
A Catalog of Aspect Refactorings for Spring/AOP

Santiago A. Vidal

(ISISTAN Research Institute, UNICEN, Tandil, Argentina. Also CONICET.

svidal@exa.unicen.edu.ar)

Claudia Marcos

(ISISTAN Research Institute, UNICEN, Tandil, Argentina. Also CIC.

cmarcos@exa.unicen.edu.ar)

Abstract: The importance of enterprise applications in current organizations makes
it necessary to facilitate their maintenance and evolution along their life. These kind
of systems are very complex and they have several requirements that orthogonally
crosscut the system structure (called crosscutting concerns). Since many of the enter-
prise systems are developed with the Spring framework, can be taken advantage of the
benefit provided by the aspect-oriented module of Spring in order to encapsulate the
crosscutting concerns into aspects. In this way, the maintenance and evolution of the
enterprise systems will be improved. However, most of the aspect refactorings presented
in the literature are not directly applicable to Spring systems. Along this line, in this
work we present an adaptation of a catalog of aspect refactorings, initially presented
for AspectJ, to be used with Spring/AOP. Also, we conduct a case study in which two
enterprise applications developed with the Spring framework are refactored in order to
encapsulate their crosscutting concerns into aspects.

Key Words: separation of concerns, refactoring, aspect-oriented programming

Category: D.3.3, D.2.3

1 Introduction

The concept of enterprise application is used to describe the software systems

that are used by the companies to help to solve the problems of these organi-

zations [Kayal (08)]. An enterprise system is a piece of software that provides

functionality to support business logic for an enterprise. In general, these sys-

tems are used in organizations aimed at improving productivity and business

efficiency. The features of this kind of systems are usually business tools such

as shopping and online payment processing, interactive product catalogs, auto-

mated billing, and so on.

These enterprise applications are complex and mission-critical. To design

and implement this kind of systems hundreds of requirements must be satisfied.

Each implementation decision, made to satisfy a requisite, usually affects other

requisites. Sometimes, the relationships between requirements are not clear and

the violation of any of these requirements may result in the failure of an entire

project [Johnson (03)]. In fact, the maintenance and evolution of these systems

is even more complex once they are deployed.

Journal of Universal Computer Science, vol. 19, no. 1 (2013), 157-182
submitted: 1/11/11, accepted: 28/12/12, appeared: 1/1/13 © J.UCS

A traditional approach to deal with complexity and simplify the evolution

of complex systems, such as enterprise systems, is modularization [Parnas 72].

When complex software requisites are found, generally they are divided into

several parts, such as business logic, data access and presentation logic. These

features represent different system concerns that are encapsulated into differ-

ent modules. However, there exist some concerns, called crosscutting concerns

(CCCs), whose encapsulation is almost unviable because they crosscut the mod-

ules of a system [Kiczales et al. 97]. This kind of concerns can be encapsulated

into a new component called aspects by means of Aspect Oriented Programming

(AOP) [Elrad et al. 01].

AOP is a software paradigm that complements object-oriented programming

(OOP) to address the problem of separation of concerns [Kiczales et al. 97].

AOP allows the encapsulation of CCCs into new components called aspects. In

this way, AOP increases the software modularization and potentially reduces the

impact of change propagation when systems are modified [Garcia et al. 05].

Since the appearance of AOP various aspect languages have been developed,

such as AspectJ1, or frameworks with support for aspects such as Spring/AOP2.

With regard to the latter, there is a wide and growing use of the Spring frame-

work to develop enterprise systems. In order to improve the separation of con-

cerns by means of AOP, the systems should be refactored to encapsulated the

CCCs into aspects. In this way more flexible and modular enterprise systems will

be potentially achieved improving the long-term evolution of the applications.

To achieve the goal of encapsulating the CCCs into aspects, Spring provides an

AOP module for writing aspects and that promotes low coupling of code.

For these reasons, in order to improve the separation of concerns and soft-

ware evolution in enterprise applications, AOP can be adopted with low cost

specially in those legacy systems that have been developed with Spring and that

are continually evolving. In this way, the process to separate the CCCs involves

the identification of them in the legacy systems, in a process known as aspect

mining [Kellens et al. 07], and then, the encapsulation of the CCCs into aspects

in a process known as aspect refactoring [Kellens et al. 07]. Most of the existing

aspect mining techniques can be applied to Spring since they are based on Java

code [Abait and Marcos 09, Marin et al. 07]. However, since most of the aspect

refactoring techniques transform CCCs to aspects using a specific AOP language

and a big number of systems are implemented in Java, most of the aspect refac-

toring techniques that have been presented are for AspectJ [Hannemann and

Kiczales 02, Iwamoto and Zhao 03, Marin 04, Malta and de Oliveira Valente

09, Monteiro 04]. These refactorings transform CCCs of Java systems to aspects

written in AspectJ. However, few refactorings have been proposed to generate

1 http://www.eclipse.org/aspectj/
2 http://www.springsource.org/

158 Vidal S.A., Marcos C.: A Catalog of Aspect Refactorings ...

aspects in Spring/AOP [Laddad (09)].

Along this line, in this paper we present the adaptation of a set of aspect

refactorings initially presented for AspectJ to be used with the Spring/AOP

framework. We think that the possibility of adapting a catalog of aspect refac-

torings to be used in Spring/AOP will simplify the refactoring task of these

systems. The task of adapting the refactorings is not trivial since Spring/AOP

does not include all the feature presented by AspectJ. In this work we focus in

the adaptation of those refactorings that allow the encapsulation of CCCs into

aspects. In order to validate the adapted refactorings, we present the refactoring

of two enterprise applications developed with Spring achieving the encapsulation

of their CCCs into aspects. In this way, the main contribution of this paper is

the adaptation of a set of aspect refactorings to be used in Spring/AOP.

The rest of this paper is structured as follows: [Section 2] presents the main

differences between Spring/AOP and AspectJ; [Section 3] presents the adap-

tation of a catalog of aspect refactorings to be used in Spring/AOP; [Section

4] details the refactoring process of two enterprise applications in order to en-

capsulate their CCCs into aspects; [Section 5] analyzes some related work; and

[Section 6] presents the conclusions.

2 Spring/AOP and AspectJ

Spring is a popular framework used to developed enterprise applications. With

the goal of creating more modular systems, Spring includes an AOP module

based on interceptors and proxies. This AOP module is based on AspectJ, which

is the most complete language implementation of AOP. However, there are im-

portant differences between Spring/AOP and AspectJ.

Spring/AOP is based on the use of proxies which avoid the need of an ex-

plicit weaving step (at loading or building time) such as AspectJ. This kind of

approach presents a minor obstacle to adopt AOP because the implementation

of the system is achieved in a pure Java environment. Nevertheless, Spring/AOP

presents a subset of the features of AspectJ. For example, Spring/AOP only in-

tercepts one kind of join points: the execution of non static public methods. On

the other hand, AspectJ allows the definition of other kind of join points such

as the execution of a method, the load of classes, the access to a field, or the

handling of an exception [Laddad (09)].

As a result of applying an approach based on proxies, the weaving of the

aspects with the beans (Java classes with getters and setters used to configured

the aspects) in Spring is done at runtime encapsulating the aspects in a Proxy

class. This class intercepts the calls to the methods, performs the additional

logic of the aspects, and then transmits those calls to the target bean. As a

consequence of the use of these mechanisms, the performance of the Spring/AOP

modules is lower than the bytecode weaving implemented by AspectJ.

159Vidal S.A., Marcos C.: A Catalog of Aspect Refactorings ...

Another important difference is that Spring/AOP restricts the exposure of

join points only to public methods declared on the beans. For this reason, the

number of potential methods to be advised by the aspects is limited. Since

the methods must be declared on the beans, the configuration of the aspect is

achieved using the regular syntax definition of beans.

Regarding the programming styles, Spring/AOP presents two alternatives.

A configuration style based on XML called “Schema-style” and a style based on

annotations called “@AspectJ-style”. The Schema style allows the transforma-

tion of Java classes to aspects by the specification of the metadata related to the

aspect using an XML configuration file. On the other hand, the @AspectJ style

allows the annotation of Java classes with Java 5 annotations using a subset of

the syntax of AspectJ. The main advantage of the schema style is that it can be

used with previous versions to Java 5. However, using this style, the logic of the

aspects is more difficult to understand than using the @AspectJ style because

in order to know what an aspect does is necessary to examine the configuration

file and the Java code. Using the @AspectJ style the logic of the advices and

pointcuts remains in the annotated aspect. For this reason, the @AspectJ style

is used in the rest of this paper.

3 Spring/AOP Refactorings

In order to encompass a wide range of situations that may occur during the

refactoring process a catalog of aspect refactorings is needed. Most of the aspect

refactorings proposed in the literature are centered to transform Java code to

AspectJ. However, a large number of the developed enterprise applications are

implemented in Spring [Walls and Breidenbach(2005)]. The evolution of these

systems should be accomplished with a low cost. An alternative to achieve this

goal is the use of AOP. Since there is not a specific Spring/AOP catalog, it

is necessary to adapt one of the existing AspectJ catalogs. With this goal in

mind, in this section a subset of the aspect refactorings presented by Monteiro

[Monteiro 04] are adapted to Spring/AOP using the @AspectJ syntax [Laddad

(09)]. Specifically, the refactorings adapted are those whose purpose is the en-

capsulation of a CCC into an aspect (called “refactorings for feature extraction”

[Monteiro 04]).

Since Spring/AOP only implements a subset of the features of AOP [Laddad

(09)], the task of adaption of the refactorings is not trivial. As a result of this

constraint most of the aspect refactorings to be adapted need major changes.

As is shown in Table 1 only one refactoring cannot be adopted to Spring/AOP

(because of differences in the implementation between Spring/AOP and As-

pectJ). Additionally, while three refactorings are directly applicable, most of the

refactorings needs a major adaptation.

160 Vidal S.A., Marcos C.: A Catalog of Aspect Refactorings ...

Feasibility Refactorings

Adapted Move Method from Class to Inter-type, Extract Fragment

into Advice, Encapsulate Implements with Declare

Parents, Move Field from Class to Inter-type, Inline Class

within Aspect, Extract Feature into Aspect

Directly Applicable Extract Inner Class to Standalone, Inline Interface within

Aspect,as comprise on Change Abstract Class to Interface

Not Applicable Split Abstract Class between Aspect and Interface

Table 1: Aspect refactorings adapted.

In what follows, the adaptation of the aspect refactorings for feature extrac-

tion is presented in detail grouped for the effort demanded by the adaptation

and the feasibility of it. For each refactoring, the possibility of applying this

refactoring in the context of Spring/AOP is analyzed and the changes in com-

parison with AspectJ are presented. In order to show the differences between

Spring and AspectJ refactorings, we present the changes using the same code

examples used by Monteiro [Monteiro 04].

3.1 Adapted Refactorings

In this section the aspect refactorings that were successfully adapted are pre-

sented. For each of them the main difficulties found during the adaptation are

discussed and the mechanisms to apply the refactorings are presented (code

examples are shown for those with major changes).

3.1.1 Move Method from Class to Inter-type

This aspect refactoring encapsulates a method related to a CCC into an aspect.

In order to achieve this goal an inter-type declaration is used in AspectJ. That is,

this refactoring moves a method into an aspect as an inter-type declaration. This

refactoring needs to be modified because Spring/AOP only allows the introduc-

tion of new interfaces to beans managed by the framework. For this reason, it is

desirable that all members that are accessed by the method will be available on

an inner class inside the aspect. To accomplish the encapsulation of the method

the next steps should be followed:

1. If the method to be moved does not belong to an interface implemented by

the class, an inner interface to the aspect containing the declaration of the

method must be created.

161Vidal S.A., Marcos C.: A Catalog of Aspect Refactorings ...

2. Create an inner class inside the aspect that implements the interface above-

mentioned (add the implements declaration to the interface if the inner class

was created in a previously refactoring).

3. Move the method to the new class changing the method access to public if

necessary.

4. Add a private static field to the aspect whose type is the same as the interface

that contains the method.

5. Add the annotation @DeclareParents to the field. The annotation value at-

tribute must be the original class in which the method was defined (in order

to introduce the method into the class when it is invoked) and the defaultImpl

attribute must contains the inner class name.

In order to shown the mechanism of this aspect refactoring the following example

in which the method display() is encapsulated is presented:

public class TangledStack{
public void display() {//...}
// . . .

}

The method is deleted from TangledStack and it is encapsulated into a new

aspect called DisplayAspect which contains an interface Display and an inner

class DisplayImpl in which the method is declared. Also, a static variable of

type Display is added to the aspect in order to create the inter-type declaration

using the @DeclareParents annotation.

@Aspect
public class DisplayAspect {

@DeclareParents(va lue= ‘ ‘ TangledStack ’ ’ , de fau l t Impl= DisplayImpl . class
)

public static Display mixin ;
interface Display {

void d i sp l ay () ;
}
static class DisplayImpl implements Display {

public void display(){// ...}
}

}

Finally, the application-context.xml file must be changed in order to add the

reference to the aspect DisplayAspect (Since the refactoring of this file is similar

for all the aspect refactorings, they will be omitted in the following examples).

<beans . . .>
<bean id = ‘ ‘ s tack ’ ’ c l a s s = ‘ ‘ TangledStack ’ ’>
</bean>

< bean class=“DisplayAspect” />

</beans>

162 Vidal S.A., Marcos C.: A Catalog of Aspect Refactorings ...

3.1.2 Extract Fragment into Advice

This aspect refactoring is used to encapsulate into an aspect a fragment of code

inside a method. So, a pointcut that captures the joinpoint and its context is

created and the fragment of code is extracted into an advice in the AspectJ

refactoring. As said before, unlike AspectJ, Spring/AOP only allows join points

capturing the execution of public methods handled by the framework; hence the

cases in which this refactoring can be applied are limited. The cases that can be

refactored without problems are those in which the fragment of code is at the

beginning or at the end of a method. When the fragment of code is mixed with

other statements of the method, it will be necessary to apply OO refactorings

in order to modify the code of the method an enable the aspect refactoring

application.

In order to facilitate the application of the refactoring it is convenient to

start the encapsulation of the fragment of code by extracting it into a method

using Extract Method [Fowler (99)] and then apply Move Method from Class to

Inter-type (3.1.1) to move the method to an aspect. In this way, the join point

context (such as temporal variables, parameters, or instance variables) is easily

captured. Next, the following steps should be accomplished:

1. A method with the @Pointcut annotation mark must be added to the aspect.

This pointcut must capture the execution of the method that contains the

fragment of code to be extracted.

2. Proper joinpoint context capturing should be ensured (as in AspectJ).

3. A method with the proper advice annotation mark (@Before, @After, @Af-

terReturning, @AfterThrowing, or @Around) must be added to the aspect.

The advice value attribute must be the pointcut previously created.

In the next example, we extract the call to method display() from the method

push(Object). Since this call is at the end of the method, the refactoring can be

applied without problem.

public class TangledStack{
private int top = −1;
private Object [] e l ements ;
public void d i sp l ay () {

// . . .
}
public void push (Object e lement){

e l ements [++ top] = element ;

display();

}
// . . .

}

First, we define a new aspect (called WindowView) with a pointcut that cap-

tures all the calls to the push(Object) method using the @Pointcut annotation.

163Vidal S.A., Marcos C.: A Catalog of Aspect Refactorings ...

Also, with this pointcut the context of the joinpoint is captured by means of the

stack variable. Finally, since the call to the display() method is at the end of the

push(Object) method, an advice is created with the @AfterReturning annotation

and the call to the display() method is deleted from the push(Object) method.

@Aspect
public class WindowView {

@Pointcut (‘ ‘ (execut ion (public void TangledStack . push (Object))) && this
(stack) ’ ’)

private void stateChanged (TangledStack stack) {}
@AfterReturning (‘ ‘ stateChanged (stack) ’ ’)
public void d i sp l ayS ta t e (TangledStack stack) {

stack.display();

}
}

3.1.3 Encapsulate Implements with Declare Parents

The goal of this aspect refactoring is the encapsulation of the CCC roles played

by the declaration of interfaces. For this reason, the refactoring in AspectJ moves

the implements declaration of the interface from the class to an aspect using the

Inter-type declaration mechanism. In Spring/AOP the mechanism of introduc-

tions must be used which is similar to the Inter-type declaration mechanism of

AspectJ. However, the main limitation in Spring/AOP, with regard to AspectJ,

is that it is necessary to move into the aspect all the methods inherited from

the interface. To accomplish the encapsulation of the implements declaration the

next steps should be followed:

1. Add a private static field to the aspect. The type of the field must be the

interface to encapsulate.

2. Add the annotation @DeclareParents to the field. The annotation value at-

tribute must be the class that implements the interface. In this way, the

interface is introduced into the class avoiding the explicit declaration of the

interface into the class.

3. Add an inner class to the aspect that implements the interface. The name

of the inner class must be added to the defaultImpl value of the @Declare-

Parents annotation previously created. This indicates that the inner class

provides the implementation of the role.

In the next example, we extract the secondary role played by TargetInterface

from a class.

public class class SomeImplementingClass implements TargetInterface {
// . . .

}

164 Vidal S.A., Marcos C.: A Catalog of Aspect Refactorings ...

When the aspect refactoring is applied, the implements declaration is re-

moved from the class and the annotation @DeclareParents is included in an

aspect as is shown in the following code.

@Aspect
public class Implementation {

@DeclareParents(va lue= ‘ ‘ SomeImplementingClass ’ ’ , de fau l t Impl=
Inte r face Implementat ion . class)

private static Targe t In t e r f a c e mixin ;

static class Inte r face Implementat ion implements Targe t In t e r f a c e {
// . . .

}
}

3.1.4 Move Field from Class to Inter-type

This aspect refactoring encapsulates a field related to a CCC by means of an

aspect. The main difference between the AspectJ version of the refactoring and

the Spring/AOP one is that in the latter the field must be declared as an instance

variable of the aspect (instead of introducing the field into the target class). To

apply the refactoring the next steps should be followed:

1. Move field declaration from the class to the aspect. If the field belongs to an

internal type of the class, it is necessary to extract the inner class of this type

into a new class using Extract Inner Class to Standalone (3.2). If the code

of the CCC to which the field belongs had been encapsulated into an inner

class of the aspect, such as the application of Encapsulate Implements with

Declare Parents (3.1.3), the instance variable must be encapsulated into the

inner class.

2. For each fragment of code in which the code is used, decide if the whole

method or only a fragment of it must be moved to the aspect, and apply

the appropriate refactoring: Move Method from Class to Inter-type (3.1.1)

or Extract Fragment into Advice (3.1.2).

In contrast with AspectJ, it is not necessary to check at execution time if there

is any access to the field from sources external to the aspect. This is because

the field is a private instance variable of the aspect (and not of the target class),

whereupon errors are detected at compilation time.

For example, consider the variables label and text of the following source

code fragment.

public class TangledStack {
private int top = −1;
private Object [] e l ements ;
public f ina l static int S SIZE = 10 ;

private JLabel label = new JLabel(“Stack ”);

private JTextField text = new JTextField(20);

// . . .
}

165Vidal S.A., Marcos C.: A Catalog of Aspect Refactorings ...

If these variables belongs to a CCC, the Move Field from Class to Inter-type

refactoring should be applied. In this case, the refactoring just move the instance

variables into the aspect.

@Aspect
public class WindowViewAspect {

private JLabel l a b e l = new JLabel (‘ ‘ Stack ’ ’) ;
private JTextFie ld t ex t = new JTextFie ld (20) ;
// . . .

}

3.1.5 Inline Class within Aspect

This aspect refactoring is applied in order to encapsulate a class into an aspect

when the class is only used in that aspect. So, the class is moved into the aspect

as an inner class. The only difference with AspectJ is that the new location of

the class to be migrated must be updated in the application-context.xml file. In

this way, the steps of the refactoring are the following:

1. Move the class into an aspect.

2. Change the public visibility of the class to static.

3. Change the attribute class of the beans file to reference the new location of

the class.

For example, consider the following class.

public class OpenNot i f i e r extends Observable {
private Flower e nc l o s i n g ;
private boolean alreadyOpen = fa l se ;
public OpenNot i f i e r (Flower enc l o s i ng) {

this . e n c l o s i ng = enc l o s i ng ;
}
// . . .

}

After encapsulating this class into an aspect using the refactoring the result

is as follows.

@Aspect
public class SomeAspect {

// . . .
static class OpenNot i f i e r extends Observable { /

private Flower en c l o s i n g ;
private boolean alreadyOpen = fa l se ;
public OpenNot i f i e r (Flower enc l o s i ng) {

this . e n c l o s i n g = enc l o s i ng ;
}
// . . .

}
}

166 Vidal S.A., Marcos C.: A Catalog of Aspect Refactorings ...

3.1.6 Extract Feature into Aspect

This is the main refactoring proposed by Monteiro [Monteiro 04] because the

goal of it is the extraction of a CCC spread out over several Java elements

such as methods, fields. To accomplish this goal, this refactoring uses other

refactorings presented in the catalog, such as Move Method from Class to Inter-

type (3.1.1) or Extract Fragment into Advice (3.1.2), and OO refactorings as the

proposed by Fowler [Fowler (99)]. For this reason the main constraints to apply

this refactoring (i.e. the differences with the AspectJ refactorings) are the same

that were presented for the previous aspect refactorings.

3.2 Directly Applicable Refactorings

Some aspect refactorings presented by Monteiro [Monteiro 04] can be easily ap-

plied using Spring/AOP without adaptation. They are Extract Inner Class to

Standalone, Inline Interface within Aspect, and Change Abstract Class to Inter-

face. The main reason because they are directly applicable into Spring/AOP is

the fact that this aspect refactorings do not involve AOP language elements.

3.3 Not Applicable Refactorings

The only aspect refactoring that could not be adapted was Split Abstract Class

between Aspect and Interface [Monteiro 04]. This refactoring is used when one or

more classes inherit from an abstract one impeding the inheritance from another

class. Additionally, the abstract class should be changed into an interface because

it defines concrete members. The AspectJ solution for this problem is to move

all the concrete members defined in the abstract class into an aspect. Then, the

abstract class can be changed into an interface.

The Spring/AOP adaptation of this aspect refactoring is not possible mainly

because the differences between the implementation of the mechanisms of inter-

type declaration of Spring/AOP and AspectJ. While the introduction mechanism

of Spring/AOP could be used to provide those methods of the abstract class to

its subclasses, Spring/AOP requires the implementation of the interface with all

its methods (and in this case, they are methods that have no implementation

defined).

A possible alternative is to define a hierarchy of aspects in which an aspect

must define the methods of the abstract class and a sub-aspect for each concrete

class. These sub-aspect must contain the implementations of the concrete meth-

ods and the introduction of the interface in the original subclasses. However, this

approach is only applicable if the abstract class represents a CCC. In this case,

the solution is the refactoring of the whole CCC into a hierarchy of aspects using

the aforementioned restructuring.

167Vidal S.A., Marcos C.: A Catalog of Aspect Refactorings ...

4 Case Studies

In this section, the refactoring of the CCCs of two enterprise applications (Fi-

nance Manager and GridGain) is presented. Both applications use Spring but

no aspects are defined. In this way, the goal of this case study is to validate the

proposed aspect refactorings by encapsulating the CCCs of these applications

using AOP mechanisms.

During the refactoring of a system a wide variety and quantity of refactorings

needs to be applied. So, in order to simplify the refactoring process the aspect

refactorings for Spring/AOP presented in [Section 3] were implemented in a

tool. Specifically, our existing tool called AspectRT [Vidal and Marcos 09, Vi-

dal and Marcos 12] that supports aspect refactorings for AspectJ was extended

to support the adapted refactorings. In the following subsection we introduce

AspectRT.

Next, the refactoring process of the CCCs of the two enterprise applications

is described in detail. In order to find the possibles CCCs of the systems the

aspect mining activity was executed by means of fan-in analysis [Marin et al.

04]. This first step has as a result the identification of those method with the

highest number of invocations and the classes and methods involved in those

calls. Then a manual analysis of these methods was accomplished in order to

filter false positives.

In both case studies, for each CCC refactored the following information is

presented:

– Description of the CCC.

– Involved fragments of code, methods, classes, etc.

– Aspect refactorings applied.

– Discussion of the refactoring process.

4.1 AspectRT

AspectRT (Aspect Refactoring Tool) is a plug-in for the Eclipse IDE3 and it is

integrated with AspectJ plug-in (AJDT)4. AspectRT helps architects, designers,

and developers to migrate object-oriented systems to aspect-oriented ones, pro-

viding a set of aspect refactorings. The tool is based on graphical wizards that

assist the developer during the refactoring process simplifying this task. This

tool was initially developed to allow the generation of AOP code to be used in

AspectJ. We extended AspectRT to support Spring/AOP refactorings.

3 http://www.eclipse.org/
4 http://www.eclipse.org/aspectj/

168 Vidal S.A., Marcos C.: A Catalog of Aspect Refactorings ...

In the tool the aspect refactorings are automated in a similar fashion to the

Eclipse refactoring tool in which, when an element is selected, all applicable

refactorings for that element are proposed. Then, when a refactoring is selected

it is applied automatically requesting minimal information from the developer

when it is necessary.

AspectRT follows a process that relies on a set of steps [Vidal and Marcos

09, Abait and Marcos 09] to accomplish the refactoring of a system. The pur-

pose of these steps are three-fold: encapsulate a CCC into an aspect, enable the

extraction of a CCC when it is not possible the application of a refactoring of

CCC, and improve the internal structure of aspects.

With the goal of assisting the developer during the refactoring process, arti-

ficial intelligence techniques, such as association rules and Markov models, are

used in some steps of the process [Vidal and Marcos 12].

4.2 Finance Manager System

Spring Finance Manager5 is a simple finance application that was built with the

goal of demonstrating the Spring framework capabilities. Also, it illustrates the

use of good design practices for Spring.

4.2.1 Crosscutting Concerns Refactoring

After the aspect mining phase three CCCs were detected: Null Checking, Con-

straint Validation, and String Conversion. Next, the details of this CCCs and its

refactoring process to Spring/AOP are explained.

Null Checking Concern This CCC checks if a variable is null using the

method notNull(Object,String) of the class Assert. If so, an exception is thrown

with a message. All the invocations to this method were found at the beginning

of the methods, to verify if one or more variables were null, as is shown in the

next code:

public class AccountContro l l e r {
// . . .
@RequestMapping(va lue = ‘ ‘/ account ’ ’ , method = RequestMethod .POST)
public S t r i ng c r e a t e (@ModelAttribute (‘ ‘ account ’ ’) Account account ,

BindingResult r e s u l t) {
Assert.notNull(account, “Account must be provided.”);

for (Const ra intVio lat ion <Account> c on s t r a i n t : v a l i d a to r . v a l i d a t e (
account)) {

// . . .
}
// . . .

}
}

5 http://code.google.com/p/spring-finance-manager/

169Vidal S.A., Marcos C.: A Catalog of Aspect Refactorings ...

Figure 1: Extract Fragment into Advice wizard.

In total, 21 calls to this method were found distributed in 20 methods in

the classes AccountController, PersonController, and ProductController of the

package net.stsmedia.financemanager.web.mvc. The benefit of refactoring this

CCC by its encapsulation into an aspect is twofold, first the code repetition is

avoided and second, the methods refactored are simplified because they only

deal with the main concern.

To encapsulate this concern into an aspect each call to the method notNull

is iteratively refactored applying the refactoring Extract Fragment into Advice

(3.1.2) using the tool [Fig. 1].

As a result of refactoring all the calls to the method an aspect containing

all the checking for null parameters is obtained. To avoid code repetition in the

aspect some manual refactorings were applied to it. Specifically, is noticed that

the parameters that are checked for a null value are of two types: (1) identifiers

of type Long or (2) objects that its type contains the Java annotation @Entity.

Also, it was noticed that all the checking is done in methods of classes with the

suffix Controller. In this way the aspect can be summarized in two pointcuts

with two advices. Next, the final aspect is shown.

@Aspect
class CheckNulls {

@Pointcut (‘ ‘ (execut ion (∗ net . stsmedia . f inancemanager . web .mvc .∗
Cont ro l l e r . ∗ (. . , Long , . .))) && args (id , . .) ’ ’)

public void onControl lerOpId (Long id) {}

@Before (‘ ‘ onControl lerOpId (id) ’ ’)
public void checkNul l (Long id) {

Assert.notNull(id, “identifier must be provided.”);

}

170 Vidal S.A., Marcos C.: A Catalog of Aspect Refactorings ...

@Pointcut (‘ ‘ (execut ion (∗ net . stsmedia . f inancemanager . web .mvc .∗
Cont ro l l e r . ∗ (. . , @Entity ∗ , . .))) && @args (ann , . .) && args (value , . .) ’
’)

public void onControl lerOp (Entity ann , Object va lue) {}

@Before (‘ ‘ onControl lerOp (arg , param) ’ ’)
public void checkNul l (Entity arg , Object param) {

Assert.notNull(param, arg.name()+“must be provided.”);

}
}

Constraint Validation Concern This CCC accomplishes the validation

of the integrity constraints on an entity to be created or updated. To achieve

this validation the set of methods {validate(), rejectValues(), getPropertyPath(),
getMessage()} and a variable of type Validator are used as is shown in the next

source code fragment.

public class ProductContro l l e r {
private Validator validator = Validation.buildDefaultValidatorFactory().getValidator();

// . . .
@RequestMapping(va lue = ‘ ‘/ product/ cash ’ ’ , method = RequestMethod .POST

)
public S t r i ng createCash (@ModelAttribute (‘ ‘ cash ’ ’) Cash product ,

BindingResult r e s u l t) {
for (ConstraintViolation<Cash> constraint:validator.validate(product)){

result.rejectValue(constraint.getPropertyPath().toString(), “”, constraint.getMessage());

}
// . . .

}
}

This CCC was found in 10 methods with the prefixes create and update

in the classes AccountController, PersonController, and ProductController. By

the encapsulation of the Constraint Validation Concern the methods in which is

found were simplified.

To refactor this concern all the fragments of code involved and the variable

validator were moved into an aspect. In order to accomplish this task, the aspect

refactoring Move Field from Class to Inter-type (3.1.4) was applied to encapsu-

late the variable [Fig. 2]. Also, the refactoring Extract Fragment into Advice

(3.1.2) was applied to move the fragments of code, of the methods related to the

CCC, into an aspect.

Since the declaration of the variable is the same in the three classes, it was

only declared once in the aspect. This declaration was automatically detected by

the Move Field from Class to Inter-type wizard so when it applied the refactoring

the field was deleted from the class but it was not declared again in the aspect.

The resulting aspect of this refactoring is shown next.

@Aspect
class Val idat ion {

private Val idator v a l i d a to r = javax . v a l i d a t i o n . Val idat ion .
bu i l dDe f au l tVa l ida torFactory () . g e tVa l i da to r () ;

171Vidal S.A., Marcos C.: A Catalog of Aspect Refactorings ...

Figure 2: Move Field from Class to Inter-type wizard.

@Pointcut (‘ ‘ (execut ion (public S t r i ng net . stsmedia . f inancemanager . web .
mvc .∗ Cont ro l l e r .∗ (∗ , BindingResult))) && args (ent i ty , r e s u l t) ’ ’)

public void onCreate (Object ent i ty , BindingResult r e s u l t) {}

@Before (‘ ‘ onCreate (ent i ty , r e s u l t) ’ ’)
public void adv i seCreate (Object ent i ty , BindingResult r e s u l t) {

for (Constra intVio la t ion <?> c on s t r a i n t : v a l i d a to r . v a l i d a t e (e n t i t y)){
r e s u l t . r e j e c tVa lu e (c on s t r a i n t . getPropertyPath () . t oS t r i ng () , ‘ ‘ ’ ’ ,

c o n s t r a i n t . getMessage ()) ;
}

}
}

String Conversion Concern This concern checks if a value is null or in-

valid. Then this value is converted into an object. Specifically this behavior is

found in the methods getAsText() and setAsText() that are inherit from Prop-

ertyEditorSupport class. The next source code shows an example of the CCC.

public class PersonEditor extends PropertyEditorSupport {
// . . .
public S t r i ng getAsText () {

Object obj = getValue();

if (obj == null) {
return null;

}
return (S t r i ng) typeConverter . c onve r t I fNe c e s sa ry (((Person) obj) .

ge t Id () , S t r i ng . class) ;
}
public void setAsText (S t r i ng t ex t) {

if (text == null || text.length() == 0) {
setValue(null);

return;

}
Long i d e n t i f i e r = (Long) typeConverter . c onve r t I fNe c e s sa ry (text , Long

. class) ;
// . . .

}
}

172 Vidal S.A., Marcos C.: A Catalog of Aspect Refactorings ...

Spring/AOP aspect refactoring No. of Applications

Extract Fragment into Advice 35

Move Field from Class to Inter-type 3

Total 38

Table 2: Aspect refactorings applied to Finance Manager System.

The concern was found in 4 occasions, that is, in two classes: PersonEditor

and ProductEditor. The benefits of refactoring this CCC are similar to previous

cases since the code repetition is avoided while the legibility of the original

methods is improved.

To refactor the String Conversion Concern the four fragments of code found

were refactored by applying Extract Fragment into Advice (3.1.2). The type of

the advice must be Around because in some occasion, when the value to set or

get is null (or empty) is not necessary the invocation of the target method.

After the refactoring of the four fragments of code some manual refactorings

were needed in the final aspect in order to simplified the pointcut expressions.

4.2.2 Refactoring Results

During the refactoring process of this system the refactorings for Spring/AOP

applied were Extract Fragment into Advice (3.1.2) and Move Field from Class

to Inter-type (3.1.4) [Tab. 2]. These refactorings, as was said in [Section 3.1],

needed to be adapted with several changes regarding the AspectJ version.

An important fact to remark is that the Finance Management System has a

suite of unit tests. We executed the test cases before and after refactoring the

system in order to validate the aspect refactorings applied and the preservation

of the behavior of the system.

4.3 GridGain

GridGain6 is a Java platform for the development of cloud computing applica-

tions. This system uses internally the Spring framework and allows the develop-

ment of applications that can use all the features of Spring (as for example the

dependency injection mechanism). For these reasons GridGain is a good case

study for this work.

4.3.1 Crosscutting Concerns Refactoring

Six CCCs were discovered in this system: Logging, Bean Management, Mar-

shalling, Arguments Checking, Before/After Calls, and Bean Registration. Next

6 http://www.gridgain.com/

173Vidal S.A., Marcos C.: A Catalog of Aspect Refactorings ...

the discussion of the refactoring of each CCC to AOP is presented.

Logging Concern This CCC deals with the logging of messages in a large

number of methods across the whole system using the methods provided by the

interface GridLogger. For example, a consistent behavior can be observed in the

start() methods implemented in the three classes that inherit from GridDeploy-

mentStore. At the beginning of these methods the no crosscut functionality is

executed and next is executed the logging code. This situation is shown in the

following code.

class GridDeploymentLocalStore extends GridDeploymentStoreAdapter
implements GridDeploymentStore {

// . . .
public void s t a r t () throws GridException {

sp i . s e t L i s t e n e r (new LocalDeploymentListener ()) ;

if (log.isInfoEnabled() == true) {
log.info(startInfo());

}
}

}

In total, 104 instances of this CCC were found in the methods start() and

stop() defined by the 3 subclasses that inherit from GridDeploymentStore and 11

subclasses that extend fromGridManagerAdapter. Also, the Logging concern was

found in the methods spiStart() and spiStop() that are defined in 38 subclasses

of GridSpiAdapter. The refactoring of this concern centralizes all the calls to the

data logger into a single aspect avoiding the tangled code.

To encapsulate this CCC into an aspect the aspect refactoring Extract Frag-

ment into Advice (3.1.2) must be applied over all the statements in which a

message is logged. Also, the methods used to obtain the message to be logged

(called startInfo() and stopInfo()) are also encapsulated into an aspect using the

aspect refactoring Move Method from Class to Inter-type (3.1.1). This is done

because these methods are only called from the aspect.

Next a fragment of the code of the final aspect is shown. To obtain it, a few

manual restructurings were applied in order to properly obtain the log variable

and to simplify the pointcut expressions.

@Aspect class Logg ingStart {
@Pointcut (‘ ‘ (execut ion (public void org . g r i dga in . g r i d . sp i .

GridSpiAdapter . s p i S ta r t (S t r i ng))) && this (t h i s) && args (gridName)
’ ’)

public void onSp iStart (GridSpiAdapter t h i s , S t r i ng gridName) {}

@After (‘ ‘ onSp iStart (t h i s , gridName) ’ ’)
public void adv i s eSp iS ta r t (GridSpiAdapter t h i s , S t r i ng gridName)

throws GridSpiException {
if (this.getLog().isInfoEnabled() == true){

this.getLog().info(startInfo());

}
}

public f ina l S t r i ng s t a r t I n f o () {

174 Vidal S.A., Marcos C.: A Catalog of Aspect Refactorings ...

return ‘ ‘ Manager s t a r t ed ok : ’ ’ + ge tC la s s () . getName () ;
}

}

The log variable is not in the final aspect. That is because it was not possible

to fully modularize all the code found for the Logging concern. The logging

statements that were not restructured presents an inconsistent behavior, for

example, in some cases the logging is executed during a calculation. This type

of logging can not be extracted into an aspect therefore it remains unchanged in

the base code.

Bean Management Concern This CCC records in a startTstamp field

the starting time of the services represented by the class GridSpiAdapter using

the method startStopwatch(). All the invocations to this method are done in the

first statement of the method spiStart() in the subclasses of GridSpiAdapter as

is shown in the following code.

public void s p i S t a r t (S t r i ng gridName) throws GridSpiException {
startStopwatch(); // Start SPI s t a r t stopwatch .

asse r tParamete r (dataSource = null, “dataSource = null ’ ’) ;
// . . .

}

Also, it is important to analyze the startTstamp variable in which the method

startStopwatch() records information. This variable is also accessed by three

methods of the interface GridSpiManagementMBean. This interface is imple-

mented by all the subclasses of GridSpiAdapter and represents a CCC used to

implements JMX7 and should be encapsulated.

To summarize, the CCC is spread over spiStart() method which is imple-

mented in the 38 subclasses of GridSpiAdapter, the method startStopwatch(),

and 11 methods of the interface GridSpiManagementMBean.

To refactor this concern the calls to startStopwatch() were encapsulated into

an aspect using Extract Fragment into Advice (3.1.2). Also, the implementation

of the interface GridSpiManagementMBean with all its methods and fields were

refactored applying Encapsulate Implements with Declare Parents (3.1.3).

Once all the refactorings are applied, some manual restructurings are needed

in order to troubleshoot casting issues in the advices. The final aspect is shown

below.

@Aspect
class BeanManagement {

@DeclareParents(va lue = ‘ ‘ org . g r i dga in . g r i d . sp i . GridSpiAdapter ’ ’ ,
de fau l t Impl = GridSpiManagementMBeanImpl . class)

private static GridSpiManagementMBean mixin;

class GridSpiManagementMBeanImpl implements GridSpiManagementMBean {
private long startTstamp = 0 ;
private GridSp i In fo spiAnn = null ;

7 Java Management Extensions

175Vidal S.A., Marcos C.: A Catalog of Aspect Refactorings ...

protected void startStopwatch() {
startTstamp = System.currentTimeMillis();

}

public f ina l S t r i ng getAuthor () {
return spiAnn . author () ;

}
public f ina l S t r i ng getVendorUrl () {

return spiAnn . u r l () ;
}
// . . .

}

@Pointcut (‘ ‘ (execut ion (public void org . g r i dga in . g r i d . sp i .
GridSpiAdapter . s p i S ta r t (S t r i ng))) && this (t h i s) && args (gridName)
’ ’) public void onSp iStart (GridSpiManagementMBean th i s , S t r i ng
gridName) {}

@Before (‘ ‘ onSp iStart (t h i s , gridName) ’ ’)
public void ca l lS topwatch (GridSpiManagementMBean th i s , S t r i ng

gridName) {
((GridSpiManagementMBeanImpl) this).startStopwatch();

}
}

Marshalling Concern This CCC transforms the objects into a proper

format when they needs to be sent across a net (this process is known as mar-

shalling). This functionality is required whenever a communication between the

nodes involved in a distributed application is needed. This concern was found in

the invocations to the methods marshal() an unmarshal() defined by the class

GridMarshalHelper. Examples of these calls are shown in the following methods.

public void sendMessage (GridNode destNode , S e r i a l i z a b l e msg) throws
GridSpiException {

// . . .
i f (nodeId . equa l s (destNode . ge t Id ()) == true) {

// . . .
} else { try {

GridByteArrayList buf =

GridMarshalHelper.marshal(marshaller,

new GridMuleCommunicationMessage(nodeId, msg));

muleCl ient . d i spatch (addr , buf . getArray () , null) ;
} catch (GridException e) { // . . . } }

}

private void handleException (GridJobExecuteRequest req , GridException ex
, long endTime) {

// . . .
try {

GridJobExecuteResponse jobRes = new GridJobExecuteResponse (locNodeId
, req . g e tS e s s i on Id () , req . getJobId () ,

GridMarshalHelper.marshal(marshaller, ex) ,

GridMarshalHelper.marshal(marshaller, null) ,

GridMarshalHelper.marshal(marshaller, Collections.emptyMap()) , fa l se) ;

// . . .
}
catch (GridException e) {

// . . .
}

}

176 Vidal S.A., Marcos C.: A Catalog of Aspect Refactorings ...

In total, 39 invocations were found to the marshal() method and 24 to the

unmarshal() method. However, it was not possible to identify any pattern or

consistent behavior in their use. For this reason the Marshalling concern cannot

be refactored into an aspect oriented solution.

Argument Checking This CCC verifies if an argument fulfills a set of

conditions such as not to be null or be within a range. The following code shows

how the methods checkNull() and checkRange() of the class GridArgumentCheck

are used for this task.

public GridNode getBalancedNode (GridTaskSession ses , L i st<GridNode> top ,
GridJob job) throws GridException { GridArgumentCheck . checkNul l (

ses , ‘ ‘ s e s ’ ’) ;
GridArgumentCheck . checkNul l (top , ‘ ‘ top ’ ’) ;
GridArgumentCheck . checkNul l (job , ‘ ‘ job ’ ’) ;

GridArgumentCheck.checkRange(top.isEmpty() == false, “top.isEmpty() == false”);

// . . .
}

For this concern 5 calls were found to the checkNull() method and 20 to

checkRange(). However, no pattern of the use of this CCC could be inferred

because each method has a unique logic to decide which checks are needed.

Specifically, this occurs in the use of the checkRange() method for which the

values depend only on the variables that are checked. This situation can be seen

in the highlighted statement of the method shown. In the case of the checkNull()

method, an aspect could be created that verifies that any parameter of a method

is null but clearly this solution would not preserve the original behavior. For these

same reasons this concern can not be refactored using AspectJ.

Before/After Calls Concern This CCC ensures the proper access and

modification of the class GridKernal by means of a protocol of mutual exclusion.

This protocol lies in the invocation of the methods beforeCall(), at the beginning

of the operation, and the invocation of the method afterCall() at the end of the

operation. An example of this protocol is shown in the next code.

public Co l l e c t i on<GridNode> getAl lNodes () {
beforeCall();

try {
return mgrReg . getDiscoveryManager () . getAl lNodes () ;

} finally {
afterCall();

}
}

A total of 29 invocations to the methods beforeCall() and afterCall() were

found in the class GridKernal. By the encapsulation of the concern Before/After

Calls the protocol of mutual exclusion will be moved into an aspect leaving only

the main concern in the methods.

To encapsulate this CCC into an aspect the aspect refactoring Extract Frag-

ment into Advice (3.1.2) must be applied to the invocations of beforeCall() and

177Vidal S.A., Marcos C.: A Catalog of Aspect Refactorings ...

afterCall(). Even though the methods beforeCall() and afterCall() should also

be moved into the aspect, this is not possible because these methods use instance

variables that belong to the main concern and are used by other methods. This

refactoring could be performed properly with AspectJ because the pointcut and

advice mechanism of this language allow the access to instance variables of a

class.

After the application of the aforementioned refactorings the visibility of the

the methods beforeCall() and afterCall() should be changed to private to public.

Bean Registration Concern This CCC registers a service of GridGain

as a JMX bean when the service is starting and unregisters it when it is ended.

For this task the methods registerMBean() and unregisterMBean() of the class

GridSpiAdapter are used. Following, an example of this concern is shown.

public void s p i S t a r t (S t r i ng gridName) throws GridSpiException {
startStopwatch () ;
i f (l og . i s In f oEnab l ed () == true) {

l o g . i n f o (c on f i g I n f o (‘ ‘ cacheName ’ ’ , cacheName)) ;
}
cache = CacheFactory . getCache (cacheName) ;
i f (cache == null) { // . . . }
registerMBean(gridName, this, GridCoherenceCheckpointSpiMBean.class);

}
public void sp iStop () throws GridSpiException {

cache = null ;

unregisterMBean();

}

Besides the methods registerMBean() and unregisterMBean() that compose

this concern, the 38 invocations to these methods must be refactored. These

invocations were found in the methods spiStart() and spiStop() that are located

into the subclasses of GridSpiAdapter. In addition, the instance variables spiM-

Bean and jmx are also related with the concern because they are only used by

the registration methods.

The refactoring of this concern is done by applying the aspect refactorings

Move Method from Class to Inter-type (3.1.1), Move Field from Class to Inter-

type (3.1.4), and Extract Fragment into Advice (3.1.2).

Since this CCC is related with the Bean Management concern the code was

encapsulated into the same aspect of the latter.

4.3.2 Refactoring Results

During the refactoring of the CCCs of GridGain 215 aspect refactorings were

applied. Most of then were Extract Fragment into Advice (3.1.2) refactorings as

is shown in [Tab. 3]. However, three other kinds of refactorings were applied

too. Similarly to the results of Finance Manager, the set of Spring/AOP aspect

refactorings applied are those that needed to be adapted with several changes

regarding the AspectJ version. That is, it was not necessary to apply other

178 Vidal S.A., Marcos C.: A Catalog of Aspect Refactorings ...

Aspect refactoring No. of Applications

Extract Fragment into Advice 208

Move Field from Class to Inter-type 2

Move Method from Class to Inter-type 4

Encapsulate Implements with Declare Parents 1

Total 215

Table 3: Aspect refactorings applied to GridGain System.

refactorings than those that were adapted. We think that more experimentation

is needed with different CCCs in order to know how often are used the no applied

refactorings.

5 Related Work

Most of the studies of migrating object-oriented systems to aspect-oriented ones

have been centered on the AspectJ language. In this way, Hanneman and Kiczales

[Hannemann and Kiczales 02] proposes the refactoring of the CCCs found in the

implementation of several design patterns. For a set of patterns taken from the

GoF’s book [Gamma et al. (95)], the crosscutting code is analyzed and a solution

based on AspectJ is proposed. Tonella and Ceccato [Tonella and Ceccato 05]

presents an approach restricted to refactoring scattered methods declared by

interfaces (called aspectizable interfaces) and to encapsulating portions of code

by means of pointcuts. Similar to our work, this work uses a small set of aspect

refactoring to perform the restructuring. Monteiro and Fernandes [Monteiro and

Fernandes 08] runs an example of the refactoring of a sample application using

the catalog of refactorings presented by Monteiro [Monteiro 04] for AspectJ.

Marin et al. [Marin et al. 09] propose a refactoring strategy based on crosscutting

concern sorts. Once the CCC are described by means of concern sorts, they are

refactored through interaction with the developer. Also, in this group of studies

based on AspectJ, some authors present case studies of enterprise applications

such as [Mesbah and van Deursen 05, Marin et al. 07].

Finally, some authors describe aspect-oriented refactorings using Spring/AOP.

Laddad [Laddad (09)] describes several specific uses of aspect orientation in the

development of enterprise application using Spring. However, refactorings that

can be used for encapsulated CCC into an aspect in different circumstances are

not presented. Similarly, Ghag [Ghag 07] discusses the implementation of com-

mons CCC (such as, logging, security, and transactionality) on Spring/AOP.

179Vidal S.A., Marcos C.: A Catalog of Aspect Refactorings ...

6 Conclusion

In this article, we presented the adaptation of a set of aspect refactorings, initially

presented to AspectJ, to be used in Spring/AOP. For each refactoring, we have

explained the main differences with AspectJ, specified the application of the

refactoring, and presented an example of its application. The adaption of these

refactorings is a relevant task because it improves the time consumed by the

refactoring process since there was no specific aspect refactoring catalog for

Spring/AOP.

We validated the aspect refactorings by conducting two case studies in which

two enterprise applications were refactored. We found that the aspect refactoring

most used during the refactoring process were those that needed more changes

regarding their AspectJ version.

In regards to the percentage of CCCs that could be encapsulated, more than

75% of the total CCCs were refactored by means of Spring/AOP. The main

reason why the remaining CCCs can not be encapsulated is because the limited

set of joinpoints supported by Spring/AOP. Nevertheless, we found that one

advantage that simplified the refactoring process was the fact that most of the

instances of a same CCC share a pattern code. For this reason, as future work, we

will try to evaluate the refactoring of enterprise systems, specially, those whose

CCC structure is not regular. We think that in these cases major refactorings

will be needed before the encapsulation of the concerns into aspects. That is why

it must be assessed in advance the costs and benefits involved in the encapsu-

lation of the CCCs. Another future work is the analysis of the need of specific

Spring/AOP refactorings other than those that have already been defined for

AspectJ.

Acknowledgements

We would like to thank Guillermo Zunino who collaborated in the implementa-

tion and evaluation of the aspect refactorings described in this article.

References

[Abait and Marcos 09] Abait, E., Marcos, C.: “Combining aspect mining techniques
based on crosscutting concern sort”; III Latin American Workshop on Aspect-
Oriented Software Development (23th BSSE); 18–23; Fortaleza, Brazil, 2009.

[Chidamber and Kemerer 94] Chidamber, S., Kemerer, C.: “A metrics suite for object
oriented design”; IEEE Transactions on Software Engineering; 20 (1994), 6, 476–493.

[Elrad et al. 01] Elrad, T., Filman, R. E., Bader, A.: “Aspect-oriented programming:
Introduction”; Commun. ACM; 44 (2001), 10, 29–32.

[Fowler (99)] Fowler, M.: Refactoring: improving the design of existing code; Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

180 Vidal S.A., Marcos C.: A Catalog of Aspect Refactorings ...

[Gamma et al. (95)] Gamma, E., Helm, R., Johnson, R.: Design Patterns. Elements of
Reusable Object-Oriented Software.; Addison-Wesley Longman, Amsterdam, 1995.

[Garcia et al. 05] Garcia, A., Sant’Anna, C., Figueiredo, E., Kulesza, U., Lucena, C.,
von Staa, A.: “Modularizing design patterns with aspects: a quantitative study”;
AOSD ’05: Proceedings of the 4th international conference on Aspect-oriented soft-
ware development; 3–14; ACM, NY, USA, 2005.

[Ghag 07] Ghag, G.: “Implement crosscutting concerns using Spring 2.0 AOP”; Java-
world. http://www.javaworld.com/javaworld/jw-01-2007/jw-0105-aop.html; (2007).

[Hannemann and Kiczales 02] Hannemann, J., Kiczales, G.: “Design pattern imple-
mentation in Java and AspectJ”; SIGPLAN Not.; 37 (2002), 11, 161–173.

[Iwamoto and Zhao 03] Iwamoto, M., Zhao, J.: “Refactoring aspect-oriented pro-
grams”; The 4th AOSD Modeling With UML Workshop, UML’2003; ACM, 2003.

[Johnson (03)] Johnson, R.: Expert One-on-one J2EE Design and Development; Wiley
& Sons, 2003.

[Kayal (08)] Kayal, D.: Best Practices and Design Strategies Implementing Java EE
Patterns with the Spring Framework; Apress, 2008.

[Kellens et al. 07] Kellens, A., Mens, K., Tonella, P.: “A survey of automated code-level
aspect mining techniques”; Transactions on Aspect-Oriented Software Development
(TAOSD); IV (2007), Springer-Verlag.

[Kiczales et al. 97] Kiczales, G., Lamping, J., Mendheka, A., Maeda, C., Lopes, C. V.,
Loingtier, J.-M., Irwin, J.: “Aspect-Oriented Programming”; Proceedings of the
European Conference on Object-Oriented Programming (ECOOP); number 1241
in Lecture Notes in Computer Science; Springer, Finland, 1997.

[Laddad (09)] Laddad, R.: AspectJ in Action: Enterprise AOP with Spring Applica-
tions; Manning Publications Co., Greenwich, CT, USA, 2009; 2nd edition.

[Lopez-Herrejon and Apel 07] Lopez-Herrejon, R., Apel, S.: “Measuring and charac-
terizing crosscutting in aspect-based programs: basic metrics and case studies”;
Proceedings of FASE’07; 423–437; Springer-Verlag, Berlin, 2007.

[Malta and de Oliveira Valente 09] Malta, M., de Oliveira Valente, M.: “Object-
oriented transformations for extracting aspects”; Inf. Softw. Technol.; 51 (2009),
1, 138–149.

[Marin 04] Marin, M.: “Refactoring JHotdraw’s undo concern to AspectJ”; Proceed-
ings of the 1st Workshop on Aspect Reverse Engineering (WARE2004).; 2004.

[Marin et al. 07] Marin, M., Deursen, A., Moonen, L.: “Identifying crosscutting con-
cerns using fan-in analysis”; ACM Trans. Softw. Eng. Methodol.; 17 (2007), 1, 1–37.

[Marin et al. 09] Marin, M., Deursen, A., Moonen, L., Rijst, R.: “An integrated cross-
cutting concern migration strategy and its semi-automated application to JHot-
draw”; Automated Software Eng.; 16 (2009), 2, 323–356.

[Marin et al. 04] Marin, M., van Deursen, A., Moonen, L.: “Identifying aspects using
fan-in analysis”; WCRE ’04: Proceedings of the 11thWorking Conference on Reverse
Engineering; 132–141; IEEE Computer Society, Washington, USA, 2004.

[Mens and Tourwe 04] Mens, T., Tourwe, T.: “A survey of software refactoring”; IEEE
Trans. Softw. Eng.; 30 (2004), 2, 126–139.

[Mesbah and van Deursen 05] Mesbah, A., van Deursen, A.: “Crosscutting concerns
in J2EE applications”; Proceedings of WSE ’05; 14–21; IEEE Computer Society,
Washington, USA, 2005.

[Monteiro and Fernandes 08] Monteiro, M., Fernandes, J.: “An illustrative example of
refactoring object-oriented source code with aspect-oriented mechanisms”; Softw.
Pract. Exper.; 38 (2008), 4, 361–396.

[Monteiro 04] Monteiro, M. P.: “Catalogue of refactorings for aspectj”; Technical Re-
port UM-DI-GECSD-200402; Universidade do Minho (2004).

[Parnas 72] Parnas, D. L.: “On the criteria to be used in decomposing systems into
modules”; Commun. ACM; 15 (1972), 12, 1053–1058.

181Vidal S.A., Marcos C.: A Catalog of Aspect Refactorings ...

[Sirbi and Kulkarni 10] Sirbi, K., Kulkarni, P. J.: “Aspect oriented software metrics-
an empirical study”; International Journal of Computer Applications; 7 (2010), 4,
17–22; published By Foundation of Computer Science.

[Tonella and Ceccato 05] Tonella, P., Ceccato, M.: “Refactoring the aspectizable in-
terfaces: An empirical assessment”; IEEE Transactions on Software Engineering; 31
(2005), 10, 819–832.

[Vidal and Marcos 09] Vidal, S., Marcos, C.: “Un proceso iterativo para la refactor-
izacin de aspectos”; Revista Avances en Sistemas e Informtica; 6 (2009), 1, Escuela
de Ingeniera de Sistemas. Facultad de Minas.

[Vidal and Marcos 12] Vidal, S., Marcos, C.: “Building an expert system to assist sys-
tem refactorization”; Expert Systems with Applications; 39 (2012), 3, 3810 – 3816.

[Walls and Breidenbach(2005)] Walls, C., Breidenbach, R.: Spring in Action; Manning,
2005.

182 Vidal S.A., Marcos C.: A Catalog of Aspect Refactorings ...

