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Abstract: Many large datasets can be represented as hierarchical structures,
introducing not only the necessity of specialized tree visualization techniques, but also
the requirements of handling large amounts of data and offering the user a useful insight
into them. Many two-dimensional techniques have been developed, but 3-dimensional
ones, together with navigational interactions, present a promising appropriate tool to
deal with large trees.

In this paper we present a hyperbolic tree layout extended to support different level-
of-detail techniques and suitable for large tree representation and visualization. This
layout permits the visualization of large trees with different level of detail in an
enclosed 3-dimensional volume. As a significant part of the layout, we also present a
Weighted Spherical Centroidal Voronoi Tessellation, an extension of planar Weighted
Centroidal Voronoi Tessellations, in order to find an appropriate distribution of nodes
on a spherical surface.
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1 Introduction

There exist many datasets with a highly variable number of relationships among

its elements. In particular, when the relations are structured hierarchically, a

tree is a powerful abstraction. A broad set of applications use them to represent

the relationships in their datasets. In this context it is necessary to provide

visualization techniques that are able to handle large trees; this is an important

problem that requires special attention.

In contrast to two-dimensional space, the additional third dimension offers

more room for placing nodes. This quality makes 3-dimensional tree layouts

suitable for visualizing large trees. However, the two-dimensional nature of the

output screen introduces the necessity of suitable interactions which enable the

user to navigate through the representation [Kaufmann and Wagner, 2001].

Level-of-detail techniques are based on simplification of complex objects’

details or groups of objects. This simplification might be achieved substituting

a complex object or a group of objects with a simpler representative new object.

The level of simplification depends on how significant the replacing object is in

comparison with the objects or group of object to be replaced.

In this paper we present an interactive hyperbolic tree layout which uses

a natural mathematical abstraction to deal with hyperbolic geometry and it is
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based on the layout presented by T. Munzner in [Munzner, 1997, Munzner, 2000]

and Weighted Centroidal Voronoi Tessellations. The layout supports different

levels of details (LOD) and can display on the order of 105 nodes. Hyperbolic

geometry is regulated by gyrovector spaces just as Euclidean geometry is

regulated by vector spaces; this permits to have a controlled frame to perform

geometric transformations. The main aspect to highlight is how theoretical

hyperbolic analysis and discrete tessellation algorithms interplay to accomplish

an interactive visualization of large trees.

First, we present the previous work; then we introduce some basic concepts on

hyperbolic geometry and the models involved in the development of the layout.

Next, we describe the Gyrolayout and detail how to distribute the nodes in the

model and the resulting algorithms, including the LOD approach. Afterwards,

we introduce the chosen visual mapping and the interactions provided by the

prototype implementing our layout. Finally, we present some important details

about the implementation of the prototype and a comparison of our layout with

the other existing ones. The last section is dedicated to conclusions and future

work.

2 Previous Work

A commonly used strategy to gain more room to visualize trees and graphs

is to design a 3D visualization instead of a visualization in 2D. Generally, 2D

algorithms are adapted to 3D. However, the results are not always advantageous:

occlusion between objects and navigation in the 3-dimensional space, for

instance, are new problems due to the addition of this extra dimension.

At the moment, there are some 3D tree layouts that are a generalization

of a 2D layout, while others were developed directly in 3D. Among the first

ones, there is the Spherical layout [Larrea, 2006] which is a generalization of

the radial layout. On the other hand, Cone Tree [Robertson et al., 1991] is

an example of a layout developed directly in 3D. Spherical representation has

been further explored in order to achieve improved tree and graph visualiza-

tions ([Dmitrieva and Verbeek, 2009], [Choi et al., 2011], [Schulz et al., 2011],

[Brath and MacMurchy, 2012]).

A different strategy to gain even more room, is to lay out the tree

in the hyperbolic space. The H3 layout [Munzner, 1997] is a generalization

of tree visualizations using projections of hyperbolic geometry in the plane

[Lamping et al., 1995]. Walrus [CAIDA, 2005] is an implementation for visual-

izing trees in 3D hyperbolic space.

Hyperbolic space is suitable for visualization of very large trees: both

the available room and trees grow exponentially. In combination with a

multiresolution strategy, it permits to accommodate even larger trees.
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We have developed a tree layout that combines a multiresolution technique

with a representation of the tree in hyperbolic space. The former allows the

visualization of very large trees, while the latter enables interactive execution

times, achieving together an appropriate layout to visualize large trees.

3 Basic Concepts on hyperbolic geometry

Hyperbolic geometry ([Hestenes et al., 2001]) differs from Euclidean geometry

in the negation of its fifth postulate. In particular, in two-dimensional Euclidean

space (Euclidean 2-space or Euclidean plane), given a straight line a and a point

P , P /∈ a, there exists only one line b containing P which is parallel to a. However,

in the two-dimensional hyperbolic space (hyperbolic 2-space or hyperbolic plane)

there exist many different lines containing P which are parallel to a.

There are several standard models of hyperbolic geometry: the hyperboloid

model, the Poincaré ball and the Klein ball (also known as Beltrami ball),

among others. We will focus on the Klein model. The Klein model, as well

as the Poincaré model, represents the whole hyperbolic space in an enclosed

Euclidean volume; in addition, lines in the Poincaré model correspond to arcs

in the Euclidean space, whereas lines in the Klein model are also lines in the

Euclidean space. This last characteristic makes the Klein model preferable to

the Poincaré model.

Gyrovector spaces [Ungar, 2005] are an adaptation of vector spaces for

hyperbolic geometry; in particular, the Klein model algebra of hyperbolic

geometry is determined by Einstein gyrovector spaces1. As vector spaces are

a natural way of dealing with Euclidean space, and gyrovector spaces are an

adaptation of vector spaces, they are a natural way of dealing with hyperbolic

spaces. In this section we present a brief introduction to gyrovector spaces and

its operations, which are necessary to fully understand the algorithms presented

in the following sections.

Let V = (V, +, ·) be a real inner product space (Euclidean space) with the

binary operation + and the inner product ·, and let Vs be the s−ball of V, for

any fixed s > 0:

Vs = {v ∈ V : ‖v‖ < s}.

The Einstein addition ⊕ (gyroaddition) is a binary operation in Vs defined

by:

u ⊕ v =
1

1 + u·v
s2

(

u +
1

γu

v +
1

s2

γu

1 + γu

(u · v)u

)

.

where

γu =
1

√

1 − ‖u‖2

s2

1 Möbious gyrovector spaces determine the Poincaré model algebra of hyperbolic
geometry.
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and the Einstein scalar multiplication ⊗ is defined by

r ⊗ 0 = 0

r ⊗ v = s tanh
(

r tanh−1 ‖v‖
s

)

v
‖v‖

where r ∈ R, v ∈ Vs and v 6= 0. In every case, the norm ‖·‖, the inner product,

and the vector-scalar operations are the ones that the ball Vs inherits from the

vector space V . Note that gyroaddition is neither commutative nor associative.

The Einstein gyrovector space (R3
s, ⊕, ⊗) is equivalent to the Beltrami ball

model of hyperbolic geometry, which is represented by a ball of radius s

embedded in the 3-dimensional Euclidean space R3. In our layout we assume

s = 1, however, in what remains of this section, we keep s as a possible variable.

Now, it is necessary to define some important concepts in order to use

operations of the Einstein gyrovector space to implement hyperbolic geometry

in our tree visualization.

Gyropoint and gyroposition We will call gyropoint each element of a

gyrovector space to avoid ambiguity between them and regular points in

the Euclidean space. A gyroposition is a position determined by a gyropoint.

Gyrodifference The gyrodifference ⊖ is defined as

a ⊖ b = a ⊕ −b = a ⊕ (−1 ⊗ b).

Gyrometric and metric The metric of the Einstein gyrovector spaces is

defined as

h(a, b) = tanh−1 d(a, b)

s
= φb⊖a

where d(a, b) = ‖ ⊖ a ⊕ b‖ = ‖b ⊖ a‖ is a gyrometric of the Einstein

gyrovector spaces, and φv = tanh−1 ‖v‖
s

.

Normalized gyrovector We will consider that a gyrovector v is normalized

if the metric h(0, v) = φv⊖0 = φv = 1. Therefore, ‖v‖ = s tanh 1. Given a

gyrovector u, the normalized gyrovector of u will be

1

φu

⊗ u =
s tanh 1

‖u‖
u.

Gyrodirections and angles A gyrodirection is a gyrovector v such as ‖v‖ = 1.

The angle between two gyrovectors is the angle between the two associated

gyrodirections. Given two gyrovectors u and v, let α be the angle between

them, then cos α = u
‖u‖ · v

‖v‖ .

Orthonormal basis An orthonormal basis is a set of 3 normalized gyrovectors

〈b1, b2, b3〉 where the angle between every pair of them is π/2:

‖b1‖ = ‖b2‖ = ‖b3‖ = s tanh 1

b1 · b2 = b1 · b3 = b2 · b3 = cos π/2 = 0
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Gyrovector The rooted gyrovector pq defined by tail p and head q is given by

the difference pq = ⊖p ⊕ q.

Translations and rotations A translation T of a gyropoint p by a gyrovector

t is defined by the equation p′ = Tt(p) = p ⊕ t. The inverse translation T −1

of the translation T is p = T −1
t (p′) = p′

⊞ −t, where ⊞ is called coaddition

and is defined by the equation

u ⊞ v = 2 ⊕
γuu + γvv

γu + γv

.

Let l be a line defined by two distinct gyropoints p and q. A rotation

R of a gyropoint v about the line l by an angle θ is defined in

[Phillips and Gunn, 1992] by the equation

Rl,θ(v) = T −1
t

(

Reuc
u,θ ( Tt( v ) )

)

,

where

t = −
p · (p − q)

(p − q) · (p − q)
q −

q · (q − p)

(q − p) · (q − p)
p, u =

p − q

‖p − q‖

and Reuc
u,θ is the regular rotation in Euclidean 3-dimensional space.

Gyroparallelogram Let a, b and c be three gyropoints. Then, the four points

a, b, c and d are the vertices of the gyroparallelogram abdc, if d = (b⊞c)⊖a.

The gyroparallelogram addition law Let abcd be a gyroparallelogram, then

(⊖a ⊕ b) ⊞ (⊖a ⊕ c) = (⊖a ⊕ d) (see Figure 1).

4 General layout characteristics

We designed a new layout suitable to accommodate very large trees (in the

order of 105 nodes) in the hyperbolic 3-dimensional space. This layout allows

the visualization of large trees with different levels of details in an enclosed

volume embedded in the 3-dimensional Euclidean space. This LOD facilitates

the exploration of the dataset by reducing the visual overload.

In the layout we use two different strategies for placing the nodes. At first,

the root is placed inside the unit ball (e.g. the center of the sphere), and its

children are placed occupying as much as possible of the surrounding available

space; to accomplish this task we use a specially designed Centroidal Voronoi

Tessellation ([Du et al., 1999]). To place the nodes at a depth greater than or

equal to 2 (i.e. the descendants of the children of the root) we based our layout on

the placement scheme presented in [Munzner, 1997]: the children of a node n are

placed on the surface of a hemisphere centered at that node; the hemisphere is

pointing in the outward direction, from the parent node of n to n (see Figure 2).

The algorithm has three major steps:
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u

v
w

a

b

c d

(a) Let d be the gyropoint such that
d = (b ⊞ c) ⊕ a, then abcd is a
gyroparallelogram. Furthermore, let u =
⊖a ⊕ b, v = ⊖a ⊕ c and w = ⊖a ⊕ d,
then u ⊞ v = w.

a

b

c

d

(b) In the particular case where a =
0, the gyroparallelogram addition law
reduces to d = b ⊞ c.

Figure 1: The Einstein gyroparallelogram addition law. Figure (a) illustrates the

gyroparallelogram addition law in the general case. On the other hand, figure

(b) shows the particular case where one of the vertices of the gyroparallelogram

is coincident with the origin.

n

Parent node of n

Outward direction

Figure 2: The hemisphere where the children of the node n are placed is centered

at n and is pointing in the direction from the parent node of n to n.

A) a bottom-up traversal that calculates the radii of the hemispheres where the

children of every node (excepting the root) are to be placed.

B) a weighted centroidal spherical Voronoi Tessellation that places the root and

distributes its children in their final location on the sphere surface.

C) a top-down traversal that places the remaining nodes (the descendants of

root’s children).

In the following three subsections each of these steps is described in detail.

The algorithm to generate the Gyrolayout is based on these algorithms, and is

presented in the fourth subsection. The last subsection is dedicated to present
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the level of detail approach for our layout.

4.1 Calculating the radii of the hemispheres

The bottom-up traversal (outlined in Algorithm 1) calculates the radii of the

hemispheres needed to place the children of every node. It starts arranging the

children of each node in a disk. Then, for each disk, it calculates the radius of the

hemisphere where the nodes are to be projected; the hemisphere has the same

area as the disk.

Let n be a node and h1, h2, . . . , hm its m children. Initially, the bottom-up

traversal calculates recursively the size of the disk necessary to accommodate the

children of each h1, h2, . . . , hm (step 1.1), that is the size of the disk necessary

to accommodate all the grandchildren of n. After that, it arranges them into

circular rings (steps 1.3–1.7), starting from an internal concentric circle. The

nodes must be arranged in such a way that those with larger associated circles

occupy the central rings, and as the size of the circles decreases, the nodes are

placed in outer rings (see Figure 3). For a leaf node, the associated size (radius)

is the radius of the sphere which delimits the volume occupied by the visual

element of that leaf. The algorithm knows if there is enough room to place a

node in a ring (step 1.5) by keeping track of the distance δ (see Figure 3) and

the occupied angle α of each ring:

1: Let R be a ring with distance δ and occupied angle α.

2: Let n be a node with radius r.

3: There is enough room for n in R if 2π − α ≥ sin−1 r/δ.

Once all the children are arranged, the algorithm calculates the size (radius)

of the whole circle (step 1.8), and finally, calculates the size (radius) of a

hemisphere with the same area (step 1.9). Figure 4 shows two views of a

hemisphere where only leaves are placed. In the hyperbolic space, the area

of a circle with radius r and the surface area of a sphere with radius r are2,

respectively:

area of a circle 4π sinh2( r
2 )

surface area of a sphere 4π sinh2(r)

Then, the surface area of a hemisphere with radius r is 2π sinh2(r). In this

algorithm we need to find the radius Rs of a hemisphere with the same area as

a circle with radius Rout. Isolating Rs from the following equality

4π sinh2

(

Rout

2

)

= 2π sinh2(Rs)

2 For more details on history and development of these formulae reference to
[Bonola, 1912]
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Algorithm 1 Distribute the children of node n in rings

⊲ The bottom-up traversal

Input: A node n.

Output: A distribution for the children of n in rings.

1.1: for all child h of n do

1.2: Distribute the children of node h in rings. ⊲ Recursive calculation of

children’s rings

⊲ Arrangement in circular rings

1.3: Let i start at 0. ⊲ The interior concentric circle

1.4: for all child h of n do ⊲ Nodes retrieved in descending order

1.5: if there is not enough room to put h in ring i then

1.6: Increase i by 1. ⊲ Jump to the next outer ring

1.7: Place h in ring i.

1.8: Let Rout be the sum of the width of all necessary rings.

1.9: Let Rs = sinh−1
√

cosh(Rout) − 1 be the radius of the hemisphere of node

n.

and simplifying, we obtain (step 1.9):

Rs = sinh−1

√

2 sinh2

(

Rout

2

)

= sinh−1
√

cosh(Rout) − 1.

By the end of this algorithm, we have calculated the radius of the hemisphere

necessary to accommodate the children of n and the radii necessary for the

children of every descendant of n.

4.2 Placing the root and its children

The root can be placed anywhere inside the sphere; therefore, we can choose

the center of the ball as a suitable initial position. After that, the nodes must

be distributed in the available space around the root. The chosen strategy was

to distribute the children of the root r on the surface of an imaginary unitary

ball centered at r, using the Weighted Spherical Centroidal Voronoi Tessellation

(WSCVT) presented in [Larrea et al., 2009] and detailed in Appendix A.

The weight of a node indicates how much area of the sphere the node will

need to accommodate its children: if the node is a leaf, it will need much less

space than any other node with some child. Therefore, the weight of each node

must take into account how much area is needed to place its descendants.
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α
ring 0

ring i

Rin

Rout

δ

w

δ = Rout+Rin

2

w = Rout − Rin

α ≈
2
∑

Rout of the nodes in the ring
δ

Figure 3: Circular rings of nodes. Rout and Rin are the outer and inner radii

of ring i. δ is the distance from the center of the circle to the middle of the

ring, w is the width of the ring, what corresponds to the diameter associated to

the “bigger” node placed in the ring, and α represents an approximation to the

actual value of the occupied angle inside a ring.

(a) Top view (b) Side view

Figure 4: Two different views of a hemisphere where only leaves are placed.

4.3 Placing the remaining nodes

The top-down traversal (Algorithm 2) calculates the final location of the children

of n in the hyperbolic space. To accomplish this task the algorithm needs the final

gyropositions pn and pf of the node n and its parent node f , respectively, and

the rings associated to n computed by Algorithm 1, previously described. The

particular case of calculating the position of the root and its children (these last

ones needed by this algorithm) was presented in the previous subsection. This

top-down traversal goes through every node in each ring (step 2.7), calculating

the gyroposition of the nodes. The rings are traversed through from the central

one to the outer one (step 2.3).
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Algorithm 2 Compute the gyroposition of the children of node n ⊲ The

top-down traversal

Input: A node n

The gyroposition pn of n

The normalized gyrovector dn pointing in direction of the hemisphere

of n

Output: The gyropositions of the children of n

2.1: Let rn be the radius of the hemisphere containing the children of n.

2.2: Let 〈b1, b2, b3〉 an orthonormal basis where b1 = dn.

2.3: for all ring A where the children of n are placed do

2.4: Let δA be the distance from the middle of the ring to the center of the

circle that contains it. ⊲ See Figure 3

2.5: Let φ start at 0.

2.6: Define the rotation Rb3,βA
, being βA = δA/rn.

2.7: for all node m placed in ring A do

2.8: Let dm = b1 be a normalized gyrovector pointing in the direction

of the hemisphere of m.

2.9: Rb3,βA
(dm). ⊲ Rotate dm

2.10: Let αm be 2 sin−1 rm/δA.

2.11: Increment φ in αm/2.

2.12: Define the rotation Rb1,φ.

2.13: Rb1,φ(dm). ⊲ Rotate dm

2.14: Increment φ in αm/2.

2.15: Set pm = pn ⊕ (rn ⊗ dm). ⊲ Trn⊗dm
(pn)

2.16: Compute the gyroposition of the children of node m (m, pm, dm) .

4.4 The Gyrolayout: Putting all together

In this subsection we describe how the previous algorithms are assembled to

obtain the Gyrolayout, and give the details of the three major steps (A, B and

C) presented in the introduction of this section (Algorithm 3).

The algorithm takes the tree to be visualized and the position of the root node

in the hyperbolic space (a gyroposition) and creates the final visualization of the

tree. The first step is to distribute all nodes in rings (step 3.2). If the root has

enough children, the algorithm calculates the initial weights for these children

(as the radius of the disk where rings centered at that node are placed, step 3.4)

and computes the corresponding WSCVT (step 3.5). After that, the algorithm

calculates the radius ρ of a sphere with enough area to accommodate the disk

of all the root children (step 3.6). Then, for each child i of the root, it projects

the gyroposition of i (calculated by the WSCVT) on the surface of radius ρ and

calculates the gyrovector pointing in the outward direction (steps 3.8 and 3.9).
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Starting with these values, the algorithm calculates the gyroposition of all the

descendants of each child node (step 3.10).

If the root has too few children it is not worth computing a distribution that

covers all the sphere surface because this distribution is going to be too sparse.

The algorithm just assumes some initial direction and places the children of the

root also in a hemisphere (steps 3.12 and 3.13).

Algorithm 3 Visualize tree T ⊲ Putting all together

Input: A tree T .

A gyroposition O being the position of the root inside the ball, may be

{0, 0, 0}.

3.1: Let r be the root node of T .

3.2: Distribute the children of node r in rings. ⊲ Algorithm 1

3.3: if r has 4 or more children then

3.4: Let W = {w1, . . . , wn} be the weights of the children of r, where wi is

the weight of child i.

3.5: Let P = {p1, . . . , pn} be the result of WSCVT(W ). ⊲ Algorithm 6

3.6: ρ =

√
∑

πwi

4π
=

√

∑

wi

2 .

3.7: for all child i of r do

3.8: Associate with i the gyroposition gi = ρ ⊗ pi

‖pi‖ .

3.9: Let di = ⊖O⊕gi

‖⊖O⊕gi‖ be a gyrovector pointing in the direction of the

hemisphere of i.

3.10: Compute the gyroposition of the children of node i(i, gi, di). ⊲

Algorithm 2

3.11: else

3.12: Let d be some initial direction, for example {tanh 1, 0, 0}.

3.13: Compute the gyroposition of the children of node r(r, O, d). ⊲

Algorithm 2

3.14: Visualize T .

4.5 The Gyrolayout and the level of details

As the position of a node tends to be placed close to the surface of the Klein

ball, its visual element will be smaller, because the surface of the ball represents

the infinity of the hyperbolic space. Moreover, as a node is deeper in the tree,

its location will be farther from the root, and nearer to the surface of the ball.

Then, as the node is deeper in the tree, its visual element will be smaller, tending

to disappear.
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Taking this into account, an appropriate criteria to set a level of detail is

how much appreciable are the details of the bunches of nodes: those subtrees for

which the visual elements of their nodes are small and crammed can be pruned.

All nodes are represented by a tetrahedron, because of its reduced number

of faces; we are prioritizing efficiency over aesthetic-looking. The tetrahedron

permits the interaction with the node and the addition of node’s properties to

the visualization. A pruned subtree is marked with a cone to make evident the

existence of hidden details. The cone is a different and significant visual element

(based on the coalesced trees in [Carriere and Kazman, 1995]) that represents

the root of the pruned subtree.

Algorithm 4 Collapse a subtree rooted at n

Input: A node n.

Output: A cone representing n and the children of n.

4.1: Let pn be the gyroposition of n.

4.2: Let pm be the gyroposition of the node in the inner ring of n.

4.3: Let pf be the gyroposition of the parent of n.

4.4: Let pn be the apex of the cone.

4.5: Let d = ⊖pf ⊕ pn be the direction of the cone.

4.6: Let h = ‖pn ⊖ pm‖ be the height of the cone.

4.7: Let rn be the radius of the hemisphere of n.

4.8: return A cone with apex in pn, height h, oriented in the direction of d

and base with radius rn.

In Algorithm 4 it is outlined how to calculate the size of the cone representing

the collapsed subtree.

5 Visualizing a tree

Tree visualization not only implies placing nodes and edges in space, but also

deciding which and how attributes in the dataset will be visually represented,

and what interactions should be provided. In general, applications for tree

visualization differ on some of the following aspects:

– they use different tree layouts to place nodes and edges,

– they use different visual mappings for attributes,

– they provide different sets of interactions.

Our proposal uses the Gyrolayout for placing edges and nodes. Attribute

representation and interactions are strongly dependent on the data domain. In
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(a) (b) (c)

Figure 5: Different levels of detail. The three figures show the same subtree at

different levels of detail. Figure (a) shows it at a full detail. Figure (b) shows it

with the nodes which have only leaves as children collapsed. In Figure (c), the

nodes which have either leaves or collapsed nodes as children in (b) are collapsed.

the following subsections some key aspects on visual mapping and the provided

interactions are discussed.

5.1 Visual Mapping

At the time of establishing the visual mapping of nodes and edges it is necessary

to take into account certain factors in order to improve the visualization and

obtain a better insight into the structure of the tree.

– the edges of the tree are colored according to the depth of the target node.

The color may go from one color, for edges with origin at the root of the tree,

to another color, for edges with destination at a node at maximum depth

(see Figure 9).

– the nodes of the tree can be colored according to its depth in the tree or

according to the semantic value of the node in the dataset.

– the portion of the tree placed into the hemisphere opposite to the viewer is

shown less saturated, to give the user some feedback about what is near and

what is farther.

5.2 Interactions

Herman et al. [Herman et al., 1998] describe a set of interactions that helps the

user in the navigation of large trees in 2D:

1. Zooming and panning which are the basic interaction for navigation.

2. Focus+context through fish-eye.
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3. Complexity clues to give the user information to indicate where the

interesting subtrees are, for example in which direction the tree grows

(indicated by Strahler numbers).

4. Folding and unfolding to hide specific subtrees; only the root is left as a

representative of the whole subtree.

All these basic interactions are supported in our layout. Taking into account

its 3D nature, the interactions are adapted when it is necessary:

1. The zooming and panning in 3D representations correspond to rotation and

translation of the camera, which make it possible for the observer to interact

with the hyperbolic space without changing the visual representation.

2. The focus+context view is intrinsic to our representation in hyperbolic space,

where the nodes near the center of the Klein Ball are displayed bigger and

more detailed than those lying near the surface of the ball.

3. Complexity clues can be added to nodes and made visible by semantic zoom.

4. Folding and unfolding of nodes is exactly what the level of detail technique

does: it hides some subtrees based on certain criteria.

Besides, an additional set of interactions was designed considering how

significant they are for a tree visualization.

– Semantic zoom on nodes and cones. Semantic zoom makes it possible to show

on demand additional information about the node: when a node is clicked a

tooltip is displayed which, for example, shows the absolute path of a file if

the tree is a directory hierarchy (see Figure 7b). In case of cones, the tooltip

may show the height of the hidden subtree (see Figure 7c).

– Path highlighting. When clicking on a node, the path from that node to the

root of the tree is highlighted.

– Translation of the layout in the hyperbolic space. Besides the translation

of the camera, which does not change the hyperbolic representation of the

layout, our proposal permits the translation of the layout in the hyperbolic

space. This is accomplished translating (see Translation in Section 3) all the

points from the current position to the original one (the root of the tree at

the origin) and then translating the desired node to the center of the ball

(see Figure 6). Despite this interaction resulting in a different hyperbolic

position for each node and, consequently, altering the representation of the

tree, it permits to change the point of interest of the visualization.

6 Implementation

A prototype application for tree visualization using this Gyrolayout was

implemented in Java using Vtk library. The implemented prototype provides the
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Figure 6: An example of the layout translation. Figure (a) shows the original

layout of the tree, with the root node placed at the center of the ball. Figure (b)

shows the layout after the translation Tn(pi) = pi ⊕ (−n) which places node n

at the center of the ball. Figure (c) shows the layout with node m at the center

of the ball. This last layout results from applying to (b) the concatenation of the

inverse translation pi = Tn(pi) ⊞ (−r) with translation Tm(pi) = pi ⊕ (−m).

The former transformation goes back to the original layout of the tree (figure

(a)) and the latter one places node m at the center of the ball.

(a) Portion of a tree at full
detail.

(b) Tooltip on a node. (c) Tooltip on a cone.

Figure 7: Example of semantic zoom on nodes and cones using tooltips to display

additional information.

basic interactions implemented by Vtk: rotation and translation of the camera

(see Figure 9), as well as the interactions described in Section 5.2.

In order to deal with very large trees and improve interactivity, some specific

characteristics have been considered during the implementation to speed up the

rendering process:

– nodes are represented with a simplex (a tetrahedron)

– edges are represented with lines, not tubes.
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– nodes are not shown during camera transformations.

To achieve a visualization of the hyperbolic layout, we adapted the class

vtkGlyph3D to perform all transformation (i.e. translations according to the

gyroparallelogram addition law, cf. Figure 1b–) as gyrotransformations.

7 Comparison with other implementation of hyperbolic tree

layouts

This section presents a comparison (Table 1) between our layout and some

existing alternatives: H3 [Munzner, 1997] and Walrus [CAIDA, 2005]. The

comparison was developed in a Core2Duo @ 2.66GHz processor with 4GB of

RAM PC running Debian GNU/Linux Operating System.

While our layout and Walrus were both implemented in Java, our layout

uses Vtk for 3D representations and Walrus uses Java3D. H3 was implemented

in C++ and OpenGL; we tested with Wine3 the Windows version of the

application. The comparison consists on measuring how much time each

application takes to visualize (including preprocessing and rendering time)

trees of different amount of nodes. The comparison (table 1) shows that times

measured for the Gyrolayout are between those for H3 and Walrus (with simple

and double precision4). This is remarkable considering that the Gyrolayout

not only was implemented using double precision, but also permits important

interactions such as folding and unfolding of nodes.

Furthermore, H3 does not permit the rotation of the ball that represents the

hyperbolic space or zooming in/out the ball to see more details. Instead, it can

translate the tree inside the hyperbolic space; in this way it achieves a more

detailed view of the center of the visualization but modifies the representation

of the tree making the user to lose context (see Figure 8). In contrast with H3,

Gyrolayout can provide more detail using also panning, zooming and rotation of

the sphere (see Figure 9).

As for node placement, both Walrus and H3 place the nodes of the tree

in such a way that it occupies only one hemisphere (see Figure 10). However,

our layout tends to distribute nodes on the whole surface of the sphere (see

Figure 9(a)).

8 Conclusion and Future Work

We have developed a tree layout based on Centroidal Voronoi Tessellations and

Einstein gyrovector spaces that support different levels of detail (see Figure 11).

3 www.winehq.org
4 Walrus uses mpfun package to handle multiple precisions; this considerably reduces

the performance while working with double precision.

147Urribarri D.K., Castro S.M., Martig S.R.: Gyrolayout ...



Amount
Gyrolayout H3

Walrus

of nodes Simple precision Double precision

2196 00:00.574 instant 00:00.057 00:02.079

4444 00:01.575 a blinking 00:00.150 00:03.627

4994 00:01.790 a blinking 00:00.054 00:03.594

83845 00:15.219 4/5 secs 00:00.555 01:03.578

138543 00:24.996 5/6 secs 00:00.457 01:37.615

193331 00:34.863 8 secs 00:01.722 02:19.130

Table 1: Comparison of our proposal with H3 and Walrus. The comparison was

developed taking into account how much time each application takes to visualize

(including preprocessing and rendering time) trees of different amount of nodes.

Note that there are no times specified for H3, because the application does

not provide such information. Besides, Walrus could be tested with simple and

double precision, while our layout uses only double precision.

(a) Directory workspace visualized with
H3.

(b) Same directory. The subdirectory
workspace/java is placed at the center
of the sphere.

Figure 8: How to get more details visualizing with H3.

The main strength of our layout is that, due to be placed in the hyperbolic

space and to support different levels of detail, is really appropriate to visualize

large trees (see figure 12): it represents a whole tree just into the limits of a

sphere in the conventional 3-dimensional space. Theoretical hyperbolic analysis

and discrete tessellation algorithms interplay in this layout to accomplish an

effective visualization of large trees.

As future work we are planing several improvements to the layout in terms

of visual complexity and additional interactions. We are also planing to conduct

usability tests to validate our layout.
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(a) Directory workspace visualized with
Gyrolayout.

(b) More details on subdirectory
workspace/java achieved through
semantic zoom.

(c) More details on subdirectory
workspace/java achieved through
zooming, panning and rotation.

(d) More details on subdirectory
workspace/java achieved through
moving the corresponding node to the
center of the sphere.

Figure 9: How to get more details visualizing with Gyrolayout. Directory

workspace has 4994 nodes and depth 11. The color of the edges goes from red,

for edges with origin at the root of the tree, to green, for edges with destination

at a node at maximum depth.

Our final goal is to adapt the layout and the level-of-detail approach to

support not only large trees, but also large graphs.
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(a) Walrus (b) H3

Figure 10: The same dataset from Figure 9 (a directory tree with 4994 nodes

and depth 11) visualized with the other two compared application. Both H3 and

Walrus place root children in a way that they occupy only a half of the sphere.

Gyrolayout places them occupying the whole sphere surface (see Figure 9(a)).

(a) The /usr/lib directory shown with
all details.

(b) The /usr/lib directory with the
folders containing only files collapsed.

Figure 11: The /usr/lib directory, which has 25,253 files and 2,600 sub-folders,

at three different levels of detail. The first level has 2,154 files and 196 folders,

and the tree has depth 13. In figure (b) a different color is used for the cones to

reinforce the idea of collapsed subtrees.
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(a) The /usr/share directory which has
127729 files, 10814 subfolders and depth
13.

(b) The windows directory which has
68,539 files, 15,305 subfolders and depth
11.

Figure 12: Different trees with different amount of internal nodes and leaves.

Figure (a) shows the /usr/share directory of a Linux system. Figure (b) shows

the windows directory of a Windows Vista system.
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A Weighted Spherical Centroidal Voronoi Tessellation

Before introducing the Weighted Spherical Centroidal Voronoi Tessellation used

in our layout, we define Delaunay Tessellation, Voronoi Tessellation, Spherical

Voronoi Tessellation and Weighted Spherical Voronoi Tessellation.

Delaunay Tessellation

Given a set of points P = {p1, p2, . . . , pn} in Rm, a Delaunay Tessellation is a

set of k simplexes t1, t2, . . . tk with vertices in P such that no point in P is in

the interior of the hyper-circumcircle of any simplex ti.

A Delaunay Triangulation (2-dimensional Delaunay Tessellation) is a set of

triangles with vertices in P such that no point in P is in the interior of the

circumcircle of any triangle in the triangulation.
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Voronoi Tessellation

Given a set of points (generators) P = {p1, p2, . . . , pn} in Rm, a Voronoi

Tessellation is a set of n regions V (pi), where a point q ∈ Rm lies in region

V (pi) if and only if distance(pi, q) < distance(pj , q) for each pi, pj ∈ P, i 6= j.

The Voronoi Tessellation and the Delaunay Tessellation are duals: every

region of a Voronoi Tessellation (i.e. every generator) corresponds to a vertex

of the Delaunay Tessellation and for every two adjacent regions in the Voronoi

Tessellation there is an edge between the corresponding vertices in the Delaunay

Tessellation.

Spherical Voronoi Tessellation

A Spherical Voronoi Tessellation is a Voronoi Tessellation of the surface of a

sphere. In this case the set P is a set of points lying on a surface S = {(x, y, z) ∈

R3 : x2 + y2 + z2 = 1}, and the regions V (pi) are the points q ∈ S which satisfy

distance(pi, q) < distance(pj , q) for each pi, pj ∈ P, i 6= j.

Weighted Spherical Voronoi Tessellation

A Weighted Spherical Voronoi Tessellation (WSVT) is a Spherical Voronoi

Tessellation where each generator pi has associated a weight wi, and the

distance between a point q and a generator pi is the weighted distance

w-distance(a, wa, x) = |a − x|2 − wa, where |.| is the euclidean distance.

The general idea of the algorithm used to calculate the WSVT of points P

on the sphere is outlined in Algorithm 5. Given a set of points P on the sphere

surface and the weight W corresponding to each point, the algorithm calculates

the Weighted Spherical Voronoi Tessellation of the sphere surface according to

P and W .

The Delaunay triangulation of the points on the surface of the sphere is

calculated as the convex hull of these points, based on the fact that if △pqr is a

face of the convex hull, then there exists a plane P containing p, q, and r which

leaves an empty halfspace on one side, and all the remaining points on the other.

The intersection between P and the sphere S is a circle (see Figure 13a), which

is the circumcircle of the spherical triangle △©pqr (see Figure 13b). There is no

point within this circumcircle (the empty halfspace); all the remaining points are

lying outside it (the non-empty halfspace). Thus, △©pqr is a Delaunay triangle

on the surface of the sphere.

The weighted circumcenter of a spherical triangle △©abc where wa, wb and

wc are the weights of a, b and c respectively, is defined as follows. Let c be the

circumcenter of △abc, cw be the point coplanar to a, b and c which satisfies

w-distance(a, wa, x) = w-distance(b, wb, x) = w-distance(c, wc, x)
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(a) Plane-sphere intersection

r q

p

(b) Circumcircle of a spherical
triangle

Figure 13: The circumcircle of a spherical triangle. (a) Circle resulting from the

intersection between a sphere and a plane. (b) The intersection between the

sphere and the plane containing the tree vertexes of a spherical triangle, results

in the circumcircle of that spherical triangle.

and n be the normal of the plane which contains △abc

n =
(b − a) × (c − a)

|(b − a) × (c − a)|
.

Then, the weighted circumcenter sw (see Figure 14) of △©abc is the intersection

between the unitary ball and the ray of direction n and origin at point c′
w, where

c′
w is the following point:

c′
w =

(cw − c)
√

1 − (n.c)2

|cw − c| + 1
+ c.

Algorithm 5 Weighted Spherical Voronoi Tessellation (WSVT)

Input: A set of points P = {p1, . . . , pn}.

A set of weights W = {w1, . . . , wn} where wi is the weight of pi.

Output: The WSVT V of the spherical surface S according to P and W .

5.1: Let H be the convex hull of P in R3. It represents the Delaunay

Triangulation of P on S. Note that H is not weighted.

5.2: Let V be the Voronoi Tessellation constructed as the dual graph of H: for

each triangle in H its weighted circumcenter is a vertex in V . If two triangles

in H are neighbors then their weighted circumcenters are linked by an edge

in V .

5.3: return V .
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Figure 14: Cross section of the sphere generated by the plane of normal n×(cw−c)

containing the origin of the sphere. In this cross section it is shown how cw is

mapped into the ball and projected in the surface to reach the spherical weighed

cirumcenter.

Weighted Spherical Centroidal Voronoi Tessellation

A Centroidal Voronoi Tessellation (CVT) [Du et al., 1999] is a particular Voronoi

Tessellation where the generator of each Voronoi region is the center of mass

(centroid) of its own region. A CVT with weighted distance is appropriate

to divide a surface into subareas where the size of each one depends on the

generator itself and not on the generator’s position on the surface. To calculate

the Weighted Spherical Centroidal Voronoi Tessellation (WSCVT) it is necessary

to introduce the definition of centroid of a spherical triangle and centroid of a

spherical polygon. For the next formula we are considering triangles and polygons

on a unitary sphere. The centroid of a spherical triangle △©abc is a+b+c
|a+b+c| . The

centroid of a spherical polygon v0, . . . , vn [Jenness, 2008] is

∑n−1
i=1 area(△©v0vivi+1) centroid(△©v0vivi+1)

∑n−1
i=1 area(△©v0vivi+1)

,

where the area of a triangle △©abc is equal to its spherical excess E

E = 4 tan−1

√

tan
(s

2

)

tan

(

s − A

2

)

tan

(

s − B

2

)

tan

(

s − C

2

)

,

being A, B and C the side lengths, and s the semiperimeter.

Our WSCVT algorithm is an extension of the one that computes Weighted

CVTs in planar surfaces presented in [Balzer and Deussen, 2005]. The general

idea of the algorithm is to construct the WSVT of a set of generators and then

replace each generator with the centroid of its corresponding Voronoi region,

until a desired error or a limited number of iterations has been reached in order
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to avoid unnecessary and extensive computation. As the weighted distance is not

enough to control the size of each region, it is necessary to adjust the weight of

each generator in every iteration. When a region size is bigger than the desired

size value, the weight of that generator might be decreased and, analogously, if

the region size is smaller, the weight might be increased.

It is important to note that the size values are not areas, but percentages.

Making an association between the weights of the generators and the surface of

the sphere, the area of a region Gi must represent the same percentage of the

entire spherical surface as the weight wi represents of the overall sum of weights.

Then, the desired size value di and the actual size value ai of a region Gi are

di =
wi

∑

wi

ai =
area(Gi)

area(S)
.

The algorithm stops when the difference between the desired size value and the

actual size value of every region is below a given error ε. The adjusted weight of

a generator pi of current weight wi, desired size value di and actual size value

ai is

wi

(

1 +
ai − di

di

)

if this value is greater than δ; otherwise, δ

where δ is a positive value close to 0, for instance 10−6, which avoids points

with null weight. Taking into account the weight adjusting and the size value

measure, the algorithm to generate a WSCVT is outlined in Algorithm 6.

Algorithm 6 Weighted Spherical Centroidal Voronoi Tessellation (WSCVT)

⊲ Place nodes on the surface of a sphere

Input: A set of weights W = {w1, . . . , wn}.

Output: A set of points P = {p1, . . . , pn}, each point corresponds to the

position of a node distributed according W .

6.1: Let P be an initial tentative point distribution on a unitary sphere S. ⊲

Possibly a random distribution

6.2: Let D be the desired values

(

di = wi
∑

wi

)

6.3: while εmax > ε do ⊲ it has not achieve the desired threshold

6.4: Let V be the WSVT of P .

6.5: Let εactual be the maximum (or average) difference between desired

size values (di) and actual size values
(

area(Gi)
area(S)

)

of the regions of V .

6.6: for all region Gi of V do

6.7: Let pi ∈ P be the generator of Gi.

6.8: Replace pi with the spherical centroid of Gi.

6.9: return P .
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