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Abstrat: In the ontext of safety requirement engineering, model transformation is

a task of interest. Indeed, it allows us to keep all the requirements while swithing

from one point of view to another. The presented work assumes that a valid solution

has been found and proposes an approah in order to build a valid implementation.

As some �ne dynami properties are integrated into the spei�ation, high-level Petri

nets are used to speify and verify the solution. Then, onsidering an industrial railway

ontext, the transformation of the Petri net model in order to provide an input to a

B proess is onsidered. This last onsideration leads to a proposition of a systemati

diret transformation of the Petri net model into abstrat B mahines. The approah

is illustrated by a theoretial railway example. The limitations of this approah are

disussed at the end of the paper and some prospets are detailed.
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1 Introdution

The aim of this paper is to desribe the work to be performed when a �ne

behavioural spei�ation has to be assessed by an expert. The methodology is

presented, integrating the usual onstraints of the railway systems, whih will

serve as an instane of industrial ontext. Let us point out that in this industrial

ontext, the ode generated by "Atelier B" is onsidered safe when the B model

is proved to be safe. For this reason, the safety proof is restrited to providing a

B model able to be assessed.

Petri nets have both the power of mathematis and the expliit graphial rep-

resentation of ritial mehanisms, suh as parallelisms, synhronizations, hoies

and mutual exlusions. The rigorous underlying mathematial model is useful

for providing formal proofs of some needed properties. Methodologies based on

the UML modelling usually fail to provide formal proofs, beause UML is only
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a semi-formal language. Let us point out two other interesting harateristis of

Petri nets.

The �rst one is that it gives, in ontrast to state harts, an expliit represen-

tation for synhronization. This is really an advantage when the use of a resoure

in a mutual exlusion struture has safety onsequenes. The seond one is that

Petri nets are able to provide dynami spei�ations suh as diret omputa-

tion of minimum yle durations and funtioning margins [Sifakis 1977℄. These

last results are more di�ult to ahieve using the B method [Abrial 1996℄ for

example.

Nevertheless, most of the requirements are di�ult to express and to assess

using formal methods. In some industrial areas, suh as railway systems, the use

of human expertise annot be avoided [Defossez et al 2010℄. A graphial model is

really an advantage for an industrial expert who may not be familiar with math-

ematial formalisms. Moreover, modelling power is needed in order to provide a

omplex, but onise, model whih will allow the expression of the know-how of

the expert. Considering this point of view, high-level Petri nets provide a very

strong modelling power, whereas they ontain all the mathematial properties

of ordinary Petri nets [Jensen and Rozenberg 1991℄.

This leads to the following problem. When the model has been validated

by an expert, using some formal proofs or not, how an it be translated into a

model whih an be veri�ed with respet to the spei�ations and automatially

implemented? More preisely, the translation has to be proved in suh a way

that the expert assessment is preserved. In the railway ontext the B method

is a formal method whih is aepted as a good formalism for assessment. The

B method an be proessed until an exeutable ode is produed. Consequently,

the problem to be solved is the translation of a high-level Petri net language into

B formalism.

The �rst setion presents the high-level Petri nets abbreviation. The seond

part of this work deals with the B method. The third setion is devoted to the

main ontribution of this paper. It orresponds to a building methodology of

translation from high-level Petri nets to B abstrat mahines. The last setion

proposes some further ideas for researh before onluding.

2 Requirement engineering motivations

The aim of this setion is to provide an overview of the global approah (�gure 1).

It started with the eliitation phase whih orresponds to the phase where all

requirements are identi�ed in the informal spei�ation.

Then, the requirements are modelled in order to be analysed. During the re-

quirement analysis, Petri net may be used in order to build a formal behavioural

analysis. The model of the requirements may be used to perform the synthesis

of a valid ontrol [Collart Dutilleul et al.06℄, [Delerk and Guezzi 2009℄.
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Figure 1: Diagram of the requirement engineering approah

Another way of using the requirement model is to hek systematially the

orretness of a would-be solution. In this ase, a formal tool may be used to

make a omparison between the behaviour of the would-be solution model and

the requirement model [Defossez et al 2010℄.

However, at the end of the analysis phase, the design proess is expeted to

deal with the spei�ation of a valid solution.

Before the exeution of the implementation task, a funtional validity by an

expert of the domain is interesting. In this ase, a ompat readable graphial

model is useful. High-level Petri nets have both the quality of formal modelling

and language power. When the solution validated by the expert is expressed

with high-level Petri nets, as in [Philippi06℄, then the problem of translation of

this model into an implementation one has to be faed.

This is preisely the subjet of this paper: the problem is to provide a valid

input into the proess of implementation solution building. As the e�ieny of

the B proess for produing an implantation is well-known, the translation of

high-level Petri net into abstrat B mahines is really an interesting hallenge.

3 Petri Net model

Petri nets were developed by C. A. Petri [Petri 1962℄ in order to model onepts

of asynhronous and onurrent ations. Petri net theory allows modeller to

speify dynami behaviour of a system but also to understand and assess it. In

this setion, we start to present the basi theory and then we present high-level

Petri nets, and more preisely, oloured Petri Net.
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3.1 Plae/transition Petri net

Petri nets are used in order to model the behaviour of disrete dynami systems

[Murata 1989℄. A Petri net is a partiular lass of direted graphs with an initial

state alled initial marking. A Petri net is a bipartite graph. It has two types of

nodes: plaes and transitions. Ars link only a plae to a transition or a transition

to a plae. Graphially, transitions are represented by bars or boxes and plaes

by irles.

The use of elementary Petri nets to model omplex problems is limited be-

ause of the size of the model. Thereby, in suh a ase, it is neessary to use

high-level Petri nets. The size of the elementary Petri net is due to the fat that

tokens annot be di�erentiated.

3.2 High-level Petri net

As brie�y mentioned below, in elementary Petri nets token annot be di�er-

entiated. However, realisti modelling often needs to disuss the nature and

transformations of tokens. To allow this, high-level Petri net an be labelled by

a �rst-order language. The tokens beome language expressions and transforma-

tions, from one state to another, are desribed by formulae labelling transitions.

The marking is a multi-set of tokens and transitions �ring orresponds to a

multi-sets transformation. In short, high-level Petri nets handle strutured to-

kens and are labelled by a �rst-order language. Several forms of high-level Petri

net an be distinguished. The most ommon are:

� prediates/transitions Petri nets [Genrih 1987℄, based on �rst-order logi,

� oloured Petri nets [Jensen 1992℄, based on a funtional language,

� algebrai Petri nets [Reisig 1991℄, based on an equational language.

To redue the size, modeller an also use extensions of Petri net as Numerial

Petri Nets developed by Symons [Symons 1978℄.

Only the oloured Petri nets are presented here. But before introduing them,

some basi notion must be de�ned. First-order languages and assoiated de�ni-

tion are now presented.

3.2.1 First-order languages

A language de�nition onsists in giving a mehanism of sentene building using

an alphabet of symbols and assigning a sense to these sentenes.The term lan-

guage syntax is used for sentene building and semanti for sense assigning. In

order to de�ne �rst-order languages intuitively, a urrent mathematial language

is used.
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Then, let us onsider a set of symbols of variables, a set of symbols of funtions

and a set of symbols of prediates. These sets are assumed to be disjoint from eah

others. To eah symbol of funtions (prediates), a positive integer alled arity

is assoiated. Symbol of onstants are symbol of funtions with an arity equal

to 0. In a �rst-order language, expressions are built reursively, from onstants

and symbols of variables, with symbols of funtions. For instane, in urrent

mathematial language, 2 ∗ x+ f(y) is an expression built from onstant 2 and

variables x and y, with funtion symbol f (arity 1), + and ∗ (arity 2, in un�xed

notation with a priority of ∗ on +).

Likewise, an atom is built from expressions with symbols of prediates. For

example, 2∗x+y > z−3 is an atom built from expressions 2∗x+y and z−3, with

prediate symbol > (arity 2, in un�xed notation). Finally, formula is lassially

built from atoms with quanti�ers ∃ and ∀ and logial onnetors as onjuntion

∧, disjuntion ∨, negation ,. . . . So, (x = 3) ∨ ∃y((x + y > 2) ∧ (x − y < 3)) is

a formula. An expression is said to be losed if there is no variable inside and

a formula is losed if all of its variables are in a quanti�er �eld. For instane,

previous formula is not losed beause x is free (i.e. no quanti�ed by an ∃ or a

∀).

The interpretation of a �rst-order language onsists in:

� assoiating, to eah onstant, a value in the interpretation domain,

� assoiating, to eah symbol of funtion, a value funtion in the interpretation

domain,

� assoiating, to eah symbol of prediate, a relation (in other words, a boolean

funtion).

Then, expressions and formulae are lassially interpreted. For instane, on

the interpretation domain of rationals, with the interpretation of + and ∗ as ad-

dition and multipliation, the expression 2∗4+5 an be evaluated as 13. Likewise,

with the interpretation of prediates =,< and > as equality and lassial order

relations, formula ∃x∃y((x + y > 2) ∧ (x − y < 3)) is true. Let us note that in-

terpretation depends on the interpretation domain. Formula ∃x(2 ∗ x− 1 = 0) is

true in the rational domain, but false in the integer domain. After that informal

presentation of �rst-order languages, some assoiated notions are more formally

de�ned.

3.2.2 Notation and terminology

Now, syntax and the interpretation of a �rst-order language are formally de�ned.

De�nition 1. Let V be a set of variables, Ω a set of symbols of funtions, and

Π a set of prediates. To eah prediates and symbol of funtions, a positive

integer alled arity is assoiated.
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(i) The ouple (Ω,Π) is alled a signature.

(ii) An expression (or term) V built on Ω is:

� an arity 0 funtion (i.e. a onstant),

� a variable v from V ,

� a onstrution f(e1, ..., en) where f is a funtion symbol with arity n

and e1, ..., en are expressions.

The set of expressions L is alled an algebra. An expression without vari-

ables is said to be losed.

(iii) An atom built on (L,Π) is a onstrution p(e1, ..., en) where p is a pred-

iate symbol with arity n and e1, ..., en are expressions. An atom without

variables is said to be losed.

(iv) A formula is either:

� an atom,

� a onstrution (F ), F ∧ G,F ∨ G,¬F, F ⇒ G or F ⇔ G where F and

G are formulae,

� a onstrution ∃x(F ) or ∀x(F ) where x is a variable and F a formula

(where there is no sub-formula as ∃x(G) or ∀x(G))

The set Ψ of formulae is alled a �rst-order language.

(v) In a onstrution ∃x(F ) (resp. ∀x(F )), variable x appearing in F is said to

be linked by the existential (resp. universal) quanti�er. A variable without

any links is said to be free. A formula without free variables is said to be

losed, and a formula without quanti�ers is said to be free.

(vi) A theory T is a set of losed formulae.

In the following, exept ontraindiation, letters x, y, z, u, v, w denote vari-

ables, a, b, d values, f, g, h funtion symbols, p, q prediate symbols, e, c expres-

sions, A,B,C atoms and F,G formulae.

The substitution notion is also often used in the theory of delarative lan-

guage. This notion is also useful to interpret expressions with non-expliitly

quanti�ed variables. Intuitively, a substitution onsists in replaing a variable

with an expression. Formally, it is de�ned as follows:

De�nition 2.

(i) A substitution σ = [x1/e1, ..., xn/en] is an appliation from the set of vari-

ables V to the set of expressions L as:
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� σ(xi) = ei for i = 1, ..., n,

� σ(v) = v for all others variables.

(ii) The substitution notion is extended to an endomorphism on the set of

expressions, more formally: σ(f(e1, ..., en)) = f(σ(e1), ..., σ(en)).

(iii) The omposition σ1 ◦ σ2 of two substitutions is de�ned by (σ1 ◦ σ2)(e) =

σ1(σ2(e)).

(iv) The appliation of the substitution to a free formula is de�ned as:

� σ(p(e1, ..., en)) = p(σ(e1), ..., σ(en))

� σ(¬F ) = ¬σ(F )

� σ(F op G) = σ(F ) op σ(G) where op is one of these boolean operators

∧, ∨, ⇒, ⇔

(v) A substitution η = [x/a] where a is a onstant is alled assignation (or

valuation).

(vi) A substitution α = [x/v] where v is a variable is alled renaming.

(vii) The appliation of an assignation η = [x/a] to a quanti�ed formula replaes

all free ourrenes of x by a :

� η(∃x(F )) = ∃x(F )

� η(∃v(F )) = ∃v(η(F )) for eah variable v di�erent of x

� same for ∀.

After these de�nitions, oloured Petri nets an be de�ned.

3.2.3 Coloured Petri nets

A oloured Petri net [Jensen 1992℄ is a lassial Petri net with a set of olours

in order to distinguish tokens. The expression power of this type of Petri net

allows us to model real systems. Coloured Petri nets are based on a funtional

language, where the typing notion is very important. Then, a type, limited to

a �nite set, is assoiated to eah plae. This type is alled olour of the plae.

So, oloured Petri nets are based on a typed �rst-order language. There is a set

of domains, and symbols of funtions are interpreted as funtions of values in

these domains. It is important to notie that a oloured Petri net an always be

unfolded into a plae/transition Petri net. The formal de�nition of a oloured

Petri net is given below:
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De�nition 3. A oloured Petri net is a tuple CPN = (Σ,P, T,A,N,C,G,E, I)

as

(i) Σ non-empty and �nite set of types, alled olours,

(ii) P is a �nite set of plaes,

(iii) T is a �nite set of transitions,

(iv) A is a �nite set of ars, as: P ∩ T = P ∩ A = T ∩ A = ∅,

(v) N is the node funtion, de�ned from A to P × T ∪ T × P ,

(vi) C is the olor funtion, de�ned from P to Σ,

(vii) G is the guard funtion, de�ned, from P to expressions, as:

∀t ∈ T : [Type(G(t)) = B ∧ Type(V ar(G(t))) ⊆ Σ],

(viii) E is an expression of ars funtion, de�ned from A to expressions, as:

∀a ∈ A : [Type(E(a)) = C(p(a))MS ∧ Type(V ar(E(a))) ⊆ Σ]

where p(a) is a plae of N(a),

(ix) I is an initialisation funtion, de�ned from P to losed expressions, as:

∀p ∈ P : [Type(I(p)) = C(p)MS ].

The reader an refer to [Jensen 1992℄ in order to have more details on the

above de�nition. To de�ne preisely oloured Petri net behaviour, some notions

are mandatory. First, the de�nition of variables and expression is given:

De�nition 4. � ∀t ∈ T : V ar(t) = {v|v ∈ V ar(G(t)) ∨ ∃a ∈ A : v ∈

V ar(E(a))}.

� ∀(x1, x2) ∈ (P × T ∪ T × P ) : E(x1, x2) =
∑

a∈A(x1,x2)

E(a).

V ar(t) is alled the set of variables of t when E(x1, x2) is alled the expression

of (x1, x2).

Now, the de�nition of transition link is introdued:

De�nition 5. A transition link t is a funtion b de�ned on V ar(t), as:

(i) ∀v ∈ V ar(t) : b(v) ∈ Type(v),

(ii) G(t) < b >, where G(t) < b > is prediate denoting the evaluation of the

guard of t by link b.
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The set of all transition t links is denoted by B(t).

Complementary notions as token, binding element, marking and step are now

de�ned:

De�nition 6. � A token is a ouple (p, c), where p ∈ P and c ∈ C(p), TE

denotes the set of all tokens.

� A binding element is a ouple (b, t), where t ∈ T and b ∈ B(t), BE denotes

the set of all binding elements.

� A marking is a multi-set based on TE. The initial markingM0 is the marking

obtained by the evaluation of the initialisation expressions:

∀(p, c) ∈ TE : M0(p, c) = (I(p))(c).

M denotes the set of all marking.

� A step is a non-empty �nite based on BE. Y denotes the set of all steps.

Now, the step validation, whih allows us to desribe the behaviour of a

oloured Petri net, an be de�ned:

De�nition 7. A step Y is enabled by a marking M if and only if the following

property is heked:

∀p ∈ P :
∑

(t,b)∈Y

E(p, t) < b >6 M(p).

Let Y be an enabled step for marking M . Then:

� if (t, b) ∈ Y , transition t is enabled for marking M for link b, by extension,

(t, b) is also said to be enabled for M ,

� if (t1, b1), (t2, b2) ∈ Y and (t1, b1) 6= (t2, b2), (t1, b1) and (t2, b2) are onur-

rently enabled, and then t1 and t2 are also onurrently enabled,

� if |Y (t)| > 2, then t is itself onurrently enabled,

� if Y (t, b) > 2, then (t, b) is itself onurrently enabled.

This notion of step allows us to express the possible simultaneity of transition

�ring.

De�nition 8. When a step is enabled, it an be �red and it then hanges mark-

ing M1 into M2 as:

∀p ∈ P : M2(p) = (M1(p)−
∑

(t,b)∈Y

E(p, t) < b >) +
∑

(t,b)∈Y

E(t, p) < b >.

The �rst sum represents onsumed tokens while the seond one represents pro-

dued tokens. M2 is said to be diretly reahable from M1 by the ourrene of

Y and it is formally noted as follows: M1[Y > M2.
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Finally, the notion of �ring sequene ourrene, whih allows us to de�ne

reahable marking, is de�ned as follows:

De�nition 9. An ourrene of a �nite sequene is a sequene of markings and

steps noted:

M1[Y1 > M2[Y2 > M3 . . .Mn[Yn > Mn+1

as n ∈ N andMi[Yi > Mi+1 for all i ∈ 1..n.M1 is said to be the start marking and

Mn+1 �nal marking. Positive integer n is said to be the step number of sequene

ourrene, or also length. In notation, halfway markings an be omitted:

M1[Y1Y2 . . . Yn > Mn+1

De�nition 10. A marking M ′
is reahable from M if and only if there is an

ourrene of a �nite sequene with M as start marking and M ′
as �nal marking,

i.e. if and only if for n ∈ N, there is a step sequene as:

M [Y1Y2 . . . Yn > M ′.

M ′
is said to be reahable from M in n steps. The set of all reahable markings

from M is denoted [M >.

As mentioned in the beginning of this paragraph, a oloured Petri net an

always be unfold into a plae/transition Petri net. The equivalene rules are not

detailed here, the reader an refer to [Jensen 1992℄ in order to have them.

3.3 Railway illustration for oloured Petri nets

In order to illustrate the di�erent tools presented in this paper, a theoretial

railway example is used as a ase study. This example is given by [Genrih 1991℄.

The ase study is desribed by the general following rules:

1 : Railway network is omposed of onseutive elementary parts, alled

CdVi with i ∈ [0..6]

2 : trains run in the same tra� diretion.

Two safety rules are now introdued:

'1 : Two trains annot be on the same trak at the same moment,

'2 : there must be a free trak segment between two trains.

Finally, a partiular ase of railway network is onsidered:

�1 : The railway network is a losed loop of seven traks, numbered from

0 to 6.
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Figure 2: Shemati representation of the ase study

Figure 2 gives a shemati representation of the ase study desribed below.

The 6 traks are represented, on the �gure, by CdVi with i ∈ [0..6].

In [Genrih 1991℄, the ase study is spei�ed with an elementary Petri net.

This Petri net is quite heavy: it is omposed of 21 plaes, 14 transitions and 84

ars. The use of high-level Petri nets is neessary to redue the size of the model.

In order to do this, two types of token ta and tb, representing the two types of

train, are introdued. The oloured Petri net of �gure 3 models the theoretial

railway example. The initial marking of the Petri net indiates that the trak 0

is oupied by a train ta and the trak 4 by a train tb (multi-set 1′ta in plae

Busy0x and 1′tb in Busy4x). That implies that the markings of the traks 1, 2

and 5 are free (multi-set 1′free in plaes Free1, Free2 and Free5).

The Petri net an be redued if the traks are not marked by simple tokens. If

the trak numbers are taken into aount, a onsistent simpli�ation of the net is

possible: overall we obtain a Petri net only omposed of 2 plaes and 1 transition

that an be found in �gure 4. The marking beomes for one plae, numbers

indiating the free traks, and for the other, ouples that indiate that one train

is on an identi�ed trak. The passage of a train from one trak to the next is

modelled by the transition and the guard gives the ondition to respet safety

requirements ('1 and '2). The last requirement (�1) is modelled by markings,

whih give traks numbers, and by the transition guard, i = (j − 1) mod 7 and

k = (j + 1) mod 7 whih model the iruit.
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var x : Train
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Figure 3: Coloured Petri net model of railway ase study

1`<0,ta>

1`<4,tb> CdV × Train

Busy

2 1`<0,ta> + 1`<4,tb>

1`<1>

1`<2>

1`<5> CdV

Free

3 1`<1> + 1`<2> + 1`<5>

Moving

i = (j − 1) mod 7

k = (j + 1) mod 7

(j,x)

(k,x)

k

i

Color Train = with ta | tb

Color CdV = with 0 | 1 | 2 | 3 | 4 | 5 | 6

var x : Train

var i : CdV

var j : CdV

var k : CdV

Figure 4: Simpli�ed olored Petri net model of the ase study
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4 B method

The B method, whih was developed by Jean-Raymond Abrial [Abrial 1996℄, is

a formal model-oriented method suh as Z and V DM . These methods are based

on two omplementary models: the stati one desribes the system entities and

their assoiated states, and the dynami model desribes allowed hanges of

state by ations de�ned on entities. The dynami model allows us to desribe

properties whih have to be heked before and after ation. These properties

are expressed by lassial logi prediates on entities and states. In a spei-

�ation based on models, the system state is desribed by the set of ouples

(prediates,expressions) where the prediate set models the stati aspet. The

desription of state hanges models the dynami aspet. Models are built with

three harateristi elements:

� pre-ondition is de�ned by the set of states from whih the state hange

is allowed,

� operation is omposed of the list of modi�ations to ouples (prediate,

expression),

� post-ondition haraterises valid states as ensuing from hanges.

These notions are ommon for formal model-oriented methods. Nevertheless,

in B notation, the notion of substitution replaes the notion of pre and post on-

dition [Abrial 1996℄. B also di�ers beause it integrates the onept of re�nement

whih makes inremental development from the spei�ations to the ode possi-

ble in a single formalism. This formalism is alled the abstrat mahine notation.

Proof obligations are generated at eah stage of the B development proess in

order to guarantee the validity of the re�nement and the abstrat mahine.

As a result, it is able to manage strong design onstraints applied to rail

systems, suh as CENELEC standards. Moreover, the B method seems to be an

e�ient method in the industrial world for railway ritial software development,

suh as METEOR ([Behm et al 1999℄, [DaSilva et al 1992℄).

4.1 Abstrat mahine notation

Modelling of data and their properties is based, in B language, on mathematial

notation, essentially on the set theory. However, in the B set theory, the notion

of typing is introdued. All the elements of a set are the same type. The prinipal

data strutures available are: sets, binary relations between sets, funtions from

one set to another and ordered lists of elements of a set. It an be noted that,

in B, properties are expressed by formulae from alulus of �rst-order prediate

with equality. That means the B language builds their prediates with lassial
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propositional operators (and (∧), or (∨) . . . ), but also with equality operator

and quanti�ed variables (∃x.P and ∀x.P ).

The abstrat mahine (�gure 5) is the basi element of a B development. It

models a system desribed by a set of data or variables and by the operations as-

soiated that modify their state or their value. An abstrat mahine is omposed

of:

� statements of data:

• parameters,

• variables,

• onstants,

� an invariant, whih onsists in a prediate on the previously delared ele-

ments and gives their types,

� a de�nition of the initial state,

� operations that de�ne the ations modelling the state hanges.

Then, an abstrat mahine models the behaviour of the spei�ed system.

Afterwards, this model is re�ned. An abstrat mahine is omposed of di�er-

ent lauses representing the data of the spei�ed system. In B, onstants and

sets represent unhanging data of the system. Eah mahine is de�ned by its

name and an have parameters. The logi properties on these parameters are

spei�ed in the lause CONSTRAINTS. The sets (reps. the onstants) are

spei�ed in the lause SETS (resp. CONSTANTS) and their logial proper-

ties in the lause PROPERTIES. The lause VARIABLES gives mahine

variables whih represent variable elements of the system. As onstants, vari-

ables are de�ned by a onjuntion of prediates in lause INVARIANT. This

lause gives the properties that the values of the variables have to satisfy at any

time. Finally, variables are valued in the lause INITIALISATION.

In B language, there is an expliit lause, alled DEFINITION, to speify

some abbreviations.

De�nition 11. A de�nition introdues an abbreviation, eventually with param-

eters, for a prediate, an expression or a substitution. A de�nition an be used

in other lauses of the omponent. Eah use of a de�nition is replaed by the

orresponding text, where formal parameters take the plae of real parameters.

A de�nition an only be used in the omponent where it is de�ned.

Now, the stati part of a system an be modelled. The dynami one is spe-

i�ed by operations whih orrespond to ations to be performed by the system.

In the operations, another fundamental notion of B language is used: the notion

of generalised substitution.
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4.2 Generalised substitutions

The generalised substitution notation allows us modelling servies (ations)

whih had to be performed by the system. It is a key notion of the B approah.

De�nition 12. A generalised substitution is a prediate transformer, whih,

when it is applied to prediates haraterising data before a given servie ativa-

tion, produes the prediates haraterising data after the servie ahievement.

In other words, if S is a substitution and P a prediate, then S[P ] is the

prediate obtained applying S to P .

The generalised substitutions are an extension of the elementary substitution

de�ned as follows:

De�nition 13. if x is a variable and e is an expression, then the elementary

substitution x := e, applied to a prediate P , transforms P in a prediate P ′
,

obtained by substituting e to all free ourrenes of x in P .

The reader an �nd all the substitutions, used in the B language, and their

desription in [Abrial 1996℄ and [Lano 1996℄.

4.3 Re�nement and implementation

As mentioned before, the B method uses the onept of re�nement whih pro-

vides inremental development from the spei�ations to the ode in a single

formalism. The re�nement proess is the set of suessive transformations of the

initial model. These transformations are made in order to put in onrete form

the manipulated strutures and solve indeterminism in order to obtain a soft-

ware written in a ommon programming language. There an be several levels

of re�nement and the last one is alled implementation.

Figure 5 gives a view of a re�nement N from an abstrat M and the di�er-

enes between the two omponents.

Finally, the B method an be proessed by using tools

1

whih allow us to

generate automatially the proof obligations for eah abstrat mahine. At the

last re�nement, alled the implementation, we obtain a safe software.

1
two software platforms are available and give a set of automati tools in order to

develop real systems:

� the Atelier B, http://www.atelierb.eu/

� the B-Toolkit, http://www.b-ore.om/btoolkit.html

16 Bon P., Collart-Dutilleul S.: From a Solution Model ...



MACHINE M(p)
CONSTRAINTS

C
SETS

St
CONSTANTS

k
PROPERTIES

B
VARIABLES

v
DEFINITIONS

D
INVARIANT

I
INITIALISATION

T
OPERATIONS

y <� op(x) =

PRE P
THEN

S
END

. . .

END

REFINEMENT N
REFINES

M
SETS

St1
CONSTANTS

k1
PROPERTIES

B1
VARIABLES

w
DEFINITION

D1
INVARIANT

J
INITIALISATION

T1
OPERATIONS

y <� op(x) =

PRE P1
THEN

S1
END

. . .

END

Figure 5: "Generi" abstrat mahine and its re�nement

5 Transformation by onstrution

Now, a transformation algorithm is applied to the Petri net model in order to

translate it into a B abstrat mahine. The proposed approah begins by build-

ing the abstrat mahine orresponding to the onsidered Petri net model. The

seond step adds some omplementary information ensuing from the struture.

Finally, the behavioural properties of the Petri net model are introdued in the

B mahine [Bon 2000℄.

5.1 Multi-set spei�ation

As high-level Petri nets marking orresponds to a multi-set, a preliminary task

is dediated to the spei�ation of multi-sets. This part does not de�ne all the

properties assoiated with multi-set. The reader an refer to [Bon 2000℄ to have

more information.

In B, for typing reasons, it is not possible to de�ne an abstrat mahine

whih takes into aount all types of multi-sets. So, multi-sets and their assoi-

ated properties and operations are spei�ed with parametrised de�nitions. These

de�nitions have to be inluded as neessary. Figure 6 gives the abstrat mahine,

only omposed of B de�nitions, speifying multi-sets.
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MACHINE Multiset
DEFINITION

Ms(ss) == ss ↔ NAT ;
Ms_Empty(ss) == {elt|elt : ss× {0}}

Ms_In(elt,ms, ss) == ∃n.(n ∈ NAT1 ∧ (elt 7→ n) ∈ ms)
Ms_Subset(ms1,ms2, ss) == ∀elt.(Ms_In(elt,ms1, ss)

⇒ ms1(elt) > ms2(elt))
Ms_Add(ms1,ms2, ss) == λee.(ee ∈ ss|ms1(ee) +ms2(ee)
Ms_Less(ms1,ms2, ss) == λee.(ee ∈ ss|ms1(ee)−ms2(ee)

END

Figure 6: Abstrat spei�ation of multi-sets and their assoiated properties and oper-

ations

Then the struture and properties to be ful�lled by the Petri nets omponent

are presented.

5.2 Systemati transformation from a Petri net into an abstrat B

mahine

First, the translation of the strutural aspets of the Petri net model is desribed.

A state variable orrespond to eah plae of the Petri net.

Then, the translation of a Petri net transition into a B operation is imple-

mented. This transformation takes into aount the fat that the impat of an

operation on the state variable is the same as the orresponding transition �ring.

5.2.1 Petri net struture transformation

A mahine desribes the struture of the Petri net modelling the onsidered

system. It seems to be natural to translate the marking of eah plae by a state

variable of the B abstrat mahine. As the marking is a multi-set of tokens and a

token is a t-uple omposed of s elements whih are the olours of this plae. For

eah plae p a state variable State_p is produed. This variable is de�ned as a

multi-set based on the olor ColorF_p assoiated to the plae p. Consequently

for eah plae p the following sheme is introdued:

VARIABLES

State_p

INVARIANT

State_p ∈ MS(ColorF_p)

As there are two di�erent plaes on the onsidered railway example, it or-

responds to:
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VARIABLES

State_Busy,

State_Free

INVARIANT

State_Busy ∈ MS(ColorF_Busy)

∧ State_Free ∈ MS(ColorF_Free)

It an be notied that, as the �rst part of translation shows, the transforma-

tion onsists of a simple syntaxial transformation from Petri net labels into B

language. From the strutural de�nition of a oloured Petri net, a transformation

rule is applied. The previous part orrespond to:

(i) Σ is a non-empty �nite set of types, alled olors

(ii) P is a �nite set of plaes

(iii) T is a �nite set of transitions

(iv) A is a �nite set of ars, as: P ∩ T = P ∩ A = T ∩ A = ∅,

(v) N the node funtion de�ned from A to P × T ∪ T × P

(vi) C is the olor funtion de�ned from P to Σ

(vii) G is the guard funtion de�ned from P to expressions as:

∀t ∈ T : [Type(G(t)) = B ∧ Type(V ar(G(t))) ⊆ Σ],

(viii) E is an expression of ars funtion de�ned from A to expressions as:

∀a ∈ A : [Type(E(a)) = C(p(a))MS ∧ Type(V ar(E(a))) ⊆ Σ]

(ix) I an initialisation funtion de�ned from P to losed expressions as:

∀p ∈ P : [Type(I(p)) = C(p)MS ].

To eah olor from Σ, a type of the abstrat mahine is assoiated. In the ase

study, the set of trains is enumerated and traks are de�ned with an abstration

from naturals:

MACHINE RdPtrain

INCLUDES Multiset

SETS

Trains = {ta, tb}

CONSTANTS

CdV

PROPERTIES CdV = {elt|elt ∈ NAT ∧ elt > 0 ∧ elt 6 6}

. . .
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Sets P ,T and A and funtion N do not expliitly appear in the abstrat

mahine. In fat, the aim of this transformation is to apture the behaviour

of the model and not the struture. In order to simplify the translation, the

struture is not translated.

Funtions C, G and E are spei�ed by means of B de�nitions and, �nally,

the funtion I is spei�ed in the INITIALISATION lause.

5.2.2 Behaviour transformation

The aim of this translation is essentially to apture the behaviour of the system.

Before speifying the behaviour, some information on transition variables has

to be introdued. The set of variables assoiated to a transition is omposed by

variables appearing in the transition guard and variables used by expression of

ars linked to the transition:

∀t ∈ T : V ar(t) = {v|v ∈ V ar(G(t)) ∨ ∃a ∈ A : v ∈ V ar(E(a))}.

The list of variables is translated into a list of identi�ers. These variables are

typed by means of a de�nition with a typifying prediate. To eah transition, a

prediate Enabled_t denoting the transition t enabling in the urrent state is

spei�ed. In the ase study, there is only one transition with two input ars:

. . .

DEFINITIONS

. . .

Enabled_Moving == ∃V ar_Moving.(
Type_V ar_Moving ∧ Guard_Moving

∧ Ms_Subset(ArcExpr_Free_Moving, State_Free,
Color_Free)

∧ Ms_Subset(ArcExpr_Busy_Moving, State_Busy,
Color_Busy))

. . .

When transition enabling onditions are spei�ed, the operation allowing the

Petri net evolution an be spei�ed. As mentioned in paragraph 3.2.3, the token

onsumption (resp. prodution) is equivalent to a subtration (resp. addition) of

multi-sets. So, to eah transition, an operation desribing the marking evolution

during the transition �ring is spei�ed. Finally, �gure 7 gives the translation of

the oloured Petri net model of the ase study.

In this setion the fundamental theory on whih the translation methodology

is based is presented. This translation is illustrated on an elementary railway

example, but the proofs of the transformation are not presented. However, the

mathematial aspets of the proof are developed in [Bon 2000℄.

In this ontribution, the requirement engineering point of view is rather de-

veloped. Considering this last point of view, the most interesting ontribution is

the possibility of transforming an invariant I to be veri�ed by a Petri net into a

B abstrat mahine invariant. The use of automati proof tools assoiated with
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MACHINE RdPtrain

INCLUDES Multiset

SETS Trains = {ta, tb}
CONSTANTS CdV

PROPERTIES CdV = {elt | elt ∈ NAT ∧ elt > 0 ∧ elt 6 6}
DEFINITIONS

Var Moving == i , j , k , x ;

Type Var Moving == i ∈ CdV ∧ j ∈ CdV ∧ k ∈ CdV ∧ x ∈ Trains ;

Guard Moving == i = ((j − 1) mod 7) ∧ (kk = (jj + 1) mod 7) ;

ArcExp Busy Moving == Ms Empty(ColorF Busy) <+ {(jj 7→ xx ) 7→ 1} ;

ArcExp Free Moving == Ms Empty(ColorF Free) <+ {kk 7→ 1} ;

ArcExp Moving Busy == Ms Empty(ColorF Busy) <+ {(kk 7→ xx ) 7→ 1} ;

ArcExp Moving Free == Ms Empty(ColorF Free) <+ {ii 7→ 1}
Var Moving == i , j , k , x ;

Type Var Moving == i ∈ CdV ∧ j ∈ CdV ∧ k ∈ CdV ∧ x ∈ Trains ;

Enabled Moving == ∃Var Moving.(Type Var Moving ∧ Guard Moving

∧ Ms Subset(ArcExpr Free Moving,State Free,Color Free)
∧ Ms Subset(ArcExpr Busy Moving,State Busy,Color Busy))

VARIABLES

State Busy,State Free

INVARIANT

State Busy ∈ MS (ColorF Busy) ∧ State Free ∈ MS (ColorF Free)
INITIALISATION

State Busy := Ms Empty(ColorF Busy) <+ {(0 7→ ta) 7→ 1, (4 7→ tb) 7→ 1}
|| State Free := Ms Empty(ColorF Free) <+ {1 7→ 1, 2 7→ 1, 5 7→ 1}
OPERATIONS

Op Moving =
SELECT Enabled Moving

THEN ANY Var Moving

WHERE

Ms Subset(ArcExpr Busy Moving,State Busy,ColorF Busy)
∧ Ms Subset(ArcExpr Free Moving,State Free,ColorF Free)
∧ Type Var Moving ∧ Guard Moving

THEN

State Busy := Ms Add(Ms Less(State Busy,ArcExpr Busy Moving,

ColorF Busy),ArcExpr Moving Busy,ColorF Busy)
|| State Free := Ms Add(Ms Less(State Free,ArcExpr Free Moving,

ColorF Free),ArcExpr Moving Free,ColorF Free)
END

END

END

Figure 7: Abstrat mahine orresponding to the �gure 4

the B framework may be of e�ient assistane in this this di�ult task. Fousing

on the example desribed in this paper, there is a safety requirement forbidding

that a train is on a trak diretly adjaent to an oupied trak. This last prop-

erty is di�ult to verify diretly on the Petri net model. The B expression of

this requirement is as follows:
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∀(i, j). (i ∈ CdV ∧ j ∈ CdV ∧

Ms_In((i 7→ ta), State_Busy, Color_Busy)∧

Ms_In((j 7→ tb), State_Busy, Color_Busy)

⇒ (j − i) mod 7 > 1 ∧ (j − i) mod 7 < 6)

This invariant takes into aount that the railway example is irular and

omposed of 7 traks. The proof of the above invariant, whih an be provided

by the B tools, allow us to laim the orretness of the Petri net model with

regards to the onsidered safety requirement. B tools have an assoiated proving

tool based on Hoare logi. This tool will generate proof obligations ensuing from

the invariant. In some ase, the tool has to be assisted by human expert in order

to provide an addited mathematial knowledge. Anyway, B tool experts use to

formulate invariants in order to help the proving tool to sued.

6 Conlusion

Motivations of a mixed approah based on the use of di�erent modelling tools

in the ontext of safety requirements engineering is presented in the �rst part of

this paper. This disussion put emphasis on the ritial task whih takles the

steps to perform from the requirements analysis towards a valid implementation

on a real system. Atually there is a swithing point where implementation

onsiderations are introdued. Preisely, at this stage of the design proess, the

paper fouses on model transformation. This task may assist the designer on the

way from analysis to implementation. Considering safety requirements in guided

transports, transformation from high-level Petri nets into B abstrat mahines

is onsidered. This is a way of keeping the same requirements, while swithing

points of views. Abstrat B mahines are a valid input of the analysis phase into

the B proess implementation synthesis.

Based on a simple example of setion mutual exlusion railway problem, the

high-level Petri net model powerfulness is illustrated. Moreover, the salability

and oniseness of the produed model are explained. Fundamental de�nitions

of both Petri nets and B abstrat mahines are presented in suh a way that

a systemati translation an be introdued. This translation is presented and

illustrated on the same example.

Now, starting from the example, integrating timetable onstraints into the

approah will provide a problem. From the point of view of the global engineering

proess (�gure 1), de�ning an implementation parameter at the model analysis

step is not orret. It just happens that high-level Petri nets use to handle �nite

domains. This does not orrespond to the in�nite number of values whih an

be assigned to a ontinuous variable belonging to an interval.

In the ase of time onstraints, the sienti� literature provides some propo-

sitions introduing some interesting prospets [Bender et al 2008℄.
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Moreover, the literature ontains behavioural analysis results towards gen-

eral ontinuous parameters [Dhouibi et al 2008℄. The bridge to be built from

the analysis proess towards a valid implementation proess does not only on-

ern the time parameter. Obviously, informal spei�ations ontain requirements

onerning time, positions, dimensions, osts, speed, et. They all orrespond to

values to be exatly de�ned at the implementation phase. From a theoretial

point of view, dealing with these kind of onstraints, the path from spei�ation

to implementation seems to exist. However, further researh has to be onduted

onsidering more pratial aspets.
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