
MaF: An Ontology Matching Framework

Jorge Martinez-Gil, Ismael Navas-Delgado, and

José F. Aldana-Montes

(Department of Computer Science, University of Málaga

Boulevard Louis Pasteur 35, PC 29071, Málaga, Spain

jorgemar@acm.org, {ismael, jfam}@lcc.uma.es)

Abstract: In this work, we present our experience when developing the Matching
Framework (MaF), a framework for matching ontologies that allows users to configure
their own ontology matching algorithms and it allows developers to perform research
on new complex algorithms. MaF provides numerical results instead of logic results
provided by other kinds of algorithms. The framework can be configured by selecting
the simple algorithms which will be used from a set of 136 basic algorithms, indicat-
ing exactly how many and how these algorithms will be composed and selecting the
thresholds for retrieving the most promising mappings. Output results are provided in
a standard format so that they can be used in many existing tools (evaluators, media-
tors, viewers, and so on) which follow this standard. The main goal of our work is not
to better the existing solutions for ontology matching, but to help research new ways
of combining algorithms in order to meet specific needs. In fact, the system can test
more than 6 · 136! possible combinations of algorithms, but the graphical interface is
designed to simplify the matching process.

Key Words: Ontology Matching; Knowledge Integration; Software Tools

Category: M.1, M.3

1 Introduction

The notion of ontology is important as a form of representing real world facts.

Ontology matching1 is a key aspect of knowledge management [Wen, 2009]; it

allows organizations to model their own knowledge without having to stick to

a specific standard. In fact, there are two good reasons why most organizations

are not interested in working with a standard for modeling their own knowledge:

(a) it is very difficult or expensive for many organizations to reach an agreement

about a common standard, and (b) these standards do not often fit to the specific

needs of the all participants in the standardization process.

Ontology matching is perhaps the best way to solve the problems of het-

erogeneity. There are a lot of techniques for aligning ontologies very accurately

[Noy, 2004], but the complex nature of the problem to be solved makes it dif-

ficult for these techniques to operate satisfactorily for all kinds of data, in all

domains, and as all users expect [Kiefer et al., 2003]. As a result, techniques that

combine existing methods have been proposed as a feasible solution. The goal

1 We call ontology matching to the task of finding correspondences between ontologies
and ontology alignment to the result of this task

Journal of Universal Computer Science, vol. 18, no. 2 (2012), 194-217
submitted: 29/9/10, accepted: 16/12/11, appeared: 28/1/12  J.UCS



of these techniques is to obtain more accurate matching algorithms. The way to

combine these matching algorithms is currently being exhaustively researched.

The reason is that obtaining satisfactory ontology alignments is a key aspect for

such fields as:

– Semantic integration [Bernstein and Melnik, 2004]. This is the process of

combining metadata residing in different sources and providing the user with

a unified view of these data. This kind of integration should be done auto-

matically, because manual integration is not viable, at least not for large

volumes of information.

– Ontology mapping [Ehrig and Sure, 2004]. This is used for querying different

ontologies. An ontology mapping is a function between ontologies. The orig-

inal ontologies are not changed, but the additional mapping axioms describe

how to express concepts, relations, or instances in terms of the second on-

tology. They are stored separately from the ontologies themselves. A typical

use case for mapping is a query in one ontology representation, which is then

rewritten and handed on to another ontology. The answers are then mapped

back again. Whereas alignment merely identifies the relationship between

ontologies, mappings focus on the representation and use of the relations.

– The Web Services industry, where Semantic Web Services (SWS) are dis-

covered and composed [Cabral et al., 2004] in a completely unsupervised

manner. Originally SWS alignment was based on exact string matching of

parameters, but nowadays researchers deal with issues of heterogeneous and

constrained data matching.

– Data Warehouse applications [Fong et al., 2009]. These kinds of applications

are characterized by heterogeneous structural models that are analyzed and

matched either manually or semi-automatically at design time. In such ap-

plications matching is a prerequisite of running the actual system.

– Similarity-based retrieval [Sistla et al., 1997]. Semantic similarity measures

play an important role in the information retrieval field by providing the

means to improve process recall and precision. These kinds of measures are

used in various application domains, ranging from product comparison to

job recruitment.

– Agent communication [Kun et al., 2010]. Current software agents need to

share a common terminology in order to facilitate the data interchange

between them. Using ontologies is a promising technique to facilitate this

process, but there are several problems related to the heterogeneity of the

ontologies used by the agents which make the understanding at semantic

level difficult. Ontology matching can solve this kind of problem.

195Martinez-Gil J., Navas-Delgado I., Aldana-Montes J.F.: MaF: An Ontology ...



All this means that the business and scientific communities are seeking to

develop automatic or semiautomatic techniques to reduce the tedious task of

creating and maintaining the ontology alignments manually. However, the na-

ture of the problem is complex because finding good similarity functions is, data,

context, and sometimes even user-dependent, and needs to be reconsidered every

time new data or a new task is inspected [Kiefer et al., 2003]. Figure 1 shows an

example of this fact; it is an example of alignment between ontologies represent-

ing players from two football teams. This alignment between ontologies could

be true for some cases and for some people, but probably not for all. Therefore,

we need mechanisms to make ontology matching as independent as possible of

data, context and users.

The main contribution of this work is the presentation of a new ontology

matching tool which we have called Matching Framework (MaF), therefore, we

describe detailed accounts of completed software-system projects which can serve

as ’how-to-do-it’ models for future work in the same field. Our approach is based

on distance and similarity methods instead of frameworks based on the definition

of theoretical aspects of matching. These systems are generally accomplished by

considering the underlying Description Logics (DL) on which the ontologies are

founded [Kalfoglou and Schorlemmer, 2003].

The rest of this work is organized as follows: Section 2 describes the State-

of-the-Art related to ontology matching and its associated problems. Section 3

describes the general characteristics for MaF framework. Section 4 shows two

practical examples for MaF, the first example is focused on end users and the

second is focused on algorithm developers. Section 5 describes a case study in

which we solve common cases using the framework. Finally, we discuss the con-

clusions and the possible future improvements for the framework.

2 Problem Statement

An ontology is “a specification of a conceptualization” [Gruber, 1993], i.e. an

abstract representation of the world like a set of objects. In this work, we are

going to use the intuitive notion of ontology as a set of terms with relationships

among them. On the other hand, as stated in [Euzenat and Shvaiko, 2007], the

process of aligning ontologies can be expressed as a function where given a pair

of ontologies, an (optional) input alignment, a set of parameters and a set of

resources, returns an alignment.

Definition 1 (Ontology matching task). Let O be the set of ontologies and

A the set of alignments. An ontology matching task omt : O ×O 7→ A maps two

input ontologies o1, o2 ∈ O to an alignment a ∈ A using a matching function.

196 Martinez-Gil J., Navas-Delgado I., Aldana-Montes J.F.: MaF: An Ontology ...



Figure 1: Example of ontology alignment. In this example we have found semantic

correspondences between two ontologies from two soccer teams. The dotted lines

between classes mean that a kind of semantic correspondence between them

exists

Definition 2 (Ontology matching function). An ontology matching func-

tion omf is a function omf : E × E 7→ R that associates the correspondence of

two entities e1, e2 ∈ E to a score sc ∈ ℜ in the range [0, 1] stating the degree of

confidence for the correspondence between e1 and e2.

A score of 0 stands for complete inequality and 1 for equality of e1 and e2. The

set of mappings are part of an alignment that can be defined formally in the

following form.

Definition 3 (Ontology alignment). An ontology alignment is a set {T, MD}.

T is a set of tuples in the form {(id, µ1, µ2, n, R)}. id is an identifier, µ1 and

µ2 are entities belonging to two different ontologies, R is the semantic correspon-

dence between these entities and n is a real number between 0 and 1 representing

the mathematical probability that R may be true [Euzenat and Shvaiko, 2007].

197Martinez-Gil J., Navas-Delgado I., Aldana-Montes J.F.: MaF: An Ontology ...



The entities that can be related are the concepts, properties, individuals

and, even axioms of the ontologies. On the other hand, MD is metadata (date,

time consumption and so on) related to the matching process for information

purposes and it is only relevant for collecting statistical data like the compu-

tational efficiency of the process. We have focused on concepts, properties and

individuals.

On the other hand, n can represent equivalence, generalization, subsumption,

disjointness and, so on. Without explanation here, it is going to state equivalence

only.

There are a lot of matching functions. Most of them are used to obtain an

ontology alignment. These functions exploit a wide range of information, such

as ontology characteristics (i.e. metadata, element names, data types, and struc-

tural properties), characteristics of individuals, as well as background knowl-

edge from dictionaries, thesauri, even web resources. Most authors tend to cate-

gorize simple matchers in three groups defined by [Rahm and Bernstein, 2001]:

Element-Based matchers, Structure-Based matchers, and Hybrid matchers. The-

se kinds of matchers are described and their representative implementations are

discussed in the next subsection.

Definition 4 (Alignment evaluation). An alignment evaluation ae is a func-

tion ae : A×AR 7→ precision×recall, where precision and recall are real numbers

ranging over the unit interval [0, 1].

Precision states the fraction of retrieved correspondences that are relevant

for a matching task. Recall is the fraction of the relevant mappings that are

obtained successfully in a matching task. In this way, precision is a measure

of exactness and recall a measure of completeness. The problem here is that

techniques can be optimized either to obtain high precision at the cost of the

recall or, alternatively, recall can be optimized at the cost of the precision. For

this reason a measure, called f-measure, is defined as a weighting factor between

precision and recall. In this work, we use the most common configuration which

consists of weighting precision and recall equally.

2.1 Element-Based Matching Algorithms

Element-Based Matching Algorithms are methods that take into account only

textual information about the entities (instead of their relations to other enti-

ties). This textual information can be exploited in many ways: comparing the

identifiers of the entities, their associated comments, the identifiers of their chil-

dren, their associated individuals, and so on. In general, there is a common

agreement for grouping these methods. These are the most notable categories:

198 Martinez-Gil J., Navas-Delgado I., Aldana-Montes J.F.: MaF: An Ontology ...



– Text similarity methods. Text similarity methods are string based techniques

for identifying similar elements [Euzenat and Shvaiko, 2007]. Such a method

may be used to identify identical classes of two ontologies based on their

similar label or description [Stoilos et al., 2005]. This includes global names-

paces, too. In [Navarro, 2001] a survey can be seen.

– Keyword extraction algorithms. This kind of algorithm consists of identifying

keywords that can be used to detect some kind of meaning and therefore to

identify the semantics of a class and its relation to other classes. This is

performed by looking for proper nouns [Vazquez and Swoboda, 2007] or by

analyzing the frequency of common terms [Cilibrasi and Vitanyi, 2007].

– Language-based algorithms. Language-based methods such as removing un-

necessary words (stop-words) or performing text stemming can be used to

handle class or attribute names [Ji et al., 2006]. For example, they can be

used in order to detect that the class “lift” and “elevator” represents the

same object in the real world. This also means considering typical lan-

guage based prefixes or suffixes as well as other text pattern matching tools

[Ierusalimschy, 2009].

– Identification of word relations. This involves the inclusion of linguistic re-

sources such as lexicons and thesauri in order to identify synonyms. It is

also common to use a lexical database such as WordNet [Wordnet, 2009]

to identify relationships between concepts. In recent times, web knowledge

extraction techniques are being used in this field too.

2.2 Structure-Based Matching Algorithms

Structured-Based Matching Algorithms are computational methods that take

into account the structure of the ontology (instead of textual information about

them). These are the most outstanding categories:

– Class inheritance analysis (is-a). This method considers the inheritance be-

tween classes in order to identify “is-a”-relationships. For example, we might

consider two ontologies A and B. Ontology A might contain a “car”, while

B contains “vehicle”. The class inheritance analysis tries to find inheritance

relationships between the concepts of A and B (a “car” -is-a-“vehicle”).

– Structural analysis / Taxonomic structure. The structural analysis identifies

identical classes by looking at their attributes and related classes. The main

idea behind algorithms of this kind is that two classes of two ontologies are

similar or identical if they have the same attributes and the same neighbor

classes.

199Martinez-Gil J., Navas-Delgado I., Aldana-Montes J.F.: MaF: An Ontology ...



– Data interpretation and analysis of key properties. Since instances are often

included, it is possible to identify similar classes by looking at their instances.

If two classes have the same instances, then they will most likely match each

other. In some cases, it might be possible to identify the meaning of an

attribute by looking at an instance. For example, if a string contains “years

old” then it represents an age related attribute.

– Graph-Mapping. This kind of algorithm can be used to identify similar struc-

tures in two ontologies by looking for identical parts [Ziegler, 2006]. Unlike

the structural analysis, the graph based mapping method interprets only

the graphical representation of the ontology structure and looks at paths,

children and leaves.

2.3 Semantic Matching Algorithms

According to Euzenat and Shvaiko [Euzenat and Shvaiko, 2007], semantic match-

ing algorithms handle the input based on its semantic interpretation. It is as-

sumed that if two entities are the same, then they share the same interpretations.

Thus, they are well grounded deductive methods. Most outstanding approaches

are propositional satisfiability and description logics reasoning techniques. The

problem of these techniques is that “pure deductive methods do not perform

very well alone for an essentially inductive task like ontology matching”. Hence

they need a preprocessing phase which provides entities which are declared, for

example, to be equivalent [Ehrig, 2007].

2.4 Contribution to the State-of-the-art

Despite the large number of existing techniques, experience tells us that finding

an appropriate solution is far from being trivial. As we commented earlier, the

heterogeneity and ambiguity of data description makes it unavoidable that opti-

mal mappings for many pairs of entities will be considered as best results by none

of the existing ontology matching algorithms. For this reason, researchers have

introduced the notion of composite matchers which are aggregations of simple

matching algorithms.

The main idea of this kind of matchers is to combine similarity values pre-

dicted by multiple matchers to determine correspondences between ontology

elements. In this way, it is possible to benefit from both the high degree of

precision of some algorithms and at the same time the broader coverage of oth-

ers [Eckert et al., 2009]. Some of the most outstanding proposals following this

paradigm are COMA [Do and Rahm, 2002], COMA++ [Aumueller et al., 2005],

200 Martinez-Gil J., Navas-Delgado I., Aldana-Montes J.F.: MaF: An Ontology ...



FOAM [Ehrig and Sure, 2005], OntoBuilder [Roitman and Gal, 2006] and Ri-

MOM [Li et al., 2009], to name a few. COMA was the first proposal for combin-

ing strategies when matching ontologies and, COMA++ improved on COMA

with a nicer graphical user interface and an extension of the set of matchers. De-

spite these tools are the pioneers, even today, they are still considered the point

of reference in the field because they showed practitioners and researchers the

possibilities of matcher combination. FOAM approach began to give importance

to the heuristic selection of the weights for basic matchers; they proposed using

a sigmoid function to appropriately weight matchers emphasizing good matchers

and de-emphasizing the worst ones. The OntoBuilder introduced the notion of

top-k mappings in order to provide an alternative for a single best matching.

And finally, the RiMOM framework has shown a really good performance in the

past OAEI contests [Caracciolo et al., 2008]. A detailed description of these ap-

proaches is out of the scope of this work. However, these and other approaches

have been reviewed in depth by Euzenat & Shvaiko[Euzenat and Shvaiko, 2007].

To the best of our knowledge, MaF is the system with the largest number of basic

matchers, with the largest number of possible matcher combinations, and along

with COMA [Do and Rahm, 2002] and DIKE [Papoli et al., 2003], one of the

first to be described from a software experience perspective, which is one of the

main challenges addressed by Shvaiko and Euzenat [Shvaiko and Euzenat, 2008].

On the other hand, several tools provide the user with semi-automatic mech-

anisms in order to obtain perfect mappings. Nevertheless we agree with Euzenat

and Shvaiko [Euzenat and Shvaiko, 2007] when they say that “Many applica-

tions require submitting matching results to user scrutiny and control before

using them, but the better the automated part of the task, the easier the con-

trol”. In this way, our approach considers that the output results will be the

input to such tools as correctors, evaluators, mediators, viewers and, so on, as

we show in Section 4. The main goal of MaF is to provide reasonable results

to the users and third party applications, and the objective of this work is to

describe how to do so.

3 MaF Description

The Matching Framework (MaF) is an ontology matching framework that in-

cludes the common features that users may need. MaF uses classic algorithms,

instead of those based on logics algorithms. MaF allows users to aggregate al-

gorithms and combine them in order to operate with the input ontologies and

generate the output alignment. The framework has been designed to accept

OWL (DL, Lite or Full) ontologies as input, while the output will be basically

represented as lists of pairs with a similarity value between 0 and 1 associated,

indicating no probability to represent the same real object for the value 0 and

201Martinez-Gil J., Navas-Delgado I., Aldana-Montes J.F.: MaF: An Ontology ...



Figure 2: Screenshot from the main form. We can see the loaded ontologies in a

taxonomic way in order for users to locate what they are interested in

total probability for the value 1. This output is compliant with the standard for-

mat from the Ontology Alignment Evaluation Initiative (OAEI) [OAEI, 2008].

Figure 2 shows a screenshot from the initial form of MaF where two ontologies

have been renderized in a taxonomic way in order to be presented to the user.

On the other hand, major characteristics for MaF are:

– MaF allows both schema and instance matching. All of the matching algo-

rithms provided can work with concepts, object properties, datatype proper-

ties and individuals. Do not confuse instance matching with matching based

on instances. MaF provides both kinds but the first one consists of the use

of element-based methods to compare ontology instances, and the second

consists of the comparison of concepts using their associated instances.

– MaF allows both element and structure matching. The matching algorithms

can be used not only for aligning the individual elements of the ontology,

but also ontology structures, too. It is possible to combine the two kinds of

algorithms in order to obtain a third kind that is even more powerful and

that we have called a hybrid algorithm.

202 Martinez-Gil J., Navas-Delgado I., Aldana-Montes J.F.: MaF: An Ontology ...



Figure 3: Three-Layer Software Architecture for MaF. In the first layer users can

select basic matchers. Then in the second, users can combine the basic matchers

in order to obtain a complex algorithm. Finally, it is possible to choose the

combination formula and the threshold

– MaF allows both language and restriction matching. The matching algo-

rithms can use an approach based on the language, but they can use an

approach based on constraints such as relationships, too.

– MaF uses background knowledge. The framework can use knowledge from

an external dictionary called WordNet [Wordnet, 2009] in order to find more

complex correspondences.

– Results provided by the framework present a cardinality of 1:1. Thus, each

element of the first input ontology may be aligned with a single element

of the second input ontology. Moreover, output alignments are directional,

thus, the techniques used to make the comparison between items return the

same results regardless of the input order.

3.1 MaF Architecture

MaF has been designed as a framework. A framework is a software structure de-

fined to support other projects and which represents a software architecture that

models the overall relationship between the software components and provides

a working methodology which extends or uses domain applications.

203Martinez-Gil J., Navas-Delgado I., Aldana-Montes J.F.: MaF: An Ontology ...



Figure 3 shows the architecture which consists of a three-layer pyramid that

allows users to develop algorithms for different levels of complexity. By means

of combination techniques, it is possible to climb from the first to a second logic

level, where algorithms are selected according to some predefined criteria. This

selection generates a matcher. The users decide on the criteria used because we

suppose that they will have a good understanding of the problem to be solved and

the ability to choose an appropriate strategy to address it. The next subsections

will discuss in more detail the architecture of our framework. As part of the MaF

kernel, we have designed the following components:

– An Ontology Management System, which is the responsible for reading the

input ontologies and transforming them into an internal model of data rep-

resentation. This management system has been developed by means of the

Jena API [McBride, 2002] which allows the parsing, creation and searching

of OWL models. The model is stored in main memory, so the size of the

ontologies that can be processed using MaF depends largely on the main

memory available in the computer which executes it.

– A Combination Management System, which is a component that manipulates

the alignment processes so that they are easily combinable. Combinations

here are made on the basis of numerical combinations of output values from

the algorithms. This module belongs to the MaF kernel so it is transparent

for the users.

– A Filtering System which is responsible for filtering values. This module

belongs to the kernel of the framework and its goal is to define the value of

the threshold for the output of MaF. It can be easily modified.

3.2 First Layer of the Architecture

MaF implements two kinds of algorithms in the first layer of the architecture:

Definition 5 (Concept Similarity Analysis Algorithm). A Concept Sim-

ilarity Analysis Algorithm is a kind of element-based matching algorithm that

tries to find semantic correspondences between the concepts of the input ontolo-

gies only.

Definition 6 (Role Similarity Analysis Algorithm). A Role Similarity

Analysis Algorithm is a kind of structure-based matching algorithm that tries to

find semantic correspondences between the roles (properties) of the input ontolo-

gies only.

204 Martinez-Gil J., Navas-Delgado I., Aldana-Montes J.F.: MaF: An Ontology ...



In the rest of this work the acronyms CSA2 and RSA2 will be used to name

to the two kinds of algorithms respectively. Both kinds of algorithms are now

explained in more detail.

3.2.1 Concept Similarity Analysis Algorithms (CSA
2)

The CSA2 that we have included are:

– Distance Based Methods: Block Distance, Levenshtein Distance, 3-grams

Distance, Euclidean Distance, Monge Elkan Distance.

– Name Based Methods: Char Frequ. Similarity, Name Similarity, Soundex

Similarity and Substring Similarity.

– WordNet Based Methods: Absolute Distance, Normal Depth, Gloss Over-

lap, Cosynonymy Similarity, Synonymy Similarity, Optimistic Depth, and

Pessimistic Depth.

Distance Based Methods (DBM) and Name Based Methods (NBM) are based

on [Cohen et al., 2003]. WordNet Based Methods (WBM) are new implementa-

tions for algorithms described in [Pedersen et al., 2004]. It should be taken into

account that Optimistic Depth and Pessimistic Depth are not clearly described

algorithms but they are appropriate when you are comparing a concept with

the same notation but different means. For example, when comparing the terms

“bucks” and “dollars”, Optimistic Depth considers that you are comparing the

same term, and Pessimistic Depth considers that you are comparing money with

animals.

3.2.2 Role Similarity Analysis Algorithms (RSA2)

The RSA2 that we have included are:

– Class Methods: Class Depth, Class NumChildren, Class NumLeaves, Class

NumParents, Class Type.

– Object Property Methods: ObjectProperty Depth, ObjectProperty Num-

Children, ObjectProperty NumParents.

– Datatype Property Methods: DatatypeProperty Depth, DatatypeProp-

erty NumChildren, DatatypeProperty NumParents, DatatypeProperty Type.

All of these methods are new implementations from trivial algorithms that

compute the number of entities related to a given one. All the algorithms have

to be used with caution because different entities can share exactly the same

structural configuration.

205Martinez-Gil J., Navas-Delgado I., Aldana-Montes J.F.: MaF: An Ontology ...



3.3 Second Layer of the Architecture

Using algorithms from the first layer does not allow to obtain good results. The

advantage of MaF is that allow to combine algorithms in order to get hybrid

matchers.

Definition 7 (Hybrid Similarity Analysis Algorithm). A Hybrid Similar-

ity Analysis Algorithm is a kind of matching algorithm that combines, at least,

one CSA2 algorithm with one RSA2 algorithm in order to obtain a more com-

plex technique to find correspondences between ontologies.

For this reason, several times, combinations of this kind are called second

level matchers in the literature. From now on, we are going to use the acronym

HSA2 to name this kind of matcher.

Example 2. An example of HSA2 is an algorithm for determining the equiv-

alence of two concepts by comparing the name of their individuals. For exam-

ple, let us to imagine that with have the concept Car in an ontology with the

following individuals: Volvo, Renault, Ford, Toyota, and Opel. We have an-

other ontology with the concept Automobile and the following individuals: Ford,

Audi, Fiat, Volvo, and Toyota. We have 10 individuals and 6 of them overlap,

so we have a probability of 0.6 for the correspondence may be true.

The HSA2 algorithms that we have included in MaF are:

– Hybrid Name Children. This technique is based on the detection of overlap-

ping children’s names from the entities to be compared.

– Hybrid Name Parents. This technique is based on the comparison of the

parent’s names from the entities to be compared.

– Hybrid Name Leaves. This technique is based on the comparison of the names

of the leaves in the branch from the entities to be compared.

– Hybrid Name Instances. This technique is based on the on the detection of

overlapped instance identifiers from the entities to be compared.

– Hybrid Name Average Path. This technique is based on the comparison of

the paths from the entities to be compared.

– Hybrid Name Rank Path. This technique is based on the comparison of the

paths names from the entities to be compared.

– Hybrid Name Datatype Property. This technique is based on the comparison

of the datatype properties from the entities to be compared.

206 Martinez-Gil J., Navas-Delgado I., Aldana-Montes J.F.: MaF: An Ontology ...



– Hybrid Name Class Range. This technique is based on the comparison of the

ranges (TextString, NonNegativeInteger, and so on) from the entities to be

compared.

Each hybrid matcher is a combination of a structural method and element-

based one. For this reason, all textual comparisons can be made using the CSA2

algorithms of the first layer. On the other hand, it should be taken into ac-

count that all of them are new implementations for algorithms proposed in the

past. For example, algorithms equivalent to the Hybrid Name Children and Hy-

brid Name Leaves were described by Do and Rahm [Do and Rahm, 2002]. It is

possible to find a detailed description for all of them in Euzenat and Shvaiko

[Euzenat and Shvaiko, 2007].

3.4 Third Layer of the Architecture

The third layer of the architecture designed can be considered as a complete

ontology alignment tool, which is also the recipient of the results of the matching

algorithms from the lower layers, it must be able to accept instructions leading

to manually adjust optimally the weights associated to the algorithms. To do

that, we have provided two groups of available operations at this level: Algorithm

Combination and Mapping Filtering using thresholds.

3.5 Algorithm Combination

The algorithm combination module allows users to define the way in which the

score for the mappings will be computed. Let m be a mapping, let a1, a2, a3, ..., an

the set of results from algorithms to be combined, then we provide the following

ways to combine algorithms:

– Average mean. This option computes the average from the results obtained

from the selected matching algorithms.

scorem =
1

n
·

n
∑

i=1

ai

– Maximum score. This option computes the maximum value from the results

obtained from the selected matching algorithms.

scorem = max an

– Minimum score. This option computes the minimum value from the results

obtained from the selected matching algorithms.

scorem = min an

207Martinez-Gil J., Navas-Delgado I., Aldana-Montes J.F.: MaF: An Ontology ...



– Minkowski distance. This option allows computing the Minkowski distance

value between the results obtained from algorithms.

scorem = n

√

√

√

√

n
∑

i=1

an

i

– Weighted product. This option allows composing a formula to calculate a

weighted product using partial results from matchers.

scorem =

n
∏

i=1

ai · wi, where

n
∑

i=1

wi = 1

– Weighted sum. This option allows calculating a weighted sum using partial

results from matchers.

scorem =

n
∑

i=1

ai · wi, where

n
∑

i=1

wi = 1

In this way, we have 136 basic matchers than can be aggregated in 136!

different ways in the first and second layer. When the third level is reached,

these 136! combinations can be combined in the 6 different ways that we have

shown above. In fact, there are more possible combination because there are

infinite numerable ways to configure a Minkowski distance, and even to configure

a weighted sum or product. So we have that MaF allows, at least, 6·136! different

matchers.

3.6 Mapping Filtering

The mapping filtering module allows users to select only the most promising

mappings from the set of all possible mappings. In this way, the final alignment

A will be the set of mappings m filtered by a threshold value T :

– Hard threshold. This kind of threshold returns mappings above a specific

value.

A = {m, ∀m ∈ A → m.score ≥ T }

– Delta threshold. This approach uses as threshold the highest similarity value

out of which a particular constant value d is subtracted.

A = {m, ∀m ∈ A → m.score − d ≥ T }

– Proportional threshold. This uses the percentage of the highest similarity

value as the threshold.

A = {m, ∀m ∈ A → m.score ∈ {max
T

m.score}}

208 Martinez-Gil J., Navas-Delgado I., Aldana-Montes J.F.: MaF: An Ontology ...



4 Tool Use

In this section, we are going to show a practical example for aligning ontologies

using MaF. One of the main advantages of MaF is that it provides a built-in

front end so the task of selecting and combining algorithms is not very difficult.

MaF can be used by two types of users; end-users and algorithm developers.

4.1 End-users

We consider that the end-users are those people who only use the front-end to

align ontologies. The way to proceed for this kind of users could be summarized

as follows:

– Load two OWL ontologies to align. These ontologies have to be OWL in any

of its versions (DL, Lite or Full)

– Select the entities (classes, object properties, datatype properties and in-

stances) that they wish to align, as we explained in Section 3.

– See the ontologies they have loaded in a taxonomic form. Figure 2 allows

users to do this.

– Choose the algorithms and combine them. At this point, the users should

choose the basic matching algorithms and the formula to combine them.

– Choose a threshold to show results. After the ontology alignment is done,

the user may choose a threshold that will filter the results achieved in the

ontology alignment, to show only the results that meet this threshold. In

this way, the user can filter the results, rejecting those mappings that are

not of a high enough quality.

– See/Save the output results for the matching process. Once the results have

been obtained, it may be possible to repeat the process of choosing other

ontology matching algorithms, another threshold, or by changing the combi-

nation technique. In this way, the best ontology alignment can be modeled

for the user.

4.2 Algorithm Developers

Algorithm developers are those who use the whole functionality of the frame-

work to develop new matching algorithms. The functional specification for an

algorithm developer is different from the role of an end-user. We have developed

MaF using Eclipse2, so it would not be difficult to extend it. Moreover, in Ta-

ble 1, we show a summary for the initially provided features included in MaF.

2 http://www.eclipse.org

209Martinez-Gil J., Navas-Delgado I., Aldana-Montes J.F.: MaF: An Ontology ...



All provided algorithms, the different kind of combinations and the different

techniques for thresholding are presented.

4.3 Usability of MaF

We have borrowed a methodology from Brooke [Brooke, 1996] in order to test the

usability of our framework, we have asked several undergraduate and graduate

students in the field of Computer Science for working with several ontology

matching frameworks. They have to value with a number several key points

concerning to these frameworks.

In addition to MaF, we have considered three additional ontology matching

frameworks in order to compare them. We have chosen COMA++ (Web Edi-

tion) [Aumueller et al., 2005], Ontobuilder [Roitman and Gal, 2006], and FOAM

[Ehrig and Sure, 2005] for the reasons already advanced previously, and we have

asked to our students for solving the OAEI benchmark using them. We did not

tell the students that MaF is our software tool. Moreover, it should be taken into

account that the students had a good knowledge of databases and ontologies,

but most of them are not experts in the ontology matching field.

From the results of this experiment, we have obtained that COMA++ and

MaF are the tools with the highest degree of usability. For example, it can be

extracted that COMA++ is the system that students would like to use more

frequently, the system which needs less technical support, the most consistent

software tool and the system which needs least previous knowledge to get started

and use it.

However, according to our experiment, MaF is the least complex system,

the easiest system to use, the system with the best integration of the functions,

the system that can be learned the most quickly and the tool which is the less

cumbersome to use. The tests give us evidence of the benefits of using MaF in

matching scenarios and validate the design of our user interface. The results can

not be taken as statistically conclusive, so we will keep working in this regard in

future work.

5 Case Study: Solving a benchmark

We have solved a case study that consists of solving several tests from the OAEI

Benchmark [OAEI, 2008]. This benchmark dataset offers several test cases which

try to measure the quality of proposed methods and tools when solving several

use cases which are common in ontology matching scenarios. It should be taken

into account that we can solve the cases of the benchmark using our understand-

ing of the problem and appropriately selecting the matchers to address it. Our

purpose is not to compete with optimized algorithms, but to show that it is

possible to use our tool for solving common scenarios. Table 2 shows several of

210 Martinez-Gil J., Navas-Delgado I., Aldana-Montes J.F.: MaF: An Ontology ...



Nr Feature Nr Feature

Distance Based Methods Hybrid Comparison Methods

1 Block Distance (a) 33-45 Hybrid Name Children (a-m)

2 Levenshtein Distance (b) 46-58 Hybrid Name Parents (a-m)

3 3-grams Distance (c) 59-71 Hybrid Name Leaves (a-m)

4 Euclidean Distance (d) 72-84 Hybrid Name Instances (a-m)

5 Monge Elkan Distance (e) 85-97 Hybrid Name Av. Path (a-m)

6 Smith Waterman Distance (f) 98-110 Hybrid Name Rank Path (a-m)

7 Jaro Distance (g) 111-123 Hybrid Name Data.Prop. (a-m)

8 Needleman Wunch Distance (h) 124-136 Hybrid Name Class Range (a-m)

9 SWG Distance (i)

Name Based Methods

10 Char Frequency Similarity (j)

11 Soundex Similarity (k)

12 Name Similarity (l)

13 Substring Similarity (m)

WordNet Based Methods Combinations

14 Absolute Distance 1 Average Combination

15 Normal Depth 2 Maximum Combination

16 Gloss Overlap 3 Minimum Combination

17 Cosynonymy Similarity 4 Minkowski Combination

18 Optimistic Depth 5 Weighted Product Combination

19 Synonymy Similarity 6 Weighted Sum Combination

20 Pessimistic Depth

Class Methods

21 Class Depth

22 Class NumChildren

23 Class NumLeaves

24 Class NumParents

25 Class Type

Property Methods Thresholds

26 OProperty Depth 1 Hard Threshold

27 OProperty NumChildren 2 Delta Threshold

28 OProperty NumParents 3 Proportional Threshold

29 DProperty Depth

30 DProperty NumChildren

31 DProperty NumParents

32 DProperty Type

Table 1: List of features (matching algorithms, combinations, and kind of the

thresholds) included in MaF

211Martinez-Gil J., Navas-Delgado I., Aldana-Montes J.F.: MaF: An Ontology ...



Figure 4: Screenshot from the first layer of MaF. CSA2, thus, Distance Based

Methods, Name Based Methods, WordNet Based Methods can be chosen using

this form

the most representative cases of the benchmark dataset [OAEI, 2008], the con-

figuration that we propose and the results that we have obtained. The test has

been performed using the concepts only.

The working mode is as follows: The process begins when the user selects the

two ontologies to be processed. After that, the user has the option of defining

matching algorithms to be used from the first and second layer. In Figure 4,

it is possible to see the screenshot for the selection of algorithms of this kind.

The second layer allows user to choose the hybrid algorithms. In the third layer,

the composition formula and the threshold for filtering the values in the output

results are defined. Finally, the tool performs the matching between the two

ontologies according to these criteria. Figure 5 shows an example of the output

for this step. The format follows a standard format so that it could be useful as

an input for other applications.

212 Martinez-Gil J., Navas-Delgado I., Aldana-Montes J.F.: MaF: An Ontology ...



Test: 101

Description: Comparing an ontology to itself

Solution: Whichever CSA2 is appropriate to do that

Results: Precision 1.00 Recall 1.00 F-Measure 1.00

Explanation: Comparing a object to itself must return 1 (by definition)

Test: 201

Description: Labels are modified and moved arbitrarily

Solution: Very artificial case. We choose Hybrid Name Instances

Results: Precision 0.82 Recall 0.53 F-Measure 0.64

Explanation: It is difficult for MaF to work in no-meaning scenarios

Test: 202

Description: Labels are modified and comments deleted

Solution: We didn’t look for comments in 201.

Results: Same as in 201

Explanation: Recall is low, only classes with individuals can be compared

Test: 203

Description: We have generated some misspellings in the target ontology

Solution: Char Frequency Similarity to detect typos and misspellings

Results: Precision 1.00 Recall 1.00 F-Measure 1.00

Explanation: Typos in short words are difficult to detect: low threshold

Test: 204

Description: Different naming conventions for labels

Solution: Choose the Name Similarity Method.

Results: Precision 1.00 Recall 0.89 F-Measure 0.94

Explanation: Procedure can be changed in csca.normalizationMethods

Test: 205

Description: Labels are replaced by synonyms

Solution: Maximum of 3-Gram, Synonym and Hybrid N. Instances

Results: Precision 0.85 Recall 0.87 F-Measure 0.86

Explanation: WordNet is not perfect. It is a good idea to complement it

Test: 206

Description: Target is translated to another language other than English

Solution: Hybrid N. Inst.(3-Gram) and Soundex

Results: Precision 0.72 Recall 0.72 F-Measure 0.72

Explanation: Very difficult case. We hope to find similar sounds

Test: 301

Description: Bibliography ontologies from BibTeX and MIT

Solution: Maximum of 3-Gram and Hybrid N. Average Path (3-Gram)

Results: Precision 0.65 Recall 0.97 F-Measure 0.78

Explanation: Real problems needs a good heuristic to be solved

Table 2: Case Study for solving part of the OAEI Benchmark using MaF

213Martinez-Gil J., Navas-Delgado I., Aldana-Montes J.F.: MaF: An Ontology ...



Figure 5: Screenshot from the result form of MaF. Results are generated following

a standard format proposed by the OAEI in order to be used by other software

tools and applications

6 Conclusions

In this work, we have presented our experience when designing, developing and,

using MaF, an ontology matching framework that has been designed using a

pyramidal three-layer software architecture for combining basic ontology match-

ing algorithms. The purpose of facilitating the combination of algorithms is to

obtain more accurate and user-dependent ontology alignments. To the best of our

knowledge, the MaF tool provides the largest number of basic ontology matching

algorithms and the biggest number of possible matcher combinations (up to 6

·136! different combinations). The software tool has been described from a user

experience perspective, i.e., we are more interested on the user experience rather

than on optimizing the final results, as most of the other proposals have done in

the past.

214 Martinez-Gil J., Navas-Delgado I., Aldana-Montes J.F.: MaF: An Ontology ...



On the other hand, MaF is a software framework and, therefore, its main goal

is not provide a golden matcher (i.e. an optimal instance of this framework),

but to provide users with the necessary help to create algorithms that meet their

needs. Moreover, programmers can extend the functionality easily. As we have

shown using a case study, most common situations in ontology matching can be

solved, although the quality of the output depends largely on the expertise of

the user and their ability to choose an appropriate combination of matchers to

solve the problem which is being addressed.

As future work, we plan to work mainly on two improvements. The first of

them consists of extending MaF so that we can be sure that does not need human

intervention to perform the ontology matching tasks, thus, MaF will be able to

automatically choose the appropriate matching algorithms and thresholds for

each situation. This is commonly referred to as ontology matching self-tunning

in the literature [Lee et al., 2007]. It is possible to read a preliminary version

for this proposal in [Martinez-Gil et al., 2008]. On the other hand, we aim to

extend MaF with a suitable engineering solution so that it can process very

large ontologies i.e., with thousands of entities, both accurately and efficiently.

Acknowledgements

We wish to thank to the anonymous reviewers for the comments and sugges-

tions which have helped to improve this work. We thank to Lisa Huckfield for

proofreading this manuscript. This work has been funded by Spanish Ministry of

Innovation and Science through: REALIDAD: Efficient Analysis, Management

and Exploitation of Linked Data., Project Code: TIN2011-25840 and by the De-

partment of Innovation, Enterprise and Science from the Regional Government

of Andalucia through: Towards a platform for exploiting and analyzing biological

linked data, Project Code: P11-TIC-7529.

References

[Aumueller et al., 2005] Aumueller D, Do HH, Massmann S, Rahm E. Schema and
ontology matching with COMA++. Proceedings of the SIGMOD Conference, 2005;
906-908.

[Bernstein and Melnik, 2004] Bernstein PA, Melnik S. Meta Data Management. Pro-
ceedings of the International Conference on Data Engineering, 2004; 875.

[Brooke, 1996] Brooke J. Sus: A quick and dirty usability scale. Usability evaluation
in industry 1996; Taylor and Francis.

[Cabral et al., 2004] Cabral L, Domingue J, Motta E, Payne TR, Hakimpour F. Ap-
proaches to Semantic Web Services: an Overview and Comparisons. Proceedings of
the European Semantic Web Symposium, 2004; 225-239.

[Caracciolo et al., 2008] Caracciolo C, Euzenat J, Hollink L, Ichise R, Isaac A, Malais
V, Meilicke C, Pane J, Shvaiko P, Stuckenschmidt H, Svab-Zamazal O, Svatek V.
Results of the Ontology Alignment Evaluation Initiative. Proceedings of the Ontology
Matching Workshop at ISWC, Karlsruhe, Germany, 2008.

215Martinez-Gil J., Navas-Delgado I., Aldana-Montes J.F.: MaF: An Ontology ...



[Cilibrasi and Vitanyi, 2007] Cilibrasi R, Vitanyi PMB. The Google Similarity Dis-
tance. IEEE Trans. Knowl. Data Eng. 2007; 19(3):370-383.

[Cohen et al., 2003] Cohen WW, Ravikumar P, Fienberg SE. A Comparison of String
Distance Metrics for Name-Matching Tasks. Proceedings of IIWeb, 2003; 73-78.

[Do and Rahm, 2002] Do HH, Rahm E. COMA - A System for Flexible Combination
of Schema Matching Approaches. Proceedings of the VLDB Conference, 2002; 610-
621.

[Do et al., 2002] Do HH, Melnik S, Rahm E. Comparison of Schema Matching Evalu-
ations. Proceedings of Web, Web- Services, and Database Systems, Erfurt, Germany,
2002; 221-237.

[Eckert et al., 2009] Eckert K., Meilicke C, Stuckenschmidt H. (2009) Improving On-
tology Matching Using Meta-level Learning. Proceedings of the European Semantic
Web Conference, 2009; 158-172.

[Ehrig and Sure, 2004] Ehrig M, Sure Y. Ontology mapping - an integrated approach.
Proceedings of the European Semantic Web Conference, 2004; 7691.

[Ehrig and Staab, 2004] Ehrig M, Staab S. QOM - Quick Ontology Mapping. Proceed-
ings of the International Semantic Web Conference, 2004; 683-697.

[Ehrig and Sure, 2005] Ehrig M, Sure Y. FOAM - Framework for Ontology Alignment
and Mapping - Results of the Ontology Alignment Evaluation Initiative. Proceedings
of Integrating Ontologies, 2005.

[Ehrig, 2007] Ehrig M. Ontology Alignment: Bridging the Semantic Gap. Springer,
2007.

[Euzenat and Shvaiko, 2007] Euzenat J, Shvaiko P. Ontology Alignment. Springer,
2007.

[Fong et al., 2009] Fong J, Shiu H, Cheung D. A relational-XML data warehouse for
data aggregation with SQL and XQuery. Softw., Pract. Exper. 2009; 38(11):1183-
1213.

[Giunchiglia et al., 2004] Giunchiglia F, Shvaiko P, Yatskevich M. S-Match: an Algo-
rithm and an Implementation of Semantic Matching. Proceedings of the European
Semantic Web Symposium, 2004: 61-75.

[Gruber, 1993] Gruber T. A translation approach to portable ontology specifications.
Knowledge Adquisition 1993; 5(2):199-220.

[Ierusalimschy, 2009] Ierusalimschy R. A text pattern-matching tool based on Parsing
Expression Grammars. Softw., Pract. Exper. 2009; 39(3):221-258.

[Kalfoglou and Schorlemmer, 2003] Kalfoglou Y, Schorlemmer WM. IF-Map: An
Ontology-Mapping Method Based on Information-Flow Theory. J. Data Semantics,
2003; 1:98-127.

[Kiefer et al., 2003] Kiefer C, Bernstein A, Stocker M. (2007) The Fundamentals of
iSPARQL: A Virtual Triple Approach for Similarity-Based Semantic Web Tasks.
Proceedings of the International Semantic Web Conference, 2007; 295-309.

[Kun et al., 2010] Kun Z, Manwu X, Hong Z, Jian X. Agent service matchmaking
algorithm for autonomic element with semantic and QoS constraints. Knowl.-Based
Syst. 2010; 23(2):132-143.

[Ji et al., 2006] Ji Q, Liu W, Qi G, Bell DA. LCS: A Linguistic Combination System
for Ontology Matching. Proceedings of the KSEM, 2006; 176-189.

[Lee et al., 2007] Lee Y, Sayyadian M, Doan A, Rosenthal AS. eTuner: tuning schema
matching software using synthetic scenarios. VLDB J. 2007; 16(1):97-122.

[Levenshtein et al., 1966] Levenshtein V. Binary Codes Capable of Correcting Dele-
tions, Insertions and Reversals. Soviet Physics-Doklady, 1966; 10: 707-710.

[Li et al., 2009] Li J, Tang J, Li Y, Luo Q. (2009) RiMOM: A Dynamic Multistrategy
Ontology Alignment Framework. IEEE Trans. Knowl. Data Eng. 21(8); 1218-1232.

[Martinez-Gil et al., 2008] Martinez-Gil J, Alba E, Aldana-Montes JF. Optimizing On-
tology Alignments by Using Genetic Algorithms. Proceedings of NatuReS, 2008.

[McBride, 2002] McBride B. Jena: A Semantic Web Toolkit. IEEE Internet Computing
2002; 6(6): 55-59.

216 Martinez-Gil J., Navas-Delgado I., Aldana-Montes J.F.: MaF: An Ontology ...



[Navarro, 2001] Navarro G. A guided tour to approximate string matching. ACM Com-
put. Surv. 2001; 33(1):31-88.

[Noy, 2004] Noy N. Semantic Integration: A Survey Of Ontology-Based Approaches.
ACM Sigmod Record, 2004; 33(4):65-70.

[OAEI, 2008] Ontology Evaluation Initiative. http://oaei.ontologymatching.org. Visit
date: 30-oct-2008.

[Papoli et al., 2003] Palopoli L, Terracina G, Ursino D. DIKE: a system supporting the
semi-automatic construction of cooperative information systems from heterogeneous
databases. Softw., Pract. Exper. 2003; 33(9):847-884.

[Pedersen et al., 2004] Pedersen T, Patwardhan D, Michelizzi J. WordNet::Similarity
- Measuring the Relatedness of Concepts. Proceedings of the AAAI conference, 2004;
1024-1025.

[Rahm and Bernstein, 2001] Rahm E, Bernstein P. A survey of approaches to auto-
matic schema matching. VLDB J., 2001; 10(4):334-350.

[Roitman and Gal, 2006] Roitman H, Gal A. OntoBuilder. Fully Automatic Extrac-
tion and Consolidation of Ontologies from Web Sources Using Sequence Semantics.
Proceedings of the EDBT Workshops, 2006; 573-576.

[Shvaiko and Euzenat, 2008] Shvaiko P, Euzenat J. Ten Challenges for Ontology
Matching. Procedings of the OTM Conferences (2), 2008; 1164-1182.

[Sistla et al., 1997] Sistla AP, Yu CT, Venkatasubrahmanian R. Similarity Based Re-
trieval of Videos. Proceedings of the International Conference on Data Engineering
1997; 181-190.

[Stoilos et al., 2005] Stoilos G, Stamou GB, Kollias SD. A String Metric for Ontology
Alignment. Proceedings of the International Semantic Web Conference, 2005; 624-637

[Vazquez and Swoboda, 2007] Vazquez R, Swoboda N. Combining the Semantic Web
with the Web as Background Knowledge for Ontology Mapping. Proceedings of the
OTM Conferences (1), 2007; 814-831.

[Wen, 2009] Wen YF. An effectiveness measurement model for knowledge manage-
ment. Knowl.-Based Syst., 2009; 22(5):363-367 .

[Wordnet, 2009] WordNet. http://wordnet.princeton.edu. Visit date: 11-march-
2009.

[Ziegler, 2006] Ziegler P, Kiefer C, Sturm C, Dittrich KR, Bernstein A. Detecting Sim-
ilarities in Ontologies with the SOQA-SimPack Toolkit. Proceedings of the Extending
Databases Technologies Conference 2006; 59-76.

217Martinez-Gil J., Navas-Delgado I., Aldana-Montes J.F.: MaF: An Ontology ...


