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Abstract: Recent advancements in sensor technologies resulted in the development of sensors 
with small dimensions and with power consumption that is low enough to be embedded in 
various mobile devices and which is widely integrated in vehicles. Such sensors can be 
extensively used to detect real-time traffic events and situations of user/vehicle in context-
aware mobile applications. This paper explores the usage of a large number of anonymous 
mobile devices already involved in the road navigation function as mobile sources of traffic 
information. Apart from collecting location and speed data, which is extensively used today to 
calculate average trip time per road segment, we are exploring possibility of using an 
acceleration sensor integrated with a mobile device in order to efficiently and timely detect 
critical traffic events and redistribute this information to other drivers through proactive traffic 
information system. Such a system would be capable of warning drivers of ‘near-accident’ 
situations enhancing their situational awareness and general safety. 
 
Keywords: Traffic Information Systems, Extended Floating Car Data, Accelerometer data, 
Vehicle tracking 
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1 Introduction  

Recent advances in mobile devices, wireless communications and mobile positioning 
technologies allow people to use mobile information systems and services at any 
place and at any time to support their business, touristic and recreational activities. 
These systems are aware of location, context and situation of mobile users and thus 
are referred to as location-based and context-aware services. Such services are used in 
navigation, fleet management, traffic control, emergency management, tourist and 
business guides, mobile games, etc. Contemporary mobile information systems for 
traffic and transport monitoring and management are mainly based on static data 
about road network conditions, road surface status, weather conditions, traffic 
information, etc. Dynamic traffic information about events that occur in real time, 
such as traffic congestions, traffic accidents, slippery road, reduced visibility on the 
road, road works and obstacles on the road, can significantly improve the 
functionality and usability of these systems. Some sources of this information, such as 
road works and positions of radar patrols are public organizations and road operators 
who are responsible for road network management and traffic control. With recent 
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advances of sensor technologies, sensor networks integrated in road infrastructure 
traditionally represent the significant source of information about traffic events. 
Although precise and reliable, the main downside of using sensors integrated in the 
road infrastructure to characterize traffic is economic in nature. A large number of 
fairly expensive sensors is needed in order to adequately cover extensive road 
network. An alternative approach is to use a smaller number of mobile sensor nodes 
that traverse road network with a high enough frequency. Sensors built into the 
vehicles and sensors attached/integrated to mobile devices used during travel have 
recently been used as sources of dynamic traffic information [Hauschild, 05]. This 
data, called Floating Car Data (FCD), if based solely on GPS and eXtended Floating 
Car Data (XFCD) and other sensors as well, fully describes the movement of a 
vehicle and its current status and defines the context of the vehicle and the driver 
[Shaefer, 02]. 

In order to achieve high reliability of data acquired in such a manner, it is 
imperative to involve the highest possible number of drivers. Ideally, any driver using 
mobile device for navigation should be motivated to contribute to a such collaborative 
navigation system This process should be transparent to end users.  

The paper is structured as follows. In the second section we introduce concepts of 
collaborative driving and extended floating car data (XFCD). This section also 
presents similar research projects and reviews other approaches to handling extended 
floating car data. The third section focuses on acceleration sensors and specifics of the 
data produced by these sensors. The classification of traffic events relevant from the 
driver’s perspective and how these events can be used in collaborative navigation is 
also presented in this section. The fourth section proposes methods for accelerometer 
data analysis that can be used to efficiently detect relevant traffic events identified in 
the previous section while using mobile devices as roaming sensors. The fifth section 
presents the evaluation of the method over collected data. The final section concludes 
the paper and present prominent directions for future research. 

2 Related Work 

Recent market research in the field of mobile devices and intelligent transport systems 
(ITS) domain [ABI, 10] shows rapid increase in the number of users of mobile 
navigation devices. It is estimated that the next big step in the development of such 
systems will be inclusion of location-based and context-aware services. Context in 
this domain primarily consists of traffic properties (average speeds, congestions) and 
locations of relevant traffic events and states such as accidents, roadwork, rerouting, 
etc. Mobile navigation applications have been offering additional traffic information 
for some time now. Traditionally, sources of traffic information are static sensors 
built into the traffic infrastructure (road surface, traffic signs) and these sensors 
typically include inductive loops, infrared sensors and cameras. Road transport 
systems throughout the world suffer from ever spreading problems of traffic flow 
congestions and safety. Since individual driver’s lack of concentration and situational 
awareness can be singled out as the most important cause of accidents [European 
Transport Whitepaper, 11], most of today’s driving aid systems target a driver either 
by trying to increase his situational awareness or by trying to minimize or completely 
remove the driver’s direct influence on vehicle movement. The common approach in 
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such systems is based on data acquired from other traffic participants (drivers or 
directly vehicles) to influence driver’s behaviour or to autonomously influence 
vehicle’s trajectory. The common name for such systems is collaborative driving 
systems. Research done in [Halle, 05] elaborates this idea by grouping vehicles into 
platoons, where each platoon includes a leader, manually operated vehicle which 
guides the platoon of followers on the road. A more moderate approach is to use data 
acquired from collaborative driving to influence driver’s situational awareness while 
the driver stills remains in full control of the vehicle.  

In [Fuchs et al., 07] authors provide a general approach to collaborative driving 
by defining such systems as context-aware systems in the domain of intelligent 
transport systems. Context awareness of Driving Assistance Systems (DAS) actually 
increases driver’s situational awareness and can present the driver with warnings and 
reactions recommendations based on detected traffic conditions in front of the 
vehicle. This traffic conditions data can be acquired and delivered by vehicle to 
vehicle (V2V) and vehicle to infrastructure (V2I) collaboration. The authors stress in 
their paper the importance of propagating data about dangerous driver/vehicle 
behaviour, warnings about dynamic traffic events, etc. The most important novelty in 
the proposed approach is the ability to warn drivers about dangerous and near-
accident events that are not registered in traditional traffic information systems and 
which take prolonged periods (couple of months of statistical analysis) in order to 
identify dangerous places (black spots) on road network.   

A lot of work in the field of collaborative driving has been devoted to inter-
vehicle communication techniques, ad-hoc routing of messages and ad-hoc network 
of vehicles (VANET) on the road network. One of such adaptive communication 
protocols is presented in [Dikaiakos et al, 07]. The authors focus on message routing, 
caching and delivery in the dynamic network of vehicles communicating using 
vehicle-to-vehicle communication techniques. More on vehicle-to-infrastructure and 
inter-vehicle communication can be found in [Keeratiwintakorn et al., 09] and 
[Daqiang, 2012]. Our approach assumes a centralized navigation service used by 
numerous traffic participants. The collaborative driving in the form of specialized 
social networks is not a new concept and there are many commercially available 
services like Waze [Waze, 11]. It turned out that the most common usage scenario is 
geotagging of speeding cameras, radars and traffic police patrols. The most important 
downside of this and all similar systems is the need for manual input of event data. 
Driver’s attention is required during driving in order to report a traffic event and this 
approach significantly influences safety and actually decreases driver’s situational 
awareness.  

Floating Car Data (FCD) approach tries to mitigate this drawback by eliminating 
a driver from the input loop. FCD represents the concept of collecting, in a centralised 
location, streams of position and speed data from a group of vehicles traversing road 
network. The analysis of collected data generates information that characterizes traffic 
conditions on the covered road network. In practice, this approach has been used so 
far successfully for detecting traffic congestions. Autonomous traffic data collection 
is introduced in [Torp, 05]. The authors’ aim is to detect queues in traffic with both 
manual reporting and GPS data analysis. A fleet of taxi vehicles is used as moving 
sensors. In this work, road network is divided into segments called Report and 
Measuring stretches, parts of road network, where taxis are expected to drive at full 

1154 Predic B., Stojanovic D.: Localized Processing ...



legal speed and not expected to stop for passengers. As shown in their work, this 
approach scales successfully to large road networks. In order to increase congestion 
detection reliability the authors combine GPS data with manually identified 
congestions by the drivers by assigning different weights to manual reports and 
automatic detection.  

Despite being well known for quite some years, the FCD concept is still 
interesting to researchers as shown in [Thiagarajan et al., 2009]. In this research a 
traditional FCD concept of streaming positional updates from vehicles to central 
location is not modified. The authors focus on various locating techniques analyzing 
their power consumption and accuracy characteristics. For this purpose GPS and WiFi 
based locating methods were analyzed. Since WiFi (AccessPoint) based locating 
method is more power efficient than GPS (hereby it is estimated to be 20 times), its 
inherent lower accuracy is mitigated by using Hidden Markov Model map matching 
scheme proposed by the authors. Much of the paper is devoted to optimising HMM to 
produce sequence of traversed road arcs based on inaccurate positional updates. All 
this is performed at a central location (server side) in order to estimate ‘hotspots’, 
road arcs that are congested. This information is further used in routing services. 

Typically, a GPS receiver reporting interval is 1 second and this data is sent to the 
centralized analysis server even more sparsely in order to minimize transmission 
costs. This data reduction issue is explored in more detail in [Ayala et al., 10]. The 
question raised is: are we missing some important traffic events that last shorter than 
this data acquisition interval? What else can be used to characterize traffic in more 
detail? The Extended Floating Car Data (XFCD) concept involves various sensors 
available in the vehicle as potential sources of additional information. Common 
sensors used in XFCD systems include active safety systems like ABS, ESP and 
windshield wipers activation, head and taillights status, etc. Data from such integrated 
sensors in addition to positional data streamed to the central location. The work 
presented in [Masselodi et al., 09] identifies a vastly increased volume of data that has 
to be transferred when various sensors are included. Therefore, they focus on 
developing adaptive policy for XFCD data collection. They suggest using temporal, 
spatial (regional) and on-event modality for triggering sensor data acquisition. The 
authors suggest that a careful selection of onboard sensors and reporting policy is 
needed in order to achieve high usability of the system. 

Contemporary general purpose mobile devices are more frequently used today for 
in-vehicle navigation. Almost all of these are equipped with GPS and an acceleration 
sensor. Many authors suggest that an acceleration sensor alone is enough to detect 
many rapid traffic events and that it can be used in XFCD systems. Authors of 
[Mohan et al., 08] propose an innovative usage of accelerometer in their XFCD 
system. They identify the accelerometer as a ‘cheap’ sensor in terms of battery and 
processing power usage. Therefore, the analysis of acceleration data is used to trigger 
other sensors like a GPS receiver for precise location and audio analysis module for 
detecting repetitive honking. Honking is considered as an indication of traffic jams in 
the busy intersections in India. Since the authors’ approach implies using a general 
purpose mobile device that is not permanently installed in the vehicle, they identify 
important issues of mobile device orientation detection.  

An example of using accelerometer as a primary sensor in XFCD system can be 
found in [Eriksson et al., 08]. The authors’ system is based on a fleet of 7 taxi 
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vehicles operating in Boston area. The detection process proposed in this paper firstly 
requires a manual labeling of the sampled data which is then passed through several 
filtering stages including low speed rejection, high-pass, z-peak, xy-ratio and speed 
vs. z-ratio. Low speed rejection removes acceleration peaks induced by opening and 
closing doors, high-pass filter removes long lasting peaks induced by acceleration and 
braking, z-peak is the primary characteristic of road anomaly, xy-ratio differentiates 
between potholes and road-wide anomalies like rail crossings. Finally, speed vs. z-
ratio adapts the detection algorithm to the changing speed of the vehicle and alleviates 
discrepancies when training data was recorded at different speed. Also, clustering by 
location is proposed in order to further increase detection reliability by eliminating 
false positives which inevitably occur. This approach successfully removes false 
positives sourced from inside the vehicle. The approach presented in this paper is 
specifically tailored for the purpose of detecting potholes (road anomalies affecting 
only wheels on one side of the vehicle). It is difficult to assess what classes of 
generalized traffic events can be detected using this approach. 

Using accelerometer inside a vehicle with XFCD concept is still a very up-to-date 
approach as can be seen in [Perttunen et al., 2011]. The authors are still limiting the 
use of accelerometer data to detection of road surface conditions. An interesting 
novelty in this paper is classification of road surface condition in micro and macro 
roughness. The first one describes a type of road surface and can be used to estimate 
friction between tyres and road surface in order to issue warnings about slippery 
conditions. The second group represents anomalies which can be manmade or a result 
of road surface deterioration. The latter two are commonly detected by specialized 
vehicles equipped with various sensors that periodically traverse road network. XFCD 
concept recognises regular drivers with accelerometer equipped smartphones as 
candidates for interesting supplement to these formal detection procedures. In this 
research, accelerometer data is recorder and post-processed for anomaly detection. 
The paper does not deal with efficient real-time delivery of accelerometer data to 
processing centre or power and CPU load requirements of processing techniques. The 
authors extract several features from recorder accelerometer data: standard deviation, 
mean, variance, peak-to-peak, signal magnitude area, 3-order autoregressive 
coefficients, tilt angles and root mean square for each dimension. Since road surface 
anomalies express periodicity in accelerometer data FFT features were also used. 
Finally, support vector machine was used to classify and identify types of anomalies 
in the recorded data.  

The traditional Vehicle-2-Vehicle (V2V) communication concept used in many 
research projects requires complex routing and best-effort delivery protocols. The 
most notable disadvantage of this approach is that it can not guarantee delivery of 
messages in ad-hoc VANET if not enough vehicles are available in the area to pass-
on the message. This is noted in [Santa and Gomez 2009]. The authors of the paper 
consider the best-effort delivery approach used in VANETs inappropriate for 
important traffic warnings and propose a combination of V2V and V2I approaches. 
This approach effectively eliminates the need for a large number of vehicles 
participating in such a system in order to route the message in the first place. 

In this paper we classify types of driver behaviour and types of general traffic 
events that are relevant to drivers and explore how they can be effectively detected 
using various methods of acceleration data analysis. The analysis is localized on 
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general purpose mobile devices used in vehicles. The number of vehicles participating 
in data acquisition contributes only to road network coverage in certain areas but not 
the system’s capability to proactively deliver notification messages to navigating 
drivers. Therefore, proactive driving notification system is always capable to deliver 
notifications acquired from traditional sources like road maintenance or traffic 
monitoring services even if there are few drivers collaborating and acting as roaming 
sensors 

3 Extended Floating Car Data and Traffic Events Classification 

All current navigation systems and services retrieve an ordered sequence of road 
segments as a result of user’s routing request. Apart from the navigation as the main 
activity, driver’s behaviour is influenced by driving environment and context in which 
he/she moves. Obviously, this includes local traffic regulations and laws, speed limits, 
etc. This static data is usually distributed with road network maps and is used by 
navigation services to warn drivers during navigation about traffic rules violations, 
like speeding. By adding additional data (about speed limits for example) to a simple 
sequence of road segments we are moving toward contextually enhanced route. On 
the other hand, traffic is a dynamic system and in order to describe driver’s 
environment in more detail, it is necessary to include dynamic traffic data and attach 
it to road segments they happened at. The most obvious dynamic traffic data that can 
be acquired, and that is of interest to the drivers, is traffic flow with congestion 
locations. Congestions are traditionally detected by counting traffic and measuring 
average speeds per road segment. This is easily achieved with traditional roadside 
equipment for traffic counting, such as inductive loops, radar and laser measuring 
devices and cameras. In order to limit infrastructure costs there are experimental and 
commercial systems that use traffic participants as probes and that measure their 
movement either by GPS receivers integrated in mobile devices or by implementation 
of some other kind of cellular network based locating techniques such as [INRIX]. 
User’s location with speed and course is periodically sent to the central service where 
it is map matched to a road segment and used to calculate average speeds on this 
segment as indication of congestion level. This type of dynamic data is finding its 
way to the users in more recent navigation services that are becoming commercially 
available. What has not been exploited so far is capability of today’s mobile devices 
used for navigation to detect other classes of traffic events that cannot be detected by 
mere speed analysis. Today’s mobile devices posses plethora of sensors, but we focus 
on 3D accelerometer and show in this paper that it can be used to effectively detect 
additional classes of dynamic traffic events that are below spatial and temporal 
resolution of a GPS sensor which is used in traditional navigation applications. 
Therefore, our approach does not substitute floating car data concept but actually 
supplements it, giving it capability to detect and report a wider set of traffic 
information. 

Before trying to further extend the context route it is important to classify traffic 
events that are important to a typical driver in daily traffic. In order to propose the 
most efficient detection methods it is important to limit a set of traffic events to the 
most important ones and analyze characteristics of these events.  
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We believe the most relevant traffic characteristics and events can be grouped 
into: 

 
 Traffic and road surface conditions 

o congestions and average speeds 
o road surface conditions and quality 

 Dynamic traffic events (near-incidents) 
o sudden braking and acceleration 
o obstacle avoidance 
o lateral skidding 
o abrupt lane changes 

 
All these events exhibit specific patterns in data acquired from accelerometer 

inside the vehicle. 
We can conclude from the previous paragraphs that the temporal aspect, i.e. the 

duration of the event, is the main characteristic that can be used for classification. 
Data acquired during longer periods, long enough to traverse whole road segments, 
can be used to characterize traffic and road surface quality on that road segment. 
Congestion detection is not the focus of this paper since it is performed efficiently by 
analyzing the stream of positional and velocity data, calculating short term average 
speed and comparing it to average speed calculated for road segment being traversed. 
There are also alternative approaches to detecting congestions by calculating number 
of start-stop events on road segment. This approach will not be discussed in more 
detail in this paper since it can be reduced to sudden breaking and acceleration event 
we identify in the second group of traffic information. Road surface quality and 
conditions a yet another type of long term traffic information that is somewhat 
different in nature. This information expresses periodic characteristic and can be 
detected with frequency analysis of accelerometer data. 

The second group can be labelled as dynamic traffic events or near-incident 
events. Their main characteristic is that they are short-lived and intensive. Therefore, 
these can be detected by analyzing accelerometer data in time domain. These events 
include sudden braking and acceleration, obstacle avoidance at both sides, lateral 
skidding and abrupt lane changes. All these events can also be considered as near-
incidents and accident-like , so warning drivers about such events happening in front 
of them (detected by other vehicles) can significantly increase drivers’ situational 
awareness, and ultimately, general safety. 

As noted in the previous section, acceleration sensors are integrated with many 
general-purpose mobile devices that are used in vehicle navigation today. 
Acceleration sensor is interesting in our scenario because it represents a perfect 
supplement to a GPS receiver, being capable of detecting various short lasting traffic 
events that show typical footprint in accelerometer data. These traffic events include 
short but violent breaking and acceleration (change of speed) and small but also short 
and violent changes in vehicle motion direction (changing lanes and obstacle 
avoidance). GPS receiver with its sampling frequency and precision is unable to 
detect such fine grained events. Figure 1 shows a typical accelerometer axis 
orientation also valid for our testbed Android mobile device. 
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Figure 1: Acceleration sensor axis on testbed mobile device 

Security and privacy is another important issue in all massive data acquisition 
systems that involve personal mobile devices. This issue is particularly emphasised in 
telematics and location-aware services since these involve individual’s whereabouts 
and routes. Fairly exhaustive overview of privacy and security handling approaches is 
given in technical report [Cassias and Kun 2007]. The system we propose in this 
paper is somewhat specific in this sense. As previously stated, data flow in this 
system consists of two separate and fairly independent processes: On-device localized 
detection of traffic events and reporting to control centre and redistribution of 
messages about detected events to other traffic participants. First subsystem, detection 
and reporting of traffic events do not require user identification and session keeping. 
Therefore it is inherently anonymous. Delivering notifications and warnings about 
relevant traffic events to drivers is based on spatial matching of event’s location and 
user’s navigation route. Due to this, the system needs to maintain some kind of a link 
between individual navigation service user (driver) and his/her assigned route. It is 
convenient that the user identification does not need to be personalised. Furthermore, 
the session does not have to be maintained across navigation route requests. This 
results in the possibility to assign the user some impersonalised identification value 
which is valid only during navigation along the route assigned by the service. Device 
specific value can be derived for example from the network device MAC address and 
random portion can be a timestamp of time instance when the routing request was 
made. Finally, we can apply some sort of irreversible hashing algorithm to these two 
values to generate a temporary user ID. This approach allows notification delivery to 
relevant drivers simultaneously preventing anyone to data-mine knowledge about 
whereabouts of any specific individual.  

The scenario addressed in this paper presumes a large number of anonymous 
users running navigation service on their general purpose mobile devices that are not 
permanently attached in the vehicle. Different fixing methods mean that device 
orientation relative to the gravity force vector is not fixed and can differ for specific 
vehicles (users). Since dynamic traffic events have specific effects on different 
accelerometer axis, device orientation is an issue that has to be addressed before any 
acceleration data analysis. This is a separate issue that is not the focus of this paper 
and it is addresses by other authors, for example in paper [Mohan et al., 08]. We 
presume that mobile device is oriented as shown in figure 1. If it is not, device 
orientation has to be taken into account when analyzing accelerometer data. This data 
has to be ‘reoriented’ to fit our desired device orientation. Since accelerometer is 

1159Predic B., Stojanovic D.: Localized Processing ...



affected by constant gravity force field, the common approach is to extract gravity 
force vector and use it to reconstruct the device orientation. In our mobile demo 
application gravity force vector is extracted using low-pass filter. Furthermore, 
gravity force is eliminated from real-time accelerometer data in order to isolate only 
alternating accelerometer data components that are caused by dynamic traffic events 
we are looking to detect. Graphical output from our demo mobile application is 
shown in figure 2. Darker colored lines represent gravity force vector components per 
accelerometer axis (X-red, Y-green, Z-blue). Reconstructed gravity force vector is 
input into Euler angles reorientation algorithm which modifies accelerometer data in 
order to ‘reorient’ it to fit the desired device orientation shown in figure 1. 

 

Figure 2: Gravity force filtering on Android demo implementation 

During the sample data collection, our demo mobile application collected the 
accelerometer data with the approximate interval of 20ms between samples. If we 
agree that the minimum message sent by a mobile device should contain time with 
millisecond precision, coordinates, speed, course, 3 axis accelerometer data and this 
information is binary coded, such an average message will be around 50 bytes long. 
With the aforementioned sampling rate naïve streaming approach would generate 
around 7MB of traffic per hour which would be unacceptable to any 
anonymous/accidental user. Even if we reduce the sampling frequency in accordance 
with Nyquist-Shannon sampling theorem, the volume of the generated traffic would 
make such a system economically unacceptable to an average navigation user. We 
have implemented this naïve streaming concept merely for testing and validating 
purposes. One recorded route with attached accelerometer data is shown in desktop 
GIS client in figure 3.  

This sheer volume of data makes traditional data streaming from mobile device to 
central server location used in traditional FCD system virtually impossible. This is 
recognized as an important downside of FCD concept in terms of scalability and is 
addressed in [Ayala et al., 10]. The approach used by the authors is to maintain the 
road network and average speeds model both on server and mobile clients and send 
updates from the mobile device only when discrepancy to the model is detected. This 
update triggers the update to the model on both server and mobile client side. The 
important question is whether it is possible to efficiently create a reference model of a 
road segment in regard to the accelerometer data. In this paper we focus on a different 
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approach, localized analysis of accelerometer data on mobile devices and sending 
only notifications about detected events. 

 

Figure 3: Raw accelerometer data streamed to the server 

For experimentation purposes we recorded accelerometer data for 5 traffic events 
we identified as relevant using the implemented Android mobile application running 
on HTC Desire HD general purpose mobile device mounted in a typical C class car. 
All events were recorded while the vehicle was moving at 40km/h. The collected data 
is shown in figure 4 showing all 5 traffic events with raw data and frequency 
characteristics. X axis for raw data graph is given in samples where there are 50 
samples for one second of data. Y axis on the same graph represents acceleration in 
m/s2. In frequency characteristic graph, X axis shows 26 frequency bins where bin 
no. 3 represents the 1Hz component. Z axis represents time in number of samples. 
Some images have been cropped for clarity purposes. The cropping process focused 
images on important parts of data. One of the most obvious traffic events that can 
indicate a dangerous situation on the road is obstacle avoidance (shown in figure 4.a). 
In particular, obstacle avoidance to the left is important for right-hand traffic 
countries. Obstacle avoidance maneuver starts at approximately sample 250 and lasts 
for 3 seconds (about 150 samples). This maneuver significantly affects the X axis of 
the accelerometer. Three smaller peaks on Z axis at positions 200, 320 and 410 
represent breaking when front wheels rapidly change direction. Frequency 
characteristic shows a large value in bin 3 starting at sample 300. This is expected 
since one half of the maneuver lasts a little longer than 1 second. Obstacle avoidance 
can actually be seen as two shortly spaced lane changes. 
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a) Avoiding obstacle to the left 

 

 
b) Sudden breaking 
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c) Understeering (skidding) to the left 

 

 
d) Lane change to the left 
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e) Running over railroad tracks 

Figure 4: Collected accelerometer data for relevant traffic events 

Another traffic event that is an indication of dangerous traffic situation is sudden 
breaking shown in figure 4.b. As expected, this event has a significant influence only 
on Z axis of the accelerometer. Other two axis show only vibrations caused by violent 
breaking. It is important to notice here that this event was recorded with an ABS 
equipped vehicle and breaking continued until the vehicle stopped completely. Event 
starts at sample 310 and lasts little longer than two seconds. ABS activates at sample 
350 when the force exceeds 0.5G. ABS gives distinguishable stepwise decrease of 
breaking force. Since the vehicle stopped completely, there is a visible snapback at 
sample 450. 

Another event where a driver temporarily loses control of the vehicle is 
understeering. It is shown in figure 4.c. During this event the front wheels of the test 
vehicle lose a grip of the road surface. The maneuver started at sample 300 and lasted 
for two seconds. The front wheels lost grip at 310 at lateral acceleration of 0.5G. 
There are noticeable lateral vibrations lasting up to sample 500 when the front wheels 
regain grip. 

Violent lane change is not necessarily an indication of a near accident situation but 
can warn us about bad driving habits. This is shown in figure 4.d. The event starts at 
approximately sample 380. As previously noted this sample can actually be seen as a 
half of the obstacle avoidance event.  

Finally, road unevenness is represented in our samples set with vehicle running 
over railroad tracks as shown in figure 4.e. This is the only sample showing higher 
frequency components in frequency characteristic. The event starts at sample 300 and 
vibrations last for one second approximately. Since vehicle approached railroad tracks 
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at an angle, equally strong vibrations are recorded on both X and Y axis. Since 
running over the tracks causes no change in speed, no forces are recorded on Z axis.  

More details on the applied analysis algorithms and detection methods will be 
given in the next section. 

4 Localized Analysis of Accelerometer Data 

The discussion in the previous section showed the necessity of localized (on-device) 
analysis of accelerometer data with regard to sheer volume of data generated by 
typical 3-axis accelerometer. Before deciding on a batch of analysis methods we have 
identified key events that we believe are relevant in the process of characterizing 
traffic conditions. Characteristics of the identified events in time and frequency 
domain were also discussed in the previous section. Common characteristic of all 
collected and presented samples is that none of these exhibits pronounced periodic 
characteristic. Frequency domain analysis is a key component in accelerometer data 
analysis in other domains, such as human posture and activity recognition, and is 
discussed in more detail in [Kawahara et al., 07]. The lack of periodicity in the 
collected samples suggests that other analysis methods in time domain are required 
for efficient detection of relevant traffic events.  

It is necessary to start with the calculation of certain statistical values for samples 
such as the mean value and the variance. They are also used in all other analysis 
modules. All analysis modules are applied using FIFO buffers maintained for each 
accelerometer axis. These buffers are 200 samples long (4 seconds). The first section 
of each buffer (first 50 samples) is labelled as activation buffer (figure 5). One of 
important questions during the development of mobile based analysis modules is how 
to limit power consumption in order to conserve battery power and processor 
occupancy. Since some of the processing involved in the analysis of acceleration data 
is processor intensive, it is reasonable to activate these blocks only on demand. 
Therefore, the first phase in acceleration data filtering activates other modules (cross-
correlation and DFT). The variance calculation is based on a fairly simple algorithm 
and is active all the time. This information is attached to speed acquired from GPS. If 
variance and speed increase over the predefined threshold, the other two analysis 
blocks are activated and start running in parallel. 

 

Figure 5: FIFO buffer used for accelerometer data analysis 
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As previously stated, the main events which need to be detected are not periodic, 
therefore these events are identified mainly with the time domain analysis module as 
shown in figure 6. 

 

Figure 6: Accelerometer data flow during analysis 

This module uses the time characteristic of the predefined samples and performs a 
cross-correlation calculation with data in the FIFO buffer. In order to provide a 
baseline for correlation results interpretation, figure 7 shows autocorrelation for X 
axis of the obstacle avoidance sample. 

 

Figure 7: Autocorrelation for X axis of obstacle avoidance sample as baseline for 
correlation interpretation 
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The analysis results cannot be interpreted for each accelerometer axis 
independently. While strong correlation of a sample and real-time signal in one axis 
can suggest that a certain event may have happened, a different signal signature in 
other axis and low correlation values for other axis for the same sample indicate that 
this may be a false positive identification. A good example of such events is running 
over a pothole with only one side of the vehicle and running over railroad tracks. This 
is indicated in [Eriksson et. al., 08]. While these two events may be similar if axis are 
analyzed independently, running over pothole with only one side of the vehicle 
induces a lateral body roll of the vehicle and a higher amplitude at higher frequencies 
at both X and Y axis of the accelerometer simultaneously. At the same time running 
over railroad tracks with both sides of the vehicle simultaneously, induces only strong 
vertical vibrations of the vehicle. This influences only the Y axis of the accelerometer. 

Taking this into account, we calculate the cumulative cross-correlation (CCR) per 
sample according to the formula: 
 

 
 

Cross-correlation is calculated per sample for each of the sensor axis (CRx, CRy 
and CRz) and square mean is calculated as CCR. This method actually takes into 
account symmetrical characteristic of maneuvers to the left or to the right side. 
Cumulative cross-correlation of a sample representing obstacle avoidance to the left 
detected in a longer dataset is shown in figure 8. The figure 8.a shows values of 
detecting avoiding obstacle to the left sample in maneuver to the same side, while 8.b 
shows detection in the maneuver to the opposite side (to the right). 

 

a)                                                     b) 

Figure 8: Values of cross-correlation during driving 

In contrast, when we try to identify a non-existing sample in a longer dataset we 
get the calculated CCR values that are an order of magnitude smaller than the 
established baseline values. Baseline CCR values are shown in figure 7 and figures 8a 
and 8b. For example, trying to detect violent braking event in a performed obstacle 
avoidance maneuver, we get distinctly smaller values of cross-correlation as shown in 
figure 9.  
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Figure 9: Detection of violent braking in obstacle avoidance maneuver  

This pronounced difference in CCR values for positive and negative event 
detection allows us to set detection threshold value in such a way as to minimize false 
positives. 

Important issue while calculating cross-correlation as a measure of similarity 
between the prerecorded samples and real-time data is speed of the vehicle when the 
sample was recorded and the current speed of the vehicle when detection is 
performed. To take this difference into account, ‘shrinking and expanding’ the length 
of the sample is performed while this speed difference is changing. Experimental 
results of this approach are elaborated in more detail in the evaluation section of this 
paper. 

Although analysis in the time domain is crucial in traffic event detection, spectral 
analysis is still performed in different data flows as shown in the bottom part of figure 
6. Road surface condition and certain events like running over potholes or railroad 
tracks can be detected in this manner very efficiently since they exhibit distinct higher 
frequency vibrations. Since the implementation is targeting mobile devices with fairly 
constraint memory and, more importantly, processing capabilities, performing DFT 
can prove to be a bottleneck. This is especially important since the analysis module is 
not the primary task of mobile navigation application and should be transparent to the 
user. Also, since we are performing real-time frequency analysis while data is 
collected (passes through FIFO buffer) there is the need to produce values for all 
spectral bins in DFT algorithm as soon as possible. This constraint is only stressed by 
the fact that all analysis is always performed threefold, for all 3 axis of the 
accelerometer. The most suitable approach, applied in our implementation, is using a 
sliding DFT process which produces output for each input sample. Apart from that 
characteristic, sliding DFT is algorithmically simpler and more adequate than 
traditional FFT algorithms in real-time and embedded implementations [Jacobsen, 
03]. Another advantage of using this algorithm is that it is possible to calculate an 
arbitrary number of frequency bins, independently of the number of samples in the 
buffer. This is especially advantageous in our usage scenario since we do not expect 
nor are interested in acceleration frequency components higher than 10Hz. Therefore, 
our setup of the algorithm gives 26 bins with 0.2Hz width for 200 sample FIFO 
buffer. Frequency domain analysis is used to identify N maximum values in the 
calculated spectrum (peaks) and compare their intensities and frequencies with the 
precalculated frequency characteristics for each of the prerecorded traffic events 
profiles. This filter enables us to identify events whose impact on acceleration sensor 
has a certain periodicity. A good example of such an event is a vehicle running over 
road-wide waves created by frequent breaking of heavy vehicles (like in front of the 
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traffic light), certain types of potholes of running over railroad tracks or speed bumps 
in front of crosswalks.  

The output of frequency analysis module implemented in demo mobile 
application is shown in figure 10. 

 

Figure 10: Output of frequency analysis module 

A different impact of the same traffic event on different axis of the acceleration 
sensor is used to increase event detection precision as it is mentioned in paper 
[Eriksson et al., 2008]. For that purpose, spectrums calculated for each of the axis 
cannot be analyzed independently. Time shift of the detected maximum in one axis 
can decrease detection probability and effectively eliminate incidental match of 
another maximum in some other axis. Spectrum similarity index (SSI) is calculated by 
a formula: 
 

 

5 Evaluation and analysis 

The important question when extracting knowledge from the crowd is the reliability 
of the acquired information. We acquire traffic events data from anonymous users 
driving different cars, using different types of mobile devices for navigation and 
having different driving habits and styles. Since we try to identify pre-recorded 
samples of accelerometer data for different classes of relevant traffic events in real-
time accelerometer data, it would be unreasonable to have large number of sample 
variants of each traffic event stored locally on the mobile device for each value of 
parameters affecting sample characteristics. Therefore, some sort of sample 
modification during analysis phase is needed and can increase detection reliability.  

The speed can be identified as one parameter that is constantly changing during 
the detection process. Acceleration samples for different traffic events, stored locally 
on a mobile device, were all recorded at specific speed which is considered typical for 
each of the events. When these events occur during driving at different speed, an 
acceleration data characteristic will obviously change. There is a certain threshold of 
speed difference in which identification is possible. For example, a maneuver for 
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successful obstacle avoidance is not possible and should not be detected at speeds 
higher then 80km/h. Our sample for this event is, for example, recorded at 40km/h. 
The difference between a speed at which a sample was recorded and a speed at which 
a vehicle travels during detection affects both event duration and intensity of forces 
induced on the vehicle and mobile device. Obviously, maneuvers at higher speeds 
produce higher intensities of forces and vice versa.  

Taking this into account, all samples are modified for their length and intensity 
according to speed difference before entering the detection module. The length of the 
sample is changed proportionally to the speed difference and the sample values are 
interpolated. The intensity of the sample values is again modified proportionally to 
the speed difference according to the formula: 
 

 
 
where Isc is the corrected intensity value, Is is the original intensity value, K is a factor 
modelling all other differences (type of vehicle for example), Vc is current vehicle 
speed and Vs is speed at which the sample was taken. 

Maximum cross correlation values given by time-domain analysis module as a 
function of speed difference is given in figure 11. All samples were recorded at 
40km/h and, obviously, we have maximum at this speed. Uncorrected values are 
shown in blue, and corrected values in red.  

 

Figure 11: Maximum cross correlation values with (red) and without (blue) speed 
correction 

The other important aspect of our proposed traffic events detection system is its 
capability to positively differentiate between different types of events, thus 
eliminating false identifications. Maximum cross correlation values are shown in table 
1. when time-domain analysis described in the previous section is applied to sample 
data for all 5 types of traffic events we have identified as relevant. The table shows 
distinctly larger values when comparing similar classes of traffic events, therefore 
allowing us to position detection threshold, for example on a CCR value at/above 900.  
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 Obstacle 

avoidance  
to the left 

Obstacle  
avoidance  

to the right 

Sudden  
breaking 

Lane  
changing 

Understeering  
(skidding) 

Obstacle  
avoidance  
to the left 

1880 - - - - 

Obstacle  
avoidance  

to the right 
998 1940 - - - 

Sudden  
breaking 

244 223 1910 - - 

Lane  
changing 

403 465 190 1790 - 

Understeering 
(skidding) 

298 278 203 214 1800 

Table 1: Maximum cross correlation values calculated between different traffic event 
samples taken at the same speed 

Given the heterogeneity of vehicles and mobile device types used in our approach 
false positives are inevitable. An order of magnitude difference between CCR values 
for true and false traffic events detection suggests that this method can be applied to a 
wide array of passenger vehicles. To confirm this we have repeated tests for 3 classes 
of vehicles for each of the relevant traffic events using samples acquired from 
reference C class car. The results substantiating this assumption are given in table 2. 
 

 Reference C class 
passenger vehicle 

Small 
SUV 

Station wagon 
family car 

Sports coupe 
car 

Obstacle  
avoidance  

2250 1900 1850 2120 

Sudden  
breaking 

1980 1660 1910 1880 

Lane  
changing 

1680 1230 1325 1790 

Understeering 
(skidding) 

2100 1340 1160 2000 

Table 2: Maximum cross correlation values calculated between different traffic event 
samples taken at the same speed 

All values in table 2 are significantly above the defined threshold and above the 
values for false identification shown in figure 9. 

Another, GIS based false positives elimination technique can be applied when 
traffic events reports are collected on the server side. When a large number of 
roaming vehicles are operating on a restricted road network and constantly reporting 
critical traffic events, certain patterns appear when we plot trajectories and events 
locations in a GIS. As shown in figure 12, similar classes of traffic events are grouped 
together. We can apply spatial and temporal clustering techniques to estimate 
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reliability of event report and to keep number of false warnings sent to the users to a 
minimum.  
 

 

Figure 12: Server-side spatial and temporal clustering performed in order to increase 
detection reliability 

Since we suggest a mobile device based localized analysis and event detection 
scheme, performance is an important validation factor. As stated in previous sections, 
accelerometer data analysis and event detection is a background process that should 
be completely transparent to the end user (driver). The main function of the mobile 
application is still a visualization of navigation instructions, route and display of 
notifications and warnings. Therefore, we have performed the analysis of an event 
detection module with regard to the power consumption and CPU load while running 
on a mobile device. 

Power consumption for different stages of detection is shown in figure 13b. From 
top to bottom, the graphs represent total power consumption, LCD, CPU and GPS 
contribution to power consumption. All graphs are divided horizontally into 3 
windows labelled 1 through 3. For each of these different accelerometer data analysis 
modules were tuned on. In window 1 no analysis modules were running. In window 2, 
spectral analysis (RFT) module was running and in window 3 both RFT and cross-
correlation analysis modules were running. Since this was a debug version of the 
mobile analysis application all calculated values were graphed on a mobile device 
screen. This visualization was previously shown in figures 2 and 10. 

A large LCD display of the used mobile device significantly contributes to the 
total power consumption. This equals approximately 50% of the total power 
consumption as seen in the second row graph from the top in figure 13b. GPS was 
recognized in many other research papers as a power hungry sensor. It contributes to 
the total power consumption with little more than 25%. This leaves the CPU with a 
little less than 25% contribution to the total power consumption. The CPU power 
consumption can be seen in the third graph from the top. It should be noted that two 
dips in the graph between windows represent periods while we were changing active 
analysis modules and no detection was performed. Also, disregarding the number and 
types of active analysis modules, the CPU power consumption seems to be at steady 
one quarter of total power consumption. 
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a)                                        b) 

Figure 13: Mobile device system load while performing event detection 

To further investigate this balanced CPU power consumption we looked into 
CPU load values during the same combination of active analysis modules. CPU load 
graph is shown in figure 13a. Graph is horizontally divided into 4 windows similarly 
to figure 13b. During each window different analysis modules were active. During 
window 1, both RFT and cross-correlation modules were active and cross-correlation 
was calculated for two samples. In effect, we were trying to identify obstacle 
avoidance and skidding maneuvers concurrently. During window 2 only RFT was 
running and during window 3 no analysis was performed, only data visualization. It is 
apparent from this data that RFT module is very efficient. It insignificantly 
contributes to the CPU load (difference between windows 2 and 3). Still, besides 
being very efficient it is not very usable in our scenario since we are not trying to 
identify periodic events. Also, activation of cross-correlation analysis module adds 
little less than 25% to CPU load. This is significant, but it is still not overwhelming 
mobile device. While in window 1 we were trying to identify two events concurrently, 
in window 4 only obstacle avoidance was being detected. Interestingly enough, 
additional data samples do not add significantly to the CPU load (difference between 
windows 1 and 4).  

Since real-time visualization of accelerometer data on mobile device was 
identified as a major CPU load contributor, and it is needed only in the debug period, 
we have disabled it and used the DDMS (Dalvik Debug Monitor Server) profiling tool 
to gain further insight in the CPU time distribution of various functions. 
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Figure 14: Mobile application profiling results showing functions which are main 
contributors to CPU load 

For clarity reasons we have disabled all debug drawing on device. Profiling 
results are shown in figure 14. Here we have focused on a period between two 
samples acquired from the acceleration sensor. Sensor data acquisition activity is 
visible in the second row from the top labelled SensorThread. This period of about 
15ms allows us to do data analysis. As can be seen from the figure function 
AccSample.GetCrossCorr takes 10.6% of the CPU time while getting data from the 
circular buffer is very inefficient and takes 74.5% of the CPU time. Accelerometer 
data storage and access (light green areas of the timeline in the figure) can obviously 
be optimized, but an important conclusion from profiling data is that the cross-
correlation calculation functions (dark blue vertical lines in the timeline) are efficient 
enough to be used in real-time, between two accelerometer data samples. 

For field testing purposes Android device was used and both acceleration analysis 
module and proactive navigation notification applications were developed and 
deployed. 

6 Conclusions 

Introduction of modern intelligent transport systems assumes a construction of up-to-
date road infrastructure and deployment of a large number of expensive sensors. This 
paper shows an alternative approach in which users, who are most interested in up-to-
date traffic information, also act as mobile sensor nodes and sources of information 
for ITS about dynamic traffic events. Typical mobile phones in use today are 
equipped with GPS and acceleration sensors needed to detect relevant traffic events 
mentioned in this paper. Acceleration data analysis algorithms have proven to be 
efficient enough to run in real-time on such typical mobile platform, widely available 
today. Additional false positives filtering using spatio-temporal clustering was also 
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proposed. The proposed architecture is centralized with regard to events reports 
collection and notifications redistribution while event detection is localized on client 
mobile devices. An alternative approach would be to explore the possibility of an ad-
hoc networking and direct communication between vehicles using such a system. This 
model would require telecommunication technologies which are not typically 
available on today’s mass produced mobile devices. 
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