
Supporting End-User Development through a New
Composition Model: An Empirical Study

David Lizcano
(School of Computer Science, Universidad Politécnica de Madrid, Spain

dlizcano@fi.upm.es)

Fernando Alonso
(School of Computer Science, Universidad Politécnica de Madrid, Spain

falonso@fi.upm.es)

Javier Soriano
(School of Computer Science, Universidad Politécnica de Madrid, Spain

jsoriano@fi.upm.es)

Genoveva López
(School of Computer Science, Universidad Politécnica de Madrid, Spain

glopez@fi.upm.es)

Abstract: End-user development (EUD) is much hyped, and its impact has outstripped even
the most optimistic forecasts. Even so, the vision of end users programming their own solutions
has not yet materialized. This will continue to be so unless we in both industry and the research
community set ourselves the ambitious challenge of devising end to end an end-user application
development model for developing a new age of EUD tools. We have embarked on this
venture, and this paper presents the main insights and outcomes of our research and
development efforts as part of a number of successful EU research projects. Our proposal not
only aims to reshape software engineering to meet the needs of EUD but also to refashion its
components as solution building blocks instead of programs and software developments. This
way, end users will really be empowered to build solutions based on artefacts akin to their
expertise and understanding of ideal solutions.

Keywords: end-user development; end-user software engineering; domain experts; domain-
specific software development; ecologies of participation
Categories: C.2.4, D.1.7, D.2.2, D.3, H.4.m, H.5.2

1 Introduction

Over recent years, the prosumer concept, introduced by Web 2.0, has interestingly
moved into the software development arena. Consequently, the notion of end-user
programmer is gaining momentum. End-user programmers are knowledge workers
versed in their job, who are neither acquainted with nor interested in software
engineering. They develop far more software than professional programmers. In fact,
Scaffidi et al. [Scaffidi, 05] estimated that there were over 80 million end-user
programmers in American workplaces compared with 2.7 million professional
programmers. Forecasts for 2012 suggest an even bigger gap: the number of end users

Journal of Universal Computer Science, vol. 18, no. 2 (2012), 143-176
submitted: 4/7/11, accepted: 27/1/12, appeared: 28/1/12 © J.UCS

is estimated to grow to 90 million against a much more moderate increase in the
figure for professional programmers to just three million [Scaffidi, 05]. End users are
building an assortment of different software, including spreadsheets, multimedia
simulations, e-mail filtering rules and more recently dynamic web pages and even
applications.

Unfortunately, claims that end users wanting to develop their own software
solutions to the problems that they encounter as part of their jobs do not have access
to adequate support or a development model are founded [Jones, 03]. There are
studies establishing that from 40% to 50% of the software created using end-user
development (EUD) techniques and tools does not satisfactorily remedy the problems
that it was designed to solve [Lieberman, 06]. This leads, on the one hand, to major
financial losses for small- and medium-sized enterprises and large corporations all
over the world [Hilzenrath, 03], [Panko, 95], [Robertson, 03] and, on the other, to
dissatisfaction, wasted time and unproductive effort on the part of knowledge workers
[Davenport, 05], [Cook, 97].

Current EUD research sets out to get the end user more involved in the traditional
software engineering process very early on in the software development cycles. These
approaches try to elicit the features of the problems to be solved more effectively
[Fischer, 09] or offer guidelines and heuristics to instruct users how to design and
develop their EUD solutions [Erwig, 09], giving guidance for the testing and
debugging process [Fisher, 06]. Launched within the field of end-user software
engineering, these initiatives still fail to achieve part of their aims and purposes.
Although they have managed to reduce the number and severity of development
problems [Ruthruff, 06], they still produce software that is far removed from what
would be ideal solutions for end users [Brandt, 09].

The most convincing reason for this failure is that end users are obliged to use
and resort, for support, to components, artefacts, processes and algorithms that were
originally conceived by and for programmers and that are far removed from the
cognitive models of people that know little or nothing about programming
[Blackwell, 99]. Remember that end users are acquainted with the problems that they
come up against. Their systematic problem-solving process is based on creating data
chains among problem-solving components that make sense in the real world from the
knowledge worker’s viewpoint rather than software elements (functions, objects, data
structures, sentences, etc.) not directly related to the real problem [Davenport, 05].

Additionally, existing EUD approaches are often confined to mere spreadsheets
and do not offer any support for creating other types of more powerful, richer and/or
more versatile EUD solutions [Jones, 03].

The software engineering community cannot ignore the myriad end users that
want and need to develop reliable, effective and secure solutions despite being
programming illiterate. We must, then, address the needs of the EUD community and
try to account for their particularities and characteristics.

To do this, the following three challenges have to be addressed [Curtis, 88]:
1. The tools that end users use and the developments that they carry out

suffer from a thin spread of application domain knowledge.
2. There is a need for open, evolvable systems that can adjust to

fluctuating, conflicting requirements. Conflicts arise between the
evolving world and the software system modelling that world.

144 Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

3. There is a need to support communication and coordination in a richer
ecology of participants with different interests, skills, and background
knowledge. The hardest part of software development is often how to
forge a mutual understanding and common ground among all
participating stakeholders rather than the technical complexity of the
problem.

From our research on this issue [Lizcano, 11], [Lizcano, 08], [Lizcano, 09b], we
have gathered that end users cannot be expected to have to cope with development
processes, heuristics and steps that they do not know how to use to represent their
expertise. The only way of tackling the above challenges is through new software
design elements devised for end users that form the groundwork for a software
development model. These are the two basic ingredients of any composition model:
components translate the problem into a solution from a systemic viewpoint, and a
development model specifies the phases and steps to be followed to complete the
development based on the above components. The components of a composition
model are the conceptual elements that define the composition model and specify how
a real-world problem will be understood, modelled and conceived using that
composition model [Floyd, 79].

This paper proposes a set of components that end users require to be able to
understand and compose the software that they develop based on the realistic view
they have formed of the problem to be solved. We also present a development model
guiding end users through the process of developing solutions based on the above
components. But, the main contribution of this paper, however, is a statistical study
that, for the first time, empirically demonstrates that the emerging EUD model meets
the needs of end users and, thanks to the developed components and model presented
here, empowers programming illiterate users to create their own ad hoc software
solutions and is also useful for programmers that want to create solutions to support
their own work, saving time and effort compared with traditional (object-oriented,
imperative, etc.) programming paradigms. This study corroborates the growing body
of evidence that end users can create real, reliable and satisfactory solutions provided
that they have access to the right building blocks, cooperative and structured
repositories that provide such building blocks and finally frameworks that instantiate
development models based on catalogued elements.

The remainder of this paper is organized as follows. Section II discusses related
work. Section III presents the end-user composition model, discussing the success
factor-based component meta-model, the development model of the new composition
model and the EzWeb/FAST framework implementing the composition model.
Section IV describes the empirical study investigating the adequacy of the
components and development model for achieving EUD aims. Finally, Section V
discusses the conclusions.

2 Related Work

There are numerous studies [Lieberman, 06] focusing on research into the feasibility
and potential of software development by end users. Those studies aim to achieve,
extend and assure the success that popular EUD tools, such as spreadsheets,
information filtering tools, etc., have already achieved [Jones, 03].

145Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

Most have focused mainly on the production of heuristics enabling end users to
apply traditional software engineering and development processes [Fischer, 09],
[Erwig, 09], [Fisher, 06]. Actually, they aim to get end users to participate along with
software engineers in the early design and development phases. They lack, however,
elements, components, processes and artefacts that are familiar to users and their
understanding of the problem from a non-programming viewpoint. End users will not
be able to properly manage programming resources, because they are not at all like
their cognitive model [Jones, 03].

In 2001, publications and research reports began to emerge considering
spreadsheets as a new programming paradigm capable of bringing software
development to the masses [Burnett, 01]. This work outlines the instructions for the
successful use of these tools, and provides insight into the development process for
this type of solutions. However, it does not offer guidelines for supporting other more
general EUD solutions. Partial research on the EUD field, like [Myers, 06], [Chin,
06], [Riecken, 94], [Chengchun, 05], proliferated. But all these researchers addressed
the composition, development and debugging process of particular types of EUD
solutions (pervasive computing applications, agent-oriented applications and Web
design visual languages) and failed to consider the general-purpose EUD solution as a
regular composition model [Riecken, 94], conceived, like any composition model, on
the basis of components, but centred on end users instead of programmers.

Large companies like Amazon, Google, Yahoo!, IBM, HP, Sun Microsystems,
SAP, Apple and so on have realized that their future on the Internet hinges on
adopting a series of basic business principles [Anderson, 06], such as offering
software as services (SaaS), ensuring that these services run efficiently in the cloud
and can also be used straightforwardly, naturally and simply by the Long Tail
[Burnett, 01].

Consequently, these companies have researched the EUD field and started to
publish components that partially conform to the premises for end-user components
described in this paper. These components are today empowering millions of non-
professional programmers to use repositories of wrapped user-centred back-end
services, like [ProgrammableWeb, 11], as a sandbox for finding, remixing, hacking
and even exploiting services, resources and wrapped data feeds to thus compose
solutions and end-user developments. These design elements are a de facto
unstructured implementation of the ideas formalized in the end-user composition
model and give an idea of the interest in further expanding the target audience capable
of exploiting the ecosystem of user-centred services that many companies are
producing (like the Google Chrome Web Store, see [Chrome Web Store, 11], [Myers,
06] and [Chin, 06]).

The need to formalize the end-user solution as a normal composition model is
what motivated our research work.

3 End-User Composition Model

As noted above, EUD has been considered as an emerging paradigm [Lieberman, 06],
[Jones, 03], but no attempt has yet been made to formalize this discipline as a
composition model. Our aim was to formalize this paradigm reshaping software

146 Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

engineering to meet the needs of EUD and refashioning its components as solution
building blocks (instead of programs and software developments) [Schroth, 07].

In this section we first present our approach to the new end-user component
model, giving an example of a current web service (with SOAP or REST, POX-RPC
or similar invocation) wrapped as an end-user component. Then we describe a general
end-user development model that will be used to guide end users through the process
of developing their own solution based on the composition model components, listing
an algorithm that states the development steps paralleling the end-user thought model.
Finally, we introduce the EzWeb/FAST framework that implements the complete
end-user composition model and is used to conduct an empirical study of its
feasibility and potential in the software development world.

3.1 A New User-Centred Component Model

A user-centred component model should parallel the cognitive model of end users,
and their view of the problem and pragmatic problem-solving methods. To define a
valid component model, we need to be sure about what end users think, how they
want to interact and what they expect of the software solutions. As this would be an
empirically prohibitive undertaking, we inspected the most successful EUD solutions
to find success factors. The initial component model was the result of abstracting the
component models shared by existing EUD approaches. However, EUD solutions are
very wide ranging (the component model underlying a spreadsheet has little or
nothing to do with an e-mail or RSS filtering solution). For this reason, it is
impossible to subsume all the component models of the EUD solutions by directly
eliciting the common factor. Rather than aligning the components of all EUD
solutions (which would mean mixing, for example, cells and filtering rules, that is,
mashing up oil and water), we elicited the success and acceptance factors for all types
of EUD tools [Lizcano, 11]. We propose a meta-model that exploits the above success
factors. This meta-model is the focus of this section.

Our research unveils that the success of EUD solutions is dependent on three
interrelated categories of factors, which have until now been addressed separately.
These are:

1. Human factors: any EUD approach should be used and accepted by
programming illiterate people. To do this, users must perceive the solutions
and the components that they manage at design time as easy-to-use, useful
elements, supported and verified by business entities and also having social
backing from communities of users tackling similar developments and
sharing part of the efforts to achieve collective success [Curtis, 88].

2. User-solution interaction factors: user-centred components should have
cognitive dimensions that fit the thought model of end users, such as a
suitable abstraction gradient, consistency, low error-proneness, no hidden
dependencies, a model that does require users to make decisions on which
components to use and how before they have enough data to make a truly
informed choice, low viscosity, and so on. Accordingly, the development
and runtime components in the EUD domain should conform to a series of
principles and heuristics [Chengchun, 05].

3. Successful specialization/functionality trade-off factor: a good trade-off

147Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

between the specialization and the functionality of the created solutions is
essential in the EUD domain [Jones, 03]. Often EUD solutions are able to
create very specialized solutions that are less functional and generally
applicable for diverse problems and domains (e.g., spreadsheets), whereas
other solutions offer very diverse functionalities but do not manage to solve
entire real-world problems (e.g., Web mashups). EUD solutions should strike
a balance between these two factors.

In [Lizcano, 11], we identified a set of success factors for each category. In this

article, we go a step further and map these success factors to the target features of a
user-centred component model. These target features are the groundwork of our
proposed composition model. These target features are:

1. Any component of an end-user solution should be a black box that performs
a specific and precise function (that is, call a service, invoke a resource, etc.)
that makes problem-solving sense to the user [Schroth, 07b]. At the same
time, a rich and expressive visual interface should make such components
manageable, simple and understandable and be clearly described in natural
language. Folksonomies, and even tools like Excel, have used natural
language to describe complex functions so that the lay public can
comprehend their purpose. In fact, users should be able to understand the
components that they use and grasp what they do without having to bother
about how they do it.

2. The executing component will usually process some input data to produce
outputs. Users should be able to convey the data flow between the
components underlying the task to be performed [Lizcano, 08b]. As users are
programming illiterate, they need to have access to abstractions that fit their
mental pattern to model this data flow. As today’s EUD tools have shown,
simple data together with a visual representation of the semantic
compatibility among these data constitute the right level of abstraction.
These data can be considered as the pre- and postconditions that drive the
execution of a state machine. This way, users do not have to deal with the
syntax of the back-end resources. Users should also have the option of
specifying the meaning of such data. This would be helpful for people using
the elements in the future. Looking at real examples of these factors, Excel
cells, for example, offer users an interface for invoking functions with pre-
/postconditions and developing solutions based on the creation of data flows
among cells. Other approaches like Web mashups offer widgets that
encapsulate service invocations, enabling the user to set up data flows among
front-end elements.

3. Users should have access to mechanisms for both spatially and temporally
managing the data flow. Users should be able to formulate changes to the
interfaces/visualizations depending on particular data, management
processes, etc.

4. Finally, a very important EUD success factor (and one of the secrets behind
the spreadsheet sensation) is the abstraction gradient. Not all users have the

148 Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

same knowledge of compositional aspects, technical expertise or experience
in EUD fields. Instead of programming a solution or component, which they
are not qualified to do, users should parameterize prefabricated components
to meet their needs, or put together finer-grained parts to visually compose
more abstract, original and useful components. The catalogue of
prefabricated components and EUD tools for composing new components
should offer a full-blown hierarchy of components, ranging from
comprehensive, complex and problem domain-specific final solutions to
simple services, data and/or resources wrapped by software providers for use
by less expert users. We propose a component hierarchy formed by final
solutions, mashups, workspaces, gadgets, visual items, data operators and
finally back-end resource wrappings.
a) User-centred components will be published in a collaborative and

federated solution component marketplace. Software providers that
opted for SaaS (software as a service) years ago can use this catalogue to
publish business resources duly packaged according to end-user
requirements. This principle would encourage new users to publish their
solutions and reuse earlier EUD efforts, reducing the difficulty curve for
new creations and producing an exponential benefit, known in
economics as network externality [Wu, 04].

b) The development environment suggests components and compositions
to users at design time based on their current data flow and light-weight
semantic annotations by other users. This information is, in fact, the
basis for recommending new elements for users to use to build their
solutions and check for errors. This boosts consistency and reduces
process viscosity [Jones, 03].

All these components are part of what would be a new end-user component

model, with an extensive component hierarchy. This conceptual model relates
components to each other, composing components from the bottom level of the
hierarchy (see Figure 1). End users know how to solve familiar problems
systematically using distributed information sources, data flows among these sources,
accessing remote resources, etc. They may be able to find an exact (or a similar)
solution in a components catalogue published by a software provider or an end user
that has already wrestled with a similar problem. In this case, users simply have to
instantiate and parameterize this solution. More often than not, though, users have to
create their own solutions by mashing up several components, including spreadsheets,
Web mashups, etc. (Figure 1-a). Each mashup is composed of multiple workspaces.
Workspaces are visual spaces in which a user sets up tangible data flows. Again, users
have the option of looking up previously published workspaces in a catalogue or
composing them visually from gadgets. Gadgets are the basic and atomic user-centred
component (e.g., a spreadsheet cell or a Web mashup widget); they are the minimum
component that makes sense to a programming illiterate user and fulfils the premise
of offering users a visual interface for managing a wrapped resource (function,
service, data access). Thanks to the support of software providers, these are the most
populous elements in today’s end-user catalogues (Figure 1-b). Through visual and
semantically-driven wiring, end users are able to build these elements into their

149Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

workspaces and create data flows between them (Figure 1-c). These flows will help to
convey the knowledge workers’ systematic knowledge, explicitly exploiting their
problem expertise. If the catalogue does not contain the gadget that the end users
need, they have to use building blocks, finer-grained end-user components (Figure 1-
d), to create this gadget: visual items, data operators or back-end resource wrapping.
The most important of these elements are remote resources. Remote resources enter
new data in the flow devised by the user and require the backing of software providers
capable of offering the resources to users. The new data entered in the solution is
managed by piping operators, like filters, selectors, mixers, etc. Finally, the visual
elements display information to the user and capture their actions on the gadget. This
is an ordinary model-view-controller, designed, in this case, to be handled and used
by programming illiterate end users. By piping all these building blocks, end users are
able to design and add their own gadget and build their ideal solution.

Figure 1: Development of rich end-user solutions through the end-user composition
model

This conceptual model is subsumed or instantiated by all the known EUD
applications [Lizcano, 09b], and, if exploited to the full, will be able to solve the
challenges listed by Bill Curtis, Herb Krasner and Neil Iscoe in 1988 [Curtis, 88].
User-centred components and their relationships should take EUD beyond solutions
that are based exclusively on designing a set of spreadsheets to process data, creating
macros or chaining data filters.

Having defined the target features of the components of the new user-centred
component model, we can formalize this model that is useful for describing the
architecture of an end-user solution (Figure 2). We employ a UML 2 Class Diagram,

150 Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

following the UML 2 superstructure specification defined in ISO/IEC DIS 19505-2.
To complete this diagram, we use MOF (meta-object facility) [OMG, 06]. MOF is a
facility defined and used in ISO/IEC 19502:2005. The international standard
describes its importance and applicability in model driven engineering, enabling the
creation of a strict level-3 meta-modelling schema [Sobek, 05], and offering the
possibility of running or checking schema instances or subsumptions in UML notation
(descending to modelling level 2). This way, it can output or validate component
diagrams for different end-user development tools.

The model includes the design element as a basic component of the user-centred
component model. This element is composed of a user-centred visual interface for
accessing a wrapped resource. Any component will be linked, in the final solution,
with other components through pre- and postconditions based on facts that guide the
data flow, where a fact is an information item composed of a datum and its associated
lightweight semantics. As already mentioned, the development environment suggests
components and compositions to users at design time based on their current data flow
and lightweight semantic annotations by other users.

The end-user components will be published in a business marketplace-style
collaborative and federated catalogue. Any user will be able to search the catalogue
for new components and compose solutions sourced from other user
recommendations about the data managed by the partially designed solution, etc. This
catalogue is where software providers adopting the SaaS philosophy can publish their
resources tailored for compositional development, and promote their resources and
services among end users.

Finally, the components should be adapted to the end-user cognitive model and
specific end-user knowledge, meaning that there is a full-scale hierarchy of design
elements devised to fit the level of abstraction required by users for different
development process workflows. These levels of abstraction include anything from
full solutions to back-end resources (simple data operators, like filters, concatenators,
etc., or recovered services). Each element in this hierarchy is adapted to a different
level of abstraction in the end-user cognitive model: the full solution fits the systemic
view that the user envisages for tackling the problem; this solution is composed of a
mashup of several design elements, and has several workspaces. Workspaces are
visual spaces all displayed at the same time by a composite interface that aims to
tackle part of the problem. These workspaces include several interconnected gadgets,
where a gadget is a visual element that manages user interaction with a particular
remote resource. This gadget may present a single view (for example, an Excel cell or
a single form) or a screen flow (such as a survey composed of several forms) for the
user to interact with the remote resource or resources associated with the gadget. Each
of these visual interaction items is termed resource representation. A resource
representation is composed of the view and the back-end resource. The back-end
resource is composed of operators and service wrappings. This component model is
instantiated as the different EUD solutions existing today [Lizcano, 11]. The Internet
facilitates building such a system that instantiates the entire model and supports such
a level of scalability, globality and interoperability among users. It is in the Web
environment where our conception of the end-user composition model makes most

151Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

sense and is likely to reach its full potential in terms of functionality and success. The
EUD phenomenon has already left an imprint on the Web through mashup-based
compositional applications created by iGoogle, Yahoo!Pipes, OpenKapow, etc., over
the last few years. These applications subsume the presented model. All these EUD
tools are based on visual elements (commonly known as widgets, a shortened form of
web gadgets) that represent data or special-purpose data processes (displaying an
address on a map or a short list of news). The best tools establish a dataflow among
these visual elements where a new data item in one element leads all the collaborative
interfaces to take a computational step. This is a spreadsheet-like approach, save that
each element displays a richer visual interface and invokes particular remote services,
resources or distributed data as recovered services.

Figure 2: End-user composition model in UML 2

These service wrappings are the atomic design elements of the end-user component
model; they are the smallest pieces that a programming illiterate user can handle and
understand. These elements, composed of an API and some inputs and outputs, are
especially abundant on the Internet thanks to Web services ecosystems, as these Web
services are really easy to transform into wrapped service components. The following
is a specific example of a Yahoo! Web service using its search engine, transformed
into a user-centred component. First, the Web service inputs and outputs have to be
mapped to the pre- and postconditions of the end-user component (see Figure 3).

152 Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

<?xml version=“1.0” encoding=“UTF-8”?>
<resource-adapter endpoint-url=“http://search.yahooapis.com” endpoint-service
name=“/WebSearchService/V1/”>
. . .
<method name=“ webSearch” precondition name="keyword" type="text"
label="ServiceHired" friendcode="service">
<parameter name=“query” type=“xsd:string” type-qualifier=“xsi:type”>
<%=query_to_search%>
</parameter>
<result update- postcondition =“search-suggestion” type="text" label="deviceId"
friendcode="deviceId"/>
</method>
. . .
</resource-adapter>

Figure 3: Mapping simple EUD data structures (pre-/postconditions) to the service
parameters. An XML fragment of a resource adapter configuration file that defines
the mapping of EUD facts to the Yahoo Search Web service

Additionally, it is necessary to assure that the Web service is invoked when the
precondition of the component is satisfied and adapt the results returned by the
service to the postconditions that are meaningful in the EUD field. This means
developing a small adapter for the service according to a traditional development
process using JavaScript, for example (see Figure 4).

function setKeyword(string){
...
}
var keyword_to_search = EzWebAPI.createPreconditionFact("text", keyword);
...
document.getElementById('keyword').data=keyword_to_search.get();
var suggestion = EzWebAPI.PostFact ("keyword");
...
suggestion.set("example text");
...
var currentSuggest = suggestion.get();

Figure 4: JavaScript service adapter. The variables declared in the adaptation have
to be previously declared in code, casting types and programming the remote
invocation.

3.2 End-User Development Model

Having defined the component model, it is necessary to describe the development
model whereby a programming illiterate user will be able to tackle a real problem and
relate and use components together to build a software solution.

In this section we present the end-user development model as an algorithm. The
algorithm establishes the steps to be taken by the end user and how model

153Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

components are related, composed and interact with each other to build the final
solution.

End-User_Development procedure (see Figure 5) enables an end user to solve a
real problem by instantiating, interrelating and composing components of variable
abstraction. This procedure relies on the End-User_Analysis function, which aims to
decompose the problem into problem-solving components that make sense to the user.
When an atomic component, containing interface and functionality (gadget), has not
been fabricated by another user or a software provider, the End-User_Development
procedure offers the heuristic for building this component through element
visualization, services invocation and dataflow management. Finally, the
Test_Solution and End-User_Deployment procedures are responsible for helping the
user to test and deploy the final solution.

1: procedure End-User_Development (realProblem)
2: searchfinalSolution from catalogue equal to realProblem
3: if finalSolution has not yet been created then
4: create solutionNarrativeDescription, and
5: search partialSolution from catalogue, and
6: End-User_Analysis (solutionNarrativeDescription,

partialSolutionby ref, 1)
7: else
8: parameterize finalSolution
9: end if
10: end procedure
11:
12: function End-User_Analysis

(solutionNarrativeDescription,partialSolution, iteration)
13: if partialSolution solves solutionNarrativeDescription then
14: Test_Solution (solutionNarrativeDescription,

partialSolution, error
by ref)

15: if error then
16: adderror to solutionNarrativeDescription
17: End-User_Analysis (solutionNarrativeDescription,

partialSolution by ref, iteration)
18: else
19: End-User_Deployment (partialSolution)
20: end if
21: else
22: case iteration = 1{EUD-centred mashup abstraction}
23: search mashup from catalogue subsumption of

solutionNarrativeDescription
24: add mashup to partialSolution
25: interconnect mashup to partialSolution following mashup’s
semantics
26: if mashup has not yet been created then
27: End-User_Analysis
(solutionNarrativeDescription,
 partialSolution by ref, iteration+1)

154 Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

28: else
29: End-User_Analysis
(solutionNarrativeDescription, partialSolution by
ref, iteration)
30: end if
31: case iteration = 2{EUD-centred workspace abstraction}
32: search workspaces from catalogue subsumption of
 solutionNarrativeDescription
33: add workspace to partialSolution
34: interconnect workspace to partialSolution following

workspace’s semantics
35: if workspace has not yet been created then
36: End-User_Analysis
(solutionNarrativeDescription, partialSolution by
ref, iteration+1)
37: else
38: End-User_Analysis
(solutionNarrativeDescription, partialSolution by
ref, iteration-1)
39: end if
40: case iteration = 3{EUD-centred gadget abstraction}
41: search gadget from catalogue subsumption of

solutionNarrativeDescription
42: add gadget to partialSolution
43: interconnect gadget to partialSolution following gadget’s
semantics
44: if gadget has not yet been created then
45: create emptynewGadget
46: Resource_Development

(solutionNarrativeDescription, newGadget by
ref)

47: add newGadget to partialSolution
48: End-User_Analysis
(solutionNarrativeDescription, partialSolution by
ref, iteration)
49: else
50: End-
User_Analysis(solutionNarrativeDescription,
 partialSolution by ref, iteration-1)
51: end if
52: end case
53: end if
54: end function
55:
56: procedure Resource_Development (solutionDescription, gadget)
57: search view from catalogue subsumption of solutionDescription
58: add view to gadget
59: for all back-endSource in solutionDescription do
60: search back-endSource from catalogue
61: add back-endSource to gadget

155Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

62: end for
63: while solutionDescription’s out ≠ gadget’s out do
64: search operator compatible with solutionDescription’s in and

gadget’s operator’s out from catalogue subsumption of
solutionDescription

65: add operator to gadget
66: end while
67: end procedure
68:
69: procedure Test_Solution (solutionDescription,

partialSolution, error)
70: for all solutionDescription’s testCase do
71: error = test partialSolution following testCase
72: if error then
73: error = write output error
74: end if
75: end for
76: end procedure
77:
78: procedure End-User_Deployment (partialSolution)
79: publish and describe partialSolution in catalogue
80: parameterize partialSolution
81: end procedure

Figure 5: End-User Development algorithm

As the above algorithm shows, the end-user development model focuses on
problem analysis and component creation. Problem analysis aims to decompose the
problem into increasingly fine-grained end-user components, whereas component
creation assembles components from their building blocks if the elements are missing
from the component catalogue.

It is precisely this catalogue that plays a major role and will be a key factor in the
achievement of the end-user composition model objectives. This algorithm has been
implemented through a real EUD framework, explained in the next section.

3.3 FP7 FAST/EzWeb: Developing an EUD framework

By devising a new composition model for end-user developments, we can conduct a
structured and objective analysis of EUD solutions and proposals to find out their
strengths and weaknesses and establish guidelines for improvement, enable the
interoperability of several heterogeneous EUD tools based on generally applicable
common principles, and create the groundwork for the end-user composition model
defined according to the elicited information about current tool success factors rather
than from the software engineering angle [Soriano, 07].

The construction of a framework empowering end users to build their own software
solutions was the focus of our research, which statistically evaluated the success of
both the framework and the solutions created by the users. The aim was to boost and
shed light on the EUD domain, which was forbidden territory to users unacquainted

156 Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

with programming issues, services orchestration, etc., who generated unreliable
software, or a disappointment to users that saw how their valuable domain knowledge
was misspent on mere spreadsheets, business process management applications, data
tables or simplistic scripts [Lizcano, 08b].

The result was the EzWeb/FAST framework (Figure 6) (see [EzWeb, 11] and
[FAST, 11] respectively). EzWeb/FAST was the open-source product of research by
two international R&D project consortiums [Lizcano, 08b]. Fast and Advanced
Storyboard Tools (FAST) Project is a Small or Medium-Scale Focused Research
Collaborative Project (STREP) supported by the European Commission under its 7th
Framework Programme (FP7). This framework instantiates the above end-user
composition model and services as a test bench for checking if the created component
model achieves its objective: end user access to the tools that they need to create
software solutions to support or boost their knowledge work, irrespective of their
programming knowledge [Lizcano, 09].

Figure 6: Example of an EUD solution (trip planner) built using EzWeb/FAST. An
agenda gadget was built from visual resources, services and data operators

4 Empirical Study about the Proposed End-user Composition
Model

As mentioned above, the main contribution of this paper is a statistical study that aims
to evaluate how effective the end-user composition model is at empowering end users
to develop their own ad-hoc solutions to tackle their real problems. As far as we
know, no other study empirically comparing EUD with traditional programming in
terms of development time and effort has been reported. The results and findings of
this study should be leveraged to improve current EUD approaches and tools, thus
furthering success, acceptance and outcomes.

4.1 Design

When developing the empirical evaluation of the end-user composition model, we
consider two major factors for quantification: how satisfied both end users and
technical users are with the model for developing solutions and how successful they
are at building an operational solution from the description of a real problem.

157Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

To conduct the statistical survey of how successful the end-user composition
model is, we asked users to rate the EzWeb /FAST tool implementing the
composition model. To do this, we used a sample of 100 users. This sample is
characterized as shown in Table 1 below.

Characterization
End users

(50)

Technical or
advanced users

(50)
Total (100)

Gender
Male 26 25 51
Female 24 25 49
Age
< 20 years 9 10 19
20-34 years 12 11 23
35-49 years 11 12 23
50-64 years 10 10 20
> 65 years 8 7 15
Educational Attainment
Secondary School 12 12 24
Vocational Training 13 13 26
Bachelor’s Degree 12 13 25
Master’s Degree 13 12 25
Employment
Student 13 15 28
Researcher 14 18 32
Employee 23 17 40

Table 1: Sample characterization

The sample should properly characterize all users that undertake EUD today. A
priori, the sample does not appear to be biased as regards user gender, age and
employment. We ran an ANCOVA (analysis of covariance) study. ANCOVA is used
to study whether certain factors have an effect on the outcome variable after removing
the variance for which quantitative predictors account and demonstrate that there are
no statistical data to indicate that the sample is biased [Cronbach, 77]. Accordingly,
the study checked how correlated the result of the evaluation was as a variable
dependent on gender, age, educational attainment and employment. As shown later,
this analysis statistically proves that the end-user composition model rating is
completely independent of respondent age, gender, employment or education, and
therefore there is no bias in the sample. Therefore, the choice of the 100 users is valid
(from the statistical viewpoint) for running the survey of the end-user composition
model.

The characterized sample was asked, during the evaluation, to solve a specific
problem with whose domain they were unacquainted. One of the premises of our
proposal is that end users are experts in their domain and are more likely to succeed
with the compositional development of their own solutions thanks precisely to their
domain expertise. But as our end users and technical users come from a wide range of
professional backgrounds, we decided to conduct the study on a problem domain in

158 Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

which users are unversed and check whether they are able to cope well with an
unfamiliar problem. Using the proposed framework and an abundant set of design
elements conforming to the end-user composition model principles (see [EzWeb
Catalogue, 11]), users were asked to develop a compositional application to plan
business trips. They had to create a Web application that searched for and booked
means of transport and hotels, and consulted tourist information on destinations listed
on a personal agenda. This solution also had to control the financial costs against a
spreadsheet that included a budget. The problem is detailed in the Appendix I.

Subjects used the EzWeb/FAST tool that implements the end-user composition
model to solve this problem. For a explanation of the entire development process, see
[Lizcano, 11c]. All users had to complete a period of learning, a requirements study
and analysis, and the final development. The end-user composition model
teaching/learning period was confined to a 20-minute oral presentation and a 10-
minute viewing of multimedia material (see [FAST Manual1, 11] and [FAST
Manual2, 11]).

The study focused on two research questions that were measured independently:
• RQ1. Is the end-user composition model adequate for end users? This research

question was examined using a variable termed mean rating extracted from a
survey of end users.

• RQ2. How long did it take the user to build a valid solution using the end-user
composition model and using traditional techniques? This research question
was measured using the variable termed time empirically observed during the
experiment.

Whereas the measurement of a time interval requires no further explanation, the
measurement of sample satisfaction with the end-user composition model does need
to be described in more detail. To take this measurement objectively, we built a 24-
question survey concerning different aspects of the end-user composition model.
Users had to give each question a rating of between 1 and 5 (five-point Likert scale),
where 1 means I totally disagree and 5 means I totally agree.

The survey contains questions concerning only 12 key issues about the end-user
composition model (Appendix II). These questions were then grouped into five blocks
or sections, and six preliminary questions were added about the respondents’ personal
particulars (name, ID card no., gender, age, educational attainment, etc.) in order to
characterize the sample. The questions were designed according to the principles
expounded by Lehmann et al. [EzWeb, 11] and Jessen [Jessen, 78]: back-up questions
were used to check response and process consistency (several questions address the
same general topic to check that users answer them consistently), and questions were
phrased affirmatively (where the highest score is 5 points) and negatively (where the
maximum score is 1) to prevent automatic or unmeditated responses, where
respondents tend to consistently score all items either high or low without thinking
about the meaning of the response.

A major concern throughout the study was to prevent external factors from
affecting the study or leading to the misinterpretation of the available objective data.
This called for a number of checks and verifications. Specifically, we used statistical
techniques to prevent the following threats:

159Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

• Threats to external validity, which limit the extent to which results can be
generalized. The results will not be generalizable if the problems that were set
for the sample to solve do not represent real scenarios routinely faced by users.
To reduce this threat, we gathered real problem statements from a web survey
of end users at the Enterprise Mashup Contest web site [FAST Survey, 10].
Hundreds of users described their routine EUD problems on this page, and an
experiment was designed that combined most of the characteristics and aspects
identified from the results.

• Threats to internal validity, which can lead to biased outcomes or incorrect
interpretations. The types of components specifically evaluated in the study
could affect the final results. For this reason, the sample had access to all the
real design elements that major software developers, like Google, Amazon,
Microsoft, Apple or Sun, propose as composable services and resources for
technical users, which have been mapped to user-centred components in the
EzWeb/FAST framework.

• Threats to construct validity, which affect the actual measurement of the
response variables, preventing a proper evaluation of the fact or hypothesis to
be tested. This is the biggest threat to this study. To assure that the metrics used
properly captured the feedback from end users and technical users, objective
and consolidated measures were used to evaluate each research question. On
the one hand, the real development time, which we measured live during the
experiment is a totally objective and reliable measure. As regards the adequacy
of the user model and user satisfaction, measured by means of a survey, a pilot
process was enacted to select the items that the survey was to contain. An initial
sample of 50 users was surveyed about a set of 100 items or questions. The
scores of each individual were evaluated, and each item was correlated with the
sum total. Later 25% of the highest-scoring individuals and 25% of the lowest-
scoring individuals were selected, and the mean between-group difference was
calculated for each item. The final survey was built using the 25% of questions
that had a high r (a correlation of the item to the final result greater than 0.5)
and a high [max – min]. This, together with a mixture of questions phrased
affirmatively and negatively to prevent acquiescence and the use of repeated
questions to check respondent consistency (question pairs had to have a
correlation greater than 0.5 points), assures a high study validity.

4.2 Results

All 100 individuals completed the EUD application that conformed to the set
requirements. There follows a description of the results output in terms of user
satisfaction with the end-user composition model (RQ1) and development time
required to apply the model (RQ2).

160 Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

4.2.1 RQ1. Is the end-user composition model adequate for end users?

To answer this research question, we have to analyse the survey results. Table 2
below shows the user ratings (mean score) in response to each survey question (Q7 to
Q30) for the whole sample.

Question
No.

End
User

Technical
User

Total
Score

(all users)

Q7 4.24 4.06 4.15

Q8 4.28 4.12 4.20

Q9 4.08 4.00 4.04

Q10 4.40 4.38 4.39

Q11 4.26 4.06 4.16

Q12 4.18 4.04 4.11

Q13 3.52 3.26 3.39

Q14 3.92 3.74 3.83

Q15 4.48 4.22 4.35

Q16 4.16 3.84 4.00

Q17 4.28 4.00 4.14

Q18 4.20 3.90 4.05

Question
No.

End
User

Technical
User

Total
Score

(all users)

Q19 4.18 3.98 4.08

Q20 4.52 4.32 4.42

Q21 4.48 4.38 4.43

Q22 4.12 4.02 4.07

Q23 3.98 4.04 4.01

Q24 4.02 3.56 3.79

Q25 4.20 3.98 4.09

Q26 4.48 4.18 4.33

Q27 4.36 4.30 4.33

Q28 4.02 3.56 3.79

Q29 3.98 3.92 3.95

Q30 4.16 3.88 4.02

TOTAL 4.19 3.99 4.09

Table 2: Five-point Likert score for the whole sample

The scores have all been normalized on a scale of 1 to 5, where 1 is the lowest
score and 5 is the highest score. To assure response consistency, numerous questions
(Q12, Q13, Q14, Q16, Q19, Q20, Q21, Q24, Q25, Q26, Q27 and Q29) were stated
inversely, that is, 1 is the highest and 5 is the lowest score. For all these questions, the
score was inverted applying the formula: normalized score = score * (-1) + 6. This
way, all the scores have the same scale and meaning, and can all be operated on
equally. In anticipation of the rating results being different for the surveyed end users
and technical users, we split the scores depending on the type of users doing the
evaluation.

Table 3 (row 1) shows the descriptive statistics for the rating given by users and the
distribution of the sample fitted to the normal distribution with a mean of 4.09 points
(on a scale of 1 to 5) and a standard deviation (σ) of 0.38.

161Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

95% Confidence
Interval for Mean

 N Mean
Std. Dev

(σ)
Std. Error

(SE)
Lower
Bound

Upper
Bound

Minimum Maximum

EUD model
rating (1-5)

100 4.09000 0.389307 0.038931 3.326972 4.853028 2.96 4.88

End-user
rating

50 4.19 0.327787 0.046356 3.547550 4.832450 3.58 4.88

Technical
user rating

50 3.99 0.422729 0.059783 3.161467 4.818533 2.96 4.88

Table 3: Descriptive statistics for the overall rating

The calculated σ and SE values are related by the fact that partial deviations are
overly variable depending on the selected subsamples of the population under study.
This is because the characterization of the population includes, as the ANCOVA of
the regression model of the mean rating variable (see Table 4) shows, a variable that
is significant for the study namely whether or not the user has programming expertise.

Table 3 (rows 2 and 3) also shows the descriptive statistics of the distribution of
ratings given by end users and technical users, and the normalized distribution of the
two samples (end-user and technical-user ratings). There is in fact a sizeable
difference in the mean rating variable depending on the qualitative variable measuring
programming expertise. Looking at the results in Table 3, programming illiterate end
users rated the end-user composition model more positively than programmers.

We conducted an ANCOVA analysis (Table 4) in an attempt to explain the
quantitative “final mean rating” variable depending on the other quantitative and
qualitative variables gathered to characterize the sample. This way, we aimed to
empirically check whether age, educational attainment, employment or previous EUD
expertise cause the rating to vary. This analysis will be able, on the one hand, to check
that the selected sample is not biased and, therefore, does not contaminate the
conducted survey and, on the other, to verify that the only variable that appears to
have a direct effect on user satisfaction with the end-user composition model is
previous programming expertise.

162 Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

Goodness of fit statistics

Observations Sum of
weights

Df R² Adjusted
R²

MSE MAPE DW Cp

100 100 64 0.395 0.065 0.142 5.462 1.157 36

Analysis of variance:

Source df Sum of squares Mean squares F Pr > F

Model 34 5.932 0.169 1.196 0.264

Error 65 9.072 0.142

Corrected Total 99 15.004

Computed against model
Y=Mean(Y)

Type I sum of squares analysis:

Source DF Sum of squares Mean squares F Pr > F

3.- Age 1 0.134 0.134 0.943 0.335

4.1- Education 3 0.752 0.251 0.968 0.362

4.2-Employment 2 0.163 0.081 0.575 0.566

5.- Programming expertise 22 4.387 0.199 1.407 0.146

6.- EUD experience 6 0.456 0.076 0.536 0.779

2.- Gender 1 0.042 0.042 0.294 0.589

Type III sum of squares analysis:

Source DF Sum of squares Mean squares F Pr > F

3.- Age 1 0.084 0.084 0.595 0.443

4.1- Education 3 0.524 0.175 1.232 0.305

4.2- Employment 2 0.212 0.106 0.749 0.477

5.- Programming expertise 22 4.041 0.184 1.296 0.209

6.- EUD experience 6 0.445 0.074 0.523 0.789

2.- Gender 1 0.042 0.042 0.294 0.589

Table 4: ANCOVA analysis of the sample

Analysing the study, we find that the coefficient of determination R2 is very low
(0.395). This indicates that there is a high percentage of variability in the modelled
mean variable so that gender, age, educational attainment, employment and previous
experience (the quantitative and qualitative variables for each individual) appear to
explain only 39.5% of the rating data. This information is directly extracted from the
value of R2. The other values are due to other unknown variables. This value of R2
and adjusted R2 suggests that the rating of the end-user composition model is largely
(60%) independent of the characteristics of the users rating the model. The model
error values, MSE (mean squared error) and MAPE (mean absolute percentage error),
are very high, again suggesting that the model does not precisely explain the
behaviour of the variable under study in the sample. Additionally, DW (Durbin-
Watson statistic) suggests that there is no self-correlation among the qualitative
variables, without which the study to not be valid. Finally, Cp (Mallows' Cp statistic)

163Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

suggests that the model is able to exactly explain the rating given by only 36 of the
100 individuals. These results validate the sample, indicating that there is no bias
related to the qualitative and quantitative variables characteristic of the users and to
their recruitment for the study. The regression model (Figure 7) shows a horizontal
and vertical dispersion of predictions, with error ranges from 2.5 to 5 points (out of 1
to 5 points), meaning that the mean rating variable is completely independent.

Having validated the surveyed sample, it is worth mentioning that the ANCOVA
analysis (Table 4) indicates that the selected explanatory variables cannot be
considered to be the source of a significant amount of model information (Pr > F in
the Analysis of Variance = 0.264 >> 0.01). The model is not significant because the
rating of the model is independent of the characterization of the sample, and this
means that we can again assume that the a priori identified survey bias does not mean
that either the rating or the results are biased a posteriori.

Figure 7: Fit of the end-user composition model rating based on the regression model

Analysing the results of the sum of squares analysis in Table 4, we find the
variable that has most impact on the rating. We have conducted two types of sum of
squares analysis, commonly known as Type I and Type III sum of squares analysis.
Type I (sequential) analysis provides an incremental improvement in the sum of
squared errors as each effect is added to the model, and Type III (orthogonal) analysis
is able to reduce the sum of squared errors by adding the term after all other terms
have been added to the model. Their combined use means that we do not have to be
concerned about the order in which the factors were added to the regression model. Of
the studied variables (age, gender, educational attainment, employment, previous
EUD experience and programming expertise), the variable with the greatest Fisher F-
distribution is previous programming expertise (F=1.407). Pr > F is equal to 0.146
(the closest to 0.01) for that variable. Therefore, we can infer that the aspect of sample
characterization that is most statistically significant for the rating is whether or not the
user has programming expertise [Lehmann, 05]. The other variables have a weaker
Fisher F-distribution (and, therefore, less impact on the rating). The variable with the
least impact on the model is gender, followed by previous EUD experience and then
employment and educational attainment. Judging by the probabilistic values Pr > F,
everything appears to indicate that previous EUD experience does not affect the rating
of the new model at all. This way, respondent age, employment, educational

164 Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

attainment, etc., will not alter their rating of the end-user composition model. For the
comprehensive findings of the study and variables listed in Table 4, see [Lizcano,
11b].

Finally, the extent to which each variable has an impact on the end-user
composition model rating can be quantified using a regression model and its
standardized coefficients. Figure 8 lists and plots the model coefficients.

Figure 8: Impact of each sample characterization variable on rating

The described end-user composition model does meet the needs of users, especially
end users. The factor that most positively affects the end-user composition model
rating is that users have no type of programming expertise, something that has already
been verified, reasoned and proven. On the other hand, the factor that most negatively
affects the rating is that users are experienced in other composition models (like
object-oriented and structured programming (see Figure 8)), that is, users with a lot of
programming expertise are the ones that rate the end-user composition model worst.
This is likely because their cognitive model is oriented to components proper to the
programming world, and they are less familiar and at ease with components used by
domain experts.

The study accounted for a host of characterization variables, including previous
experience with multiple programming languages and techniques —structured,
object-oriented, functional and web programming, etc.—, plus the possibility of users
having no experience whatsoever. This meant that, as shown in Figure 8, there were
up to 22 different values for the qualitative variables in the sample, depending on the
different combinations selected by each interviewee with respect to his or her
experience and knowledge. As this is a complex problem, Figure 8 only describes the
combinations that most affect, both positively and negatively, the mean quantitative
variable under study. For more information about this part of the study, see [Lizcano,
11b].

4.2.2 RQ2: How long does it take a user to develop a valid solution?

Apart from a survey-based evaluation of the views of the users of the end-user
composition model, the statistical survey also measured the time that it took users to

0.821

-0.372
Programming Experience =

O.O + Structured Programming

Programming Experience =
None

165Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

develop a full software solution to solve the set problem. The focus was on
ascertaining whether it took technical users less time to develop an EUD solution than
end users without any programming expertise whatsoever.

The mean development time using EUD was 8.39 minutes: it took end users and
technical users on average 8.32 and 8.46 minutes, respectively.

According to an ANOVA (analysis of variance) study, it does not take end users
any longer to develop their solution than technical users. A one-way ANOVA
between two population samples of similar size differentiated by a qualitative variable
(programming experience) can analyse whether the difference in a quantitative
variable (in this case, development time) is attributable to the qualitative variable that
differs in the two samples, In this case, the results show that development time
appears to be independent of user programming experience. For the comprehensive
study, see Table 13 in [Lizcano, 11b].

To confirm these results, we set a series of six standard problems (see [Lizcano,
11d]), which could be solved using three to five different types of services, data or
heterogeneous resources. After asking the technical users to solve these problems
with and without the end-user composition model, the statistically significant results
indicated that the model takes at least 100 times less time than is required for
traditional development, provided that the necessary resources are packaged and
consistently aligned with the end-user composition model (Figure 9). Additionally,
the model manages to simplify the process and, most importantly, agglutinate
programmers in much shorter and focused development time spans than any of the
programming techniques.

The graph shows that the use of the end-user composition model empowers all
users (technical or otherwise) to complete the development in about eight minutes,
whereas traditional programming is only an option for technical users, whom it takes
1220 minutes to solve the set problem. These results suggest that it took technical
users roughly half a working week to program their own components and interfaces.
The results of this study with and without EUD are not directly comparable using
strict measurement methods, because it took several working days to solve the set
problem without EUD, including break times, brainstorming sessions and possible
comments and synergies by and between the subject and other individuals. In any
case, although these data are problem dependent, the saving in time and effort is
notable in all cases. Note also that there are very large variations in development time
without EUD, ranging from 1100 to over 1600 minutes (Figure 9) for the proposed
problem. This suggests that the traditional programming puts user ability, intellect and
initiative more to the test, and whether or not the user is inspired by the particular
problem can lead to variations of up to 500 minutes in development time (more than
an eight-hour working day). However, the end-user composition model reduces the
development time span enormously, and any user (even non-programmers) can finish
the solution within a time range differing by only 15 minutes (Figure 9) at most
(between the maximum and minimum development time observed in the study using
the end-user composition model).

166 Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

Figure 9: Development time with and without EUD

4.3 Discussion

The results obtained with respect to RQ1 show that the end-user composition model
meets end users’ needs. These users will have access to the option of building their
own solutions to meet the problems that they encounter in their routine knowledge
work, without having to have programming expertise. To do this, it is necessary to
provide users with catalogues fed with end-user components, as well as frameworks
for accessing these catalogues and implementing the end-user composition model.

A relevant result was that the end-user composition model is better suited to the
cognitive model of programming illiterate users than to people used to programming,
which, as far as we know, is not the case with other existing composition models.
This suggests that the steps of the scientific method applied to build the composition
model correctly deduced what elements end users envisage using and what
components they understand in order to transform an imagined solution based on their
expertise into real software.

This model also achieves comparable results among both young and older users,
men and women and people with different educational attainment and jobs. This is a
sound enough empirical basis to claim that the approach helps users of all types to
build their own low-cost solutions without having to resort to off-the-shelf software
(which, being general-purpose, is not tailored to their changing and complex
problems) or to pay out large sums of money for ad-hoc software built by traditional
software engineers.

The results for RQ2 show that the end-user composition model uses components
and a development model that is equally accessible for all users and requires similar
effort irrespective of programming expertise.

The end-user composition model offers end users a solution for developing, testing
and debugging, and using software that would be out of the question with traditional
paradigms. Additionally, programmers will be able to build lightweight developments
more effectively, quickly and cheaply thanks to the end-user composition model,
developing the solution in one hundredth of the development time that it would take
without prefabricated user-centred components. For these premises to be true,

167Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

however, software providers have to populate the collaborative catalogues
underpinning the end-user composition model.

It also has another benefit for these users: thanks to component simplicity they will
be able to recover new resources and services not previously adapted to the model,
thereby solving problems based on partial EUD solutions without having to tackle the
whole problem traditionally from scratch and also extending the end-user components
available to the other users.

As the number of model users grows, the number of components, partial and full
solutions should also increase, thereby potentially attracting more and more users. In
face of spiralling component use, software providers should, likewise, set about
wrapping and publishing services as end-user components, thereby leading to an ideal
ecosystem for getting millions of end users from all over the world to develop useful
and effective solutions.

The complete statistical study, including the original survey, a description of
components used in the experiment, how surveyed users manage their composition
process, an evaluation of solutions quality (robustness and security) and so on, is
reported in [Lizcano, 11b].

In addition, the framework that we employed to run the study is available at
[EzWeb Demo, 11] and [FAST Demo, 11] and can be exploited after registration.
This framework and the proposed end-user composition model are now being used by
Spanish public administrations to promote new digital spaces for citizen interaction.
Saragossa Town Council (see [Tejo-Alonso, 11]) is using the end-user composition
model and its software components to empower its citizens to compose their own
software solutions to complete bureaucratic formalities, access citizens’ services,
report breakdowns or incidents on public thoroughfares, etc.

5 Conclusions and Future Work

Large companies like Amazon, Google, Yahoo!, IBM, HP, Sun Microsystems, SAP,
Apple and so on have realized that their future on the Internet hinges on adopting a
series of basic business principles, such as offering SaaS, ensuring that these services
run efficiently in the cloud and can also be used straightforwardly, naturally and
simply by the Long Tail.

For users to be able to build their own software solutions based on such services,
however, they need to be tailored to their programming experience. In this paper, we
have proposed an open component model showing how visual and reusable building
blocks can be used to easily create and efficiently run composite applications. We
also propose a development model enabling end users to exploit their unique expertise
to build applications that support their routine work in an open innovative creation
process.

This philosophy provides assistance for millions of non-professional
programmers to use repositories as a sandbox for finding, remixing, hacking and even
exploiting services, resources and wrapped data feeds to thus compose solutions and
end user developments. The use of this composition model would thus further expand
the target audience capable of exploiting the ecosystem of user-centred services that

168 Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

many companies are producing, clarifying the real options that end users are going to
have when they use EUD tools to create their applications. Our proposal also
improves the intelligibility of the end-user development process, serving as guidance
for users to develop their solutions.

This could lead to a shift in how software is developed to support knowledge
workers, which, paraphrasing [Raymond, 99], would open the doors of the cathedrals
of traditional software and SOA-type architecture engineering, letting in the everyday
hustle and bustle of end users working in a hierarchyless and barrier-free bazaar.

And the support for this community of knowledge workers to cooperate and
exchange solutions and expertise is a catalogue where both software providers and
users of all types and programming abilities give free rein to their collective
intelligence and innovativeness. This way, resources and components can be used in
ways that their creators would never even have imagined, and individual end users
will find more and more parts that fit their problem-solving approach and devise their
own particular and changing solution as the best way of getting their job done. The
statistical study of the end-user composition model suggests that a properly fed
catalogue will achieve sufficient network externality for end users and programmers
to gain enormous benefits from the EUD approach.

But, is it possible to incentivize users, groups and providers to publish their
creations and spend time populating the catalogue? If users and providers find the
catalogue to be useful and the foundations for compensating the reputation and hard
work of anyone publishing in such repositories are properly laid, the gift culture will
assure that users and providers go about homesteading the noosphere [Raymond, 00].

With this catalogue, end users will be able to create solutions to their everyday
problems, giving up the tedious practices of manually establishing the data flow
between applications, Web pages, calls to resources, etc. Also, small- and medium-
sized enterprises, which do not have the funds to commit major software development
investments, will gain access to tools for developing ad hoc solutions tailored to their
problems. And large corporations will be able to publish some of their products and
business process management applications for users, whether they are company
customers or employees, to exploit, adapt and parameterize to their needs, setting up a
feedback cycle that would be unthinkable in traditional software development
processes.

Future work will concentrate on the development of a formalism that describes
both the syntax and semantics of our composition languages. This formalism could be
used to verify and validate instant applications, automatically guaranteeing that they
meet a set threshold of functionality, reliability, performance, security and clarity.

Also, we are working on the definition of a taxonomy of building blocks. Our
goal is to find a set of common components and resources present in the actual EUD
solutions. This set would be a great seed for building the aforementioned catalogue
that could be exploited to tailor any resource to any requirements through reuse and
connection.

Acknowledgements

We would like to thank the experiment participants, who although they remain
anonymous, played a fundamental role in this study.

169Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

References

[Anderson, 06] Anderson, C.: The Long Tail: Why the Future of Business Is Selling Less of
More, J. Prod. Innovat. Manag., vol. 24, 2006, pp. 274–276.

[Blackwell, 99] Blackwell, A. and Green, T. R. G.: Investment of Attention as an Analytic
Approach to Cognitive Dimensions, in Collected Papers of the 11th Annu. Workshop
Psychology of Programming Interest Group (PPIG-11), T. R. G. Green, R. H. Abdullah & P.
Brna, Eds. , 1999, Leeds, UK. pp. 24-35.

[Boehm, 01] Boehm, B. and Basili, V.R.: Software Defect Reduction Top 10 List, Computer,
vol. 34, no. 1, pp. 135-137, Jan. 2001.

[Brandt, 09]Brandt, J. P., Guo, J., Lewenstein, J., Dontcheva, M., Klemmer, S. R.:
Opportunistic Programming: Writing Code to Prototype, Ideate, and Discover, IEEE Software,
pp. 18-24, Sept./Oct., 2009.

[Burnett, 01] Burnett, M., Atwood, J., Walpole Djang, R., Reichwein, J., Gottfried, H. and
Yang, S.: Forms/3: A first-order visual language to explore the boundaries of the spreadsheet
paradigm, J. Funct. Program., vol. 11, no. 2, pp. 155–206, March, 2001.

[Chengchun, 05] Chengchun, S., Haiyan, Y., Lijuan, X., Haozhi, L. and Zhiwei, X.: Towards
an End-User Programming Environment for the Grid, in Grid and Cooperative Computing -
GCC 2005, LNCS, Berlin/Heidelberg: Springer, 2005.

[Chin, 06] Chin, J.S., Callaghan, V., Clarke, G.: An End-User Programming Paradigm for
Pervasive Computing Applications, 2006 ACS/IEEE Int. Conf. Pervasive Services, 2006,
pp.325-328.

[Chrome Web Store, 11] Google Chrome Web Store. [Online]. Available:

http://www.google.com/chrome/intl/en/more/webstore.html. Last access: 29 November 2011.

[Cook, 97] Cook, C., Burnett, M. and Boom, D.: A Bug’s Eye View of Immediate Visual
Feedback in Direct-Manipulation Programming Systems, Proc. 7th Workshop on Empirical
Studies of Programmers, Oct. 1997, Alexandria, Virginia, USA. pp. 20-41.

[Cronbach, 77]Cronbach, L.J., Regosa, D.R., Folden, R.E. and Price, G.G.: Analysis of
covariance in nonrandomized experiments: parameters affecting bias. In Stanford Evaluation
Consortium (occasional paper). 1977, pp. 732

[Curtis, 88] Curtis, B., Krasner, H., and Iscoe, N.: A Field Study of the Software Design
Process for Large Systems, Commun. ACM, vol. 31, no. 11, pp. 1268–1287, 1988

[Davenport, 05] Davenport, T.H.: Thinking for a living: How to get better performance and
results from knowledge workers, Boston, MA: Harvard Business Press, 2005.

[Erwig, 09] Erwig, M.: Software Engineering for Spreadsheets, IEEE Software, vol.26, no.5,
pp.25-30, Sept./Oct. 2009.

[EzWeb Catalogue, 11] EzWeb Catalogue Video. [Online]. Available:

http://ezweb.tid.es/ezweb/videos/catalogo/catalogo.htm. Last access: 29 November 2011.

[EzWeb Demo, 11] EzWeb Demo. [Online]. Available: http://demo.ezweb.morfeo-project.org/.
Last access: 29 November 2011.

[EzWeb, 11] Morfeo EzWeb Project. (2011). [Online]. Available: http://ezweb.morfeo-
project.org/lng/en. Last access: 29 November 2011.

170 Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

[FAST Demo, 11] FAST Demo. [Online]. Available: http://demo.fast.morfeo-project.org/.
Last access: 29 November 2011.

[FAST Manual1, 11] FAST GVS Manual – Part 1. [Online]. Available:

http://www.youtube.com/watch?v=qFt2LBlxkwU. Last access: 29 November 2011.

[FAST Manual2, 11] FAST GVS Manual – Part 2. [Online]. Available:

http://www.youtube.com/watch?v=dpoRhnF8_1A. Last access: 29 November 2011.

[FAST Survey, 10] FAST Consortium, Enterprise Mashups: Survey gathering real
problem statements, 2010. [Online]. Available:
http://sites.google.com/site/fastonlinecontest. Last access: 29 November 2011.

[FAST, 11] Morfeo FAST FP7 Project. (2011). [Online]. Available: http://fast-
fp7project.morfeo-project.org/lng/en. Last access: 29 November 2011.

[Fischer, 09] Fischer, G., Nakakoji, K. and Ye, Y.: Metadesign: Guidelines for Supporting
Domain Experts in Software Development, IEEE Software, vol. 26, no. 5, pp. 37-44, Sept./Oct.
2009.

[Fisher, 06] Fisher, M., Rothermel, G., Brown, D., Cao, M., Cook, C. and Burnett, M.:
Integrating automated test generation into the WYSIWYT spreadsheet testing methodology,
ACM Trans Softw. Eng. Meth., vol. 15, no. 2, April, 2006.

[Floyd, 79] Floyd, R. W.: The paradigms of programming. Commun. ACM, vol. 22, no. 8, pp.
455-460, August, 1979.

[Hilzenrath, 03] Hilzenrath, D.S.: Finding Errors a Plus, Fannie Says; Mortgage Giant Tries to
Soften Effect of $1 Billion in Mistakes, The Washington Post, 31 Oct. 2003. Available:
http://www.highbeam.com/doc/1P2-307866.html. Last access: 29 November 2011.

[Jessen, 78] Jessen, R.J.: Statistical Survey Techniques, New York, NY: John Wiley and Sons,
Inc., 1978.

[Jones, 03] Jones, S.P., Blackwell, A. and Burnett, M.: A user-centred approach to functions in
Excel, Proc.8thACM SIGPLAN Int. Conf. Functional Programming, Sweden, 2003, pp. 165–
176.

[Lehmann, 05] Lehmann, E.L. and Romano, J. P.: Testing Statistical Hypotheses, 3rd ed. New
York, Springer, 2005.

[Lieberman, 06] Lieberman, H., Paternò, F., Klann, M., and Wulf, V.: End-user development:
An Emerging Paradigm, Germany: Kluwer/Springer, pp. 1–8.

[Lizcano, 08] Lizcano, D., Jiménez, M., Soriano, J., Cantera, J. M., Reyes, M and Hierro, J. J.:
Leveraging the upcoming internet of services through an open user service front-end
framework, Towards a Service-based Internet, Proc. ICSOC/ServiceWave 2008 Conf. Berlin,
Germany: Springer Verlag, LNCS, vol. 5377.

[Lizcano, 08b] Lizcano, D., Soriano, J., Reyes, M. and Hierro, J.J.: EzWeb/FAST: Reporting
on a successful mashup-based solution for developing and deploying composite applications in
the upcoming web of services, Proc. 10th Int. Conf. Information Integration and Web-Based
Applications and Services, Austria, 2008, pp. 15–24.

[Lizcano, 09] Lizcano, D., Soriano, J., Reyes, M. and Hierro, J.J.: A user-centric approach for
developing and deploying service front-ends in the future internet of services, Int. J. Web Grid
Serv, 2009.

171Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

[Lizcano, 09b] Lizcano, D., Fernández, R., Ortega, S. and Soriano, J.: Towards a user-centred
composition system for service-based composite applications, Proc. 11th Int. Conf. Information
Integration and Web-Based Applications and Services, Malaysia, 2009, pp. 319–328.

[Lizcano, 11] Lizcano, D., Alonso, F., Soriano, J. and López, G.: End-User Development
Success Factors and their Application to Composite Web Development Environments,
Proceedings of The Sixth International Conference on Systems (ICONS 2011), IEEE Computer
Society Press, 2011. ICONS 2011, St. Maarten, The Netherlands Antilles.

[Lizcano, 11b] Lizcano D.: Statistical Survey of the EUD model, 2011. [Online]. Available:
http://apolo.ls.fi.upm.es/eud (home page) and http://apolo.ls.fi.upm.es/ eud/
eud_paradigm_evaluation.pdf (online pdf document). Last access: 29 November 2011.

[Lizcano, 11c] Lizcano, D.: Description of the development process enacted by surveyed users,
2011. [Online]. Available: http://apolo.ls.fi.upm.es/eud/solution_development_process.pdf.
Last access: 29 November 2011.

[Lizcano, 11d] Lizcano, D.: Description of the problems set to evaluate the EUD paradigm,
2011. [Online]. Available: http://apolo.ls.fi.upm.es/eud/problems_description.pdf Last access:
29 November 2011.

[Myers, 06] Myers, B. A., Ko, A. J. and Burnett, M. M.: Invited research overview: end-user
programming, CHI '06 Extended Abstracts on Human Factors in Computing Systems, ACM,
New York, NY, 2006, pp. 75-80.

[OMG, 06] Object Management Group Inc.: Meta object facility (MOF) core specification.,
MG Modeling and Metadata Specification, USA, 2006.

[Panko, 95] Panko, R.: Finding Spreadsheet Errors: Most Spreadsheet Errors Have Design
Flaws that May Lead to Long-Term Miscalculation, Information Week, p. 100, May 1995.
Available: http://business.highbeam.com/137376/article-1G1-16904813/finding-spreadsheet-
errors-most-spreadsheet-models. Last access: 29 November 2011.

[ProgrammableWeb, 11] Programmable Web [Online]. Available:
http://www.ProgrammableWeb.com. Last access: 29 November 2011.

[Raymond, 99] Raymond, E.S.: The Cathedral and the Bazaar, editor T. O'Reilly, O'Reilly and
Associates, Inc. Sebastopol, CA, USA.

[Raymond, 00] Raymond, E.S.: Homesteading the Noosphere, Essay with Copyright Eric S.
Raymond. Available: http://catb.org/~esr/writings/homesteading/homesteading. Last access: 29
November 2011.

[Riecken, 94] Riecken, D.: VTP: an end-user programming paradigm based on tool-based
language constructs, in IEEE Int. Conf. Sys., Man, and Cybern., vol.3, 2-5, pp.2498-2504.

[Robertson, 03] Robertson, G.: Officials Red-Faced by $24m Gaffe: Error in Contract Bid Hits
Bottom Line of TransAlta Corp., Ottawa Citizen, 5 June 2003.

[Ruthruff, 06] Ruthruff, J. R., Burnett, M., Rothermel, G.: Interactive Fault Localization
Techniques in a Spreadsheet Environment, IEEE Trans. Software Eng., pp. 213-239, April,
2006

[Scaffidi, 05] Scaffidi, C., Shaw, M., and Myers, B.: Estimating the Numbers of End Users and
End User Programmers, Proc. 2005 IEEE Symp. Visual Languages and Human-Centric
Computing, 2005, Dallas, TX, USA. pp. 207-214.

172 Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

[Schroth, 07] Schroth, C. and Christ, O.: Brave new web: Emerging design principles and
technologies as enablers of a global SOA. Proc. IEEE Int. Conf. on Services Computing, Los
Alamitos, CA, 2007, pp. 597–604.

[Schroth, 07b] Schroth, C. and Janner, T.: Web 2.0 and SOA: Converging concepts enabling
the internet of services, IT Prof., vol. 9, no. 3, pp. 36–41, 2007.

[Sobek, 05] Sobek. R.: Official mof specification from omg. Object Management Group, Inc.,
USA, 2005

[Soriano, 07] Soriano, J., Lizcano, D., Cañas, M.Á., Reyes, M. and Hierro, J.J.: Fostering
innovation in a mashup-oriented enterprise 2.0 collaboration environment, System and
Information Science Notes, vol. 1, no. 1, pp. 62-69 and SIWN Conf. Adaptive Business
Systems, ICABS2007, Chengdu, China.

[Tejo-Alonso, 11] Tejo-Alonso, C., Fernández, S., Berrueta, D., Polo, L., Fernández, M. J. and
Morlán, V.: eZaragoza, a tourist promotional mashup. [Online]. Available:
http://idi.fundacionctic.org/eZaragoza/ezaragoza.pdf Last access: 29 November 2011.

[Wu, 04] Wu, J.-H., Chen, Y.-C. and Lin, L.-M.: Empirical evaluation of the revised end user
computing acceptance model, Comput. Hum. Behav., vol. 23, no. 1, 2004. pp. 162 –174.

173Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

Appendix I

The set problem is to be solved using:
1) The EUD model through the components available in the EzWeb/FAST catalogues (see

http://ezweb.tid.es/ezweb/videos/catalogo/catalogo.htm), publishing the final solution
(see http://ezweb.tid.es/ezweb/videos/publish/publish.htm) and finally sharing this
solution with other end users (see http://ezweb.tid.es/ezweb/videos/share/share.htm)

2) Traditional programming paradigms with which the user is acquainted.
Problem Statement:
As part of a R&D project in which he is participating, a higher education worker has to make

numerous national and international trips. The project has several partners of different types
and origins.

The R&D project has a Web-based general agenda shared by all the project partners. All
face-to-face meetings are posted in this agenda, specifying the meeting date and time, venue
and agenda. The higher education institution employing the user actively cooperates with two
travel agencies, one specialized in high-speed trains and the other in long-distance flights, and
both manage all the travel and accommodation options at the full range of hotels.

1) The user consults the shared R&D project agenda every day to check whether there is
a new meeting that he should attend.

2) If there is to be meeting, he has to check his personal agenda to find out whether he
can attend the meeting and fill in the details of the new meeting, the meeting agenda,
etc.

3) The user looks up the meeting venue, and searches for it on a map. Then, he accesses
the travel agency services and checks what travel options they offer, as well as price.
Normally he compares the two options and chooses one agency or the other
depending on the travel options, length of stay and price.

4) If the trip is to last longer than a day, the user searches hotels near to the meeting
venue and checks the prices per room and night offered by the travel agencies.

5) The department employing the user has a spreadsheet-based software program that
manages the department-run R&D project budget. It contains spreadsheets that can be
used to check the travel budget currently available for each project and manage new
expenses. It is the user’s job to calculate how much the travel and chosen
accommodation will cost, add this up and check that there is enough money available
for the trip and deduct it from the project budget.

6) Then the user makes the bookings one by one.
7) Finally, the user checks the Internet information about his destination, demographic

characteristics, weather prediction, etc.
The user has many software solutions to tackle this repetitive task (project agenda, personal

agenda, travel agency services, department cash flow program, etc.) but has to access
distributed information, heterogeneous services, etc., separately. The user is programming
illiterate, meaning that he has never thought of the possibility of building a solution that meets
his needs and improves task performance.
This problem requires the use of six resources and/or services.

174 Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

Appendix II

No Item General Topic
Survey
Section

Q7

EzWeb/FAST is a satisfactory means for
creating solutions to meet personal needs when
it is not feasible to develop a traditional
solution due to time and/or budget constraints.

Real expected use of the
EUD model by the
respondent

Q8
It is rewarding to use tools like EzWeb/FAST
and be able to rapidly and simply create
mashups.

Personal realization

Q9
Domain experts, web programmers and service
providers should consider the EUD model as a
design vision to be taken into account.

EUD’s future, real use
and success

Q10
The more people that adopt the EUD model the
easier it will be to find useful design
components and create end-user solutions.

Forecast network
externality of EUD

Q11

The EUD model enormously simplifies the
stages of implementation, testing, debugging
and any modifications to account for changing
requirements of the EUD solution development
process.

EUD vs. traditional
programming

Real
expected use
of the EUD

model

Q12
It was complicated to create a solution to the
stated problem using EzWeb/FAST.

Personal realization

Q13
The design components available in the EUD
model do not meet the needs of real-world
problems

EUD component
abstraction

Q14
The communication mechanism between the
design elements is not suitable for solving the
problems that end users are likely to have.

Pre-/postconditions as an
EUD composition
technique

Q15

The solution created using EzWeb/FAST can
be straightforwardly evaluated in a stepwise
manner to check that it is error free and be able
to create increasingly complex solutions.

EUD solution testability
and maintainability

Q16
Using EzWeb/FAST, a change in the end-user
requirements leads to major rework to tailor the
solution to the new problem.

EUD solution testability
and maintainability

EUD
problem-
solving
validity

Q17
The EzWeb/FAST EUD platform is easy to use
even first time round.

EUD usability

Q18
Most people could learn to use EzWeb/FAST to
develop end-user solutions.

EUD validity for
programming illiterate
users

Q19
I get the feeling that it is not easy to create real-
world solutions using EzWeb/FAST.

EUD usability

Q20
The development model interface and support
built into EzWeb/FAST are too complex for
end users to be able to create solutions.

EUD’s future, real use
and success

Q21
Users need a lot of additional training before
they will be able to use EzWeb/FAST
effectively to develop their own solutions.

Real expected use of the
EUD model by the
respondent

Usability

Q22
It is easy to link several components in the
EzWeb/FAST using pre- and postcondition
mechanisms.

Pre-/postconditions as an
EUD composition
technique

Q23
Useful design components are easy to locate
thanks to EzWeb/FAST catalogues.

EUD component
abstraction

Q24
It is hard to publish new design components as
gadgets for use in composite applications.

Design element
publication and catalogue

Q25
The composite system built did not respond as
expected.

Solution conformity to
requirements using the
EUD model

Q26

It is hard to create a composite solution to a
specific problem using EzWeb/FAST
(considering that the catalogue is well enough
populated with design components).

Forecast network
externality of EUD

Functionality

175Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

Q27

Which of the following do you think is the most
realistic development time ratio considering
two development options for a real problem:
a) implement a solution from scratch and
b) use the EUD model?
1. The EUD model can reduce development

time/workload enormously
2. The EUD model can reduce development

time/workload appreciably
3. The workload for the EUD model and for

programming a solution from scratch is
similar.

4. The EUD model takes more development
time than traditional programming.

5. The EUD model does not always manage
to produce a valid solution to a set
problem, even if the catalogue contains
the necessary components.

EUD vs. traditional
programming

Q28

Using the EUD model and tools like
EzWeb/FAST, any user (no matter how much
programming knowledge they have) can create
their own solution to a particular problem.

Solution conformity to
requirements using the
EUD model

Q29
Users need to know how to program to create
functional and stable solutions using
EzWeb/FAST.

EUD validity for
programming illiterate
users

Q30

Developing and tailoring new design
components for EUD platforms like
EzWeb/FAST will be key occupation of
information technology enterprises in the
future.

Design element
publication and catalogue

Overall
rating

Table 1: Survey for measuring RQ1

176 Lizcano D., Alonso F., Soriano J., Lopez G.: Supporting End-User ...

