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Abstract: This paper presents an architecture which is capable of processing variable
block size motion estimation (VBSME) and which is able to apply pixel precision
reduction techniques in a reconfigurable way. The design has been carried out by using
online arithmetic, which allows to process all motion vectors of a block in just one
iteration. The system has been implemented on FPGA and just requires 7724 slices,
reaching a performance of 55 4CIF frames per second (fps) in full precision and of 72
with 4 bit precision. Results for different search areas 31× 31, 32× 32, and 46× 46 are
presented. Using 4bit precision real time processing for HDTVp is achieved. Thanks to
the reduced cost and high performance, this architecture is perfect for mobile devices.
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1 Introduction

One of the applied techniques to save structural and computational costs re-

garding video compression consists in reducing the precision of pixels. In video

compression in MPEG-4 AVC/H.264, one of the processes with a higher cost is

the Variable Block Size Motion Estimation (VBSME)[Ruiz and Michell 2011].

The cost function which is usually evaluated in hardware processors is Sum of

Absolute Differences (SAD), due to its simplicity. When applied on reduced pre-

cision pixels, the function is called Reduced Bit SAD (RBSAD). The application

of RBSAD techniques in videos whose pixels are represented by 8 bits is justified

due to the fact that the reduction of the precision provokes a very slight loss

of quality: between 0.2 and 1% for a reduction of 2 bits, and between 1% and

2% for 4 bits [He et al. 2000][Agha et al. 2005]. Three popular videos were also

studied in [Baek et al. 1996], Foreman had a loss of quality of 0.18dB for 4 bits

precision, and, with the same precision, Miss America had a loss of quality of

0.77dB.

When an architecture working in RBSAD is implemented, this is usually

non-reconfigurable, as the processing is based on the number of pixels and no

computational saving is achieved by reducing the size of those pixels.

This paper presents an architecture which processes the motion estimation

on the bit plane level, processing in each iteration the corresponding bit. If the

RBSAD mode is activated, a processing saving will be automatically achieved,

entailing an increase on the ratio of frames processed per second. This may also
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Figure 1: Block formats in MPEG-4 AVC/H.264.

reduce the necessary processing to reach real time processing, achieving at the

same time a reduction in the energy consumption of the device, being this latter

a desirable characteristic for processors to be used in mobile devices.

VBSME is characterized by analyzing several possibilities for a 16×16 block,

considering 4 × 4 sub-blocks and all possible combinations for them between

adjacent sub-blocks. Fig. 1 shows all possible sub-blocks. It will be necessary to

process the SAD for each of them.

This paper is organized in the following way: after explaining the foundations

of RBSAD, Section 2 depicts the basics on the search algorithm, on the used

metrics, and on the chosen arithmetic. Section 3 includes a detailed description

of all different components which have been used. Section 4 is aimed at showing

the architecture, as well as explaining the pipeline and showing the timing, both

for the full precision and for a 4 bit reduction. The most important results

are shown in Section 5. Then, Section 6 presents other works related to this

issue, comparing the most significant results in a table. In Section 7, the most

important conclusions are presented.

2 Foundations

2.1 Algorithms for the calculation of the SAD

There are different algorithms for implementing the SAD processing. When de-

veloping a specific processor, Full Search Block Matching Algorithm (FSBMA)
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is commonly chosen for two reasons [Ghanbari 2003]: when processing all pos-

sible cases, it always obtains the optimal value, and the execution flow is reg-

ular. This latter reason allows to take advantage of the data stored in regis-

ters, as there are large overlapping data areas, and thus prevents complex data

control structures which slow down the global processing. In this paper, the

use of other search algorithms, which process a subset of the possible candi-

dates [Chan and Siu 2001][Kim et al. 2002], has been discarded, as the irregular

data flow provokes latencies in the processors to load the data every time a block

is evaluated. The search algorithms on candidate subsets are usually employed

in general purpose processors, which do not have any specific data managers for

a given particular processing.

The most widely used metrics for establishing the best Motion Vector (MV)

is SAD [Pan et al. 1996][Wong et al. 2002]. The block with the lowest SAD is

searched in the adjustment among all possible candidate blocks. The SAD com-

putes the absolute difference for each pixel of the candidate and reference blocks:

SAD =
N∑

j=1

N∑

k=1

|cj,k − rj,k|, (1)

where rj,k and cj,k are the pixels of the reference block and candidate block,

respectively.

2.2 Signed-Digit Representation

This work is based on Signed-Digit Radix-2 (SD) [Avizienis 1961] representa-

tion. Its properties allow to implement the difference operation with a simple

intertwining of the data. It is also an arithmetic which may operate bit by bit

with very basic structures. With this, a very fine grained parallelism is going

to be achieved, and therefore the whole block is to be processed at the same

time. The bit by bit processing, together with the processing of all pixels in

parallel, allows to design a processor which is efficient and reconfigurable for the

RBSAD. The SD consists of a trivalued base of elements: [-1, 0, 1], the system

is redundant and the values are formed from two bits as shown in Table 1:

Online Arithmetic (OLA) [Ercegovac and Lang 2004] is used to carry out the

serial sum. As can be seen later on, using OLA does not entail any additional

cost in the conversion to SD, as it takes place by using the calculation of the

differences. The final conversion when finishing a processing does not entail either

a cost, as what is really interesting for the purposes of this paper is knowing the

optimal vector. Then, the calculated SAD is discarded and it is not necessary to

implement a final conversion from SD to a twos complement.
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Table 1: SD representation and its binary correspondence.

Digit value Digit representation

+ -

+1 01

0 00

0 11

-1 10

3 Components of the architecture

When using the SD representation system and the OLA techniques, the design

of the components is not usual, and it is worth being presented. The different

parts of the SAD processing can be structured as follows:

– Obtaining the differences between the pixels: dj,k = cj,k − rj,k

– Establishing the absolute value for each difference: |dj,k|

– Summing all absolute differences :
∑

|dj,k|

Once a SAD is obtained, it needs to be compared to the lowest SAD value

which has been obtained until that moment. For that purpose, it is necessary to

design comparators for OLA and SD.

3.1 Absolute difference in SD using OLA techniques

A value represented in SD can be interpreted as the difference between two

numbers represented without a sign, so that one of them provides a positive

weight to the value whereas the other adds a negative weight. Thus, the bits of

the pixels can be inserted without having to provide any further processing, for

example: If we take two pixels, say c and r, from the candidate and reference

frames, the absolute difference and the conversion to SD will be represented by

the following equation:

|c − r| = c7r7c6r6c5r5c4r4c3r3c2r2c1r1c0r0 when c ≤ r

|c − r| = r7c7r6c6r5c5r4c4r3c3r2c2r1c1r0c0 when c ≥ r
(2)

The Process Element (PE) which has been used implements the absolute

difference in one only step. For such purpose, it examines the bits of each pixel

in Most Significant Digit (MSD) mode, and directly sends them to the first

stage of the adder tree. Fig. 2 shows the basic PE of the presented architecture.
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Figure 2: PE processing absolute differences.

As can be seen, it just consists of two 2:1 multiplexors, so that the output is

selected depending on a comparator which determines that the generated value

is in absolute value.

The comparator receives the digits of a bit coming from the pixels and closes

a latch which determines the active multiplexor as the compared digits are dif-

ferent. If the compared digits are equal and the latch is not closed, it is irrelevant

which of the two multiplexors is active.

Since the MSD-first mode of computation is being used, the sign detection

of dj,k is performed on-the-fly by checking whether the first non-zero digit of

dj,k is positive (01) or negative (10). The digits of dj,k are received in MSD-

first mode and go directly to the output when they are zero (00 or 11). If the

first non-zero digit which is received is positive (01), this and all the remaining

digits correspond directly with the output. Nevertheless, if the first received

non-zero digit is negative (10), the bits of this and all the remaining digits are

interchanged to obtain the output. In Table 2, the values considered to design the

MSD module shown in Fig. 2 are detailed. ci and ri columns represent possible

combinations for bit i. The column Operation is c < r or c > r when the relation

between c and r is known, otherwise, this field appears in blank. In these cases,

no changes succeed. – is used in impossible combinations.

The signals to interpret it are:

– c: candidate macroblock pixel.

– ci: bit of c.

– r: reference macroblock pixel.
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Table 2: Combinations processing AD

Operation ci ri Ln Gn AD Ln+1 Gn+1

0 0 0 0 00 0 0

0 0 0 1 – – –

0 0 1 0 00 1 0

0 0 1 1 00 1 1

c < r 0 1 0 0 01 1 0

0 1 0 1 – – –

c < r 0 1 1 0 01 1 0

c > r 0 1 1 1 10 1 1

c > r 1 0 0 0 01 1 1

1 0 0 1 – – –

c < r 1 0 1 0 10 1 0

c > r 1 0 1 1 01 1 1

1 1 0 0 11 0 0

1 1 0 1 – – –

1 1 1 0 11 1 0

1 1 1 1 11 1 1

– ri: bit of r.

– NewData: 1 when a new AD will be processed. Otherwise, 0.

– L: Latch. Close to 1 when both digits are different. 0 at the beginning.

– G: Greater. Close to 1 when c > r. 0 at the beginning.

Based on this analysis, the MSD block is designed with a simple state ma-

chine, as can be seen on Fig. 3

3.2 The adder and the adder tree using OLA techniques

When working with OLA techniques, the adder shall sum two numbers in SD

representation, each of them consisting of one SD digit, and consisting each

digit of two bits. Due to this, the OLA basic adder implements the adding

in two stages[Ercegovac and Lang 2004]. In future it might be useful to study

whether it is possible to improve the adder tree using heuristics proposed re-

cently in [Parandeh-Afshar et al. 2011]. Furthermore, it is necessary to take into

account that each SD digit has a negative weight and a positive one. The archi-

tecture of the OLA adder can be seen on Fig.. 4. Two types of OLA adders will

be used, with or without output flip-flops.

269Olivares J.: Reconfigurable VBSME Architecture Using RBSAD



c=r ?

c<r c>r

00
11

01 10

Figure 3: MSD block.

FA

D

R

D

R

FA

D

R

D

R

D

R

A+ A- B+ B-

Z- Z+

FA

D

R

D

R

FA

D

R

A+ A- B+ B-

Z- Z+

Representation

Figure 4: OLA adders.
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Representation
16

Figure 5: Adder tree: 16-OLA adder tree.

From it, an adder tree able to sum 16 absolute differences is developed. This

adder tree is called 16-OLA Adder tree and will be used afterwards, see Fig. 5.

When the processing on the SAD over VBSME is carried out, it is common

in other architectures to need more than one round, as the block is not fully

processed in each iteration [Chen et al. 2006]→[Wei et al. 2008]. This architec-

ture works with a very fine grain, in such a way that parallel processing of N2

pixels of the block may be made, being N = 16. As it is possible to process

the whole block in parallel in just one iteration, it is very simple to calculate

the vectors of all possible sub-blocks in parallel. For this purpose, a first adder

called VBSME-N8, which is characterized by processing the SAD for a sub-block

of 8 × 8 and of all its smaller size sub-blocks, has been designed, and 4 16-OLA

adder tree adder trees are used in it. The VBSME-N8 adder is presented on Fig.

6. As can be seen, it is similar to a common adder tree for of 8 × 8, adding two

more adders in order to obtain the SAD of the 4 × 8 sub-blocks.

Using the adder VBSME-N8 as the base, the global adder used in this archi-

tecture is built. This adder can be seen on Fig. 7 and is called VBSME-N16. It is

built by adding two adders on a common adder tree, just as has happened with

VBSME-N8, so as to obtain the SAD of the 8 × 16 sub-blocks. Each processed

SAD needs to be compared. The design of the OLA comparator is shown in the

following subsection.

The global hardware increment respect to a conventional 16× 16 adder tree

is only ten SD OLA adders. Also 41 registers are used to store the SAD for all
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Figure 6: Adder tree: VBSME-N8.

possible sub-blocks.

3.3 The SD comparator for OLA technology

Differently to what happens in a comparator based on traditional arithmetic,

where, as soon as two different digits working in MSD mode are found, the

highest number of those to be compared is established, when comparing SD

digits, it must be kept in mind that they can have a negative weight. This

can mean that it is not possible to establish such dimension relationship when

comparing two numbers and evaluating the first pair of different digits. The

architecture of the comparator is obtained from the finite state machine shown

on Fig. 8.

The mathematical justification which allows to obtain such state machine is

thoroughly detailed in [Olivares et al. 2006]. Other work based on previous ar-

chitecture [Song and Akoglu 2011], presents early termination for VBSME using

SD arithmetic.
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Figure 8: Finite state machine which is used as the base for the design of the

OLA comparator.

4 RBSAD architecture for VBSME

Once the components have been presented, the architecture is formed from those

components, beginning on a first level for the processing of all absolute differences
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Figure 9: Global architecture of the full system.

of a block, that is to say, N2 = 256 absolute differences in as many PE. On a

second level, VBSME-N16 structure can be found, which includes the adder tree

and which will have the 41 comparators for all calculated vectors integrated. This

is presented on Fig. 9.

4.1 Analysis of the segmentation

The analysis takes place according to the different segments of the architecture.

The first segment is used for the processing of the absolute differences, being the

following ones used for the adder tree. A last segment has to be added for the

comparator.

Table 3 presents the timing for full precision, whereas Table 4 shows the tim-

ing for reduced precision to 4 bits per pixel. As can be seen, for full precision 28

clock cycles are necessary to compare all the bits of the 16×16 SAD, whereas for

the 4 bit precision case, it is reduced to 24 clock cycles. However, this parameter

is not very relevant, as the timing depends indeed on the number of bits per

pixel and on a series of zeros which need to be inserted in the adder tree for

a correct adding, corresponding the number of zeros with the number of levels

on the adder tree: log2N
2. Tables 3 and 4 are to be interpreted in the following

way: column AD shows each digit on which the AD has been processed, column

S(4×4) is shown when every digit corresponding to the SAD for a 4×4 block is

obtained. The following columns need to be interpreted in the same way, each of

them specifying the clock cycle when the result for the SAD of the correspond-

ing sub-block is obtained. The last column, Comp, shows in which clock cycle,

the result of the comparison with the best SAD for each of the sub-blocks is

obtained.

log2N
2 segments are used in the adder tree, represented on columns S(i),

and a final segment is needed for the last comparator. Sub-block comparisons
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Table 3: Timing: Full precision

Add

Clock AD 4x4 4x8 8x8 8x16 16x16 Comp

cycle 8x4 16x8

1 d7

2 d6

3 d5

4 d4 d11

5 d3 d10 C4x4

6 d2 d9 d12

7 d1 d8 d11 C4x8-8x4

8 d0 d7 d10 d13

9 0 d6 d9 d12 C8x8

10 0 d5 d8 d11 d14

11 0 d4 d7 d10 d13 C8x16-16x8

12 0 d3 d6 d9 d12 d15

13 0 d2 d5 d8 d11 d14 C16x16

14 0 d1 d4 d7 d10 d13 d14 Next

15 0 d0 d3 d6 d9 d12 d13 MB

16 0 0 d2 d5 d8 d11 d12 begins

17 d7 d0 d1 d4 d7 d10 d11

18 d6 0 d0 d3 d6 d9 d10

19 ... 0 0 d2 d5 d8 d9

20 d11 0 d1 d4 d7 d8

21 d10 0 d0 d3 d6 d7

22 ... d12 0 d2 d5 d6

23 d11 0 d1 d4 d5

24 ... d13 d0 d3 d4

25 d12 0 d2 d3

26 ... d14 d1 d2 Current

27 d13 d0 d1 MB

28 ... d15 d0 ends

29 d14 d15

are shown on column Comp. The first digit of all 4 × 4 SAD sub-blocks can

be compared starting after clock cycle 4; all 4 × 8 and 8 × 4 SAD sub-blocks

comparisons start after clock cycle 6; 8× 8 sub-blocks comparisons start after 8;

16×8 and 8×16 start after 10; and, the final 16×16 comparison starts after 12.

All comparisons are finished at clock cycle 28 but a new macroblock starts its
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Table 4: Timing: 4bit precision

Add

Clock AD 4x4 4x8 8x8 8x16 16x16 Comp

cycle 8x4 16x8

1 d7

2 d6

3 d5

4 d4 d11

5 0 d10 C4x4

6 0 d9 d12

7 0 d8 d11 C4x8-8x4

8 0 d7 d10 d13

9 0 d6 d9 d12 C8x8

10 0 d5 d8 d11 d14 Next

11 0 d4 d7 d10 d13 C8x16-16x8 MB

12 0 0 d6 d9 d12 d15 begins

13 d7 0 d5 d8 d11 d14 C16x16

14 d6 0 d4 d7 d10 d13 d14

15 ... 0 0 d6 d9 d12 d13

16 d11 0 d5 d8 d11 d12

17 d10 0 d4 d7 d10 d11

18 ... d12 0 d6 d9 d10

19 d11 0 d5 d8 d9

20 ... d13 d4 d7 d8

21 d12 0 d6 d7

22 ... d14 d5 d6 Current

23 d13 d4 d5 MB

24 ... d15 d4 ends

25 d14 d15

processing at clock cycle 17 for N = 16 thanks to the pipeline, which is shown

in Table. 3.

In Table 4 the timing for 4 bit precision is shown. The first digit of all SAD

sub-blocks can be compared starting at same clock cycle of full precision. 4 clock

cycles are saved to start the next block.

The analysis of the pipeline is the following, 2log2N + 2 clock cycles are

required to process the most significant bit of each pixel. In full 8 bit represen-

tation, another 7 clock cycles must be added for the rest of bits, which means a

total of 2log2N +9 necessary clock cycles for fully completing a block. To process
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with reduced precision, it is necessary to subtract from such formula the number

of bits which we wish to reduce, and which we will call RB, being then the final

formula as follows:

2log2N + 9 − RB clock cycles per block (3)

5 Results

5.1 Hardware implementation

FPGAs are useful in video coding tasks due to high-performance and paral-

lel processing [Torabi and Vafaei 2012]. The architecture has been modeled in

VHDL, has been compiled using ISE 9.2, and has been implemented in a Vir-

tex5 series XC5VLX50 FPGA, included in a Xilinx Virtex-5 LXT PCI Express

Development Kit. ISE frequency was 380.1 MHz, since this board includes a 100

MHz oscillator, 380 MHz clock signal was generated using Digital Frequency

Synthesis (DFS), multiplying by 19/5.

The results are presented in Table 5 for the architecture and for the global

system, featuring the data managers:

Table 5: Results

Architecture Slices 2,899

LUTs 2,345

Global System Slices 7,724

LUTs 3,556

Frequency 380.1 MHz

The performance of the developed system is presented depending on the

number of frames per second (fps) which the architecture is able to process for

a video format 4CIF, see Table 6. The architecture and the data managers have

been developed to work with a search window of 32 × 32. The performance for

a window of 31× 31 and of 46× 46 is also shown, so as to compare other works.

The maximum clock frequency is 380.1MHz. To work on real-time process-

ing of 4CIF video format at 30 frames per second (fps), a clock frequency of

233.47MHz is required. Using full precision a maximum throughput of 55.14 is

obtained for a search window of 31 × 31, using 4bit precision this throughput

increases up 72.10 fps.
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Table 6: Throughput

Search window: 32 × 32 31 × 31 46 × 46

Precision 4CIF fps 4CIF fps 4CIF fps

8 48.85 55.14 14.69

7 51.90 58.58 15.60

6 55.36 62.49 16.65

5 59.32 66.95 17.84

4 63.88 72.10 19.21

Table 7: PSNR average drop using RBSAD

Sub-block size

Precision 16×16 8×8 4×4

NTB=2 0.03% 0.10% 0.19%

NTB=4 0.19% 1.54% 6.42%

NTB=6 3.84% 13.09% 29.64%

With HDTVp 1280 × 720 format, a throughput of 24.26 fps is obtained.

Using 4bit precision this value is improved to 31.73 fps, real time processing for

HDTVp is achieved.

Besides, the design for obtaining the equivalent cost of a VLSI circuit has been

compiled, obtaining a cost of 54Kg for a technology of 0.13µm. This architecture

can be useful for mobile devices.

5.2 PSNR evaluation

The PSNR drop in function of the NTB is presented in Table 7 for several sub-

block sizes, these average values were obtained with Foreman, Miss America, and

Table Tennis sequences. Foreman PSNR is also analyzed in [Chen et al. 2008].

For a 16 × 16 block, the PSNR drops less than 0.2% for 2 and 4 truncated bits,

which means that the truncated pixel is more likely to have the same motion

vector as the untruncated pixel. However, for the 4×4 block size, and NTB = 4,

the PSNR drops 6.4%. This is because there are more matched candidates using

a truncated pixel for the 4 × 4 sub-block, which could lead to incorrect motion

vectors.

Using smaller block sizes, the number of pixels involved during motion pre-

diction is reduced. Due to the truncation error, there is a tendency for smaller
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Table 8: Comparison of results

Ribeiro’07 Yap’03 Yap’04 Sayed’08 Song’06 This work This work

full prec. 4bit prec.

# PE 8 16 16 31 16 256 256

Search 32 × 32 31 × 31 31 × 31 46 × 46 32 × 32 31 × 31 31 × 31

window

CC/MB - 4496 4096 - 4096 4352 3328

4CIF 12 13 45 20 40.7 55.1 72.1

(fps) estimated

Table 9: VLSI Technological results

Yap’03 Yap’04 Sayed’08 Song’06 This work

Gate count 108 61 175 67.7 54

(Kgates)

Frequency 100 294 187.7 266 -

(MHz)

Technology 0.13 0.13 0.13 0.18 0.13

(µm)

Table 10: FPGA Technological results

Ribeiro’07 Sayed’08 This work

Slices 4730 7724 7724

LUTs 22010 3556 4125

Freq. (MHz) 323 380.1 266.4

FPGA Virtex 4 Virtex 4 Virtex 5 Virtex 4

blocks to yield matched candidates, which could lead to the wrong motion vec-

tor. Thus, it could assert that truncating pixels using smaller blocks results in

poor prediction [Bahari et al. 2009].
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6 Other works

This section presents other recent works in order to evaluate and compare the

designed architecture. The results are shown in Table 8,9,10, so they can be

easily compared.

Table 8 offers data on the architecture and performance, where CC/MB is

Clock Cycles/Macroblock. Table 9 is devoted to technological data for the sys-

tems which have been implemented on VLSI. Finally, Table 10 shows the tech-

nological data for the architectures which have been implemented on FPGA.
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6.1 Ribeiro’07

In [Ribeiro and Sousa 2007], a reconfigurable architecture for several search al-

gorithms is presented. The low throughput is not relevant because this archi-

tecture is not optimized to improve the results for FSBMA. However, this ar-

chitecture is interesting to show how other search algorithms work in hardware

processors.

6.2 Yap’03

In [Yap and Mccanny 2003], a 1D architecture is presented, the key aspect is the

shuffling, permutation, and combination of partial SAD values within each PE.

The author claims that this architecture is suitable for devices requiring a small

silicon area. The PE of this architecture is shown in Fig. 10.

As there is another improved architecture presented by the same author

analyzed in subsection 6.3, the comparison will be based on this latter.

6.3 Yap’04

In [Yap and Mccanny 2004], Yap presents a VLSI architecture similar to the one

presented before. The PE has been improved, see Fig. 11, and the architecture

saves 20 latency cycles. It is a curious work, as the structure of the architecture

is very similar to that of subsection 6.2, whereas the PE is more complex and

has a higher hardware cost. However, comparing the results with his previous

work, the author achieves a saving of more than 43% in the hardware cost and

multiplies by 3 the highest work frequency.

If the work presented here in full precision mode is compared with the ar-

chitecture of Yap’04, a better performance is achieved, with an improvement of

more than 20%. In the same way, the cost is reduced in 10%. When RBSAD is

applied, the improvement in performance represents more than 50%.

6.4 Sayed’08

The architecture presented in [Sayed et al. 2008] worked on a search window of

46×46, processing 31 vectors in parallel. Though the performance is just 20 fps,

it is not directly comparable, since it develops a much higher search work than

the other evaluated architectures. The cost of this architecture implemented on

a Virtex4 FPGA is very high.

To compare with this author, column 46 × 46 of Table 6 has been filled in.

For full precision and for 4bit precision the performance obtained multiplies by

2.75 and 3.6 in comparison with the architecture of Sayed, respectively. On the

other hand, the architecture presented in this work saves more than 83% of the
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hardware cost in the comparison in LUTs, whereas the saving in gates has been

estimated in around 70%.

The architecture of Sayed has been shown because, if adapted to a search

of 31 × 31, reducing from 31 to 16 PEs, the hardware cost of the SAD is also

expected to be reduced in almost 50%, and the performance is to increase in a

similar percentage as well, as it will pass from 31 iterations to 16. With these ap-

proximations, the architecture is estimated to reach 40 fps with a cost of around

90 Kg. Also with these estimations our architecture has better performance and

hardware cost.
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6.5 Song’06

Song presents a VLSI architecture which achieves a high performance with an

adjusted hardware cost. It is also a 1D architecture. In full precision mode,

the architecture presented in this paper achieves a higher performance with an

improvement of over 37% for Song. The cost is also reduced in 20%. When RB-

SAD is applied, the improvement in performance increases, with improvements

of more than 75%. In this way, no hardware cost reduction has been estimated,

as the system is reconfigurable and admits different precisions, and therefore the

cost adjusts to the highest precision case.

7 Conclusions

This paper has presented a bidimensional architecture capable of processing the

N2 in parallel thanks to bit level processing instead of full pixel level processing.

An architecture with a really small hardware cost and with a high performance

is achieved, which makes it perfect for mobile devices.

The reduction of the precision of the pixels enables a significant increase of

the performance, up to 31% for a 4 bit reduction. This performance improvement

cannot be achieved in other architectures which are based on the processing on

pixels, as this one does not depend on the number of bits per pixel.

The presented architecture can be compared to the others in full precision

mode. This architecture achieves a higher performance than the rest, as well as a

reduction in cost. These improvements are due to the fact that the architecture

can work in 2D without increasing the cost, because of the work on bit plan

level. The high processing frequency achieved is also due to the fine grain of

the PE. When RBSAD is applied, the improvement in performance increases

significantly over the others.

This architecture, once implemented on FPGA, can reconfigure the precision

with which the system works, depending on a parameter which controls the

counters managing the data refresh and the control system.
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