
Applying a Modular Framework to Develop Mobile
Applications and Services

Mabel Vazquez-Briseno
(Faculty of Engineering, Architecture and Design, UABC, Ensenada, Mexico

mabel.vazquez@uabc.edu.mx)

Pierre Vincent
(MobKit, Lille, France

pierrevincent@mobkit.com)

Juan Ivan Nieto-Hipolito
(Faculty of Engineering, Architecture and Design, UABC, Ensenada, Mexico

jnieto@uabc.edu.mx)

Juan de Dios Sanchez-Lopez
(Faculty of Engineering, Architecture and Design, UABC, Ensenada, Mexico

jddios@uabc.edu.mx)

Abstract: The development of mobile applications and services has led to new challenges for
software programmers. One of the main differences from standard PC programming is that the
mobile environment is still limited in several aspects. Thus, there are many applications for
mobile devices that share similarities, and implementing new applications may result in
duplicated code within the same project or in similar projects. Moreover, current mobile
development is still an error-prone task that may produce difficult-to-maintain applications. As
a result, developers need new tools to help them to develop mobile software efficiently. This
work focuses on a new framework for generating mobile applications and services,
MobAppGen. The framework provides a set of components called modules that can be used to
construct new applications using a Web interface. The architecture and functionalities of the
framework are delineated, and several tests were conducted to evaluate the performance of the
framework. For the tests, we created a number of projects using the available modules. In
addition, a survey was conducted to estimate the acceptance and usefulness of the framework.

Keywords: Mobile Computing, Mobile Information Systems, Software, Mobile Devices,
Multimedia
Categories: D.2.11, H.3.4, H.4.3, H.5.1

1 Introduction

Today it is clear that the most widely used device in the world is the mobile phone.
The number of mobile cellular phone subscribers has surpassed the number of fixed
lines and Internet users [ITU 2011] as shown in [Fig. 1]. However, according to [ITU
2010], in developed countries, the mobile market is reaching saturation levels while
the developing world is increasing its share of mobile subscriptions from 53% of total
mobile subscriptions at the end of 2005 to 73% at the end of 2010.

Journal of Universal Computer Science, vol. 18, no. 5 (2012), 704-727
submitted: 16/2/11, accepted: 28/2/12, appeared: 1/3/12 © J.UCS

Figure 1: Information and communication technology levels [Source: ITU World
Telecommunication/ ICT- Indicators Database.]

Phones are mostly voice-centric devices, but a wide range of mobile devices now
exist on the market offering multiple services and functions. The basic capabilities,
functions, portability, and cost of each of these devices vary greatly. As a result, they
can be classified in many ways. In 2002, Prohm et al. [Prohm 2002] categorized
mobile terminals according to their application programming interface (API) support
as well as memory and processing power as: basic phones, enhanced phones, smart
phones, and wireless information devices. The term smartphone is now used to
characterize a mobile phone with special computer-enabled features. These features
may include e-mail, Internet, web browsing and personal information management.
Typically, the functionality of a smartphone can be further enhanced with add-on
applications. The success of smartphones is strongly related to the development of
mobile applications and services because mobile phones are now used for more than
ordinary phone calls. The demand for mobile applications is also increasing with the
growth of ubiquitous computing, and users requiring almost personalized services and
applications. For this reason, even people with non-programming skills are beginning
to develop their own applications. Mobile application development, however, is not
an easy task because it includes several challenges for both experienced and novel
programmers [Balagtas 2009]. Implementing such applications requires the use of a
programming platform designed to run on mobile devices. Currently, there are several
platforms available for mobile application programming; among the most popular are:
iOS platform for devices such as iPhone and iPad, Android, which was developed by
the Open Handset Alliance and Java Micro Edition (Java ME). The first one is a

705Vazquez-Briseno M., Vincent P., Nieto-Hipolito J.I., de Dios Sanchez-Lopez J.: Applying ...

proprietary platform. Android is a free source platform that allows developing
applications for devices running Android OS. On the other hand Java ME offers
isolation from specific mobile device hardware and specific operating system
software using a virtual machine abstraction. For this reason Java ME can be used in a
range variety of devices including feature and low budged mobile phones, which are
commonly used in developing countries. Java ME can provide a solution that fits
most mobile devices; however, because the number of mobile applications that need
to be developed and debugged has increased considerably, the work of developers has
gained complexity. They must create almost personalized applications while
considering that these applications must work on as many devices as possible. A main
difference from standard PCs programming is that the mobile environment is still
limited in several aspects. Thus, there are an increasing number of applications for
mobile devices that share many similarities, and the implementation of new
applications may result in duplicated code within the same project or in similar ones.
The current development method is also an error-prone task that may produce
difficult-to-maintain applications. As a result, developers need new tools to help them
to address users’ specific needs efficiently and quickly. Reusing the virtual machine
abstractions to hide specific device details is important but no longer sufficient. With
this in mind, we have developed MobAppGen, which stands for Mobile Applications
Generator. MobAppGen is a framework that helps to create mobile applications
relying on existing platforms and virtual machine abstraction on the mobile device but
that offer high-level abstractions by hiding the details of a more complex underlying
model. MobAppGen uses a Web-based modular approach to develop mobile
applications.

The objective of this research is to describe the MobAppGen concept and to
present some examples and studies conducted with the framework. The rest of the
paper is organized as follows: In Section 2 we present an overview of mobile
development. Section 3 presents the description of the designed framework. In section
4 we describe some application examples. Section 5 presents some works related with
our approach. Finally, Sections 6 and 7 present the studies conducted with the
framework. The first study evaluates the size of the applications created with
MobAppGen. In the following study, we present the results related to the usability
and acceptance of MobAppGen according to a survey of both experienced mobile
programmers and inexperienced users.

2 Mobile Application and Services Development

There are many definitions of what constitutes a mobile application. In this work, we
define it as follows: an application is mobile if it runs on a mobile device, namely a
mobile phone, and is either always or occasionally connected to a network. A mobile
application may include data storage, data processing or viewing or transmission to
another application or server. In the same way, a mobile service is an electronic
service that consists of three main components: a mobile application as a client,
wireless networking and server implementation that provides the needed functionality
or information (Content) to the user. In other words, application is a more technical
term referring to the solution itself, whereas service is better associated with some 3rd
parties (e.g., content provider or network based server) who provide some value-

706 Vazquez-Briseno M., Vincent P., Nieto-Hipolito J.I., de Dios Sanchez-Lopez J.: Applying ...

added product to the end customer [Verkasalo 2006]. Currently, there are many kinds
of services; most services are still only accessible by paying a service provider. We
have found that the following are the most typical mobile services [Verkasalo 2006]:

 Real time communication (voice, multimedia)
 Web browsing (HTTP, voice-enabled)
 Location-based services
 Data synchronization (calendars, contacts, files)
 Data services (file transfer, e-mail download)
 Streaming media (music, video, events)
 Peer-to-peer communications
 mCommerce (micro-payments, finance)

In general, mobile services and client-server applications consist of data services that
require the Hypertext Transfer Protocol (HTTP) to connect to a Web server and often
to a remote database. However, there are also other services, such as multimedia
streaming and real-time communications, which require other types of connection to
retrieve information. Mobile multimedia streaming services are receiving
considerable interest because they are now technically applicable over third-
generation wireless networks. However, given that mobile terminals have a wide
range capabilities it is not probable that all of them will be able to support all
proprietary Internet streaming formats and protocols. A common standardized format
is then required to guarantee the creation of compatible solutions. The Third
Generation Partnership Project (3GPP) has standardized streaming services and
specifies both protocols and codecs [3GPP 2006].The 3GPP defines the Real-time
Streaming Protocol (RTSP) [Schulzrinne 2003a] and Session Description Protocol
(SDP) [Handley 1998] for session setup and control and the Real-time Transfer
Protocol (RTP) [Schulzrinne 2003b] for transporting real-time media such as video,
speech, and audio.

Mobile technology is also an opportunity to help preventing health problems
worldwide. Mobile health or mHealth can be defined as using mobile
communications and devices, including mobile phones, for health services and
information [Vital, 2009]. mHealth was defined in 2004 as “Mobile computing,
medical sensors and communication technologies for healthcare” [2]. Since then
according to [Vital, 2009] several mHealth applications have been developed to
support a variety of services and each of these systems has required the
implementation of mobile phone-based applications from scratch.

Mobile applications can be divided into web-based and framework-based
applications [Beji 2008].Web-based applications are related to the use of a mobile
browser while mobile framework-based applications are applications that run on a
mobile programming platform over the mobile operating system. This second type of
mobile application can be either network applications implementing a service as
interfaces to these services or as stand-alone applications in the handset that require
no network/service connectivity. Developing this kind of application is not simple,
and it incorporates a new set of design challenges. One of the challenges is that
current mobile devices have diverse hardware, operating systems and supported
network technologies. Many handsets are resource-tight, while others are equipped

707Vazquez-Briseno M., Vincent P., Nieto-Hipolito J.I., de Dios Sanchez-Lopez J.: Applying ...

with more CPU and modern features. The diversity is a challenge for both design and
final porting. In addition, this heterogeneity causes problems to software developers
who must fit applications to as many devices as possible and conform their
application to multiple older versions of mobile device software. Device
manufacturers and other actors have tried to simplify this work through
standardization and by providing open platforms for easier service creation and
application interoperability. Among these technologies, Java ME is currently one of
the most popular, especially in developing countries such as Mexico where devices
supporting iOS or Android platform are still too expensive for most users.

Java ME is a smaller version of Java 2 Standard Edition targeted towards small
devices. Java ME is standardized through the Java Community Process (JCP), which
consists of participants from the industry, and specified in Java Specification Request
(JSR).The architecture of Java ME consists of configurations and profiles [Knudsen
2003].Configurations define the minimum set of Java core classes required by the
virtual machine to work. Profiles add additional functionalities for specific devices.
The configuration that defines small mobile devices is called the Connected Limited
Device Configuration (CLDC). The Mobile Information Device Profile (MIDP) is the
profile corresponding to mobile phones. The applications developed using the MIDP
profile are called MIDlets. A Java ME application suite is stored on a JAR (Java
ARchive) file and described using a JAD (Java Application Descriptor) file.
Unfortunately, despite its simple programming model, Java ME lacks support for
modularizing the implementation of mobile applications, which could help developers
address users’ needs for new customized applications and services efficiently.

3 MobAppGen Description

MobAppGen is a web-based framework that was conceived by taking into account
that mobile applications share many common non-functional features, such as screen
management, data persistence and network communication. In this way, MobAppGen
is a generic framework that allows mobile applications to be constructed from
reusable software components. These components consist of a set of modules; each
module implements a determined basic task and can be reused to construct different
applications. Mobile applications generated with MobAppGen can consist of client-
only and/or client-server applications. In both cases, the client-side application
consists of Java MIDP applications or MIDlets. These applications are targeted to
CLDC/MIDP devices like mobile phones and PDAs with networking capabilities.

The framework generates the mobile applications using a set of predefined
modules that were designed to target the most common tasks when developing mobile
data services and applications. MobAppGen also generates the server side when it is
required. In this case, it provides the files that must be installed on the server to
interact with the client-side application. Most modules only require the use of the
HyperText Transfer Protocol (HTTP) to interact with a remote server to access data
stored in a file or database. In addition, the framework includes a streaming module
that requires communication with a remote server using the Real Time Streaming
Protocol (RTSP) to access a media file. Both servers are included in the framework.
The first one is used to manage HTTP connections and to retrieve information using a

708 Vazquez-Briseno M., Vincent P., Nieto-Hipolito J.I., de Dios Sanchez-Lopez J.: Applying ...

HTTP

RTSP
/RTP

HTTP

RTSP
/RTP

1)

2)

4)

3)

Mobile Client

Local persistent
storage

Mobile Client

Mobile Client

Mobile Client

HTTP server

RTSP server

HTTP server

RTSP server

Database

Database

set of predefined PHP scripts. If the server requires database management, it opens a
connection to a MySQL database and sends the appropriate query. The second server
is an RTSP server that was developed using Java. However, the streaming client
application is able to interact with any other server that complies with the 3GPP
streaming standards, like QuickTime Streaming Server and Darwin Streaming Server.

The smallest applications created with MobAppGen consist of a single MIDlet;
however, most applications require a set of MIDlets to implement more complex
tasks; in this case, the application consists of a MIDlet suite, which share
information, classes and resources. [Fig. 2] depicts the types of applications that can
be constructed with MobAppGen.

The modules used to construct the applications determine the required elements.
The simplest application corresponds to diagram 1 in [Fig. 2]. In this case, the
generated application consists of a client-only application that does not require a
server side. However, a client-server application may require communication with the
HTTP server, with the RTSP server or with both servers.

Figure 2: Mobile applications and services generated with MobAppGen

[Fig. 3] depicts the main framework components. Developer info corresponds to
the information that the programmer provides to the framework through the web-
based tool to create an application. The framework has been designed to be used by
beginners or advanced programmers. Beginners are able to create complex
applications without the need for modification when the application is complete.

709Vazquez-Briseno M., Vincent P., Nieto-Hipolito J.I., de Dios Sanchez-Lopez J.: Applying ...

Server
side

Developer
info

Code

Client
application

Server
Scripts /

Database
Management

RTSP
server

Client
side

MobAppGen
Web-based

tool

MobAppGen
Class

Creator

MobAppGen
Application

Builder

(MCC)

(MAB)

More experienced programmers are able to adapt the source classes to their projects if
required with the advantage of having some basic tasks already implemented in a
functional state.
The main functions realized by MobAppGen are summarized as follows:
 Provides a friendly environment to capture the developer information.
 Creates proprietary code based on the developer information.
 Generates source Java ME classes for clients.
 Supplies the PHP scripts for the server side according to the project

requirements.
 Includes a RTSP server for streaming applications.
 Compiles and Pre-verifies source files.
 Generates JAR and JAD files for clients.
 Prepares all files to be downloaded by the user in a light format.

To simplify future software extension and framework portability, open-source and
freely available software tools were used to develop each component. As mentioned
before, the servers are written in Java or PHP. The web-based tool was built using
XHTML and PHP. The MobAppGen Class Creator was also implemented using Java
and Velocity templates. The MobAppGen Application Builder uses Apache ANT.

Figure 3: MobAppGen Framework Architecture

The main MobAppGen framework components are described in the following
sections.

3.1 MobAppGen Web-based Tool

The MobAppGen web-based tool is the framework’s user interface. It allows the
developer to choose the required modules and corresponding attributes to construct a
mobile application called a project in the framework. With this information, the tool
generates the proprietary code that is used as input for the MobAppGen Class Creator.
The code syntax is depicted in [Fig. 4].

710 Vazquez-Briseno M., Vincent P., Nieto-Hipolito J.I., de Dios Sanchez-Lopez J.: Applying ...

Figure 4: MobAppGen code syntax

The code contains information about the modules used to construct the project as well
as their attributes. The advantage of the web-based tool is that it provides a friendly
environment for the developer who chooses the modules and attributes with graphical
interfaces like buttons, multiple choice menus and text field inputs. Each project
consists of one or several applications. The developer must add a module for each
application in the project. This information is used to create the proprietary code that
is used as input in the MobAppGen Class Creator to generate the applications’
classes.

In the code each application is identified by using a unique name (MIDlet-
Name), followed by the module’s name (Module_Name) that will be used to construct
the application, depending on the module a set of attributes are included in the code.
The modules and their corresponding attributes are described in section 3.3.

Another important advantage of the web-based tool is that MobAppGen can be
used locally on a developer desktop or remotely through the Internet. In both cases,
multiple users can access the framework at the same time. In MobAppGen, there is no
limit on the number of modules that the developer may add to the project; however,
some mobile devices limit the size of applications that can be installed.

3.2 MobAppGen Class Creator - MCC

The MobAppGen Class Creator (MCC) is written in Java. [Fig. 5] depicts the MCC
block diagram. The MCC interprets the code previously generated with the Web-
based tool and creates all the required client-side source classes using Velocity
templates. Velocity is part of the Apache Jakarta project and is a Java-based template
engine that provides a simple but powerful template language to reference objects
defined in Java code. Each client-side module consists of a class descriptor and an
attribute descriptor. There is an attribute descriptor for each type of module that
contains a description of the attributes that correspond to that determined module.

711Vazquez-Briseno M., Vincent P., Nieto-Hipolito J.I., de Dios Sanchez-Lopez J.: Applying ...

Class
Generator

Template
Importer

Velocity
Templates

Class
descriptor

Attributes
Descriptor

Client-side Module

Input
MobAppGen

Code

Output Java
ME code

MCC

Figure 5: MobAppGen Class Creator (MCC) - block diagram

The MCC merges the modules’ descriptions with the predefined Velocity templates
included in the framework. This operation creates all the required classes for a
specific application. The output of the MCC is used by the MobAppGen Application
Builder, which compiles, packages and prepares the files to be used by the final user
or developer. [Fig. 6] depicts the MCC general diagram containing its principal
classes. ClassGenerator is the main class; it takes the code file generated with the
web-based tool as an argument to generate the client-side source classes. The code
file is processed by reading each line at a time. The first line corresponds to the
MIDlet or application name. The second line corresponds to the module name; it
determines the template that will be used to generate the application. The following
lines correspond to the module’s attributes; an ArrayList is filled with these attributes
until the word end appears in the code as shown previously in [Section 3.1]. If the
project consists of a MIDlet suite, the following MIDlets are described in the next
lines with the same syntax as explained before. The code is processed until the end of
the file is found. The three application features, application name, module type and
attributes array, are taken by the TemplateImporter as arguments. It determines the
classes that have to be included in TemplateControl and fills out the corresponding
ClassDescriptor and AttributeDescriptor features for this specific module. This
process is repeated for each application described in the code file. There is a single
ClassDescriptor defined with different AttributeDescriptor arrays depending on

712 Vazquez-Briseno M., Vincent P., Nieto-Hipolito J.I., de Dios Sanchez-Lopez J.: Applying ...

TemplateControl

-name: String
-classes: ArrayList

+setName(name: String)
+getName():String
+addClasses(cl:ClassDescriptor)
+getClasses ():ArrayList

AttributeDescriptor

-name: String
-type: String
……………………………………………..

+setName(name: String)
+getName():String
……………………………………………….

ClassDescriptor

-name: String
-attributes: ArrayList
-module: String
……………………...

+addAttribute (attribute.
AttributeDescriptor):void
+setModule ()
+getModule()
……………………...

ClassGenerator

-templates: ArrayList
-classes: ArrayList
-cl: ClassDescriptor
-tmplate: TemplateControl
-tmpimporter: TemplateImporter
……………………...

init(): void
start (modelFile:String, dir: String)
main (args: String[]):void
……………………………………………………………….

TemplateImporter

-templates: ArrayList
-cl: ClassDescriptor
………………………………...

+templateImporter(classname:string, module: String, mattributes: ArrayList)
+addTemplate(templateName:String, cl ClassDescriptor)
 ………………………………………………..

ADS

the module type. However, there is an AttributeDescriptor Set (ADS) of classes; a
different class for each module. The last step is performed by the ClassGenerator,
which merges the attributes and class description of each module defined in
TemplateControl with the corresponding templates using Velocity context. In this
way, all the Java ME classes for this project are created. Some classes are shared by
several modules, and in this case, they are added only once into the final project.

Figure 6: MCC general class diagram

3.3 MobAppGen Modules

MobAppGen aims to represent a modular and extensible framework. It consists of
several modules with specific attributes. The available modules in the framework are
divided according to the applications that can be placed into two categories: client-
only and client-server, as depicted in [Fig. 7]. Each module was conceived to
implement a basic task and is adaptable to specific jobs by defining its attributes.
Thus, a project generated with our framework could consist of two similar modules
doing different jobs based on their attributes but sharing common tasks. Future
framework extensions are based on the possibility of adding more modules to
implement different tasks that could interact with the existing ones. Because one of
the goals of the framework is code reuse, all class templates are predefined to be
shared by client-side applications doing similar tasks.

713Vazquez-Briseno M., Vincent P., Nieto-Hipolito J.I., de Dios Sanchez-Lopez J.: Applying ...

Figure 7: Framework modules

3.3.1 Client-only Modules

Client only applications can be used to store data on the device or to communicate
with another device using Bluetooth communication. The main task of the first client-
only modules is to store and display data on the mobile device. This data can be
retrieved later and can be shared by several client-side applications in the same
project. In MIDP, the package Record Management System (RMS) gives the
programmer the ability to create groupings of registers called record stores. The
package javax.microedition.rms is used to handle data storage when little memory is
available in the cell phones. MobAppGen includes two client-only modules that
provide persistent storage with two types of user interfaces. These modules maintain a
series of records as a record store. It can be considered to be a small database on the
mobile device.

 TextBox Editor: In Java ME, a screen is the base for all classes that represent

generalized user interfaces. The simplest type of screen is the TextBox; it allows

714 Vazquez-Briseno M., Vincent P., Nieto-Hipolito J.I., de Dios Sanchez-Lopez J.: Applying ...

the user to enter a multi-line string, and it can be useful for many applications.
This module provides the functions of a text editor in a mobile device using a
TextBox display object. The module adds the main functions required to manage
information and provides local data persistent storage. The incorporated
functions allow the client to add, edit, cut and copy text like any text editor does.
The attributes for this module include the records order which is used to
show de records using the RMS package. The module includes also the
attributes to describe the TextBox object wich are: Name, Lenght and
Constraints, corresponding to Java ME characteristics of a TextBox.

 Local Records: This module generates applications that offer local data

persistent storage on a record store but use different input objects. The developer
defines the objects and attributes that are required to capture the information.
The objects can be TextField, which represents an editable string, and DateField,
which provides a mechanism by which users can enter dates, times, or both
depending on the creation mode. Both objects are part of a collection of user-
interface controls provided in Java ME called items that are displayed on a
screen called Form.

In addition a Bluetooth Communication module can be used to create applications
that retrieve information from devices using Bluetooth technology, including medical
sensors. This is done using the Bluetooth API JSR-82. The developer can configure
the read rate and appropriate parameters depending on the device to be used.

3.3.2 Client-Server Modules

Client-server modules generate a variety of applications with the common need to
interact with a server. This communication is established with the HTTP server using
HTTP connections and with the RTSP server using socket or datagram connections.
As explained before, one single application can be constructed to communicate with
only one or with both servers. Some client-server applications are designed to provide
service only to authenticated users or Members. This measure guarantees some data
security. In this case, accessing the HTTP server from a mobile device requires
authentication. Member information, such as name, creation date, login, and
password, among others fields, is recorded on a MySQL database within the server
and can be managed using PHP scripts.

To add a new client-server module in a project the developer must first provide the
server’s configuration information (e.g., IP address and directories), which is referred
to as server’s configuration.

 HTTP Communication: This module creates applications that allow the mobile

device to act as a web client. The web client accesses an HTTP server to retrieve
some information and displays it. The client is able to connect to a determined
URL that may include a PHP script and a parameter. This service may or may
not be authenticated. The attributes in this module include The HTTP
method that c that will be used to retrieve data from the server as well as

715Vazquez-Briseno M., Vincent P., Nieto-Hipolito J.I., de Dios Sanchez-Lopez J.: Applying ...

server’s configuration to access the remote server and corresponding script.

 Member Messages: This module creates an application that allows Members to

send and receive messages to/from other Member using HTTP communication.
Because each declared Member has a dedicated safeguarded space to store data,
this space is also used to maintain an inbox. All messages from other Members
are stored in the inbox, and the Member can access them from any mobile
device. After the inbox is recovered, it is maintained locally using the MIDP
RMS system to allow the Member to read her/his messages any time without
connecting to the server. This module generates the classes required to send and
receive messages as well as to perform operations in the inbox.

 Remote Persistent Storage: This module creates a client-server application that

requires user authentication because it deals with data persistent storage on the
remote server. Information is stored as a simple text file without any format.
Information is retrieved by the mobile device using a single HTTP connection.

 Remote Database: This module is similar to the Local Records module, but in

this case, the records are maintained on a remote database in the HTTP server.
This setup is useful because the database can be accessed from not only the
mobile device but also any desktop PC. Information is stored on a MySQL
server, and users can retrieve it using SQL queries. From the mobile device, only
authenticated Members have access to the remote database. The module
attributes let the developer determine which database field corresponds to each
user-interface object. This object is used to capture and display information in
the mobile application. The Server’s configuration attribute includes
the necessary information to access the remote database. Each record in this
database will be mapped to a TextField or DateField and managed as a
record store once it is displayed on the mobile device. The objects description
includes an attribute defined as DB_Field. It corresponds to the field in the
database that will be related to this object. They also contain the Boolean
attribute inTitle that indicates if this field will be shown on the record’s
title list when accessing the records in the application. Records_order is
used to determine the order in which records will be shown in the list; it can be
by modification date or alphabetically by any of the fields. The
Database_name attribute corresponds to the name of the database on the
server that will be used in this application.

 Streaming: This module helps the developer create applications that implement

media streaming on the mobile phone. These applications interact with the RTSP
server provided with the framework. In the simplest case, a mobile client
communicates with the RTSP server to get a particular media file; only the
mobile client and the RTSP server are needed in this case. However, it is also
possible to add communication with an HTTP server that stores and administrates
media files received from the clients. HTTP connection is then required to send
files from the mobile phone to the server. The HTTP server can also be used to
provide security allowing access only to the authorized Members. At the moment

716 Vazquez-Briseno M., Vincent P., Nieto-Hipolito J.I., de Dios Sanchez-Lopez J.: Applying ...

only AMR audio files can be read. The file is transmitted using RTP datagrams
as defined in [Sjobem 2006]. The player application uses a set of buffers to read
and store data while playing them using the Mobile Media API (MMAPI)
[MMAPI 2002] provided with the Java Me platform.

4 MobAppGen Application Examples

As explained previously, the MobAppGen framework can generate mobile
applications based on projects constructed using a set of modules and their attributes.
Some examples are presented here.

4.1 The Personal Library Application

In this scenario, the user desires an application to organize her/his personal library
information using a mobile device. The application will be used to store and edit a set
of records containing information about the books. The user wants to include the
following fields for each book in the library: title, author, ISBN, category, and
publication date. The application does not require remote storage; thus, the records
will be maintained only on the mobile device memory. The user also wishes to be
able to add annotations about the books that she/he has read or intends to buy as well
as other important notes.

The project created for this case is called “Personal Library”; it consists of two
applications. The appropriate module for generating the main application corresponds
to the Local Records module. The corresponding module’s attributes match the listed
information about the books. The developer needs to add another application
generated with the TextBox Editor module to allow the user to maintain and edit the
library’s notes. [Fig. 8] shows the code generated using the framework after entering
the modules’ information.

The first application referred to as Books is the one generated with the Local
Records module. The record store in this application is ordered and listed based on the
book’s title of each record. The t symbol at the end of line 4 in [Fig. 9] indicates that
this field is part of the record’s title. The developer could have chosen another field or
several fields. The next lines represent the attributes of the user input objects. The
slash symbol (/) indicates that the corresponding attribute has been left blank. The
second application in the project is denoted as Notes; it is generated using the
TextBox Editor module with its corresponding attributes as shown in the figure. In
this application, the records are organized based on the modification date field.

717Vazquez-Briseno M., Vincent P., Nieto-Hipolito J.I., de Dios Sanchez-Lopez J.: Applying ...

Books

BooksRecord

Notes

NotesRecord

AbstractRecord

DBInterface

DataBase

Constants

Util

Comparator

Figure 8: Code generated with the Web-based tool for the “Personal Library”
project

The code illustrated in [Fig. 8] is used as input in the MCC to create the
corresponding client-side application. [Fig. 9] depicts the block diagram for the
“Personal Library” project.

Figure 9: “Personal Library” project block diagram

The source classes shown in [Fig. 9] are generated using the corresponding
framework’s templates. The project contains a total of 10 source classes. It can be
observed that both applications share the classes that implement the record store
management, which significantly reduces the size of the project. Otherwise, each
application would have to contain the methods required to implement these functions.

4.2 mHealth project

MobAppGen is generic framework intended to develop a wide range of mobile
applications and services, after a number of tests it has shown to be particularly useful

718 Vazquez-Briseno M., Vincent P., Nieto-Hipolito J.I., de Dios Sanchez-Lopez J.: Applying ...

for developing mHealth applications to be used in developing countries for several
purposes including patient monitoring using the Bluetooth module, as well as
prescription and medication reminders.

In this scenario the user is a patient with a chronic disease who requires taking
medication permanently. The project consists of an m-Health system that is used to
facilitate that the users retrieves information about drugs from a remote database
installed on the doctor’s office as depicted in [Fig. 10].

Figure 10: Medication m-Health system architecture

The information retrieved from the remote database includes: medication schedule,
allergies warning and active ingredients as well as other drug’s information. Data is
stored on a remote database that doctor updates each time he or she prescribes a drug
to a patient. Doctors can also send notifications to patients about changes in
prescriptions or other information concerning medication. The mobile application in
this system consists of three MIDlets developed using two MobAppGen modules:

 Remote Database: To retrieve drug’s information stored in the remote
database. Information is retrieved from two tables; the first MIDlet reads
drugs general information from Drugs_Table. The second one retrieves
prescription information from Medication_Table.

 Member Messages: To receive messages from the Doctor using HTTP
communication.

[Fig 11] shows the code generated with MobAppGen Web-based tool comprising the
modules information. The framework generates the Java Me application to be
installed on the mobile device.

The first two applications in the project are generated with the Remote Database
module. The database fields corresponding to the tables Drugs_Table and
Medication_Table are matched to the corresponding display objects (TextFields) to
capture, edit and present the data. The module Member Messages is also added to
send and receive messages to patients that have to be registered on the Member’s

719Vazquez-Briseno M., Vincent P., Nieto-Hipolito J.I., de Dios Sanchez-Lopez J.: Applying ...

database. For this example, the server’s URL is referred to as
http://localhost/server/php.

Figure 11: Code generated with MobAppGen

The applications using the Remote Database module share similar attributes,
including database information. In the first application, the records are organized
based on the drugs identification number (D_ID), while in the second one the records
are organized using the drug’s name field. The third application is referred to as
Messages; its attributes correspond only to the server’s information.

[Fig. 12] shows the schematic block diagram for the generated project. It can be
observed that the client-side applications corresponding to the Remote Database
module share the classes required to implement the database management on the
remote server as well as the classes to transform and manage the data into a record
store on the mobile device. In a similar way, the three applications share the required
classes for Member management.

720 Vazquez-Briseno M., Vincent P., Nieto-Hipolito J.I., de Dios Sanchez-Lopez J.: Applying ...

Figure 12: m-Health project block diagram

5 Related Work

There are several projects that may be compared with MobAppGen. The work
developed by C.-W. Xu [XU 2006] is a framework that facilitates the modeling,
implementation and maintenance of wireless mobile online applications based on Java
ME. This work proposes the use of the graphical language MVC (Model-View-
Controller) for modeling mobile online applications. The developed applications
consist of web applications that access information from a web server and insert data
into a database, where JDBC-ODBC (Java Database Connectivity – Open Database
Connectivity) is the database bridge driver chosen to access the information. This type
of application is particularly useful for mobile devices that do not have a web browser
installed. The implementation of the mobile online application consists of the server
side and the client side. The server side is based on Servlets and JavaBeans. The client
side is based on a MIDlet. The Servlets accept the user’s requests, dispatch them to
other components for validation and finally generate the corresponding responses.
The JavaBeans are components that access the database to query, update or insert
data. In this work, every wireless mobile online application must be first modeled
using a MVC diagram. A major difference between MobAppGen and this framework
is that, as the name implies, this approach is only targeted to web applications.
Moreover, the design of the applications and framework structure is more conceptual
than practical. There is a set of client and server libraries, but there is no program tool
developed to create the design in MVC or to add the libraries to construct a new
application. Finally, the client libraries implement only basic functions, such as show
screens or request data from the server; the more complex tasks are left to the server
side.

721Vazquez-Briseno M., Vincent P., Nieto-Hipolito J.I., de Dios Sanchez-Lopez J.: Applying ...

Another possibility is QuickFrame (QF) [Hiata 2007], a framework for the
development of mobile applications that allows them to run in several types of mobile
devices. This framework owns a standard specification language used to define the
application interface. QuickFrame’s architecture consists of three elements: the QF
Designer, which is an Eclipse plug-in used to describe screens and flows in mobile
applications; the QF Interpreter, which runs on mobile devices to interpret the
applications that were created on the QF Designer; and the QF Server, which is
responsible for storing applications described in the QF Designer, exchanging
information with mobile applications running in the interpreter and interchanging
information with storage systems. The primary goal of QuickFrame is to allow mobile
applications to run in several devices without many changes, rather than to facilitate
mobile applications creation, as our framework does. Nevertheless, the QuickFrame
Designer eases the creation of user interfaces and screen flows using the framework
specification language. The created code is interpreted later on the mobile device by
the framework’s interpreter. A major drawback of the QF Designer is that the
developer is forced to use Eclipse IDE to implement an application. Developers may
need extra time to familiarize themselves with this Integrated Development
Environment (IDE); thus, QF may be more suited for experimented programmers than
for beginners.

MobAppGen could also be compared to MobCon [Cepa 2005], which stands for
Mobile Container. It employs the container concept adapted to the domain of mobile
applications. Logically, a container is a wrapper module that transparently offers
services to application components residing inside it. The services provided may vary
depending on what the container is built to address. In this framework, services fall
into the category of technical concerns that can be reused within various applications.
Mobile containers in MobCon deal with the client-side application that resides on the
mobile device as a MIDlet. They consist of MIDP transformation plug-ins included in
the framework containing functionality to generate client code. Server-side code may
also exist to support the MobCon concerns on the server, but it must be manually
installed on the server. The basic idea in this work is to use a predefined set of tags
(annotations) to build MIDP applications. Tags are declarative constructs used to
decorate elements of a program to add semantics to it. End-programmers add these
tags to their code to include some predefined technical concerns. The tag-decorated
code is then processed, and the required technical concerns are added to it based on
the predefined MobCon tags. MobCon is a very complete approach to facilitate
mobile application generation. The main disadvantage of the framework is that the
developer needs to learn the new language composed by the tags that must be added
to the Java code. This addition is done manually, which forces the developer to be
familiarized with JavaDoc and the specific MobCon tags before starting an
application. Another drawback is that once the code is generated, the mobile
application only consists of two classes: the template class with the technical concerns
and the abstract class with the code inserted by the programmer. This setup is useful
for small applications that do not include many lines but can be a problem for larger
applications, which complicates software maintenance.

722 Vazquez-Briseno M., Vincent P., Nieto-Hipolito J.I., de Dios Sanchez-Lopez J.: Applying ...

6 Framework Performance

To test MobAppGen’s performance, we evaluated the size of the generated client-side
application, which is the JAR file size. The JAR file includes all the files for every
class in the MIDP application. It has to be installed on the mobile device to execute
the project. The size of the JAR file is important for several reasons. For example, the
memory size allocated for MIDP applications on mobile devices is usually very
limited. Therefore, users prefer small applications to better employ the available
space. Additionally, some mobile devices have a limited size restriction for the JAR
file: for example, the Nokia S40 series, among others, has a maximum JAR file size
support of 64 kB. In addition, some wireless network operators put a limit on the size
of the MIDP applications that can be downloaded from the network to install the
application on the device.

In MobAppGen, the client-side application size depends on the type and quantity
of modules used to create the project. The framework allows the developer to enter as
many modules as she/he desires; thus, the results presented here are intended to
provide them with useful design guidelines. Several projects were created to combine
the modules available in the framework in order to do the evaluation tests. The
projects contain applications created with similar or different modules. The first tests
were done with projects that consist of applications generated with client-only
modules. [Tab. 2] shows the obtained results. In these tests, only this type of module
is used in each project, but several applications are added by changing their attributes.
It can be observed that, in this case, the JAR files are less than 25 kB, which is a small
file size. The file does not exceed this size even when adding eight different
applications in the same project.

Table 2: Performance results obtained when using client-only modules

[Tab. 3] shows the results obtained when the projects consist of applications
generated with the client-server modules. It can be observed that in this case, the JAR
file size increases faster than when using the client-only modules because this type of
applications requires more source classes. In this case, after we have added seven
applications, the project exceeds 64 kB, which is a size limit in some mobile devices.

No.
Applications No. Modules Jar (bytes)

1 1 12371
1 1 12288
2 2 14141
3 2 15872
4 2 18323
5 2 20089
6 2 21923
7 2 23649
8 2 25430

723Vazquez-Briseno M., Vincent P., Nieto-Hipolito J.I., de Dios Sanchez-Lopez J.: Applying ...

Table 3: Performance results obtained when using client-server modules

As it can be observed from the previous results, the projects generated with
MobAppGen can be easily maintained below 64 kB if it is required by the mobile
device. This result is important because several applications need available memory
in the mobile device to store local data.

7 Evaluation Through Qualitative User Study

A qualitative user study was conducted to evaluate the usefulness and acceptance of
MobAppGen. There were 23 participants in the user study with an average age of 28.
All of the participants are computer engineering students. Of the participants, 13 had
no experience in mobile programming, while the other 10 had already had some
experience using Java ME. To evaluate MobAppGen, we observed how the
participants interacted with the framework and combined it with the participants’
answers during the interview. During the study the participants were required to
create one project using the framework. They were free to use any modules to
complete their project. [Fig. 13] compares the results from experienced and non-
experienced users. Most participants agreed that the framework is easy to learn and
intuitive to use, but the non-experienced users had more problems using the
framework. They stated that this is mostly because they were not familiarized with
some of the terms used in the web-based tool, such as MIDlet, JAD and JAR file,
among others. Considering the framework’s usefulness, it can be observed that
experienced users do not fully agree with this argument. Some of them stated that
they could not find an appropriate module to create the project that they wanted to
design. Some of the suggestions for new modules included a module to manage
MMAPI functionalities and another one to work with files using the FileConnection
optional package.

In the interview, we also asked experienced users if they foresee using
MobAppGen in the future, and if they would use it over other tools that they know of,
such as Eclipse or MobCon. Based on the responses, they mostly reported that they
would use MobAppGen to develop some of their projects or to start creating a project
that they could improve later. Most of them agreed that they prefer using a tool like
MobAppGen to using the Java ME SDK provided by Sun. Many (80%) of the

No.
Applications No. Modules Jar (bytes)

2 2 21633
3 3 32117
4 4 35779
5 5 53291
6 5 57321
7 5 59243
8 5 65123

724 Vazquez-Briseno M., Vincent P., Nieto-Hipolito J.I., de Dios Sanchez-Lopez J.: Applying ...

5 = Agree 1= Disagree

experienced users agreed that it is easier to develop applications using MobAppGen
than with other tools. The other 20% disagreed because the number of modules
included in the framework is still limited.

Figure 13: Feedback from experienced and non-experienced mobile programmers
when using MobAppGen

8 Conclusions and Future Work

In this work, we have presented the impact of using a web-based modular framework
to develop mobile applications. A module has been described in computing as a self-
contained component of a system. Our framework, referred to as MobAppGen, has
applied modularization to the mobile applications environment. In this work, each
module has been designed to perform a particular task commonly used in the
development of mobile applications. These modules are characterized by a set of
attributes that are used to adapt the particular task to a user’s needs. An important
aspect of modularization is that the same element can be reused to generate different
mobile applications within the same project while sharing common classes and
promoting code reuse to reduce the final project’s size, which is a very important
feature in the mobile applications environment where the available memory and
storage space tend to be limited. This modular framework targets mobile computing
devices included in the MIDP profile and generates PHP scripts for the server side
when required. The framework provides a friendly environment based on a web-based
tool that helps to hide the complexity of mobile applications programming and
extends framework access to remote locations. It could be observed that the use of a
web-based tool provides a friendly environment that was well accepted, even for users
that have no experience programming mobile applications. They found the framework
easy to learn, intuitive to use and useful for creating the projects that they designed.
More experienced users that have already used Java ME to create mobile applications
would consider using the framework in the future, even if they find it somewhat
limited, to develop some of their projects because they depend on the modules
included in the framework. As a result, we are planning to extend MobAppGen by

725Vazquez-Briseno M., Vincent P., Nieto-Hipolito J.I., de Dios Sanchez-Lopez J.: Applying ...

adding more modules or providing a tool that allows experienced programmers to add
their own modules to the framework.

Acknowledgements

Thanks to CONACYT for supporting this work by grant 151614 from SEP-
CONACYT [SEP (Ministry of Public Education)-Consejo Nacional de Ciencia y
Tecnología].

References

[3GPP 2006] 3GPP, “TSGS-SA, Transparent end-to-end Packet Switched Streaming Service
(PSS). Protocols and codecs. (Release 7)”, TS26.234 v.7.1.0 (2006-12).

[Balagtas 2009] Balagtas-Fernandez, F. and Hussmann, H. “Evaluation of user-interfaces for
mobile application development environments”. In Human-Computer Interaction. New Trends,
5610 (2009) 204–213

[Beji 2008] Beji, S.; El Kadhi, N.,”An Overview of Mobile Applications Architecture and the
Associated Technologies”, in: Proceedings of the Fourth IEEE International Conference on
Wireless and Mobile Communications, 2008. ICWMC '08, July 27 -Aug. 1 2008 pp.77-83,
doi: 10.1109/ICWMC.2008.55

[Cepa 2005] Cepa, V. and Mezini, M., “MobCon: A Generative Middleware Framework for
Java Mobile Applications”, in: Proceedings of the International Conference on System Sciences
(IEEE HICSS-38). Island of Hawaii. January 3-6 2005.

[Handley 1998] Handley, M. and Jacobson, V., “SDP: Session Description Protocol”. IETF
RFC 2327, 1998

[Hiata 2007] Hiata, A., R. de O. Anido and A. Luiz da Cruz, “ An Integrated Approach to
Develop Pervasive Mobile Applications”, in: Proceedings of the International Conference on
Wireless Information Networks and Systems (Winsys 2007), Barcelona, Spain. July 2007.

[Istepanian, 2004] Istepanian, R.S.H., Zhang, Y.T. “Guest Editorial Introduction to the Special
Section on M-Health: Beyond Seamless Mobility and Global Wireless Healthcare
Connectivity” IEEE Transactions on Information Technology in BioMedicine, 8(4), 2004.

[ITU 2011] ITU ICT World Telecommunication/ICT Indicators Database: “The World in
2011, ICT Facts and Figures” (2011).

[ITU 2010] ITU-D ICT World Telecommunication/ICT: “The World in 2010”, (2010).

[Jorstad 2005] Jorstad, I., Dustdar, S. and Do van Thanh., “An analysis of current mobile
services and enabling technologies”, International Journal of Ad Hoc and Ubiquitous
Computing, 1, 1/2 (2005), 92-102.

[Knudsen 2003] Knudsen, J., “Wireless Java: Developing with J2ME”, The Author’s Press,
2003.

[MMAPI 2002] Mobile Media API JSR-135, 2002 http://jcp.org/en/jsr/detail?id=135

726 Vazquez-Briseno M., Vincent P., Nieto-Hipolito J.I., de Dios Sanchez-Lopez J.: Applying ...

[Prohm 2002] Prohm, B., Dittner, P., Wood, B., “Mobile Terminal Statistics Worldwide”,
1996-2005. Gartner Dataquest. 2002

[Reenskaug 2003] Reenskaug, T., “The Model-View-Controller (MVC) Its Past and Present”,
University of Oslo, 2003, available at http://heim.ifi.uio.no/~trygver/2003/javazone-
jaoo/MVC_pattern.pdf

[Schulzrinne 2003a] Schulzrinne H., Rao, A., Lanphier R. and Westerlund, M., “Real Time
Streaming Protocol”. RFC 2326, March 2003.

[Schulzrinne 2003b] Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V., “RTP: A
Transport Protocol for Real-Time Applications”. RFC 3550, July 2003.

[Sjobem 2006] Sjobern J., et al. “RTP Payload and File Storage Format for the Adaptive Multi-
Rate (AMR) and Adaptive Multi-Rate Wideband (AMR-WB) Audio Codecs”, RFC 3267,
August 2006.

[Verkasalo 2006] Verkasalo, Hannu., “Empirical Observations on the Emergence of Mobile
Multimedia Services and Applications in the U.S. and Europe”, in: Proceedings of the 5th
International Conference on Mobile and Ubiquitous Multimedia, Stanford, California,
December 2006

[Vital 2009] Vital Wave Consulting,” mHealth for Development: The Opportunity of Mobile Technology
for Healthcare in the Developing World”. Washington, D.C. and Berkshire, UK: UN Foundation-Vodafone
Foundation Partnership, 2009

[WAP 1998] Wireless Markup Language Specification, The WAP forum, 1998.Available at :
http://www.wapforum.org/what/technical.htm, Last visited: June 28, 2010

[Xu 2006] Xu, C.-W. “A Framework for Developing Wireless Mobile Online Applications”,
in: Proceedings of the 5th IEEE/ACIS International Conference on Computer and Information
Science and 1st IEEE/ACIS International workshop on Component-Based Software
Engineering, Software architecture and reuse (ICIS-COMSAR’06). Honolulu, Hawaii. July
2006.

727Vazquez-Briseno M., Vincent P., Nieto-Hipolito J.I., de Dios Sanchez-Lopez J.: Applying ...

