the description of software architectures of complex and large systems. A 
PRISMA architectural element (components and connectors of an architecture design) 
can be seen from two different views: internal and external. In the external view 
(black box view), architectural elements encapsulate their functionality as black boxes 
and publish a set of services (interface) that they offer/ask to/from other architectural 
elements through their ports (see Figure 2.A). In the internal view (white box view), 
an architectural element is shown as a prism. Each side of the prism is an aspect that 
the architectural element imports (see Figure 2.B). In this way, architectural elements 
are represented as a set of aspects and the relationships among them ( called 
weavings).  

The notion of aspect arises to deal with crosscutting-concerns of software 
systems. This idea of crosscutting can vary depending on the nature of the model. The 
PRISMA model is a symmetrical AOM [Harrison, 02] because it does not consider 
functionality as a base code (i.e. different to aspects), and it does not constrain aspects 
to specify non-functional requirements (see property Aspect-Oriented Model (AOM), 
Section 2.2.3). In PRISMA, functionality is also specified as an aspect by providing a 
homogeneous treatment to functional and non-functional requirements. Aspects have 
been introduced in the PRISMA AOADL as a new concept rather than simulating the 
aspect using other architectural terms (components, connectors, views, etc.). This is 
due to the fact that a component can specify state and behaviour about different 
concerns, whereas an aspect is focused in a single concern. As a result, PRISMA 
preserves the meaning of the concepts of component and aspect, keeping them as 
first-order citizens.  

 

Figure 2: Views of an architectural element 
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With regard to AOSD, PRISMA aspects are artefacts of software architectures 
and represent a specific behaviour of a concern (safety, coordination, persistence, 
security, etc.) that crosscuts the software architecture. The same aspect can be 
imported by each one of the architectural elements (components and connectors) that 
need to take into account this behaviour. As a result, an architectural element is 
defined by a set of aspects that describe it from different concerns of the architecture. 
The communications between the white box and black box views is possible by 
means of interfaces, which are associated with ports and are used by aspects (see 
Figure 2.C). Consequently, a request for a service that arrives at a port of an 
architectural element is processed by an aspect that implements the same service that 
is provided by this port. 

In PRISMA, a weaving indicates that the execution of an aspect service can 
trigger the execution of services in other aspects. In PRISMA, to preserve the 
independence of the aspect specification from other aspects and weavings, weavings 
are specified outside aspects and inside architectural elements (see Figure 2.C). They 
are specified using the weaving operators after, before, instead, 
afterif(boolean_condition), beforeif(boolean_condition) and 
insteadif(boolean_condition), and following the pattern: aspect1.service1 
weaving_operator aspect2.service1. These patterns means that the service2 of the 
aspect2 will be executed after, before, instead the service1 of the aspect1, and in the 
case of the conditional weaving operators, the service2 of the aspect2 will be 
executed only if the boolean_condition is true. Aspects are reusable and independent 
of the context of application and weavings weave the different aspects that form an 
architectural element. This way of specifying weavings achieves not only the 
reusability of the aspects in different architectural elements, but also the flexibility of 
specifying different behaviours of an architectural element by importing the same 
aspects, and defining different weavings. Figure 3 illustrates an example of how 
PRISMA architectural elements import aspects, i.e. it shows the reusability facilities 
of PRISMA. This simple example shows how the same aspect, for example the aspect 
FUNCTIONAL, is imported by two different architectural elements, Component1 and 
Component3, and how an architectural element, for example the connector 
Connector1, imports several aspects: COORDINATION and SAFETY. 

 

Figure 3: Crosscutting-concerns in PRISMA architectures 
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With regard to software architectures, PRISMA has three kinds of architectural 
elements: components, connectors, and Systems. A component is an architectural 
element that captures the functionality of software systems and does not act as a 
coordinator among other architectural elements, whereas a connector is an 
architectural element that coordinates the interactions among other architectural 
elements. Connectors provide the separation of component interactions. Connectors 
do not have the references of the components that they connect and vice versa. Thus, 
architectural elements are reusable and unaware of each other. Attachments are the 
channels that enable the communication between components and connectors through 
their ports. Systems are complex PRISMA components, which include a set of 
architectural elements (connectors, components and other Systems) that are correctly 
attached. Bindings establish the connection among the ports of a System (i.e. a 
complex component) and the ports of the architectural elements that this System 
contains. 

The PRISMA model has an AOADL to support it. The PRISMA AODL is a 
formal and technology-independent language (see property Formal ADL Section 
2.2.3). It is important to emphasize that most ADLs only permit the specification of 
the skeleton of architectures and the services that are sent/received among their 
different architectural elements. The PRISMA AOADL has greater expressive power 
and can specify more features and requirements using aspects [Pérez, 06b]: it can 
specify state and behaviour for each aspect.  

2.3.2 PRISMA in MOF 

The PRISMA MDD approach fits the four-level architecture of MOF. In this way, 
MOF allows us to clearly present the differences between PRISMA types and 
instances and their corresponding models. The PRISMA metamodel is defined at the 
layer M2 (see Section 2.1), and the PRISMA type models are specified at the layer 
M1 e.g. the model of a joint of the tele-operated robot software architecture (see layer 
M1Figure 1). So, the PRISMA model of the joint of the tele-operated robot is 
compliant with the PRISMA metamodel. Finally, the specific instances of an 
architecture configuration are placed in the layer M0. They are called in PRISMA, 
PRISMA configuration models. For example, Figure 1 illustrates how the Elbow is 
an instance of the component Joint of the layer M1, which means that the Elbow 
behaves as the Joint describes. PRISMA reusable types and patterns are specified at 
layer M1 and architectural configurations are defined at the layer M0 by instantiating 
the types and patterns of the layer M1. 

In this work, we present an MDD approach by making this MOF architecture of 
PRISMA models feasible (see Figure 1). To implement the approach, it is important 
to keep in mind that MDD and automatic code generation avoids the mistakes of 
correspondence between the semantics of the model and the application code, but it 
does not prevent the modelling mistakes that the user makes. To prevent them, help 
must be provided to guide the user during the modelling process. This guidance 
mechanism is provided using verification techniques. Verification can be performed 
in the modelling stage to detect modelling mistakes. During the modelling stage, the 
verification techniques allows us to know whether or not a model satisfies the 
constraints that its metamodel defines (the model conforms to its metamodel). If a 
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model satisfies every constraint of its metamodel, then the model is conformed and 
verified.  

3 The Tele-Operation Domain 

The PRISMA MDD approach has been validated by designing academic examples 
such as, banking systems, auctions, etc., and also, the generation of real applications 
from the robotic domain such as: tele-operated robots, agriculture robots, etc.  In this 
section, we describe one of these real applications, which will be used throughout the 
rest of the paper to illustrate our contribution. It is a robotic tele-operated system, 
which is a family of robots for hull maintenance operations called EFTCoR 
(Environmental Friendly and Cost-effective Technology for Coating Removal) 
[EFTCoR, 02], [Fernández, 05]. This work was feasible thanks to the close 
collaboration1 with the DSIE (System Division and Electronic Engineering) Group of 
the Polytechnic University of Cartagena of Spain, who was involved in the design of 
this EFTCoR Robot to be run in the cleaning tasks of the shipyard of Cartagena City.   

 

Figure 4: Tele-Operated Robots: A) EFTCoR Primary Positioning System (arm joint 
and joint of tracks), B) manual cleaning by an operator, C) The TeachMover Robot 

Tele-operated robots are software intensive systems that are used to perform tasks 
that human operators cannot carry out due to the dangerous nature of the tasks or the 
hostile nature of the working environment (see Figure 4. B). The EFTCoR is a robotic 
platform with strong non-functional requirements that cleans the hulls of ships in a 
way that reduces the environmental pollution. Since the EFTCoR is a family of robots 
that are very large (big dimensions) and very heavy (high tonnage) (see Figure 4. A), 
a complete development of a small-scale robot was done before developing the 
software architecture of EFTCoR. Specifically, we validated our proposal by 

                                                           
1 This close collaboration was through the national project DYNAMICA. 
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developing the TeachMover robot [TeachMover, 12] (see Figure 4. C). This robot was 
specially designed for the purpose of simulating the behaviour of large and heavy 
industrial robots that cannot be manipulated in laboratories. The TeachMover is 
simpler than EFTCoR, but it has the same architectural features at a small scale to test 
the software of industrial robots before its deployment. All these features allow the 
TeachMover robot to simulate the movements of most of the industrial tele-operated 
robots. 

The TeachMover is formed by a set of joints that permit the movement of the 
robot, which are commanded by an operator from a computer. These joints are: Base, 
Shoulder, Elbow, and Wrist. In addition, it has a Tool to perform different tasks: 
catch, drop, push, pull, etc. (see Figure 4.C). In this case, the Tool is a gripper (in 
other cases it can be a brush to paint, a hose to clean, etc.), whose open and close 
actions allow the robot to pick up and deposit objects. Therefore, it allows the robot to 
move objects from an initial position to a final one. There are required safety 
constraints of the robot movements to be checked and to make sure that its 
movements are safe for itself and the environment that surrounds it.  

From the different components that a tele-operated robot is composed of, and the 
TeachMover in particular, we are going to focus on those that implements the joints of 
the robot [Pérez, 08a]. The architecture of a tele-operated robot joint is defined by a 
System (complex component) called Joint, which is composed of architectural 
elements that interact with the hardware joints of the robot. Specifically, the Joint is a 
System composed of two components and a connector and their corresponding 
connections (see Figure 5). The component Actuator is in charge of (i) 
communicating with the hardware joint, when commands are sent to the hardware 
joint of the robot to be performed and  (ii) notifying the joint System when the 
commands have been performed successfully. The component WrapAspSys 
encapsulates the behaviour and the state related to the software joint, such as the 
position of the joint and its movements. And the connector CnctJoint coordinates the 
interaction between the Actuator and the WrapAspSys. 

 

Figure 5: The joint architecture of a tele-operated robot 
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4 PRISMA: MDD Support for Developing Aspect-Oriented 
Software Architectures 

This section describes how PRISMA provides complete support for the development 
of technology-independent, aspect-oriented software architectures following MDD.  

 

 

Figure 6: MDD Process from the PRISMA Metamodel to Applications 

The PRISMA MDD process is not constrained to the definition of a specific 
number of levels of abstraction or techniques, because it can vary depending on the 
needs of each software system. PRISMA follows the MDD approach by enabling 
software architects to define AOSA models, which allow the complete generation of 
the final code of AOSAs. The tasks of the software architect are facilitated thanks to 
the fact that: (i) the level of abstraction provided by models is higher than the 
provided by programming languages, and (ii) the code is automatically generated 
from models. PRISMA CASE is the tool that makes the MDD software development 
of PRISMA feasible. It has been constructed using the Domain-Specific Languages 
Tools (DSL Tools) of the Microsoft Visual Studio framework [Cook, 07]. From 
PRISMA AOSA models, PRISMA CASE supports the modelling of PRISMA AOSA 
models and the generation of both PRISMA AOADL specifications and C# code, 
which is executable on .NET technology [NET,12]. The PRISMA CASE is composed 
of the following parts: the specification of the PRISMA metamodel, a graphical 
modelling tool, a model compiler, the PRISMANET middleware and a generic 
Graphical User Interface (GUI) to execute the generated code [Pérez, 06a]. The 
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PRISMA model compiler implements the C# code and AOADL generation patterns 
of the MDD process of PRISMA. When the model compiler is executed, the patterns 
are applied to transform the PRISMA architectural models to code, which is executed 
in the PRISMANET middleware. Finally and PRISMA CASE provides a generic GUI 
to assist the user in checking the behaviour of the architecture. Thereby, the C# 
PRISMA software architectures can be executed. In the paper, from now on, to 
illustrate the contribution, we are going to focus on the C# code generation, i.e. the 
execution of PRISMA models on .NET platform. And, we are going to use the 
PRISMA CASE tool and the example of a TeachMover joint to illustrate the PRISMA 
MDD approach. Figure 6 presents the complete PRISMA MDD process based on 
MOF, i.e. the different levels of refinement that models undergo during the 
development process. This process is explained in detail in the following sections. 

4.1 From the PRISMA Metamodel to PRISMA Type Models 

The PRISMA metamodel defines the PRISMA model and establishes its properties in 
a precise way. So, PRISMA type models are defined conforming to the PRISMA 
Metamodel. This definition is described in the following subsections. 

4.1.1 Definition of the PRISMA Metamodel 

The PRISMA metamodel is defined by a set of inter-related metaclasses (a class of 
classes) and constraints (see process 1, Figure 6). These metaclasses contain a set of 
properties and services for each concept considered in the model. Metaclasses, their 
properties and their relationships define the structure and the information that is 
necessary to describe PRISMA AOSAs. In addition, the PRISMA metamodel defines 
the constraints that cannot be specified using the structure or the information of the 
metamodel [Pérez, 06a]. The structure, information and constraints of the PRISMA 
metamodel must be satisfied by PRISMA type models in order to ensure that they are 
correct. One of the most representative packages, that the PRISMA Metamodel is 
composed of, is the package Architectural Element (see Figure 7). This package is 
going to be used for illustrating the contribution of this paper.  

A PRISMA architectural element is defined by the metaclass 
ArchitecturalElement (which is modelled as a UML class). It is an abstract metaclass 
that specifies the commonalities of the three kinds of PRISMA architectural elements 
(Components, Connectors and Systems (see Section 2.3.1). To define that an 
architectural element has ports and weavings, the metaclass ArchitecturalElement has 
two aggregation relationships (the UML Class Diagram aggregation), has and weaves, 
with the metaclassess Port and Weaving, respectively. In addition, the metaclass 
ArchitecturalElementen has one association relationship imports with the metaclass 
Aspect to denote that an architectural element imports a set of aspects. Next, these 
three relationships (has, weaves  and imports) are explained in detail taking into 
account the semantics that the cardinalities define: (i) An architectural element has at 
least one port and a port can only be defined as part of an architectural element (see 
the aggregation has in Figure 7); (ii) An architectural element imports at least one 
aspect and an aspect can be imported by one or more architectural elements of the 
software system (see the association imports in Figure 7); and (iii) An architectural 
element can include a set of weavings to synchronize its aspects. These Weavings are 
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related to the architectural element; in fact they can only be defined as part of an 
architectural element (see the aggregation weaves in Figure 7). Also, the metaclass 
ArchitecturalElement has attributes, services and constraints to completely define its 
properties.  

 

 

Figure 7: The package ArchitecturalElements of the PRISMA metamodel 

With regard to the verification of the PRISMA metamodel, we have distinguished 
between two kinds of verification: verification rules that must always be satisfied 
(hard constraints), and verification rules that must be satisfied once the model has 
been completely finished (weak constraints).  

The hard constraints and weak constraints of the MDD process of PRISMA have 
been included during the development of PRISMA CASE thanks to the partial C# 
classes that DSL Tools provide. In DSL Tools, each metaclass of the metamodel is 
implemented as a partial C# class, which can be extended and customized to add 
additional behaviour that cannot be included in the metamodel (such as verification 
rules) [Cook, 07]. In PRISMA CASE, the extension facilities of the partial C# classes 
have been used for including the needed verification constraints. Thus, since each 
time that a metaclass is used for modelling a concept in a PRISMA model, its Partial 
C# class is executed, the constraints of the PRISMA metamodel are verified during 
the modelling process. 

4.1.2 Graphical representation and mapping with PRISMA metamodel concepts 

The PRISMA metamodel provides the primitives to model AOSAs. However, to use 
these primitives in a modeling context, it is necessary to define a graphical 
representation for using them. PRISMA CASE provides a graphical language to 
model PRISMA software architectures in an intuitive and friendly way to facilitate 
the architect tasks (see process 2, Figure 6). The graphical representation that supports 
the main modelling concepts of PRISMA have been already presented in the paper 
(see Figures 2, 3, 5 and 10). 

Once the graphical representations are defined, each one is associated with its 
corresponding metamodel concept (see process 3, Figure 6). The PRISMA CASE is 
generated from the PRISMA metamodel, its graphical representations, and its partial 
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C# classes. It is composed of a toolbox, a drawing sheet, a model explorer, a window 
of properties, and a PRISMA menu (see Figure 8). 

 

 
Figure 8: PRISMA CASE Tool: Toolbox, Drawing Sheet, PRISMA Tools Menu, and 

Solution Explorer and Properties Windows. 
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4.1.3 Definition of PRISMA type models 

Every PRISMA type model must be defined conforming to the PRISMA metamodel 
(see process 4, Figure 6). A PRISMA type model is a generic system architecture 
(banking system, tele-operated robot, electronic auction, etc.) that can be reused for 
different specific systems. This step is easily developed thanks to the fact that 
PRISMA type models are described using the concepts that are defined in the 
metamodel as modelling primitives provided by PRISMA CASE. As a result, the user 
is able to model PRISMA architectural models and to make sure that these models 
satisfy the PRISMA metamodel. 

The PRISMA MDD process assists the architect by providing mechanisms for the 
verification of models. The verification of models allows the detection of modelling 
mistakes, and keeps them from spreading throughout the rest of the stages. This is 
essential in the PRISMA MDD process in order to avoid code generation from 
incorrect models. Therefore, when a model reaches the last generation step (see 
Figure 6), it is guaranteed the correctness of the model and the proper performance of 
the code generation. The verification of architectural models consists of checking that 
PRISMA type architectural models satisfy the properties and constraints that are 
defined in the PRISMA metamodel. Specifically, the verification consists of checking 
that the models satisfy the following properties: (i) the types of a model contain all the 
information that their metaclasses establish, (ii) the relationships of the model only 
connect the types which connection is allowed, (iii) the number of types or the 
relationships between these types is correct, and (iv) the constraints of the metamodel 
are satisfied. This verification process must always be applied to the modelling 
process of PRISMA architectural models and must guide the software architect 
throughout the process. In the modelling tool, the verification of constrains is 
different depending on their kind. The weak constraints act as warnings during the 
modelling process of PRISMA type models (see Figure 9.A), whereas hard 
constraints are verified while the user is modelling.   

Weak constraints can be violated during the modelling process, but they must be 
rectified during the modelling process because all of them must be satisfied once the 
architectural model is finished. For example: in PRISMA, an architectural element 
must import at least one aspect, and must have at least one port (see Figure 7), but it is 
possible to define an architectural element without establishing its ports and/or aspect, 
and to establish them later. 

Weak constraints provide more flexibility to the modelling process. The fact that 
there are weak constraints that are not satisfied means that the modelling process has 
not finished. However, there may be parts of the architectural model that are finished 
and the architect may want to verify them. As a result, there are two kinds of 
verifications that are supported by the PRISMA MDD process: Partial Verification 
and Complete Verification. The Partial Verification consists of applying only those 
constraints that affect the elements, concepts or parts of the model that have been 
selected by the architect for verification (see Figure 9. B and Figure 9.C). This kind of 
verification allows the architect to define a model, and then verify the model in an 
incremental way, as well as to verify elements of the model for their later storage in 
repositories and/or reuse in other models. Complete Verification is the verification 
that is applied to the complete architectural model (see Figure 9.A). As a result, 
complete verification consists of verifying all the constraints that must satisfy a 
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model. In PRISMA, this process implies that all the restrictions of the PRISMA 
metamodel are checked. 

 

A) Complete verification: The verification result as a modelling error list 

 

B) Partial verification: a specific type of 
element: Interfaces, Aspects, Components, 
etc. 

C) Partial verification: only one 
element of the architectural model, 
the interface IMotionJoint 

Figure 9: Partial and Complete Verification of PRISMA Type Modelling Tool 

Hard constraints are very close to the graphical metaphor and must always be 
satisfied without taking into account the modelling process situation. An example of 
hard constraint is the requirement that a component cannot import a coordination 
aspect. This is due to the definition of Component: “A component is an architectural 
element that captures the functionality of software systems and does not act as a 
coordinator among other architectural elements“(see Section 2.3.1). Since a 
component is not a coordinator, it never imports a coordination aspect. This hard 
constraint is materialized in the modelling tool as follows: If an architect associates a 
coordination aspect with a component, the resulting model would violate the 
PRISMA model. So, PRISMA CASE does not allow drawing this connection. 

In our example, the result of this stage is a PRISMA type model for a generic 
joint of a tele-operated robot that can be reused for designing different joints of the 
same robot or joints of different robots. In this PRISMA type model, both 
components, Actuator and WrapAspSyst, are coordinated through a connector 
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CnctJoint (see Figure 5). Each component imports its functionality through aspects, 
and the connector CnctJoint imports its behaviour through a coordination and a safety 
aspects, CoordJoint and SMotion respectively (see the appendix A). These two 
aspects, CoordJoint and SMotion, are weaved (see Section 2.3.1) to ensure that a joint 
is moved only after the connector safety constraints are satisfied assuring that a 
movement is safe. Figure 10 illustrates this weaving, which specifies that the 
invocation of the moveJoint service of CProcessSUC implies that the 
DANGEROUSCHECKING service of SMotion will be executed beforeif the 
moveJoint service of CProcessSUC. The weaving condition also establishes that the 
execution of moveJoint must only be performed if the parameter Secure of 
DANGEROUSCHECKING returns true (see code in Figure 10). 

 

 

Figure 10: Weaving Definition among Aspects 

Once the architect has finished modelling a PRISMA type model, the architect 
can proceed to generate the C# code corresponding to this model (see process 4, 
Figure 6). PRISMA type models are inputs of the transformations that must be 
executed to automatically generate part of the C# code of the application. To execute 
C# PRISMA AOSAs, the .NET platform-specific model for PRISMA has been hard-
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wired in its PRISMANET middleware. The PRISMANET middleware is a software 
layer that sits above the .NET platform and allows the execution of PRISMA 
applications by offering the aspect-oriented functionalities that .NET does not directly 
provide. Thereby, PRISMANET implements the PRISMA model by extending the 
.NET technology with the integration of aspects. 

The transformation from models to code is performed using the code generation 
patterns for types. These patterns constitute a catalogue of thirty eight code generation 
patterns, structured as follows: the patterns PCS1- PCS19 are for generating C# and 
the patterns PADL1- PADL18 are for generating AOADL (see pattern PC15, Table 
1). The patterns PADL1- PADL18 have the mappings between the PRISMA 
metamodel and AOADL. And the patterns PCS1- PCS19 have the mappings between 
the PRISMA metamodel and the .NET platform-specific model, i.e., the C# classes 
that allow instances to be executed on PRISMANET (see the example of the 
component Actuator, Table 1). Since each type that is defined in a PRISMA type 
model conforms to a metamodel concept, the execution of these mappings applied to 
the type generates its corresponding C# code. This transformation process (see Figure 
6) also contains the mappings between the metamodel and the graphical metaphor 
because it has been defined in the process 3 of the MDD process (see Section 4.1.2). 
Hence, the patterns are applied to the graphical models by transitivity: if a concept gx 
of the graphical model corresponds with a concept of the metamodel mx, and the 
concept of the metamodel mx corresponds with a concept of the . NET platform-
specific model .NETx, and a concept of the AOADL lx, then the concept gx 
corresponds with the concepts .NETx and lx. This transformation is possible thanks to 
the facility of DSL Tools “Transformation Templates”, which supports the 
implementation of code generation patterns [Cook, 07]. The implementation of 
patterns consists in substituting the parameters of the patterns (see section template, 
Table 1) by the elements that the architect had modelled (see section graphical 
representation, Table 1). However, it is important to keep in mind that the result of 
this generation consists of reusable C# classes that still are not directly executable: 
they are architectural element types that must be instantiated to configure a specific 
system. 

Pattern PCS15 presents the transformation template for architectural elements and 
shows an example of the pattern execution, the component Actuator (see section 
result of the pattern execution, Table 1). The pattern generates a component 
implemented as a serializable C# class (see Table 1, Pattern PCS15, Section 4.3, line 
4) as the transformation template establishes (see Table 1, Pattern PCS15, Section 3.2, 
line 7). This class is serializable to enable its mobility in distributed versions of 
PRISMA CASE. Since the architectural element is a component and it is named 
Actuator, a public class called Actuator is generated as a subclass of the 
ComponentBase class of PRISMANET (see Table 1, Pattern PCS15, Section 4.3, line 
5), as the template establishes for the generation of components (see Table 1, Pattern 
PCS15, Section 3.2, lines 6 and 8). This .NET class ComponentBase implements the 
.NET specific component behaviour of the PRISMA model. Then, the constructor of 
the class is created (see Table 1, Pattern PCS15, Section 4.3, line 6), as the template 
establishes (see Table 1, Pattern PCS15, Section 3.2, lines 12-13). Finally, the set of 
ports and aspects that make up a component are included by invoking the constructors 
of the port and aspect PRISMANET classes (see Table 1, Pattern PCS15, Section 3.2, 
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line 14). Both classes implement the port and aspect elements of the PRISMA model 
generating the ports and required aspects (see Table 1, Pattern PCS15, Section 4.3, 
lines 7-11). 
 

 Pattern PCS15: Simple Architectural Elements

1. PRISMA metamodel in DSL Tools 

 
2.Graphical Representation 

3.Transformation  
3.1.Description
This pattern details how to generate the C# code from a simple architectural element. 
Specifically, it only generates the structure of the architectural model. The internal code of 
this structure, that is, ports, aspects and weavings are generated by other patterns related to 
this pattern.  
3.2.Template
... 
1 using System;  using System.Reflection; using PRISMA; using PRISMA.Aspects; using 
PRISMA.Aspects.Types; 
2 using PRISMA.Components; using PRISMA.Middleware; 
3 namespace <#=this.Model.Name#> 
4 { 
5 <#foreach (ArchitecturalElement architecturalElement in this.Model.ArchitecturalElements){ 
6  if (architecturalElement is Component || architecturalElement is Connector)  {#> 
7  [Serializable] 
8  public class <#=architecturalElement.Name#> : ComponentBase  
9  <#     if (architecturalElement is Connector) {#> 
10     , IConnector  
11 <# } #>  
12  {  public <#=architecturalElement.Name#> 
13     (string name<#=ArchitecturalElementArguments(architecturalElement)#> ) : base(name) {    
14<#/* Aspects */ /* Weavings */ /* Ports */ #> 
15    }  } 
16 <#   
17 }/* endif (architecturalElement is Component || architecturalElement is Connector)*/... 
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 Pattern PCS15: Simple Architectural Elements

4. Case Study 
4.1.Description 
     This pattern is illustrated using the component Actuator of the TeachMover case study. 
The representation of the Actuator in the PRISMA model and the C# code generated from 
this model by applying this pattern are presented as following. 
4.2.Graphical representation  

          

4.3. Result of the pattern execution
... 
1 using System.Reflection; using PRISMA; using PRISMA.Aspects; 
2 using PRISMA.Aspects.Types;using PRISMA.Components;using PRISMA.Middleware; 
3 namespace RobotJoint 
4 {[Serializable] 
5   public class Actuator : ComponentBase{ 
6    public Actuator(string name ) : base(name){    
7      /* Aspects */  AddAspect(new RS232 ()); /* Weavings */ 
8      /* Ports */InPorts.Add (“Pcoord”, “IMotionJoint”, INTMOVE); 
9                 OutPorts.Add (“Pcoord”, “IMotionJoint”, INTMOVE); 
10                 InPorts.Add (“PSENSOR”, “IMotionJoint”, OUTMOVE); 
11                 OutPorts.Add (“PSENSOR”, “IMotionJoint”, OUTMOVE); 
12  }}}... 
Related Patterns

Pattern PCS16: Aspects importation, Pattern PCS17: Weavings and Pattern PCS18: 
Ports. 

Table 1: PRISMA Code Generation pattern PCS15: Simple Architectural Elements 

4.2 From PRISMA Type Models to PRISMA Configuration Models 

The definition of PRISMA configuration models from PRISMA type models 
comprises processes 5 and 6, illustrated in Figure 6. Next they are described. 

4.2.1 Definition of PRISMA Configuration Models 

Every configuration model must conform to a PRISMA type model. A specific 
configuration instantiates a generic architecture to specify a particular system. An 
example is the TeachMover robot or a specific joint of a robot. This step is easily 
developed thanks to the fact that PRISMA configurations are defined using the 
concepts that are defined in its PRISMA type model as modelling primitives. They 
are provided by PRISMA CASE, which automatically generates a domain-specific 
graphical modelling tool to configure specific software architectures from the type 
models. This is possible by generating a new DSL Tools project from the output of 
the PRISMA type model (see Figure 11). The generation of the domain-specific 
graphical modelling tool is launched from the PRISMA Type Modelling Tool (see 
Figure 8, menu PRISMA Tools). 
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Figure 11: The architecture configuration of the joint Elbow 

Figure 11 illustrates a domain-specific graphical modelling tool generated from 
the Type model of the TeachMover. Note that the elements of the toolbox are the 
components Actuator and WrapAspSyst, the connector CnctJoint and the connections 
(attachments and bindings) that were previously defined in the PRISMA type model 
of a Joint for Tele-Operatated Robots (see Figure 5 and Appendix A). In our example 
we have configured the configuration model of the Elbow of the TeachMover robot 
by dragging and dropping the primitives on the drawing sheet.  

It is important to keep in mind that the verification of architecture 
configurations is also really important. It consists of checking that a configuration of 
instances satisfies the architectural model that it is an instance of (i.e., 
interconnections and compositions among instances are compliant with the interaction 
and composition patterns of the architectural model). In these verifications it is also 
considered the difference between weak constraints and hard constraints to support 
partial and complete verification as it is provided in PRISMA type models (see 
Section 4.1.3). 

4.2.2 Integrating Types and Instances by means of Code Generation 

Once the architect has finished the PRISMA configuration model, can proceed to 
generate the C# application corresponding to the configuration model (see process 5, 
Figure 6). The configuration model, together with the type model the code generated 
for these type model, are the inputs of the transformations that must be executed to 
automatically generate the final code of the application.  

The transformation from models to code is performed using other patterns for 
architectural instances. In the case of C#, these patterns implement the mappings 
between a PRISMA type model (in our example, the Joint of a tele-operated robot) 
and the .NET platform-specific model (i.e., the C# primitives that allow PRISMA 
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AOSAs to be executed on PRISMANET). Since each instance that is defined in a 
PRISMA configuration model is an instance of a type of its PRISMA mode (e.g. the 
System instance Elbow is a System type Joint (see Figure 11), the mappings of the 
PRISMA model concept with PRISMANET and with the AOADL are executed 
generating its corresponding C# code. In this transformation step, the code obtained 
from process 5 of Figure 6 is completed by generating the C# instances. These 
instances can be launched and executed on PRISMANET. In order to do this, the 
PRISMA CASE executes the middleware PRISMANET and instantiates the defined 
configuration.  

As a result of this execution, a generic GUI is launched to interact with the 
architecture by invoking its services and checking the value of its attributes (see 
process 6, Figure 6). The main purpose of the generic GUI is to assist the user in 
checking the behaviour of the architecture without having to worry about aesthetic 
details and without forcing the user to define a GUI in order to obtain a result. 
However, it is important to mention that the use of this interface is not mandatory. In 
other words, if the users prefer to define their own specialized GUIs, they can do so. 

5 Related Work 

The combination of AOSD and software architectures has created two new 
challenges: (i) how to define the concept of aspect at the architectural level? and (ii) 
how to integrate aspects and architectural elements in a suitable way? This section 
analyzes the most relevant approaches that deal with these two questions and how 
they satisfy the main set of desirable properties that any aspect-oriented architecture 
MDD approach should fulfil (see Section 2.2.3). This section also discusses our 
contribution taken into account the state of the art of AOSAs, paying special attention 
to their role in the software development process and their MDD support. 

5.1 Analysis of the main Aspect-Oriented Software Architectural approaches 

Several approaches have emerged to integrate aspects and software architectures, as 
[Fiadeiro, 04] promoted, either by extending original ADLs with aspects or by 
creating new ADLs from scratch. AOSA approaches can introduce aspects in their 
ADLs in different ways: as a component (AspectLEDA [Navasa, 05], JAC [Pawlak, 
04], Jiazzi [McDirmid, 03]); as a connector among components (CAM/DAOP [Pinto, 
03]); as a view of the architecture (AVA [Katara, 03]), etc. On the other hand, there 
are approaches such as FuseJ [Suvée, 06], [Suvée, 05] that promote the idea that there 
are no aspects because aspects can be modelled using components such as FuseJ, 
AspectLEDA, JAC, Jiazzi and others. However, as Kizcales explains in his work 
[Kiczales, 97], the semantics of these concepts is different; i.e., components and 
aspects are not the same thing. This is due to the fact that aspects can be modelled as 
components, but components cannot usually be modelled as aspects since a 
component generally implements properties of more than one concern. Thanks to the 
introduction of AO techniques to all the stages of the software life cycle, it is possible 
to take advantage of the notion of aspect from the beginning of the system definition 
by specifying the aspects that are found in the requirements specifications. As a result, 
these aspects can be used throughout the rest of the development process as well as in 
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the maintenance process. However, approaches such as AspectLEDA and TranSAT 
[Barais, 03], [Barais, 04] require having an initial architectural specification of the 
system to introduce aspects. In these two approaches, aspects can only emerge as new 
requirements of the system that are hooked to the base architecture, i.e. aspects are 
only used for evolution during the maintenance process and not during the 
development process. TranSAT is an approach for managing the evolution of 
software architecture specifications using AOP principles. The fact that TranSAT 
concerns are only technical and not more generic is another drawback. Thus, 
TranSAT software architectures are defined using a pure compositional ADL, and 
aspects only appear as an extension or evolution mechanism of software architectures.  

In the AVA approach, the complete view of the software architecture is lost 
because the use of the view notion is required to define aspects in its software 
architectures. AVA uses concerns as viewpoints to obtain those views that are the 
aspects of the software architecture. However, the use of architectural views from an 
AO point of view should be considered as an additional mechanism for analyzing 
software architectural features, instead of limiting the use of aspects to solely defining 
views. In fact, in software development not only is it possible to define views using 
aspects, but it is also possible to use common criteria such as roles, different 
stakeholders, etc. As a result, this approach loses flexibility and expressiveness to 
define views. 

As Shaw presents in her work [Shaw, 94] , the specification of software systems 
with complex coordination protocols is too difficult without the connector 
architectural element. This is because the connector provides separation of component 
interactions, thereby achieving a higher level of abstraction, modularity, and a greater 
architectural view of the system. For this reason, connectors should be first-class 
citizens of an original ADL. However, there are many ADLs that do not provide the 
notion of connector. From these ADLs, many AOADLs such as CAM/DAOP, 
AspectLeda, Jiazzi, AOCE [Grundy, 99] or JAC have been defined. CAM/DAOP 
introduces aspects as connectors, JAC models aspects as components, and the 
approaches of AspectLEDA, Jiazzi and AOCE implement weavings as connectors in 
order to coordinate their “component aspects” (aspects are modelled as components 
and are called component aspects). Therefore, they use the connector as their new 
primitive to model aspects or weavings. It also introduces the weaving process inside 
their “component aspects” losing the reusability feature of aspects, since component 
aspects are dependent on the component aspects that they are connected to. In 
addition, ADLs should be formal languages because it is the only way to reason about 
the obtained software architectures, validate properties and generate code. However, 
we lose the advantages of using an extended language such as XML or Java, as in the 
CAM/DAOP and FuseJ proposals, respectively.  

It is important to mention that a few of these approaches that combine AOSD and 
software architectures provide support for complete development of software; i.e. 
generating code from AOSA models. Therefore, they do not provide complete MDD 
support for developing AOSAs through a tool. The PCS approach is supported by the 
ConcernBase tool [Kande, 03]. This tool supports MDD in a partial way. It provides 
mechanisms for modelling software systems, and it also allows the translation of 
UML models to the SADL language [Moriconi, 97]. Technology independence is a 
clear advantage of this approach. However, at the same time, it is a drawback of PCS 
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because it does not provide support to translate its models to a programming language 
and they cannot be executed on a specific technological platform. The CAM/DAOP 
approach provides the DAOP platform [Pinto, 05]. It has been implemented in Java, 
and it provides a middleware to support the execution of aspects, components, and the 
dynamic weaving between them over the Java technology. The platform and the 
DAOP-ADL specifications are integrated because the input of the DAOP platform is 
the XML document that contains the specification of the architectural model in XML. 
The XML document contains the information needed to instantiate components and 
aspects. For this reason, when the document is loaded by the DAOP platform, the 
instantiation of components and aspects starts taking into account the instantiation 
information defined in the document. The work of Fuentes et al. [Fuentes, 03] of 
CAM/DAOP is a first step to support MDD in the DAOP platform; however, 
complete support using code generation techniques for the development is not 
provided. It uses MDA to show the different views of the models that are specified in 
the platform. The TranSAT framework consists of a tool called SafArchie Studio 
[Barais, 03]. This tool offers several views of the evolution process depending on the 
kind of user. It only supports a tool to analyze the evolution of the software 
architecture and does not develop the aspect-oriented software architecture 
application. The MADE tool has been developed to support the AVA approach 
[Hammouda, 04]. It also shows the different views of the architecture, but it does not 
provide complete MDD support. AOCE has a tool to support its methodology, which 
extends the JViews [Grundy, 00] tool to support aspects. This tool is called 
JComposer [Grundy, 98]. JASCO provides two different tools. One of the JASCO 
tools transforms a Java bean into a JAsCo bean, and the other one integrates JAsCo 
with the PacoSuite [Wydaeghe, 01], which allows component models to be modelled 
at a high abstraction level and also allows one or more JAsCo connectors to be 
generated from its models. However, the JComposer and the pair of tools that support 
the JAsCo approach are dependent on technology. They are, in fact, implementation 
frameworks. 

5.2 Comparison of the main Aspect-Oriented Software Architectural 
approaches 

Two comparison tables2 have been defined from the criteria established in Section 
2.2.3 and the approaches studied in Section 5.1 to analyze and compare them (see 
Table 2 and Table 3).  After the analysis and comparison of different approaches of 
AOSA, it may be concluded that, at the architectural level, these proposals usually 
extend ADLs without connectors and mainly follow an asymmetric model by 
considering functionality as architectural components. They always introduce the 
notion of aspect by using original architectural concepts instead of providing the 
suitable semantics for aspects. Furthermore, despite the fact that there has been a lot 
of work done, these proposals are only focused on a specific purpose: the analysis, 
evolution or development of software architectures. And, they do not pursue several 
purposes simultaneously to provide complete development and maintenance support.  

 
 

                                                           
2 Blank cells indicate that no information was available. 
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Table 2: First comparison of aspect-oriented software architecture approaches 

1459Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...



 
 

 

 
Aspect-

Oriented 
Evolution 

Purpose Technology 
Graphical 
support 

Tool support 

PCS  
Development of  AO 

Software 
Architecture 

Independent 

UML profile: 
Aspect is a 

stereotype of a 
UML class 

ConcernBase tool: 
modelling support, 
ADL generation 
from UML, no 
code generation, 

no execution 

CAM/D
AOP 

Dynamic 
weaving but not 

adding and 
removing 

aspects at run-
time 

Development of  AO 
Software 

Architecture 
Independent UML profile 

DAOP platform: 
Java Technology, 
modelling support,  

DAOP 
middleware for 
code execution 

Superi
mpositi

on 
 

Programming aspect-
oriented Java 

applications and 
verifying properties 
of aspect-oriented 
superimposition 

Dependent on 
Java technology 

  

TRAN 
SAT 

 

Only evolution 
support, the initial 
aspect-oriented 

specification is not 
supported. 

Independent UML profile 
SafArchie Studio. 

Extension of 
ArgoUML 

ASAA
M 

 
Analysis of Software 

Architectures 
Independent 

UML profile: 
scenarios 

ASAAM-T 

AVA  
Development of  AO 

Software 
Architecture 

Independent 

UML profile: 
aspect is an 

stereotype of a 
UML package that 

contains an 
extension of 
component 

diagram 

MADE tool: 
modelling support 

Aspect
LEDA 

 
Development of  AO 

Software 
Architecture 

Independent   

AOCE 
Dynamic 
weaving 

Development of  AO 
Software 

Architecture 

Dependent on 
JViews 

 
JComposer: An 
extension of the 

JViews tool 
Compo

nent 
Views 

 
Analysis of software 

architectures 
Independent UML profile  

Aspectu
al 

Compo
nents 

 
 
 

 
 

Programming aspect-
oriented Java 
applications 

 
 

Dependent on 
Java technology 

 
 
 

 
 
 

Caesar  
Programming aspect-

oriented Caesar 
applications 

Dependent on 
Caesar 

programming 
language 

 
Programming 
framework 

1460 Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...



 
 

 
Aspect-

Oriented 
Evolution 

Purpose Technology 
Graphical 
support 

Tool support 

JASCO 

Dynamic 
weaving and 
support for 
adding and 
removing 

aspects at run-
time 

Programming aspect-
oriented application 

Dependent on 
Java or .NET 
technology 

 
Programming 
framework 

FUSEJ  
Programming aspect-
oriented applications 

onto Java Beans 

Dependent on 
the Java Beans 

component 
model 

  

JAC  
Programming aspect-

oriented Java 
applications 

Dependent on 
Java technology 

  

JIAZZI  
Programming aspect-

oriented Java 
applications 

Dependent on 
Java technology 

  

Table 3: First comparison of aspect-oriented software architecture approaches 

Therefore, it may be concluded that an approach of AOSAs for symmetric AOMs 
and ADLs with connectors that follows the MDD paradigm should be defined in such 
a way that the starting premise would be fulfilled. This approach should include: (i) a 
suitable semantics for the aspect concept; (ii) a graphical modelling metaphor, (iii) 
technological support in order to execute the aspect-oriented architectural models that 
have been defined independently of technology, (iv) guided support throughout the 
development and maintenance processes of software following MDD: Reusability, 
Verification, Code generation, Maintenance, Evolution,  etc. The PRISMA MDD 
approach was defined to fulfil these needs by completing the Tables 2 and 3 as 
follows: 

 

6 Experimental Results: PRISMA as an step forward in the 
MDD process of Aspect-Oriented Software Architectures 

This PRISMA MDD process has been applied to different kind of applications to 
validate its feasibility. It has been used for the design and code generation of 
academic examples such as, banking systems, auctions, etc. But also, it has been put 
into practice for the generation of real applications that are deployed in the industry. 
Specifically, PRISMA has been put into practice in the robotic domain. In particular, 
the PRISMA MDD process has been applied to the development of the robots 
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TeachMover [Pérez,08a] and Agrobot [Costa-Soria, 11], as  a proof-of-concept for 
this MDD process.  

6.1 Validation Goal and Variables of measurement 

The validation of our approach has been focused on the code generation capability of 
the PRISMA MDD process. The analysis of this capability has been driven by 
following question: Is the PRISMA MDD process able to automatically generate the 
executable C# code of applications from Aspect-Oriented Software Architectural 
models?.This main question has been refined into two more concrete questions:  

Q1) Is the code generation complete or partial?, and  
Q2) Is the code generation ready to be executed or it requires any update for 

its execution?.  
These two questions aims to find out the degree of automation of the process and 
allow us to define the response variables for quantitatively measuring the PRISMA 
MDD process. These variables are the following: Percentage of Generation (%G), 
Percentage of Manually Programmed Code(%MPC), Percentage of Updated Code 
(%UC), Number of Generated Lines of Code (NGLC), Number of Manually 
Programmed Lines of Code (NMPLC), Number of Updated Lines of Code (NULC), 
Number of Generated Classes (NGC), Number of Manually Programmed Classes 
(NMPC), Number of Updated Classes (NUC), Number of Generated Interfaces 
(NGI), Number of Manually Programmed Interfaces (NMPI), and Number of 
Updated Interfaces (NUI) . In addition, other variables in terms of aspect-oriented 
software architectures concepts has been collected: Number of Lines of Code for 
Interfaces (NLCI), Number of Lines of Code for Aspects (NLCA), Number of Lines 
of Code for Architectural Elements (NLCAE), Number of Lines of Code for 
Components (NLCC). Number of Lines of Code for Conectors (NLCCN), and 
Number of Lines of Code for Systems (NLCS).   

6.2 Description of the Robotic Applications. 

In this paper, we have used part of the architecture of the tele-operated robot 
TeachMover to illustrate the PRISMA MDD process. The detailed description of the 
functionality of this tele-operated robot is described in Section 3. The complete 
architecture of the robot TeachMover consists of 16 architectural elements (5 
Systems, 6 components  and 5 connectors), and 16 aspects (6 functional aspects, 5 
safety aspects and 5 coordination aspects) [Pérez, 08a]. 

In addition, the PRISMA MDD approach has been applied to the code generation 
of the agriculture robot Agrobot [Costa-Soria, 11]. The Agrobot is conceived as an 
autonomous, small-sized robot, which objective is to patrol –at periodical intervals- a 
small field or delimited area, looking for pests or disease attacks over a set of growing 
crops. When a threat is detected, a pesticide is applied to the field, as a first counter-
attack measure, and an alarm is sent to the manager to take further specialized actions. 
The use of small agricultural robots (small-sized, light-weight, and autonomous) 
[Blackmore, 06] is being encouraged in the Spanish agriculture sector to reduce the 
high labour involved and the production costs of plague control. The Agrobot 
architecture is hierarchically defined as a composition of Systems. The top-level 
architecture consists of 12 Systems and 10 connectors. From these systems, the MDD 
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process has been applied to one of them, the System which allowed us to validate its 
behaviour without being geographically in an agriculture field: the Vision System 
[Costa-Soria, 2011]. The Vision System captures and pre-filters images from the 
environment, which are used by other Systems of the Agrobot to look for crop 
diseases and/or guide the movement. This System has been completely modelled 
using the PRISMA CASE tool, and its code has been automatically generated. This 
System consists of 8 architectural elements (1System, 4 components, and 3 
connectors), 8 aspects (4 functional aspects, 3 coordination aspects, and 1 
presentation aspect) and 3 interfaces. 

6.3  Analysis of the Experimental Results 

The PRISMA MDD process has been applied to the development of both robots. The 
results obtained from the measurement of the variables identified in Section 6.1 are 
described in Tables 4 and 5. 
 

 

Table 4: Result of the robot TeachMover and Agrobot in percentages, nº classes and 
nº interfaces 

 

Table 5: Results of the robot TeachMover and Agrobot in Lines of Code 

The results presented in Tables 2 and 3 reveals a high percentage of automatic-
code generation from PRISMA AOSA models: 94,3%  for the TeachMover and 
68,1% for the Agrobot, which correspond with 5686 and 1125 Generated Lines of 
Code (NGLC), respectively (see Tables 4 and 5).  The percentage of lines of code 
manually programmed (NMPLC) of both applications correspond to the 345 lines of 
code that implement the Generic Graphical User Interface (GUI) of PRISMA (see 
Tables 4 and 5). This GUI allows the execution of any PRISMA application, and both 
robots are executed using this GUI. As a result, both robots have the same number of 
lines manually programmed, and the same Manually Programmed Classes (NMPC) 
(see Tables 2 and 3). Since this number is constant, the percentage of generation 
varies depending on the extension of the system. In this case, as the TeachMover is 
more extensive than Agrobot, the percentage of automatic generation is higher.  

On the other hand, the number of classes (see Tables 2 and 3) illustrates that the 
PRISMA MDD process generates one class for each concept modelled, e.g. the 32 
generated classes (NGC) of the TeachMover (see Fehler! Verweisquelle konnte 
nicht gefunden werden.) correspond to the 16 architectural elements and 16 aspects 
of its PRISMA aspect-oriented architectural model. 
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With regard the number of lines of code that have been generated, most of them 
are related to the body of aspects, which define state (attributes), services (methods), 
and protocols (the valid transitions among services).  

As a result of the modelling and code generation process of the Vision System of 
the Agrobot, the experiment showed that some behaviour could not be modelled and 
must be directly introduced on the generated code. This was the case for low-level 
behaviour: the code responsible for interacting with the image capturing device, and 
the algorithms for processing and filtering the images captured. In this case, the 
approach was to replace the body of the services automatically generated with the 
specific, low-level code. This resulted in 180 lines of code updated (see NULC in 
Table 5), which in total represented only the 10,9% of the total amount of code (see 
%UC in Table 3). This is significantly better that developing all the code from the 
beginning. 

These code generation results reveal that the complete automatic-code generation 
from AOSA models is feasible. In this contribution we provide an approach that takes 
a step further in the automatic code generation from aspect-oriented software 
architectures. The PRISMA MDD process is able to generate the code of the business 
logic, but is not able to automatically generate its GUI. This establishes the next step 
to improve this MDD process and its modelling framework. 

6.4 Evaluation of validity and limitation 

This approach has been validated by automatically generating the code of two real 
applications from their aspect-oriented architectural models.  However, it is difficult 
to generalize the results because, as any experiment, there is a set of factors that 
affects the results of the response variables. In this case, the main factors that have 
been identified are: 1) the project size, 2) the architecture complexity, and 3) the 
concerns modelled.  
The experimentation field recommends to intentionally vary these factors to mitigate 
the variations that could impact the results and facilitate the generalization of these 
results [Juristo, 01]. Following this guideline, we have applied the PRISMA MDD 
process to two applications with different size and complexity. However, to 
completely mitigate these results, it is necessary to apply the process to other 
domains, in which other concerns should be required, such as persistence, graphical-
user interface or privacy in information systems or social network services.  

7 Conclusions and Future Work 

In this paper, the PRISMA MDD process of PRISMA is presented as an important 
advance in the automatic generation of code from AOSAs. This contribution 
describes this process and each one of their generation steps to serve as a first 
guidance for the MDD of AOSAs. This process also defines two steps of 
transformation that are supported by generation patterns that allow the generation of 
AOADL specification and C# code. Hence, this contribution provides a pattern 
template to describe the transformations of code generation. Moreover, the need to 
support model verification throughout the MDD process is established by defining not 
only the kind of verifications (partial, incremental, complete), but also the kind of 
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constraints (hard constraints and weak constraints) to consider. It is important to 
emphasize that the refinement from the types model to the configuration model of 
PRISMA MDD process provides a domain-specific model to configure PRISMA 
software architectures. This domain-specific model is important because it reduces the 
gap between the user and his/her knowledge about modelling during the MDD 
process.  

This PRISMA MDD process has been materialized into the PRISMA CASE 
framework, which supports each one of the steps that the process establishes. 
PRISMA CASE has allowed us to apply the process to the TeachMover and Agrobot 
robots. In this paper, we present the code generation results of both applications and 
the analysis reveals that the complete automatic-code generation from AOSA models 
is feasible with the presented MDD process,  

PRISMA is a new approach that opens a perfect setting for further research. All 
the parts that the PRISMA approach is composed of can be extended in order to face 
new challenges. This MDD process can be enriched by introducing more layers of 
refinement or defining new transformations for other languages, models or platforms 
and/or developing abstract middleware that would hide the differences between the 
different platforms. Another extension to this MDD process is the incorporation of 
COTs throughout the process. Yet another task is to create a repository with a query 
language and metadata description of the architectural elements and aspects to 
improve reusability even more. Finally, it is necessary to evaluate PRISMA using 
applications of other domains, which could allow us to generalize the obtained 
results.. 
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Appendix A: Model-Driven Development of Aspect-Oriented 
Software Architectures  

In this appendix, we show in detail the complete architecture of the running example 
that has been used in the paper for illustrating the PRISMA MDD process. This is the 
PRISMA type model for a generic joint of a tele-operated robot that can be reused for 
designing different joints of the same robot or joints of different robots. 

Figure 13 illustrates how the components, Actuator and WrapAspSyst, are 
coordinated through a connector CnctJoint (see Figure 12), how each component 
imports their functionality through aspects (see Figure 17, Fehler! Verweisquelle 
konnte nicht gefunden werden., and Fehler! Verweisquelle konnte nicht gefunden 
werden.), and how the connector CnctJoint imports its behaviour through a 
coordination and a safety aspect, CoordJoint and SMotion respectively, to define its 
behaviour (see Figure 16). In addition, aspects import their corresponding interfaces, 
which are published through the architectural element ports that import these aspects 
(see Figure 14 and Figure 15). Finally, it is important to mention the need for a 
weaving emerges due to the fact that a joint is moved only after the connector safety 
constraints are satisfied assuring that a movement is safe (see Figure 16). 

 

Figure 12: The joint architecture of a tele-operated robot 
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Figure 13: The PRISMA System Aspect-Oriented Architecture of a Joint for Tele-

Operated Robots  
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Figure 14: Interfaces ICOT, IMotionJoint and IRead 

 

 
  

Figure 15: Interfaces IJoint, IUpdatePos and IQueryPos 

 

 

Figure 16: Weaving definition between the Aspects CProcessSuc and SMotion  
(shown in collapsed format) 
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Figure 17: Left: Functional Aspect Fjoint (shown in expanded format) 
 Right: Coordination Aspect CProcessSUC (shown in expanded format) 
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Figure 18: Functional Aspect IACOT (shown in expanded format) 

 

Figure 19: Safety Aspect SMotion (shown in expanded format) 
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