

Model-Driven Development of Aspect-Oriented Software
Architectures

Jennifer Pérez
(Technical University of Madrid (UPM), Madrid, Spain

jenifer.perez@eui.upm.es)

Isidro Ramos, Jose A. Carsí
(Universidad Politécnica de Valencia, Valencia, Spain

iramos@dsic.upv.es, pcarsi@dsic.upv.es)

Cristóbal Costa-Soria
(Global Metanoia S.L., Paterna Technological Science Park (Valencia), Spain

ccosta@globalmetanoia.com)

Abstract: The Model-Driven Development (MDD) paradigm has become widely spread in the
last few years due to being based on models instead of source code, and using automatic
generation techniques to obtain the final software product. Until now, the most mature
methodologies that have been proposed to develop software following MDD are mainly based
on functional requirements by following the Object-Oriented Paradigm. Therefore, mature
MDD methodologies are required for supporting the code generation from models that specify
non-functional requirements. The Aspect-Oriented Software Development (AOSD) approach
was created to provide explicit mechanisms for developing non-functional requirements
through reusable elements called aspects. Aspect-Oriented Software Architectures (AOSA)
emerged to deal with the design of both, functional requirements and non-functional
requirements, which opened an important challenge in the software engineering field: the
definition of a methodology for supporting the development of AOSAs following the MDD
paradigm. This new methodology should allow the code generation from models which specify
functional and non-functional requirements. This paper presents a mature approach, called
PRISMA, which deals with this challenge. Therefore, this contribution takes a step forward in
the area presenting in detail the PRISMA MDD process, which has been applied to generate the
code of several real applications of the tele-operated robotics domain. PRISMA MDD approach
provides complete support for the development of technology-independent AOSAs, which can
be compiled from high-level, aspect-oriented architectural models into different technology
platforms and languages following an MDD process. This contribution illustrates how to apply
the PRISMA MDD approach through the modelling framework that has been developed to
support it, and a case study of a tele-operated robot that has been completely developed using
this approach. Finally, the results obtained from the application of PRISMA MDD process to
develop applications of the tele-operation domain are analyzed in terms of code generation.

Keywords: Model-Driven Development MDD), Software Architecture, Aspect-Oriented
Software Development (AOSD), Aspect-Oriented Software Architectures, Code generation
Categories: D.2.2, D.2.10, D.2.11, D.2.13

Journal of Universal Computer Science, vol. 19, no. 10 (2013), 1433-1473
submitted: 19/10/12, accepted: 27/5/13, appeared: 28/5/13 © J.UCS

1 Introduction

The complexity of current software systems has increased the time and cost required
in the development and maintenance processes of software. As a result, there is great
interest in the software engineering area to fix this problem. Thus, to achieve the
quality goals of software products and ensure market competitiveness, the Model-
Driven Development (MDD) paradigm emerged.

MDD is a software development paradigm related to Model-Driven Engineering
(MDE) [Schmidt, 06], which has become more and more widespread in the last few
years [Beydeda, 05]. This is due to the fact that it improves the different stages of the
software life cycle (requirements, analysis, software architectures, implementation,
etc.) by automating their activities. It is mainly based on models for software
development, techniques to improve reusability, and processes to support automation,
traceability, and maintainability. It promotes a high level of abstraction of software
artifacts (models instead of code) and the automation of most of programming tasks.
The use of models to develop software provides solutions that are independent of
technology, and whose source code can be obtained by means of automatic code
generation techniques for different technologies and programming languages.

Until now, the most mature methodologies that have been proposed to develop
software following MDD are based on the Object-Oriented Paradigm (OOP) [Meyer,
98]. So, only OO software systems can take advantage of the reduction of time to
market and cost that MDD provides. OO modelling approaches are mainly focused on
the specification of functional requirements. However, non-functional requirements
are acquiring much relevance in the current software systems: such as safety, security
or distribution in embedded systems, or persistence, graphical-user interface or
privacy in information systems or social network services, etc. These non-functional
requirements increment the complexity of software, and their implementation requires
software modules being decoupled and modularized in order to be maintainable and
reusable. Several software development approaches have been defined to deal with
this need, such as Aspect-Oriented Software Development (AOSD) [Chitchyan, 05]
and Software Architectures [Perry, 92]. Therefore, to provide the advantages of MDD
to those software systems where non-functional requirements are critical, MDD needs
to deal with the modelling and the code generation of these software development
approaches, such as AOSD and Software Architectures. Aspect-Oriented Software
Architectures (AOSAs) emerged to take advantage of both, the Software
Architectures and AOSD approaches [Cuesta, 05], [Chitchyan, 05], etc. PRISMA is a
model that follows the AOSA approach by integrating the Software Architectures and
AOSD approaches [Pérez, 06a]. It is described by its meta-model, provides a formal
Aspect-Oriented Architecture Description Language (AOADL) [Pérez, 06b] and
defines a methodology for specifying its AOSAs [Pérez, 08a].

An important challenge in the software engineering field is the integration of the
AOSA approach into the MDD paradigm to support the development and
maintenance of complex software systems in an efficient way. In this paper, we deal
with this challenge by the definition of the PRISMA MDD process for supporting the
MDD of AOSAs.

From the PRISMA previous work, in this paper we take a step forward and we
define a consolidated MDD process for AOSAs that wraps up all previous PRISMA

1434 Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

contributions. The construction of this AOSA MDD process is based on the results of
the study that we have performed about “The main set of desirable properties that any
AOSA MDD approach should fulfil”. These profitable results for the AOSA
community are presented in this paper as the founding premises of the PRISMA
MDD process.

This paper presents a novel contribution for PRISMA: its MDD process. The
main goal of this PRISMA MDD process is to provide complete support for the
development of technology-independent AOSAs, which could be compiled to
different technology platforms and languages using automatic code generation
techniques. To make feasible the PRISMA MDD process, the development of a tool
for supporting the complete code generation for AOSAs was necessary. The PRISMA
CASE framework has been developed to cope with this need. The paper illustrates
how the PRISMA CASE framework supports each one of the steps of the PRISMA
MDD process.

This PRISMA MDD process has been consolidated by means of its application to
academic examples (such as: banking systems and auctions), and also by means of the
generation of real applications from the robotic domain (such as: tele-operated robots
and agriculture robots). From these applications of the PRISMA MDD process, we
have obtained a set of code generation results, which analysis reveals that the
complete automatic-code generation from AOSA models is feasible.

In summary, the novel contributions of this paper are: (i) the results of the study
of the MDD support of AOSA approaches, (ii) the PRISMA MDD process, (iii) the
complete PRISMA CASE framework, and (iv) the results of the application of the
PRISMA MDD process. These contributions are structured in the paper as follows.
The background about MDD, AOAS, and PRISMA, and the study about properties of
AOSA MDD approaches are presented in Section 2. The robot TeachMover and the
piece of its architecture that is used as an example throughout the paper are
introduced in Section 3. The MDD process of PRISMA is explained in detail in
Section 4. Section 5 discusses this contribution by analyzing related work. Section 6
describes and compares the experimental results obtained from the development of
two applications using the PRISMA MDD process. Finally, conclusions and further
work are presented in Section 6.

2 Background

2.1 Model-Driven Development (MDD)

Most mistakes that are made during software development come from the first stages
of the software life cycle. Since these mistakes grow in an exponential way as the life-
cycle progresses, it is necessary to focus on improving these first stages instead of
postponing the solution for later stages. Most proposals that try to solve these
problems improve software development by automating its first stages following
MDD. Our contribution also fits these ideas and challenges focusing at the
architectural level.

MDD is a software development paradigm of Model-Driven Engineering (MDE)
[Beydeda, 05]. It is mainly based on models for software development, techniques to
improve reusability, and processes to support automation, traceability, and
maintainability. It promotes using models instead of code to automate software

1435Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

development, guaranteeing solutions that are independent of the technology-platform,
consistent and reusable. It is based on code generation techniques for generating the
code of different technologies and languages from models (either models or
metamodels (models of models)).

The OMG Meta-Object Facility (MOF) 2.0. [MOF, 12] specification defines an
architecture to support meta-modeling, MDD and model management (definition of
transformations, traceability links, mappings, etc., between models). It is a four-level
architecture, whose main purpose is the management of model descriptions at
different levels of abstraction. The upper layer (M3) defines the abstract language
used to describe the entities of the M2 layer (metamodels) (see layer M3, Figure 1).
The metamodel layer (M2) defines the structure and semantics of the models defined
at the M1 layer (see layer M2, Figure 1). The M1 layer comprises the models that
describe data, i.e. the application of the M0 layer (see layer M1, Figure 1). These
models are described using the primitives and relationships described in the
metamodel layer (M2). The lowest level is the information layer (M0), which
comprises the final application to be described (see layer M0, Figure 1), i.e. the
instances of the models that are defined at the M1 layer.

Figure 1: Meta-Object Facility (MOF) layers exemplified by PRISMA models

2.2 Aspect-Oriented Software Architectures in MDD

Software architectures and AOSD are the foundation of the AOSA approach. In this
section, we provide an overview of AOSA by explaining the integration of Software
Architectures and AOSD and their role in MDD, and the main properties that any
AOSA MDD process should take into account for its construction.

2.2.1 Software Architectures

Software Architectures make software systems simpler and more understandable by
hiding the low-level details. The works of Garlan [Garlan, 95] and Perry & Wolf

1436 Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

[Perry, 92] clearly define the role of software architectures in the software life cycle.
The Software Architecture discipline bridges the gap between requirements and
implementation stages of the software life cycle. The traceability between the
resulting requirements of the requirements stage and developed code in the
implementation stage is a key issue to prevent the failure of the software development
process.

Software architectures comprise a wide-scope of tasks [Perry, 92]. This work is
focused on the design of the structural viewpoint of Software Architectures, i.e. the
description of Software Architectures. This structure is usually represented in terms of
computational elements and the interactions among them using Architecture
Description Languages (ADLs).

 Software Architecture Descriptions are critical to trace the requirements to code
in software development in general, and in MDD in particular. However, despite the
fact that a wide variety of formal ADLs [Cuesta, 02], [Medvidovic, 00] have been
proposed, there is a lot of work to be done to integrate formal ADLs into MDD.

2.2.2 Aspect-Oriented Software Development (AOSD)

Non-functional requirements have acquired an important relevance in current
software systems. Non-functional requirements are usually common concerns of a
domain system that are scattered in the software units that a system is composed of
(classes/objects [Meyer, 98], components [Szyperski, 98], modules modules [Meyer,
03], etc.). These common concerns are crosscutting most software units of the system
(crosscutting concerns). These crosscutting concerns are tangled with the other
concerns that also modify the same software unit affecting most functionalities of the
system. Hence, the support of software modularity and crosscutting-concerns are
essential challenges to be faced in software development. The Separation of Concerns
(SoC) helps to address these challenges [Parnas, 72]. The SoC principle promotes
dealing with the different concerns of a software system separately and context-
unaware when possible. Aspect-Oriented Programming (AOP) [Kiczales, 97] has
emerged as an innovative way of applying SoC in software development.

AOP proposes the separation of the crosscutting-concerns of software systems
into separate entities, which are called aspects. This separation avoids having tangled
concerns scattered among the software units and allows the reuse of the same aspect
in different software units of the software system. AOSD has emerged not only to
apply AO to the implementation stage, but also to apply it to every stage of the
software life cycle. For this reason, the integration of AOSD development with the
MDD process has to be taken into account.

There are some approaches that combine MDD and AOSD mechanisms such as
[Aksit, 05], [Amaya, 05],[Kulkarni, 03], and [Simmonds, 05]. However, none of these
AO approaches takes into account software architectures, and none of the original
ADLs previously presented (see Section 2.2.1) explicitly distinguishes the
conventional architectural elements from concerns, which crosscut multiple
architectural elements of software architectures.

1437Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

2.2.3 The most relevant properties for MDD support of Aspect-Oriented
Software Architectures

The combination of AOSD and software architectures permits the separation of
concerns of architectural components. So, software architectures can take advantage
of AOSD benefits. This section analyzes the main set of desirable properties that any
aspect-oriented architecture MDD approach should fulfil. These properties are mainly
founded on the MDD principles [Schmidt, 06] and on the key guidelines about
software development the literature sets out: high-level languages for programming
[Parnas, 85], software partitioning by dividing into views [Perry, 92], [Kruchten, 95]
or the size of code (“divide and conquer”) [Dijkstra, 76] and software composition
and decomposition [Parnas, 72] [Harrison, 02]. Hence, the premise, in which the
study is based on, is the following: “An aspect-oriented software architecture
approach should completely support the development and maintenance processes of
software following the MDD approach”. And, the properties and the reasons for
considering them as classification criteria of MDD aspect-oriented architectural
approaches are described below:
 Aspect-Oriented Model (AOM): This feature defines the kind of AOM that is

integrated with the software architectural model, which may be mainly classified
into asymmetric and symmetric [Harrison, 02]. This characteristic is important
because the facilities of reuse and code generation can vary depending on which
aspect-oriented model is used. An asymmetric model is based on a dominant
decomposition, which is usually an OO-like functional decomposition. Models of
this kind assume that aspects are non-functional concerns that crosscut the
functional units of software (called base code). However, in symmetric models,
everything is considered as a concern, and there is no dominant decomposition. As
a result, functionality is considered to be another concern, and concerns crosscut
each other. Therefore, symmetric models are considered to be more flexible and
abstract. However, since the most extended AOM is the asymmetric model of
AspectJ [Kiczales, 01], asymmetric models are more widely used because they are
easier to integrate in current software development approaches.

 Architectural model: This feature determines whether or not an architectural
model provides connectors for modelling software architectures. The ones that
have connectors provide features that improve the structure and maintenance of
software architecture [Shaw, 94] . So, those architectural models that provide
connectors make architectural elements more independent and facilitate their
transformation in an MDD process, as well as their reusability and integration in
other architectural models.

 Formal ADL: Another feature that is necessary to take into account when
comparing architectural models is whether or not their corresponding ADLs are
formal languages. The formal nature of an ADL is an indispensable property of
architectural models if the purpose of the approach is to generate code without
ambiguity, to verify properties, to validate behaviour, to trace the different levels
of abstraction in a suitable way, and to evolve software architectures preserving
the consistency of the system.

 Graphical support: The graphical specification of AOSAs greatly helps to avoid
the complexity of using formal and technology independent ADLs. Graphical

1438 Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

support is achieved by defining the graphical metaphor for ADLs by means of a
new language or by extending a well-known graphical language.

 Definition of Aspects: The most distinguishable feature of AO architectural
models is how they integrate aspects and software architectures. There are two
ways of doing this: (i) by simulating the notion of aspect by means of another
architectural concept, or (ii) by defining a new concept for aspects in software
architectures. The first way refines the architectural concepts by varying their
original semantics; and the second one requires understanding a new concept to
model software architectures. Therefore, those proposals that define aspects as a
new concept with its proper semantics facilitate their transformation and
unambiguous integration with any architectural model.

 Definition of Weavings: Weaving is a process that, in asymmetric AOM, consists
of coordinating the base code and the aspect code. In symmetric AOM, weavings
coordinate the different aspects. This is an important feature of AOMs and AO
architectural models. The definition of weavings specifies where the weaving
process between aspects and architectural elements is defined. If it is defined
inside the aspect, the aspect is dependent on the context that the aspect is
connected to. However, if it is defined outside the aspect, the behaviour of the
aspect can be reused independently of where the aspects are connected to, and so,
evolution and reuse are facilitated.

 Aspect-Oriented Evolution: The support of aspect evolution is an important
feature that can improve the design-time and run-time evolution of software
architectures. Thus, an approach that provides mechanisms for easily adding or
removing aspects is a great advantage to perform transformations between models
for their modification.

 Purpose: Since our premise of this analysis is the following: “An aspect-oriented
software architecture approach should completely support the development and
maintenance processes of software following the MDD approach”. The purpose
of an approach is an essential feature to be able to compare the different AOSA
approaches. There are AO architectural models that give complete support during
the development process, others that analyze or evolve models, and still others that
fulfil several purposes.

 Technology: This is an important feature that distinguishes the wide variety of
aspect-oriented software architectural approaches that exist. If the purpose is to
take advantage of MDD, AOSAs should be specified in an abstract way by means
of formal and technology independent ADLs. As a result, a single specification
can be transformed to different platforms and different programming languages.
However, if the AOSA specification depends on a specific platform and/or
programming language, its application and flexibility are considerably reduced.

 Tool support: A significant feature of a MDD AOSA approach is its support by
means of a framework, which will guide the analyst during the development and
maintenance processes. A framework can provide a wide variety of facilities such
as modelling support, ADL generation, code generation, code execution,
validation, verification, evolution, etc.

 MDD support: The previous criteria are essential to achieve the MDD support,
which is essential for this contribution. The support that the MDD approach offers
is significant in the development and maintenance processes. A complete MDD

1439Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

support should consist in: (i) automatically generating the code from models, (ii)
guiding the analyst through all the stages, and (iii) providing mechanisms to
facilitate the tasks (some of these mechanisms are: verification techniques,
reusability mechanisms, integration facilities, code generation mechanisms, etc.).

2.3 An Overview of PRISMA

2.3.1 The PRISMA Model

The PRISMA approach is based on the PRISMA model, its AOADL, its
methodology, and its tool [Pérez, 06a], [Pérez, 06b], [Pérez, 08a]. PRISMA provides
a model for the description of software architectures of complex and large systems. A
PRISMA architectural element (components and connectors of an architecture design)
can be seen from two different views: internal and external. In the external view
(black box view), architectural elements encapsulate their functionality as black boxes
and publish a set of services (interface) that they offer/ask to/from other architectural
elements through their ports (see Figure 2.A). In the internal view (white box view),
an architectural element is shown as a prism. Each side of the prism is an aspect that
the architectural element imports (see Figure 2.B). In this way, architectural elements
are represented as a set of aspects and the relationships among them (called
weavings).

The notion of aspect arises to deal with crosscutting-concerns of software
systems. This idea of crosscutting can vary depending on the nature of the model. The
PRISMA model is a symmetrical AOM [Harrison, 02] because it does not consider
functionality as a base code (i.e. different to aspects), and it does not constrain aspects
to specify non-functional requirements (see property Aspect-Oriented Model (AOM),
Section 2.2.3). In PRISMA, functionality is also specified as an aspect by providing a
homogeneous treatment to functional and non-functional requirements. Aspects have
been introduced in the PRISMA AOADL as a new concept rather than simulating the
aspect using other architectural terms (components, connectors, views, etc.). This is
due to the fact that a component can specify state and behaviour about different
concerns, whereas an aspect is focused in a single concern. As a result, PRISMA
preserves the meaning of the concepts of component and aspect, keeping them as
first-order citizens.

Figure 2: Views of an architectural element

1440 Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

With regard to AOSD, PRISMA aspects are artefacts of software architectures
and represent a specific behaviour of a concern (safety, coordination, persistence,
security, etc.) that crosscuts the software architecture. The same aspect can be
imported by each one of the architectural elements (components and connectors) that
need to take into account this behaviour. As a result, an architectural element is
defined by a set of aspects that describe it from different concerns of the architecture.
The communications between the white box and black box views is possible by
means of interfaces, which are associated with ports and are used by aspects (see
Figure 2.C). Consequently, a request for a service that arrives at a port of an
architectural element is processed by an aspect that implements the same service that
is provided by this port.

In PRISMA, a weaving indicates that the execution of an aspect service can
trigger the execution of services in other aspects. In PRISMA, to preserve the
independence of the aspect specification from other aspects and weavings, weavings
are specified outside aspects and inside architectural elements (see Figure 2.C). They
are specified using the weaving operators after, before, instead,
afterif(boolean_condition), beforeif(boolean_condition) and
insteadif(boolean_condition), and following the pattern: aspect1.service1
weaving_operator aspect2.service1. These patterns means that the service2 of the
aspect2 will be executed after, before, instead the service1 of the aspect1, and in the
case of the conditional weaving operators, the service2 of the aspect2 will be
executed only if the boolean_condition is true. Aspects are reusable and independent
of the context of application and weavings weave the different aspects that form an
architectural element. This way of specifying weavings achieves not only the
reusability of the aspects in different architectural elements, but also the flexibility of
specifying different behaviours of an architectural element by importing the same
aspects, and defining different weavings. Figure 3 illustrates an example of how
PRISMA architectural elements import aspects, i.e. it shows the reusability facilities
of PRISMA. This simple example shows how the same aspect, for example the aspect
FUNCTIONAL, is imported by two different architectural elements, Component1 and
Component3, and how an architectural element, for example the connector
Connector1, imports several aspects: COORDINATION and SAFETY.

Figure 3: Crosscutting-concerns in PRISMA architectures

1441Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

With regard to software architectures, PRISMA has three kinds of architectural
elements: components, connectors, and Systems. A component is an architectural
element that captures the functionality of software systems and does not act as a
coordinator among other architectural elements, whereas a connector is an
architectural element that coordinates the interactions among other architectural
elements. Connectors provide the separation of component interactions. Connectors
do not have the references of the components that they connect and vice versa. Thus,
architectural elements are reusable and unaware of each other. Attachments are the
channels that enable the communication between components and connectors through
their ports. Systems are complex PRISMA components, which include a set of
architectural elements (connectors, components and other Systems) that are correctly
attached. Bindings establish the connection among the ports of a System (i.e. a
complex component) and the ports of the architectural elements that this System
contains.

The PRISMA model has an AOADL to support it. The PRISMA AODL is a
formal and technology-independent language (see property Formal ADL Section
2.2.3). It is important to emphasize that most ADLs only permit the specification of
the skeleton of architectures and the services that are sent/received among their
different architectural elements. The PRISMA AOADL has greater expressive power
and can specify more features and requirements using aspects [Pérez, 06b]: it can
specify state and behaviour for each aspect.

2.3.2 PRISMA in MOF

The PRISMA MDD approach fits the four-level architecture of MOF. In this way,
MOF allows us to clearly present the differences between PRISMA types and
instances and their corresponding models. The PRISMA metamodel is defined at the
layer M2 (see Section 2.1), and the PRISMA type models are specified at the layer
M1 e.g. the model of a joint of the tele-operated robot software architecture (see layer
M1Figure 1). So, the PRISMA model of the joint of the tele-operated robot is
compliant with the PRISMA metamodel. Finally, the specific instances of an
architecture configuration are placed in the layer M0. They are called in PRISMA,
PRISMA configuration models. For example, Figure 1 illustrates how the Elbow is
an instance of the component Joint of the layer M1, which means that the Elbow
behaves as the Joint describes. PRISMA reusable types and patterns are specified at
layer M1 and architectural configurations are defined at the layer M0 by instantiating
the types and patterns of the layer M1.

In this work, we present an MDD approach by making this MOF architecture of
PRISMA models feasible (see Figure 1). To implement the approach, it is important
to keep in mind that MDD and automatic code generation avoids the mistakes of
correspondence between the semantics of the model and the application code, but it
does not prevent the modelling mistakes that the user makes. To prevent them, help
must be provided to guide the user during the modelling process. This guidance
mechanism is provided using verification techniques. Verification can be performed
in the modelling stage to detect modelling mistakes. During the modelling stage, the
verification techniques allows us to know whether or not a model satisfies the
constraints that its metamodel defines (the model conforms to its metamodel). If a

1442 Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

model satisfies every constraint of its metamodel, then the model is conformed and
verified.

3 The Tele-Operation Domain

The PRISMA MDD approach has been validated by designing academic examples
such as, banking systems, auctions, etc., and also, the generation of real applications
from the robotic domain such as: tele-operated robots, agriculture robots, etc. In this
section, we describe one of these real applications, which will be used throughout the
rest of the paper to illustrate our contribution. It is a robotic tele-operated system,
which is a family of robots for hull maintenance operations called EFTCoR
(Environmental Friendly and Cost-effective Technology for Coating Removal)
[EFTCoR, 02], [Fernández, 05]. This work was feasible thanks to the close
collaboration1 with the DSIE (System Division and Electronic Engineering) Group of
the Polytechnic University of Cartagena of Spain, who was involved in the design of
this EFTCoR Robot to be run in the cleaning tasks of the shipyard of Cartagena City.

Figure 4: Tele-Operated Robots: A) EFTCoR Primary Positioning System (arm joint
and joint of tracks), B) manual cleaning by an operator, C) The TeachMover Robot

Tele-operated robots are software intensive systems that are used to perform tasks
that human operators cannot carry out due to the dangerous nature of the tasks or the
hostile nature of the working environment (see Figure 4. B). The EFTCoR is a robotic
platform with strong non-functional requirements that cleans the hulls of ships in a
way that reduces the environmental pollution. Since the EFTCoR is a family of robots
that are very large (big dimensions) and very heavy (high tonnage) (see Figure 4. A),
a complete development of a small-scale robot was done before developing the
software architecture of EFTCoR. Specifically, we validated our proposal by

1 This close collaboration was through the national project DYNAMICA.

1443Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

developing the TeachMover robot [TeachMover, 12] (see Figure 4. C). This robot was
specially designed for the purpose of simulating the behaviour of large and heavy
industrial robots that cannot be manipulated in laboratories. The TeachMover is
simpler than EFTCoR, but it has the same architectural features at a small scale to test
the software of industrial robots before its deployment. All these features allow the
TeachMover robot to simulate the movements of most of the industrial tele-operated
robots.

The TeachMover is formed by a set of joints that permit the movement of the
robot, which are commanded by an operator from a computer. These joints are: Base,
Shoulder, Elbow, and Wrist. In addition, it has a Tool to perform different tasks:
catch, drop, push, pull, etc. (see Figure 4.C). In this case, the Tool is a gripper (in
other cases it can be a brush to paint, a hose to clean, etc.), whose open and close
actions allow the robot to pick up and deposit objects. Therefore, it allows the robot to
move objects from an initial position to a final one. There are required safety
constraints of the robot movements to be checked and to make sure that its
movements are safe for itself and the environment that surrounds it.

From the different components that a tele-operated robot is composed of, and the
TeachMover in particular, we are going to focus on those that implements the joints of
the robot [Pérez, 08a]. The architecture of a tele-operated robot joint is defined by a
System (complex component) called Joint, which is composed of architectural
elements that interact with the hardware joints of the robot. Specifically, the Joint is a
System composed of two components and a connector and their corresponding
connections (see Figure 5). The component Actuator is in charge of (i)
communicating with the hardware joint, when commands are sent to the hardware
joint of the robot to be performed and (ii) notifying the joint System when the
commands have been performed successfully. The component WrapAspSys
encapsulates the behaviour and the state related to the software joint, such as the
position of the joint and its movements. And the connector CnctJoint coordinates the
interaction between the Actuator and the WrapAspSys.

Figure 5: The joint architecture of a tele-operated robot

1444 Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

4 PRISMA: MDD Support for Developing Aspect-Oriented
Software Architectures

This section describes how PRISMA provides complete support for the development
of technology-independent, aspect-oriented software architectures following MDD.

Figure 6: MDD Process from the PRISMA Metamodel to Applications

The PRISMA MDD process is not constrained to the definition of a specific
number of levels of abstraction or techniques, because it can vary depending on the
needs of each software system. PRISMA follows the MDD approach by enabling
software architects to define AOSA models, which allow the complete generation of
the final code of AOSAs. The tasks of the software architect are facilitated thanks to
the fact that: (i) the level of abstraction provided by models is higher than the
provided by programming languages, and (ii) the code is automatically generated
from models. PRISMA CASE is the tool that makes the MDD software development
of PRISMA feasible. It has been constructed using the Domain-Specific Languages
Tools (DSL Tools) of the Microsoft Visual Studio framework [Cook, 07]. From
PRISMA AOSA models, PRISMA CASE supports the modelling of PRISMA AOSA
models and the generation of both PRISMA AOADL specifications and C# code,
which is executable on .NET technology [NET,12]. The PRISMA CASE is composed
of the following parts: the specification of the PRISMA metamodel, a graphical
modelling tool, a model compiler, the PRISMANET middleware and a generic
Graphical User Interface (GUI) to execute the generated code [Pérez, 06a]. The

1445Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

PRISMA model compiler implements the C# code and AOADL generation patterns
of the MDD process of PRISMA. When the model compiler is executed, the patterns
are applied to transform the PRISMA architectural models to code, which is executed
in the PRISMANET middleware. Finally and PRISMA CASE provides a generic GUI
to assist the user in checking the behaviour of the architecture. Thereby, the C#
PRISMA software architectures can be executed. In the paper, from now on, to
illustrate the contribution, we are going to focus on the C# code generation, i.e. the
execution of PRISMA models on .NET platform. And, we are going to use the
PRISMA CASE tool and the example of a TeachMover joint to illustrate the PRISMA
MDD approach. Figure 6 presents the complete PRISMA MDD process based on
MOF, i.e. the different levels of refinement that models undergo during the
development process. This process is explained in detail in the following sections.

4.1 From the PRISMA Metamodel to PRISMA Type Models

The PRISMA metamodel defines the PRISMA model and establishes its properties in
a precise way. So, PRISMA type models are defined conforming to the PRISMA
Metamodel. This definition is described in the following subsections.

4.1.1 Definition of the PRISMA Metamodel

The PRISMA metamodel is defined by a set of inter-related metaclasses (a class of
classes) and constraints (see process 1, Figure 6). These metaclasses contain a set of
properties and services for each concept considered in the model. Metaclasses, their
properties and their relationships define the structure and the information that is
necessary to describe PRISMA AOSAs. In addition, the PRISMA metamodel defines
the constraints that cannot be specified using the structure or the information of the
metamodel [Pérez, 06a]. The structure, information and constraints of the PRISMA
metamodel must be satisfied by PRISMA type models in order to ensure that they are
correct. One of the most representative packages, that the PRISMA Metamodel is
composed of, is the package Architectural Element (see Figure 7). This package is
going to be used for illustrating the contribution of this paper.

A PRISMA architectural element is defined by the metaclass
ArchitecturalElement (which is modelled as a UML class). It is an abstract metaclass
that specifies the commonalities of the three kinds of PRISMA architectural elements
(Components, Connectors and Systems (see Section 2.3.1). To define that an
architectural element has ports and weavings, the metaclass ArchitecturalElement has
two aggregation relationships (the UML Class Diagram aggregation), has and weaves,
with the metaclassess Port and Weaving, respectively. In addition, the metaclass
ArchitecturalElementen has one association relationship imports with the metaclass
Aspect to denote that an architectural element imports a set of aspects. Next, these
three relationships (has, weaves and imports) are explained in detail taking into
account the semantics that the cardinalities define: (i) An architectural element has at
least one port and a port can only be defined as part of an architectural element (see
the aggregation has in Figure 7); (ii) An architectural element imports at least one
aspect and an aspect can be imported by one or more architectural elements of the
software system (see the association imports in Figure 7); and (iii) An architectural
element can include a set of weavings to synchronize its aspects. These Weavings are

1446 Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

related to the architectural element; in fact they can only be defined as part of an
architectural element (see the aggregation weaves in Figure 7). Also, the metaclass
ArchitecturalElement has attributes, services and constraints to completely define its
properties.

Figure 7: The package ArchitecturalElements of the PRISMA metamodel

With regard to the verification of the PRISMA metamodel, we have distinguished
between two kinds of verification: verification rules that must always be satisfied
(hard constraints), and verification rules that must be satisfied once the model has
been completely finished (weak constraints).

The hard constraints and weak constraints of the MDD process of PRISMA have
been included during the development of PRISMA CASE thanks to the partial C#
classes that DSL Tools provide. In DSL Tools, each metaclass of the metamodel is
implemented as a partial C# class, which can be extended and customized to add
additional behaviour that cannot be included in the metamodel (such as verification
rules) [Cook, 07]. In PRISMA CASE, the extension facilities of the partial C# classes
have been used for including the needed verification constraints. Thus, since each
time that a metaclass is used for modelling a concept in a PRISMA model, its Partial
C# class is executed, the constraints of the PRISMA metamodel are verified during
the modelling process.

4.1.2 Graphical representation and mapping with PRISMA metamodel concepts

The PRISMA metamodel provides the primitives to model AOSAs. However, to use
these primitives in a modeling context, it is necessary to define a graphical
representation for using them. PRISMA CASE provides a graphical language to
model PRISMA software architectures in an intuitive and friendly way to facilitate
the architect tasks (see process 2, Figure 6). The graphical representation that supports
the main modelling concepts of PRISMA have been already presented in the paper
(see Figures 2, 3, 5 and 10).

Once the graphical representations are defined, each one is associated with its
corresponding metamodel concept (see process 3, Figure 6). The PRISMA CASE is
generated from the PRISMA metamodel, its graphical representations, and its partial

1447Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

C# classes. It is composed of a toolbox, a drawing sheet, a model explorer, a window
of properties, and a PRISMA menu (see Figure 8).

Figure 8: PRISMA CASE Tool: Toolbox, Drawing Sheet, PRISMA Tools Menu, and

Solution Explorer and Properties Windows.

1448 Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

4.1.3 Definition of PRISMA type models

Every PRISMA type model must be defined conforming to the PRISMA metamodel
(see process 4, Figure 6). A PRISMA type model is a generic system architecture
(banking system, tele-operated robot, electronic auction, etc.) that can be reused for
different specific systems. This step is easily developed thanks to the fact that
PRISMA type models are described using the concepts that are defined in the
metamodel as modelling primitives provided by PRISMA CASE. As a result, the user
is able to model PRISMA architectural models and to make sure that these models
satisfy the PRISMA metamodel.

The PRISMA MDD process assists the architect by providing mechanisms for the
verification of models. The verification of models allows the detection of modelling
mistakes, and keeps them from spreading throughout the rest of the stages. This is
essential in the PRISMA MDD process in order to avoid code generation from
incorrect models. Therefore, when a model reaches the last generation step (see
Figure 6), it is guaranteed the correctness of the model and the proper performance of
the code generation. The verification of architectural models consists of checking that
PRISMA type architectural models satisfy the properties and constraints that are
defined in the PRISMA metamodel. Specifically, the verification consists of checking
that the models satisfy the following properties: (i) the types of a model contain all the
information that their metaclasses establish, (ii) the relationships of the model only
connect the types which connection is allowed, (iii) the number of types or the
relationships between these types is correct, and (iv) the constraints of the metamodel
are satisfied. This verification process must always be applied to the modelling
process of PRISMA architectural models and must guide the software architect
throughout the process. In the modelling tool, the verification of constrains is
different depending on their kind. The weak constraints act as warnings during the
modelling process of PRISMA type models (see Figure 9.A), whereas hard
constraints are verified while the user is modelling.

Weak constraints can be violated during the modelling process, but they must be
rectified during the modelling process because all of them must be satisfied once the
architectural model is finished. For example: in PRISMA, an architectural element
must import at least one aspect, and must have at least one port (see Figure 7), but it is
possible to define an architectural element without establishing its ports and/or aspect,
and to establish them later.

Weak constraints provide more flexibility to the modelling process. The fact that
there are weak constraints that are not satisfied means that the modelling process has
not finished. However, there may be parts of the architectural model that are finished
and the architect may want to verify them. As a result, there are two kinds of
verifications that are supported by the PRISMA MDD process: Partial Verification
and Complete Verification. The Partial Verification consists of applying only those
constraints that affect the elements, concepts or parts of the model that have been
selected by the architect for verification (see Figure 9. B and Figure 9.C). This kind of
verification allows the architect to define a model, and then verify the model in an
incremental way, as well as to verify elements of the model for their later storage in
repositories and/or reuse in other models. Complete Verification is the verification
that is applied to the complete architectural model (see Figure 9.A). As a result,
complete verification consists of verifying all the constraints that must satisfy a

1449Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

model. In PRISMA, this process implies that all the restrictions of the PRISMA
metamodel are checked.

A) Complete verification: The verification result as a modelling error list

B) Partial verification: a specific type of
element: Interfaces, Aspects, Components,
etc.

C) Partial verification: only one
element of the architectural model,
the interface IMotionJoint

Figure 9: Partial and Complete Verification of PRISMA Type Modelling Tool

Hard constraints are very close to the graphical metaphor and must always be
satisfied without taking into account the modelling process situation. An example of
hard constraint is the requirement that a component cannot import a coordination
aspect. This is due to the definition of Component: “A component is an architectural
element that captures the functionality of software systems and does not act as a
coordinator among other architectural elements“(see Section 2.3.1). Since a
component is not a coordinator, it never imports a coordination aspect. This hard
constraint is materialized in the modelling tool as follows: If an architect associates a
coordination aspect with a component, the resulting model would violate the
PRISMA model. So, PRISMA CASE does not allow drawing this connection.

In our example, the result of this stage is a PRISMA type model for a generic
joint of a tele-operated robot that can be reused for designing different joints of the
same robot or joints of different robots. In this PRISMA type model, both
components, Actuator and WrapAspSyst, are coordinated through a connector

1450 Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

CnctJoint (see Figure 5). Each component imports its functionality through aspects,
and the connector CnctJoint imports its behaviour through a coordination and a safety
aspects, CoordJoint and SMotion respectively (see the appendix A). These two
aspects, CoordJoint and SMotion, are weaved (see Section 2.3.1) to ensure that a joint
is moved only after the connector safety constraints are satisfied assuring that a
movement is safe. Figure 10 illustrates this weaving, which specifies that the
invocation of the moveJoint service of CProcessSUC implies that the
DANGEROUSCHECKING service of SMotion will be executed beforeif the
moveJoint service of CProcessSUC. The weaving condition also establishes that the
execution of moveJoint must only be performed if the parameter Secure of
DANGEROUSCHECKING returns true (see code in Figure 10).

Figure 10: Weaving Definition among Aspects

Once the architect has finished modelling a PRISMA type model, the architect
can proceed to generate the C# code corresponding to this model (see process 4,
Figure 6). PRISMA type models are inputs of the transformations that must be
executed to automatically generate part of the C# code of the application. To execute
C# PRISMA AOSAs, the .NET platform-specific model for PRISMA has been hard-

1451Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

wired in its PRISMANET middleware. The PRISMANET middleware is a software
layer that sits above the .NET platform and allows the execution of PRISMA
applications by offering the aspect-oriented functionalities that .NET does not directly
provide. Thereby, PRISMANET implements the PRISMA model by extending the
.NET technology with the integration of aspects.

The transformation from models to code is performed using the code generation
patterns for types. These patterns constitute a catalogue of thirty eight code generation
patterns, structured as follows: the patterns PCS1- PCS19 are for generating C# and
the patterns PADL1- PADL18 are for generating AOADL (see pattern PC15, Table
1). The patterns PADL1- PADL18 have the mappings between the PRISMA
metamodel and AOADL. And the patterns PCS1- PCS19 have the mappings between
the PRISMA metamodel and the .NET platform-specific model, i.e., the C# classes
that allow instances to be executed on PRISMANET (see the example of the
component Actuator, Table 1). Since each type that is defined in a PRISMA type
model conforms to a metamodel concept, the execution of these mappings applied to
the type generates its corresponding C# code. This transformation process (see Figure
6) also contains the mappings between the metamodel and the graphical metaphor
because it has been defined in the process 3 of the MDD process (see Section 4.1.2).
Hence, the patterns are applied to the graphical models by transitivity: if a concept gx
of the graphical model corresponds with a concept of the metamodel mx, and the
concept of the metamodel mx corresponds with a concept of the . NET platform-
specific model .NETx, and a concept of the AOADL lx, then the concept gx
corresponds with the concepts .NETx and lx. This transformation is possible thanks to
the facility of DSL Tools “Transformation Templates”, which supports the
implementation of code generation patterns [Cook, 07]. The implementation of
patterns consists in substituting the parameters of the patterns (see section template,
Table 1) by the elements that the architect had modelled (see section graphical
representation, Table 1). However, it is important to keep in mind that the result of
this generation consists of reusable C# classes that still are not directly executable:
they are architectural element types that must be instantiated to configure a specific
system.

Pattern PCS15 presents the transformation template for architectural elements and
shows an example of the pattern execution, the component Actuator (see section
result of the pattern execution, Table 1). The pattern generates a component
implemented as a serializable C# class (see Table 1, Pattern PCS15, Section 4.3, line
4) as the transformation template establishes (see Table 1, Pattern PCS15, Section 3.2,
line 7). This class is serializable to enable its mobility in distributed versions of
PRISMA CASE. Since the architectural element is a component and it is named
Actuator, a public class called Actuator is generated as a subclass of the
ComponentBase class of PRISMANET (see Table 1, Pattern PCS15, Section 4.3, line
5), as the template establishes for the generation of components (see Table 1, Pattern
PCS15, Section 3.2, lines 6 and 8). This .NET class ComponentBase implements the
.NET specific component behaviour of the PRISMA model. Then, the constructor of
the class is created (see Table 1, Pattern PCS15, Section 4.3, line 6), as the template
establishes (see Table 1, Pattern PCS15, Section 3.2, lines 12-13). Finally, the set of
ports and aspects that make up a component are included by invoking the constructors
of the port and aspect PRISMANET classes (see Table 1, Pattern PCS15, Section 3.2,

1452 Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

line 14). Both classes implement the port and aspect elements of the PRISMA model
generating the ports and required aspects (see Table 1, Pattern PCS15, Section 4.3,
lines 7-11).

 Pattern PCS15: Simple Architectural Elements

1. PRISMA metamodel in DSL Tools

2.Graphical Representation

3.Transformation
3.1.Description
This pattern details how to generate the C# code from a simple architectural element.
Specifically, it only generates the structure of the architectural model. The internal code of
this structure, that is, ports, aspects and weavings are generated by other patterns related to
this pattern.
3.2.Template
...
1 using System; using System.Reflection; using PRISMA; using PRISMA.Aspects; using
PRISMA.Aspects.Types;
2 using PRISMA.Components; using PRISMA.Middleware;
3 namespace <#=this.Model.Name#>
4 {
5 <#foreach (ArchitecturalElement architecturalElement in this.Model.ArchitecturalElements){
6 if (architecturalElement is Component || architecturalElement is Connector) {#>
7 [Serializable]
8 public class <#=architecturalElement.Name#> : ComponentBase
9 <# if (architecturalElement is Connector) {#>
10 , IConnector
11 <# } #>
12 { public <#=architecturalElement.Name#>
13 (string name<#=ArchitecturalElementArguments(architecturalElement)#>) : base(name) {
14<#/* Aspects */ /* Weavings */ /* Ports */ #>
15 } }
16 <#
17 }/* endif (architecturalElement is Component || architecturalElement is Connector)*/...

1453Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

 Pattern PCS15: Simple Architectural Elements

4. Case Study
4.1.Description
 This pattern is illustrated using the component Actuator of the TeachMover case study.
The representation of the Actuator in the PRISMA model and the C# code generated from
this model by applying this pattern are presented as following.
4.2.Graphical representation

4.3. Result of the pattern execution
...
1 using System.Reflection; using PRISMA; using PRISMA.Aspects;
2 using PRISMA.Aspects.Types;using PRISMA.Components;using PRISMA.Middleware;
3 namespace RobotJoint
4 {[Serializable]
5 public class Actuator : ComponentBase{
6 public Actuator(string name) : base(name){
7 /* Aspects */ AddAspect(new RS232 ()); /* Weavings */
8 /* Ports */InPorts.Add (“Pcoord”, “IMotionJoint”, INTMOVE);
9 OutPorts.Add (“Pcoord”, “IMotionJoint”, INTMOVE);
10 InPorts.Add (“PSENSOR”, “IMotionJoint”, OUTMOVE);
11 OutPorts.Add (“PSENSOR”, “IMotionJoint”, OUTMOVE);
12 }}}...
Related Patterns

Pattern PCS16: Aspects importation, Pattern PCS17: Weavings and Pattern PCS18:
Ports.

Table 1: PRISMA Code Generation pattern PCS15: Simple Architectural Elements

4.2 From PRISMA Type Models to PRISMA Configuration Models

The definition of PRISMA configuration models from PRISMA type models
comprises processes 5 and 6, illustrated in Figure 6. Next they are described.

4.2.1 Definition of PRISMA Configuration Models

Every configuration model must conform to a PRISMA type model. A specific
configuration instantiates a generic architecture to specify a particular system. An
example is the TeachMover robot or a specific joint of a robot. This step is easily
developed thanks to the fact that PRISMA configurations are defined using the
concepts that are defined in its PRISMA type model as modelling primitives. They
are provided by PRISMA CASE, which automatically generates a domain-specific
graphical modelling tool to configure specific software architectures from the type
models. This is possible by generating a new DSL Tools project from the output of
the PRISMA type model (see Figure 11). The generation of the domain-specific
graphical modelling tool is launched from the PRISMA Type Modelling Tool (see
Figure 8, menu PRISMA Tools).

1454 Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

Figure 11: The architecture configuration of the joint Elbow

Figure 11 illustrates a domain-specific graphical modelling tool generated from
the Type model of the TeachMover. Note that the elements of the toolbox are the
components Actuator and WrapAspSyst, the connector CnctJoint and the connections
(attachments and bindings) that were previously defined in the PRISMA type model
of a Joint for Tele-Operatated Robots (see Figure 5 and Appendix A). In our example
we have configured the configuration model of the Elbow of the TeachMover robot
by dragging and dropping the primitives on the drawing sheet.

It is important to keep in mind that the verification of architecture
configurations is also really important. It consists of checking that a configuration of
instances satisfies the architectural model that it is an instance of (i.e.,
interconnections and compositions among instances are compliant with the interaction
and composition patterns of the architectural model). In these verifications it is also
considered the difference between weak constraints and hard constraints to support
partial and complete verification as it is provided in PRISMA type models (see
Section 4.1.3).

4.2.2 Integrating Types and Instances by means of Code Generation

Once the architect has finished the PRISMA configuration model, can proceed to
generate the C# application corresponding to the configuration model (see process 5,
Figure 6). The configuration model, together with the type model the code generated
for these type model, are the inputs of the transformations that must be executed to
automatically generate the final code of the application.

The transformation from models to code is performed using other patterns for
architectural instances. In the case of C#, these patterns implement the mappings
between a PRISMA type model (in our example, the Joint of a tele-operated robot)
and the .NET platform-specific model (i.e., the C# primitives that allow PRISMA

1455Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

AOSAs to be executed on PRISMANET). Since each instance that is defined in a
PRISMA configuration model is an instance of a type of its PRISMA mode (e.g. the
System instance Elbow is a System type Joint (see Figure 11), the mappings of the
PRISMA model concept with PRISMANET and with the AOADL are executed
generating its corresponding C# code. In this transformation step, the code obtained
from process 5 of Figure 6 is completed by generating the C# instances. These
instances can be launched and executed on PRISMANET. In order to do this, the
PRISMA CASE executes the middleware PRISMANET and instantiates the defined
configuration.

As a result of this execution, a generic GUI is launched to interact with the
architecture by invoking its services and checking the value of its attributes (see
process 6, Figure 6). The main purpose of the generic GUI is to assist the user in
checking the behaviour of the architecture without having to worry about aesthetic
details and without forcing the user to define a GUI in order to obtain a result.
However, it is important to mention that the use of this interface is not mandatory. In
other words, if the users prefer to define their own specialized GUIs, they can do so.

5 Related Work

The combination of AOSD and software architectures has created two new
challenges: (i) how to define the concept of aspect at the architectural level? and (ii)
how to integrate aspects and architectural elements in a suitable way? This section
analyzes the most relevant approaches that deal with these two questions and how
they satisfy the main set of desirable properties that any aspect-oriented architecture
MDD approach should fulfil (see Section 2.2.3). This section also discusses our
contribution taken into account the state of the art of AOSAs, paying special attention
to their role in the software development process and their MDD support.

5.1 Analysis of the main Aspect-Oriented Software Architectural approaches

Several approaches have emerged to integrate aspects and software architectures, as
[Fiadeiro, 04] promoted, either by extending original ADLs with aspects or by
creating new ADLs from scratch. AOSA approaches can introduce aspects in their
ADLs in different ways: as a component (AspectLEDA [Navasa, 05], JAC [Pawlak,
04], Jiazzi [McDirmid, 03]); as a connector among components (CAM/DAOP [Pinto,
03]); as a view of the architecture (AVA [Katara, 03]), etc. On the other hand, there
are approaches such as FuseJ [Suvée, 06], [Suvée, 05] that promote the idea that there
are no aspects because aspects can be modelled using components such as FuseJ,
AspectLEDA, JAC, Jiazzi and others. However, as Kizcales explains in his work
[Kiczales, 97], the semantics of these concepts is different; i.e., components and
aspects are not the same thing. This is due to the fact that aspects can be modelled as
components, but components cannot usually be modelled as aspects since a
component generally implements properties of more than one concern. Thanks to the
introduction of AO techniques to all the stages of the software life cycle, it is possible
to take advantage of the notion of aspect from the beginning of the system definition
by specifying the aspects that are found in the requirements specifications. As a result,
these aspects can be used throughout the rest of the development process as well as in

1456 Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

the maintenance process. However, approaches such as AspectLEDA and TranSAT
[Barais, 03], [Barais, 04] require having an initial architectural specification of the
system to introduce aspects. In these two approaches, aspects can only emerge as new
requirements of the system that are hooked to the base architecture, i.e. aspects are
only used for evolution during the maintenance process and not during the
development process. TranSAT is an approach for managing the evolution of
software architecture specifications using AOP principles. The fact that TranSAT
concerns are only technical and not more generic is another drawback. Thus,
TranSAT software architectures are defined using a pure compositional ADL, and
aspects only appear as an extension or evolution mechanism of software architectures.

In the AVA approach, the complete view of the software architecture is lost
because the use of the view notion is required to define aspects in its software
architectures. AVA uses concerns as viewpoints to obtain those views that are the
aspects of the software architecture. However, the use of architectural views from an
AO point of view should be considered as an additional mechanism for analyzing
software architectural features, instead of limiting the use of aspects to solely defining
views. In fact, in software development not only is it possible to define views using
aspects, but it is also possible to use common criteria such as roles, different
stakeholders, etc. As a result, this approach loses flexibility and expressiveness to
define views.

As Shaw presents in her work [Shaw, 94] , the specification of software systems
with complex coordination protocols is too difficult without the connector
architectural element. This is because the connector provides separation of component
interactions, thereby achieving a higher level of abstraction, modularity, and a greater
architectural view of the system. For this reason, connectors should be first-class
citizens of an original ADL. However, there are many ADLs that do not provide the
notion of connector. From these ADLs, many AOADLs such as CAM/DAOP,
AspectLeda, Jiazzi, AOCE [Grundy, 99] or JAC have been defined. CAM/DAOP
introduces aspects as connectors, JAC models aspects as components, and the
approaches of AspectLEDA, Jiazzi and AOCE implement weavings as connectors in
order to coordinate their “component aspects” (aspects are modelled as components
and are called component aspects). Therefore, they use the connector as their new
primitive to model aspects or weavings. It also introduces the weaving process inside
their “component aspects” losing the reusability feature of aspects, since component
aspects are dependent on the component aspects that they are connected to. In
addition, ADLs should be formal languages because it is the only way to reason about
the obtained software architectures, validate properties and generate code. However,
we lose the advantages of using an extended language such as XML or Java, as in the
CAM/DAOP and FuseJ proposals, respectively.

It is important to mention that a few of these approaches that combine AOSD and
software architectures provide support for complete development of software; i.e.
generating code from AOSA models. Therefore, they do not provide complete MDD
support for developing AOSAs through a tool. The PCS approach is supported by the
ConcernBase tool [Kande, 03]. This tool supports MDD in a partial way. It provides
mechanisms for modelling software systems, and it also allows the translation of
UML models to the SADL language [Moriconi, 97]. Technology independence is a
clear advantage of this approach. However, at the same time, it is a drawback of PCS

1457Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

because it does not provide support to translate its models to a programming language
and they cannot be executed on a specific technological platform. The CAM/DAOP
approach provides the DAOP platform [Pinto, 05]. It has been implemented in Java,
and it provides a middleware to support the execution of aspects, components, and the
dynamic weaving between them over the Java technology. The platform and the
DAOP-ADL specifications are integrated because the input of the DAOP platform is
the XML document that contains the specification of the architectural model in XML.
The XML document contains the information needed to instantiate components and
aspects. For this reason, when the document is loaded by the DAOP platform, the
instantiation of components and aspects starts taking into account the instantiation
information defined in the document. The work of Fuentes et al. [Fuentes, 03] of
CAM/DAOP is a first step to support MDD in the DAOP platform; however,
complete support using code generation techniques for the development is not
provided. It uses MDA to show the different views of the models that are specified in
the platform. The TranSAT framework consists of a tool called SafArchie Studio
[Barais, 03]. This tool offers several views of the evolution process depending on the
kind of user. It only supports a tool to analyze the evolution of the software
architecture and does not develop the aspect-oriented software architecture
application. The MADE tool has been developed to support the AVA approach
[Hammouda, 04]. It also shows the different views of the architecture, but it does not
provide complete MDD support. AOCE has a tool to support its methodology, which
extends the JViews [Grundy, 00] tool to support aspects. This tool is called
JComposer [Grundy, 98]. JASCO provides two different tools. One of the JASCO
tools transforms a Java bean into a JAsCo bean, and the other one integrates JAsCo
with the PacoSuite [Wydaeghe, 01], which allows component models to be modelled
at a high abstraction level and also allows one or more JAsCo connectors to be
generated from its models. However, the JComposer and the pair of tools that support
the JAsCo approach are dependent on technology. They are, in fact, implementation
frameworks.

5.2 Comparison of the main Aspect-Oriented Software Architectural
approaches

Two comparison tables2 have been defined from the criteria established in Section
2.2.3 and the approaches studied in Section 5.1 to analyze and compare them (see
Table 2 and Table 3). After the analysis and comparison of different approaches of
AOSA, it may be concluded that, at the architectural level, these proposals usually
extend ADLs without connectors and mainly follow an asymmetric model by
considering functionality as architectural components. They always introduce the
notion of aspect by using original architectural concepts instead of providing the
suitable semantics for aspects. Furthermore, despite the fact that there has been a lot
of work done, these proposals are only focused on a specific purpose: the analysis,
evolution or development of software architectures. And, they do not pursue several
purposes simultaneously to provide complete development and maintenance support.

2 Blank cells indicate that no information was available.

1458 Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

Aspect-
oriented
model

Architectura
l model

Definition of Aspects
Definition of
Weavings

ADL

PCS
Multidimensi

onal and
symmetric

Without
connectors

Aspects like connectors Inside aspects

SADL:
Formal

compositional
ADL

CAM /
DAOP

Asymmetric
Without

connectors
Aspects like connectors

Outside aspects using
communication

between interfaces

DAOP –
ADL: Not

formal, based
on XML

Superimp
osition

Asymmetric:
Two levels:
aspects and
architectures

Java Classes inside a
superimposition layer

Inside aspects

TRANSA
T

Asymmetric.
Only

technical
aspects

Without
connectors

Aspects like
components. Aspect

components

Outside aspects. Using
adapters or weavers

connectors

SafArchie
component

model

ASAAM Asymmetric Not fixed Scenarios Outside Aspects Not fixed
AV A Asymmetric Not fixed Aspects as views Outside Aspects Not fixed

Aspect
LEDA

Asymmetric:
Two levels:
Aspects and
architectures

Without
connectors

Aspects as components
Outside aspects using

coordinators
connectors

Leda: Formal
Compositiona

l ADL

AOCE Asymmetric
Without

connectors
Aspects as components

Outside aspects using
aspect managers

connectors

Compone
nt Views

Asymmetric

Not aspects. Concerns
as viewpoints for

defining architectural
views

Aspectual
Compone

nts

Asymmetric:
Two levels:
Aspects and

object-
oriented

applications

Aspects as components:
Aspectual components

Outside aspects with
connectors

Caesar Asymmetric
Aspect Collaboration

Interface (ACI)

Separation of ACI
modules into

implementation and
interaction of aspects

JASCO Asymmetric Aspects Hooks and connectors

FUSEJ
With

Connectors
Without Aspects:

Components
Connectors

JAC Asymmetric
Aspects as components:

aspectcomponents

Inside aspects

JIAZZI

Asymmetric:
Two levels:
Aspects and

object-
oriented

applications

 Units Linking units

Table 2: First comparison of aspect-oriented software architecture approaches

1459Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

Aspect-

Oriented
Evolution

Purpose Technology
Graphical
support

Tool support

PCS
Development of AO

Software
Architecture

Independent

UML profile:
Aspect is a

stereotype of a
UML class

ConcernBase tool:
modelling support,
ADL generation
from UML, no
code generation,

no execution

CAM/D
AOP

Dynamic
weaving but not

adding and
removing

aspects at run-
time

Development of AO
Software

Architecture
Independent UML profile

DAOP platform:
Java Technology,
modelling support,

DAOP
middleware for
code execution

Superi
mpositi

on

Programming aspect-
oriented Java

applications and
verifying properties
of aspect-oriented
superimposition

Dependent on
Java technology

TRAN
SAT

Only evolution
support, the initial
aspect-oriented

specification is not
supported.

Independent UML profile
SafArchie Studio.

Extension of
ArgoUML

ASAA
M

Analysis of Software

Architectures
Independent

UML profile:
scenarios

ASAAM-T

AVA
Development of AO

Software
Architecture

Independent

UML profile:
aspect is an

stereotype of a
UML package that

contains an
extension of
component

diagram

MADE tool:
modelling support

Aspect
LEDA

Development of AO

Software
Architecture

Independent

AOCE
Dynamic
weaving

Development of AO
Software

Architecture

Dependent on
JViews

JComposer: An
extension of the

JViews tool
Compo

nent
Views

Analysis of software

architectures
Independent UML profile

Aspectu
al

Compo
nents

Programming aspect-
oriented Java
applications

Dependent on
Java technology

Caesar
Programming aspect-

oriented Caesar
applications

Dependent on
Caesar

programming
language

Programming
framework

1460 Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

Aspect-

Oriented
Evolution

Purpose Technology
Graphical
support

Tool support

JASCO

Dynamic
weaving and
support for
adding and
removing

aspects at run-
time

Programming aspect-
oriented application

Dependent on
Java or .NET
technology

Programming
framework

FUSEJ
Programming aspect-
oriented applications

onto Java Beans

Dependent on
the Java Beans

component
model

JAC
Programming aspect-

oriented Java
applications

Dependent on
Java technology

JIAZZI
Programming aspect-

oriented Java
applications

Dependent on
Java technology

Table 3: First comparison of aspect-oriented software architecture approaches

Therefore, it may be concluded that an approach of AOSAs for symmetric AOMs
and ADLs with connectors that follows the MDD paradigm should be defined in such
a way that the starting premise would be fulfilled. This approach should include: (i) a
suitable semantics for the aspect concept; (ii) a graphical modelling metaphor, (iii)
technological support in order to execute the aspect-oriented architectural models that
have been defined independently of technology, (iv) guided support throughout the
development and maintenance processes of software following MDD: Reusability,
Verification, Code generation, Maintenance, Evolution, etc. The PRISMA MDD
approach was defined to fulfil these needs by completing the Tables 2 and 3 as
follows:

6 Experimental Results: PRISMA as an step forward in the
MDD process of Aspect-Oriented Software Architectures

This PRISMA MDD process has been applied to different kind of applications to
validate its feasibility. It has been used for the design and code generation of
academic examples such as, banking systems, auctions, etc. But also, it has been put
into practice for the generation of real applications that are deployed in the industry.
Specifically, PRISMA has been put into practice in the robotic domain. In particular,
the PRISMA MDD process has been applied to the development of the robots

1461Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

TeachMover [Pérez,08a] and Agrobot [Costa-Soria, 11], as a proof-of-concept for
this MDD process.

6.1 Validation Goal and Variables of measurement

The validation of our approach has been focused on the code generation capability of
the PRISMA MDD process. The analysis of this capability has been driven by
following question: Is the PRISMA MDD process able to automatically generate the
executable C# code of applications from Aspect-Oriented Software Architectural
models?.This main question has been refined into two more concrete questions:

Q1) Is the code generation complete or partial?, and
Q2) Is the code generation ready to be executed or it requires any update for

its execution?.
These two questions aims to find out the degree of automation of the process and
allow us to define the response variables for quantitatively measuring the PRISMA
MDD process. These variables are the following: Percentage of Generation (%G),
Percentage of Manually Programmed Code(%MPC), Percentage of Updated Code
(%UC), Number of Generated Lines of Code (NGLC), Number of Manually
Programmed Lines of Code (NMPLC), Number of Updated Lines of Code (NULC),
Number of Generated Classes (NGC), Number of Manually Programmed Classes
(NMPC), Number of Updated Classes (NUC), Number of Generated Interfaces
(NGI), Number of Manually Programmed Interfaces (NMPI), and Number of
Updated Interfaces (NUI) . In addition, other variables in terms of aspect-oriented
software architectures concepts has been collected: Number of Lines of Code for
Interfaces (NLCI), Number of Lines of Code for Aspects (NLCA), Number of Lines
of Code for Architectural Elements (NLCAE), Number of Lines of Code for
Components (NLCC). Number of Lines of Code for Conectors (NLCCN), and
Number of Lines of Code for Systems (NLCS).

6.2 Description of the Robotic Applications.

In this paper, we have used part of the architecture of the tele-operated robot
TeachMover to illustrate the PRISMA MDD process. The detailed description of the
functionality of this tele-operated robot is described in Section 3. The complete
architecture of the robot TeachMover consists of 16 architectural elements (5
Systems, 6 components and 5 connectors), and 16 aspects (6 functional aspects, 5
safety aspects and 5 coordination aspects) [Pérez, 08a].

In addition, the PRISMA MDD approach has been applied to the code generation
of the agriculture robot Agrobot [Costa-Soria, 11]. The Agrobot is conceived as an
autonomous, small-sized robot, which objective is to patrol –at periodical intervals- a
small field or delimited area, looking for pests or disease attacks over a set of growing
crops. When a threat is detected, a pesticide is applied to the field, as a first counter-
attack measure, and an alarm is sent to the manager to take further specialized actions.
The use of small agricultural robots (small-sized, light-weight, and autonomous)
[Blackmore, 06] is being encouraged in the Spanish agriculture sector to reduce the
high labour involved and the production costs of plague control. The Agrobot
architecture is hierarchically defined as a composition of Systems. The top-level
architecture consists of 12 Systems and 10 connectors. From these systems, the MDD

1462 Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

process has been applied to one of them, the System which allowed us to validate its
behaviour without being geographically in an agriculture field: the Vision System
[Costa-Soria, 2011]. The Vision System captures and pre-filters images from the
environment, which are used by other Systems of the Agrobot to look for crop
diseases and/or guide the movement. This System has been completely modelled
using the PRISMA CASE tool, and its code has been automatically generated. This
System consists of 8 architectural elements (1System, 4 components, and 3
connectors), 8 aspects (4 functional aspects, 3 coordination aspects, and 1
presentation aspect) and 3 interfaces.

6.3 Analysis of the Experimental Results

The PRISMA MDD process has been applied to the development of both robots. The
results obtained from the measurement of the variables identified in Section 6.1 are
described in Tables 4 and 5.

Table 4: Result of the robot TeachMover and Agrobot in percentages, nº classes and
nº interfaces

Table 5: Results of the robot TeachMover and Agrobot in Lines of Code

The results presented in Tables 2 and 3 reveals a high percentage of automatic-
code generation from PRISMA AOSA models: 94,3% for the TeachMover and
68,1% for the Agrobot, which correspond with 5686 and 1125 Generated Lines of
Code (NGLC), respectively (see Tables 4 and 5). The percentage of lines of code
manually programmed (NMPLC) of both applications correspond to the 345 lines of
code that implement the Generic Graphical User Interface (GUI) of PRISMA (see
Tables 4 and 5). This GUI allows the execution of any PRISMA application, and both
robots are executed using this GUI. As a result, both robots have the same number of
lines manually programmed, and the same Manually Programmed Classes (NMPC)
(see Tables 2 and 3). Since this number is constant, the percentage of generation
varies depending on the extension of the system. In this case, as the TeachMover is
more extensive than Agrobot, the percentage of automatic generation is higher.

On the other hand, the number of classes (see Tables 2 and 3) illustrates that the
PRISMA MDD process generates one class for each concept modelled, e.g. the 32
generated classes (NGC) of the TeachMover (see Fehler! Verweisquelle konnte
nicht gefunden werden.) correspond to the 16 architectural elements and 16 aspects
of its PRISMA aspect-oriented architectural model.

1463Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

With regard the number of lines of code that have been generated, most of them
are related to the body of aspects, which define state (attributes), services (methods),
and protocols (the valid transitions among services).

As a result of the modelling and code generation process of the Vision System of
the Agrobot, the experiment showed that some behaviour could not be modelled and
must be directly introduced on the generated code. This was the case for low-level
behaviour: the code responsible for interacting with the image capturing device, and
the algorithms for processing and filtering the images captured. In this case, the
approach was to replace the body of the services automatically generated with the
specific, low-level code. This resulted in 180 lines of code updated (see NULC in
Table 5), which in total represented only the 10,9% of the total amount of code (see
%UC in Table 3). This is significantly better that developing all the code from the
beginning.

These code generation results reveal that the complete automatic-code generation
from AOSA models is feasible. In this contribution we provide an approach that takes
a step further in the automatic code generation from aspect-oriented software
architectures. The PRISMA MDD process is able to generate the code of the business
logic, but is not able to automatically generate its GUI. This establishes the next step
to improve this MDD process and its modelling framework.

6.4 Evaluation of validity and limitation

This approach has been validated by automatically generating the code of two real
applications from their aspect-oriented architectural models. However, it is difficult
to generalize the results because, as any experiment, there is a set of factors that
affects the results of the response variables. In this case, the main factors that have
been identified are: 1) the project size, 2) the architecture complexity, and 3) the
concerns modelled.
The experimentation field recommends to intentionally vary these factors to mitigate
the variations that could impact the results and facilitate the generalization of these
results [Juristo, 01]. Following this guideline, we have applied the PRISMA MDD
process to two applications with different size and complexity. However, to
completely mitigate these results, it is necessary to apply the process to other
domains, in which other concerns should be required, such as persistence, graphical-
user interface or privacy in information systems or social network services.

7 Conclusions and Future Work

In this paper, the PRISMA MDD process of PRISMA is presented as an important
advance in the automatic generation of code from AOSAs. This contribution
describes this process and each one of their generation steps to serve as a first
guidance for the MDD of AOSAs. This process also defines two steps of
transformation that are supported by generation patterns that allow the generation of
AOADL specification and C# code. Hence, this contribution provides a pattern
template to describe the transformations of code generation. Moreover, the need to
support model verification throughout the MDD process is established by defining not
only the kind of verifications (partial, incremental, complete), but also the kind of

1464 Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

constraints (hard constraints and weak constraints) to consider. It is important to
emphasize that the refinement from the types model to the configuration model of
PRISMA MDD process provides a domain-specific model to configure PRISMA
software architectures. This domain-specific model is important because it reduces the
gap between the user and his/her knowledge about modelling during the MDD
process.

This PRISMA MDD process has been materialized into the PRISMA CASE
framework, which supports each one of the steps that the process establishes.
PRISMA CASE has allowed us to apply the process to the TeachMover and Agrobot
robots. In this paper, we present the code generation results of both applications and
the analysis reveals that the complete automatic-code generation from AOSA models
is feasible with the presented MDD process,

PRISMA is a new approach that opens a perfect setting for further research. All
the parts that the PRISMA approach is composed of can be extended in order to face
new challenges. This MDD process can be enriched by introducing more layers of
refinement or defining new transformations for other languages, models or platforms
and/or developing abstract middleware that would hide the differences between the
different platforms. Another extension to this MDD process is the incorporation of
COTs throughout the process. Yet another task is to create a repository with a query
language and metadata description of the architectural elements and aspects to
improve reusability even more. Finally, it is necessary to evaluate PRISMA using
applications of other domains, which could allow us to generalize the obtained
results..

Acknowledgements

The work reported here has been partially sponsored by the Spanish MEC projects (DSDM
TIN2008-00889-E and MULTIPLE TIN2009-13838), and MICINN (INNOSEP TIN2009-
13849)

References

[Aksit, 05] Aksit, M., Systematic analysis of crosscutting concerns in the model-driven
architecture design approach. Symposium How Adapatable is MDA?, 2005.

[Amaya, 05] Amaya, P. A., González, C. F., & Murillo J. M., MDA and separation of aspects:
An approach based on multiple views and subject oriented design. AOM, AOSD, Chicago,
USA, 2005.

[Barais, 04] Barais, O., Cariou, E., Duchien, L., Pessemier, N., & Seinturier, L., Transat: A
framework for the specification of software architecture evolution. The 1st Int. Workshop on
Coordination and Adaptation Techniques for Software Entities, Oslo, 2004.

[Barais, 03] Barais, O., Duchien, L., & Pawlak, R, Separation of Concerns in Software
Modeling: A Framework for Software Architecture Transformation. IASTED Int. Conf. on
Software Engineering Applications, ACTA Press, pp. 663-668, Los Angeles, CA, USA, 2003

[Beydeda, 05] Beydeda, S., Book, M., & Gruhn V., Model-Driven Software Development,
Springer, 2005.

1465Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

[Blackmore, 06] B.S. Blackmore, H.W. Griepentrog, S. Fountas. Autonomous Systems for
European Agriculture. In proc. of Automation Technology for Off-Road Equipment (ATOE).
Bonn, Germany, 2006.

[Chitchyan, 05] Chitchyan, R., Rashid, A., Sawyer, P., Garcia, A., Pinto, M., Bakker, J., et al.:
Report synthesizing state-of-the-art in aspect-oriented requirements engineering, architectures
and design. AOSD-Europe Deliverable D11, 2005.

[Cook, 07] Cook S., Jones G., Kent S., Cameron Wills A., Domain-Specific Development with
Visual Studio DSL Tools, ISBN-10: 0-321-39820-3, Addison-Wesley, 2007.

[Costa-Soria, 11] Costa-Soria, Cristobal: Dynamic Evolution and Reconfiguration of Software
Architectures through Aspects. PhD Thesis.Universidad Politécnica de Valencia, June 2011.

[Cuesta, 05] Cuesta, C., Romay, M.P., De La Fuente, P., & Barrio-Solórzano, M., Architectural
Aspects of Architectural Aspects. 2nd European Workshop on Software Architecture, LNCS
3527, Pisa, 2005.

[Cuesta, 02] Cuesta C.E.. Dynamic Software Architecture based on Reflection. PhD. Thesis,
Dpt. of Computer Science, University of Valladolid, 2002. (In Spanish)

[Dijkstra, 76] Dijkstra, E., A Discipline of Programming. Prentice-Hall, 1976.

[EFTCoR, 02] EFTCoR Project: Friendly and Cost-Effective Technology for Coating Removal.
V Programa Marco, Subprograma Growth, G3RD-CT-2002-00794, 2002.

[Fernández, 05] Fernández C., Pastor J.A., Sánchez P., Álvarez B., Iborra A., Co-operative
Robots for Hull Blasting in European Shiprepair Industry. IEEE Robotics and Automation
Magazine (RAM), September 2005.

[Fiadeiro, 04] Fiadeiro, J.L., & Lopes, A, CommUnity on the Move: Architectures for
Distribution and Mobility. FMCO 2003, LNCS3188, pp. 177–196. Springer Heidelberg, 2004.

[Fuentes, 03] Fuentes. L., Pinto. M., & Vallecillo A. How MDA can help designing
component- and aspect-based applications. EDOC, pp. 124-135, 2003.

[Garlan, 95] Garlan, D., Perry D., Introduction to the Special Issue on Software Architecture.
IEEE Transactions on Software Engineering, vol. 21 no. 4, April 1995.

[Grundy, 00] Grundy J.. Multi-perspective specification, design and implementation of
software components using aspects. Int. Journal of Software Engineering and Knowledge
Engineering, vol. 20, 2000.

[Grundy, 99] Grundy, J. Aspect-Oriented Requirements Engineering for Component-based
Software Systems. The 4th IEEE Int. Symp. on RE, 1999.

[Grundy, 98] Grundy, J.C., Mugridge, W.B., & Hosking, J.G.. Static and dynamic visualisation
of component-based software architectures. The 10th Int. Conf. on Software Engineering and
Knowledge Engineering, KSI Press, San Francisco, California, USA, 1998

[Hammouda, 04] Hammouda, I., Koskinen, J., Pussinen, M., Katara, M., & Mikkonen, T.,
Adaptable Concern-Based Framework Specialization in UML. Automated Software
Engineering, pp. 78-87, Linz, Austria, 2004.

[Harrison, 02] Harrison, W., Ossher, H., & Tarr, P., Asymmetically vs Symmetrically
Organized Paradigms for Software Composition. IBM T.R. RC22685 (W0212-147) Thomas J.
Watson Research Center, IBM, 2002.

[Juristo, 01] Juristo N., Moreno A.M., Basics of software engineering experimentation, Kluwer,
978-0-7923-7990-4, pp.1-395, 2001.

1466 Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

[Kande, 03] Kande M., A concern-oriented approach to software architecture. PhD. Thesis,
Lausanne, Switzerland: Swiss Federal Institute of Technology (EPFL), 2003.

[Katara, 03] Katara, M, & Katz, S., Architectural Views of Aspects. The Int. Conf. on AOSD,
ACM Press, 2003.

[Kiczales, 01] Kiczales, G., Hilsdale, E., Huguin, J., Kersten, M., Palm, J., & Griswold W.G.,
An Overview of AspectJ. The 15th European Conf. on Object-Oriented Programming, LNCS
2072, Budapest, Hungary, 2001.

[Kiczales, 97] Kiczales, G., Lamping, J., Mendekar, A., & Maeda, C., Aspect-Oriented
Programming. The 11th European Conf. on Object-Oriented Programming, LNCS-1241,
Jyväskylä, Finland, 1997.

[Kruchten, 95] Kruchten P., The 4+1 View Model of Architecture. IEEE Software, Vol. 12, no.
6, November, 1995.

[Kulkarni, 03] Kulkarni, V., & Reddy S., Separation of concerns in model-driven development,
IEEE software 20(5), 2003.

[McDirmid, 03] McDirmid, S., & Hsieh, W.C.. Aspect-Oriented Programming with Jiazzi. The
2nd Int,. Conf. on Aspect-Oriented Software Development (AOSD), Boston, Massachusetts,
pp. 70-79, 2003.

[Medvidovic, 00] Medvidovic, N., & Taylor, R.N., A Classification and Comparison
Framework for Software Architecture Description Languages. IEEE Transactions on Software
Engineering,Vol. 26, No. 1, 2000.

[Meyer, 03] Meyer B., The Grand Challenge of Trusted Components. International Conference
on Software Engineering (ICSE), IEEE Computer Press, Portland, Oregon, May 2003.

[Meyer, 98] Meyer, Bertrand, Object-Oriented Software Construction, Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1998.

[MOF, 12] Object Management Group (OMG), “Meta-Object Facility (MOF) Specification 2.0
TR formal-06-01-01,” http://www.omg.org/spec/MOF/2.0/PDF/.

[Moriconi, 97] Moriconi, M., & Riemenschneider, R. A., Introduction to SADL 1.0: A
Language for Specifying Software Architecture Hierarchies. Technical Report SRI-CSL-97-01,
SRI Int., 1997.

[Navasa, 05] Navasa, A., Pérez, M.A., & Murillo, J.M., Aspect Modelling at Architecture
Design. Second European Workshop on Software Architecture, LNCS 3527, Springer, Pisa,
2005.

[NET,12] .NET Technology, Microsoft Corporation, http://www.microsoft.com/net

[Parnas, 85] Parnas, D. L. 1985. Software aspects of strategic defense systems. Commun. ACM
28, 12 (Dec. 1985), 1326-1335. DOI= http://doi.acm.org/10.1145/214956.214961

[Parnas, 72] Parnas D. L., On the Criteria to be used in Decomposing Systems into Modules.
Communications of the ACM, Vol 15, No.12, pp. 1053–1058, December 1972.

[Pawlak, 04] Pawlak, R., Seinturier, L., Duchien, L., Florin, G., Legond-Aubry, F. , & Martelli,
L, JAC: an Aspect-Based Distributed Dynamic Framework. Software Practice and Experience,
V. 34, pp.1119-1148, 2004.

[Pérez, 08a] Pérez, J., Ali, N., Carsí, J.A., Ramos, I., Álvarez, B., Sánchez, P., Pastor, J.A.,
Integrating aspects in software architectures: PRISMA applied to robotic tele-operated systems.
Information & Software Technology 50(9-10): 969-990, 2008.

1467Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

[Pérez, 06a] Pérez, J. PRISMA: Aspect-Oriented Software Architectures. PhD Thesis,
Department of Information Systems and Computation, Polytechnic University of Valencia,
2006.

[Pérez, 06b] Pérez, J., Ali, N., Carsí, J.A., & Ramos, I., Designing Software Architectures with
an Aspect-Oriented Architecture Description Language. The 9th Int. Symp. on Component-
Based Software Engineering, LNCS 4063, Västerås, Sweden, 2006.

[Perry, 92] Perry, D., & Wolf, A., Foundations for the Study of Software Architecture. ACM
Software Engineering Notes, Vol. 17, No 4, p 40-52, 1992.

[Pinto, 05] Pinto, M., Fuentes, L., Troya, J.M., A Dynamic Component and Aspect Platform,
The Computer Journal Vol. 48, No. 4, pp. 401-420, 2005.

[Pinto, 03] Pinto, M., Fuentes, L, & Troya, J.M., DAOP-ADL: An Architecture Description
Language for Dynamic Component and Aspect-Based Development. The Int.Conf. on
Generative Programming and Component Engineering, LNCS 2830, Springer, 2003.

[Schmidt, 06] Schmidt D.C., Model-Driven Engineering, IEEE computer Society, 2006.

[Shaw, 94] Shaw, M.,B, Procedure Calls Are the Assembly Language of Software
Interconnection: Connectors Deserve First-Class Status. Workshop on Studies of Software
Design, 1994.

[Simmonds, 05] Simmonds, D. et al, , An aspect oriented model driven framework. 9th
IEEE Int. EDOC Enterprise Computing Conf. pp. 119-130, 2005

[Suvée, 06] Suvée, D., De Fraine B., & Vanderperren, W., A symmetric and Unified Approach
Towards Combining Aspect-Oriented and Component Based Software Development. 9th Int.
Symp. on Component-Based Software Engineering, LNCS 4063, Västerås, Sweden, 2006.

[Suvée, 05] Suvée, D., Vanderperren, W., Wagelaar, D., & Jonckers, V., There Are No
Aspects. ENTCS, Special Issue on Software Composition, Vol. 114, pp. 153-174, 2005.

[Szyperski, 98] Szyperski C., Component software: beyond object-oriented programming.
ACM Press and Addison Wesley, New York, USA (1998).

[TeachMover, 12] The TeachMover Robot,
http://www.microbotzone.com/TeachMover/TeachMover/tabid/3648/Default.aspx

[Wydaeghe, 01] Wydaeghe, B., Vanderperren, W., Visual Component Composition Using
Composition Pattems. Tools, Santa Barbara, California, 2001.

1468 Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

Appendix A: Model-Driven Development of Aspect-Oriented
Software Architectures

In this appendix, we show in detail the complete architecture of the running example
that has been used in the paper for illustrating the PRISMA MDD process. This is the
PRISMA type model for a generic joint of a tele-operated robot that can be reused for
designing different joints of the same robot or joints of different robots.

Figure 13 illustrates how the components, Actuator and WrapAspSyst, are
coordinated through a connector CnctJoint (see Figure 12), how each component
imports their functionality through aspects (see Figure 17, Fehler! Verweisquelle
konnte nicht gefunden werden., and Fehler! Verweisquelle konnte nicht gefunden
werden.), and how the connector CnctJoint imports its behaviour through a
coordination and a safety aspect, CoordJoint and SMotion respectively, to define its
behaviour (see Figure 16). In addition, aspects import their corresponding interfaces,
which are published through the architectural element ports that import these aspects
(see Figure 14 and Figure 15). Finally, it is important to mention the need for a
weaving emerges due to the fact that a joint is moved only after the connector safety
constraints are satisfied assuring that a movement is safe (see Figure 16).

Figure 12: The joint architecture of a tele-operated robot

1469Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

Figure 13: The PRISMA System Aspect-Oriented Architecture of a Joint for Tele-

Operated Robots

1470 Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

Figure 14: Interfaces ICOT, IMotionJoint and IRead

Figure 15: Interfaces IJoint, IUpdatePos and IQueryPos

Figure 16: Weaving definition between the Aspects CProcessSuc and SMotion
(shown in collapsed format)

1471Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

Figure 17: Left: Functional Aspect Fjoint (shown in expanded format)
 Right: Coordination Aspect CProcessSUC (shown in expanded format)

1472 Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

Figure 18: Functional Aspect IACOT (shown in expanded format)

Figure 19: Safety Aspect SMotion (shown in expanded format)

1473Perez J., Ramos I., Carsi J.A., Costa-Soria C.: Model-Driven Development ...

