
A Formal Approach for Risk Assessment

in RBAC Systems

Ji Ma

(The Christian Doppler Laboratory for Client-Centric Cloud Computing

Softwarepark 21, 4232 Hagenberg, Austria

j.ma@cdcc.faw.jku.at)

Abstract: Risk assessment and access control are important issues in cloud comput-
ing. In this paper, we propose a formal approach to risk assessment for RBAC Systems,
in which access control decisions are taken after consideration of risk assessment. The
risk assessment method considers partial orderings on objects and actions, which allow
us to effectively capture the notions of importance of objects and criticality of actions
and then to determine the risk of assigning a specific role to a specific user. We in
particular consider the cases of permission assignment and delegation assignment.

Key Words: Risk assessment, access control, RBAC, poset, security classification

Category: H.1.0

1 Introduction

In Role Based Access Control (RBAC) systems, users hold certain roles, and

may or may not be allowed to access the objects requested and take actions on

these objects. For any access request, apart from identifying the user and its

role, the access control system must know: which object is requested and what

action may be applied by the user on the object. [Denning 1976], [Biba 1977],

[Bell and LaPadula 1996], and [Sandhu 1993] proposed latticed-based access con-

trol models to deal with information flows in computer system. In latticed-based

access control models, a subject is only allowed to access an object if the security

level of the subject is higher than or equal to the security level of the object.

Risk assessment is important for RBAC systems. There are many different

approaches of risk management for RBAC system. [Celikel et al. 2007] discussed

managing risks in distributed RBAC systems. [Aziz et al. 2006] discussed recon-

figuring role based access control policies using risk semantics. [Kondo et al. 2008]

discussed extending the RBAC model for large enterprises and quantitative risk

evaluation. [Nissanke and Khayat 2004] discussed risk based security analysis of

permissions in RBAC systems.

Trust is an important issue for access control systems, and it changes dy-

namically. However, there are only few papers that discuss the dynamics of trust

[Ma and Orgun 2006]. [Jonker and Treur 1999] proposed two functions, trust evo-

lution function and trust update function. [Dimmock et al. 2004] discussed how

Journal of Universal Computer Science, vol. 18, no. 17 (2012), 2432-2451
submitted: 16/1/12, accepted: 29/8/12, appeared: 1/9/12 J.UCS

to extend existing access control architectures to incorporate trust-based evalu-

ation and reasoning. [Bhargava and Lilien 2004] proposed an approach enhanc-

ing role-based access control with trust ratings. [Chakraborty and Ray 2006]

proposed an approach integrating trust relationships into the RBAC model.

[Asnar et al. 2007] proposed an approach to assess risk on the basis of trust

relations among actors.

Access control models need to handle many different scenarios in many dif-

ferent systems, where security requirements, contexts and environments can be

highly dynamic. Therefore, systems that rely on large amounts of assumed knowl-

edge or pre-configuration are unnecessary and inflexible. Generic methods and

techniques for handling various access control scenarios are highly desirable. In

our previous work [Ma et al. 2010a, Ma et al. 2010b, Ma et al. 2010c], we have

discussed risk and trust issues for RBAC systems, and proposed a risk assess-

ment method based on partially ordered set, where access permission is defined

as a pair of an action and an object; a role is then defined as a set of permissions.

From these posets, we automatically extract an ordering relation on permission

sets (corresponding to roles). The risk of role assignment is then evaluated. We

also investigate the risk of permission assignment and delegation assignment. In

this paper, we further discuss this method by giving its formal representation,

and then propose a formal approach of risk assessment for RBAC systems, in

which access control decisions are taken after consideration of risk assessment.

The risk assessment method considers partial orderings on objects and actions,

such that we can effectively capture the notions of importance of objects and

criticality of actions and then determine the risk for decision making.

The rest of this paper is organized as follows: Section 2 presents a poset-

based security classification system. Section 3 introduces role based access con-

trol systems. Section 4 discusses risk assessment of RBAC systems based on the

poset-based security classification system. Section 5 discusses the implementa-

tion issues of risk assessment for RBAC systems. Section 6 concludes this paper

and discusses further works.

2 Security Classification

For a given access control system, there is a set of objects: O = {o1, ..., oi}.

Objects are entities that can undergo actions, the operations of objects include:

– Let oi, oj ∈ O, oi + oj is a new object in O, that is, oi + oj = ok, ok ∈ O.

– Let o ∈ O, if o+ is a new object generated by adding something to the object

o, that is, o ⊏ o+. then o+ is a new object in O.

– Let o ∈ O, if o− is a new object generated by removing something from the

object o, that is, o− ⊏ o. then o− is a new object in O.

2433Ma J.: A Formal Approach for Risk Assessment in RBAC Systems

For a given access control system, there is a set of users: U = {u1, ..., ui}.

users are active agents that can perform actions.

Definition 1 (L,≤) is a security classification system, where L is a set of secu-

rity levels, and ≤ is a partial ordering relation defined on L. For any li, lj ∈ L,

li ≤ lj means that lj is a higher security level than li. If li ≤ lj but li 6= lj, that

is li < lj, in this case, li is strictly dominated by lj.

li ≤ lj means that (li, lj) ∈≤. (li, lj) /∈≤ means that li 6≤ lj . For all l ∈ L :

(1) li ≤ li. (Reflexivity)

(2) li ≤ lj and lj ≤ li, then li = lj . (Antisymmetry)

(3) li ≤ lj and lj ≤ lk, then li ≤ lk. (Transitivity)

A security classification system (L,≤) can be considered as a finite lattice.

As a lattice, The security classification system has two basic operators which are

derived from the relation ≤:

li ∨ lj = l.u.b.{li, lj}.

li ∧ lj = g.l.b.{li, lj}.

l.u.b.{li, lj} is called the least upper bound (join) of the set {li, lj}, that is,

if l.u.b.{li, lj} = lk, then li ≤ lk, lj ≤ lk. And for any l, if li ≤ l and lj ≤ l, then

lk ≤ l.

g.l.b.{li, lj} is called the greatest lower bound (meet) of the set {li, lj}. that

is, if g.l.b.{li, lj} = lk, then lk ≤ li, lk ≤ lj. And for any l, if l ≤ li and l ≤ lj ,

then l ≤ lk.

The security level of an object represents the level of protection of the object.

The security level of an user represents the level of clearance of the user. For

any object o, it has exactly one security level. Similarly, for any user u, it has

exactly one security level. O(li) is defined as the set consisting of all objects

whose security level is li, U(lj) is defined as the set consisting of all users whose

security level is lj ,

We define the following principles for security level assignment (for any o ∈ O,

and any u ∈ U):

(1) If object o is created (owned) by user u, then l(o) ≤ l(u).

(2) l(o) ≤ l(o+).

(3) l(o−) ≤ l(o).

(4) l(o1), l(o2) ≤ l((o1) + (o2)).

2434 Ma J.: A Formal Approach for Risk Assessment in RBAC Systems

For all l ∈ L, there exists a unique element, ln, ln ≤ l. Symmetrically, for

all l ∈ L, there exists a unique element, lm, l ≤ lm. Thus, ln and lm are called

the minimum security level andmaximum security level of this lattice respec-

tively.

Let (A = {ai | i = 0, 1 . . . , j},≤) and (O = {oi | i = 0, 1 . . . , k},≤) be par-

tially ordered sets of actions and objects, respectively. If a′ ≤ a and a′ 6= a, then

we have a′ < a. The relation a′ < a means action a′ is less critical than action

a. Similarly, o′ < o means object o′ is less important than object o.

For example, Figure 1 presents a partial ordering of a system containing

the set of actions {a1, a2, a3, a4} and the set of objects {o1, o2, o3, o4}. in Figure

1(a), the action a4 is considered to be more critical than actions a2 and a3,

and the action a1 to be less critical than actions a2 and a3. However, actions a2
and a3 have no such relation. These facts are described by the following relations

a2 ≤ a4, a3 ≤ a4, a1 ≤ a2, and a1 ≤ a3, but a2 and a3 are not comparable. In this

case, a2∨a3 = a4, and a2∧a3 = a1. Any path from the minimum security level

to the maximum security level forms a linear hierarchy classification system.

In a linear hierarchy classification system, there are no incomparable security

levels. For all li, lj ∈ L, if i < j, then li < lj , and li ∨ lj = lj , and li ∧ lj = li.

 !

 "

#!

#" #$

#%

 $

 %
&%'()*+,#-. &$'(/012*+.

Figure 1: Actions and objects

3 Role Based Access Control Model

Mandatory access control (MAC) and discretionary access control (DAC) are

traditional techniques for restricting system access to authorized users. Nowa-

days role based access control (RBAC), is widely applied to computer security.

2435Ma J.: A Formal Approach for Risk Assessment in RBAC Systems

Definition 2 (Role Based Access Control Model) A role based access con-

trol (RBAC) model, denoted by Mrbac, has the following components:

- U : The set of users.

- O: The set of objects.

- A: The set of actions.

- R: The set of roles.

- C: The set of contexts.

- P : The set of permissions, P ⊆ A×O.

- SE: The set of sessions, a mapping involving U, R and/or P.

session user: SE → U , mapping each session to a user.

session roles: SE → 2R, mapping each session to a set of roles.

session permissions: SE → 2P , mapping each session to a set of permissions.

- RA: role assignment, RA ⊆ U ×R.

- PA: permission assignment, PA ⊆ R× P × C.

- RH: partially ordered role hierarchy, RH ⊆ R×R.

- DA: delegation assignment, DA ⊆ U × U × P × C.

As it is usually defined, RBAC does not involve contexts or delegation. The

standard formalism for RBAC is not adequate to express realistic dynamic sys-

tems. Our approach can handle these aspects.

Definition 3 (Access State) An access state for a given RBAC system is a

particular assignment of the model.

For a given system, we assume that, at the initial state, the formal assignment

of the model is as follows:

U = {u1, u2, u3, u4},

A = {a1, a2, a3, a4},

O = {o1, o2, o3, o4},

R = {r1, r2, r3, r4},

C = {c1, c2, c3, c4},

P = {(a1, o1), (a2, o2), (a3, o3), (a4, o4)},

2436 Ma J.: A Formal Approach for Risk Assessment in RBAC Systems

RA =

(u1, r1),

(u2, r2),

(u3, r3),

(u4, r4).

PA =

(r1, a1, o1, c1),

(r2, a2, o2, c2),

(r3, a3, o3, c3),

(r4, a4, o4, c4),

(r4, a2, o2, c2),

(r4, a1, o1, c1).

RH =

(r4 ≥ r3),

(r4 ≥ r2),

(r4 ≥ r1),

(r3 ≥ r1),

(r2 ≥ r1).

DA =

{

(u4, u3, (a2, o2), c2),

(u4, u2, (a1, o1), c1).

}

A context c ∈ C is a mapping from a set of attributes of the system to a set

of values. s ⊢ c means that context c is satisfied within state s.

In order to specify the access control policies, we define the following basic

predicates:

– is user(X): X is a user.

– holds(U,R): User U holds role R.

– permit(R,A,O,C): Role R is permitted to perform action A on object O

within context C.

– user permit(U,A,O,C): User U is permitted to perform action A on object

O within context C.

– inherits(Ri, Rj): Role Ri inherits the permissions of Role Rj .

– can delegate(Ui, Uj , (A,O), C): User Ui can delegate user Uj to perform ac-

tion A on object O within context C.

The predicates holds, permit, inherits, and can delegate can be formally

defined as:

- holds(U,R), iff (U,R) ∈ RA.

2437Ma J.: A Formal Approach for Risk Assessment in RBAC Systems

- permit(R,A,O,C), iff (R,A,O,C) ∈ PA.

- inherits(Ri, Rj), iff (Ri ≥ Rj) ∈ RH.

- can delegate(Ui, Uj , (A,O), C), iff (Ui, Uj , (A,O), C) ∈ DA.

For the given system, we define the following access control rules:

R1. Role assignment.

If conditions Con1 through Conn hold, then role R is assigned to user U . The

role assignment rule can be formalised as:

Con1 ∧ . . . ∧Conn → holds(U,R).

R2. Permission assignment.

A user can be granted a permission, if he holds an appropriate role. The permis-

sion assignment rule can be formalised as:

holds(U,R) ∧ permit(R,A,O,C) → user permit(U,A,O,C).

R3. Delegation assignment

A user may delegate a permission to another user. The delegation assignment

rule can be formalised as:

can delegate(Ui, Uj , (A,O), C) → user permit(Uj , A,O,C).

The access control rules provide a basis for reasoning about the properties

of systems. We give a proof example as follows:

Proof Example 1 (User permission)

(1) holds(u1, r1). (Assumption)

(2) permit(r1, a1, o1, c1). (Assumption)

(3) holds(u1, r1) ∧ permit(r1, a1, o1, c1). (from (1) & (2), by ∧ introduction)

(4) holds(U,R) ∧ permit(R,A,O,C) → user permit(U,A,O,C) (R2)

(5) holds(u1, r1) ∧ permit(r1, a1, o1, c1) → user permit(u1, a1, o1, c1)

(from (4), by variable instantiation)

(6) user permit(u1, a1, o1, c1). (from (3) & (5), by → elimination)

�

4 A Formal Approach for Risk Assessment

Role assignment is a major component of a RBAC system and risk analysis is a

main consideration of role assignment. The basic idea regarding risk assessment

for role assignment is as follows:

2438 Ma J.: A Formal Approach for Risk Assessment in RBAC Systems

– For each user U , we assign a security level, denoted by l(U).

– For each role R, we calculate a security level for the role, denoted by l(R).

– Then the risk value rv(U,R) of role assignment can be calculated by the

following formula:

rv(U,R) =

{

0, if l(U) ≥ l(R)

1− l(U)
l(R) , otherwise

Based on the above formula, in order to obtain the risk value rv(U,R), the

key is to calculate the security level l(R) for each role R.

In our method, permission is defined as a pair consisting of an action and

an object. A × O is the set of all permissions, based on the posets (A,≤) and

(O,≤), we define permission ordering relation as follows:

(a′, o′) ≤ (a, o)
def
= a′ ≤ a ∧ o′ ≤ o

where (a′, o′) ≤ (a, o) means permission (a′, o′) is less critical than permission

(a, o). As shown in Figure 2, role is a subset of permission (A×O).

 !"##$%&'())(*+#,%- ."#/*0%#&(1"#/*0%#&2

 !34*3"

 !54*3" !34*5"

 !64*5" !54*7" !54*6" !74*5"

 !64*7" !74*6"

 !64*6"
 !64*6"

 !64*7"

 !64*5" !54*7"

 !54*3"

 !34*3" !34*3"

 !34*5"

 !54*6" !74*5"

 !74*6"

Figure 2: Permissions and Roles

In order to calculate the security level of a role, we introduce first the follow-

ing definitions:

– A chain Ch of a role R is a subset of R having a total ordering, i.e. for

all (a, o), (a′, o′) ∈ Ch, (a, o) ≤ (a′, o′) or (a′, o′) ≤ (a, o). So, all nodes in a

2439Ma J.: A Formal Approach for Risk Assessment in RBAC Systems

chain Ch are comparable. Thus, a chain in a role can be represented by a

path with directed edges between adjacent nodes.

– The length of a chain is the number of directed edges connecting two nodes

in the chain. Let length(Ch) be the length of chain Ch, and node(Ch) be

the number of nodes of chain Ch, then length(Ch) = node(Ch) – 1. For

example, in Figure 2(b), (a1, o1) is a shortest chain that contains only one

node and its length is 0; (a1,o1)–(a2,o1) is a chain that contains two nodes,

its length is 1; and (a1,o1)–(a2,o1)–(a4,o2) is a chain that contains three

nodes, and its length is 2.

– Let ChR be the set of all chains in a role (R,≤), we define the security level

l(R) to be the length of the longest chain in R, i.e.:

l(R) = max{length(Ch)|Ch ∈ ChR}

In Figure 2, we have l(ri) = 4, and l(rj) = 3.

This formula is based on the assumption that all direct edges connecting two

adjacent nodes have an equal weight of 1, however in some applications it may

be necessary to assign different weights to different edges based on importance

considerations.

Delegation risk is also a main issue in risk analysis. Here, we present a generic

formula for computing delegation risks. Let del rv(Ui, Uj) be the risk value of

user Ui delegating to user Uj one of his permissions. The delegation risk depends

on the security levels of the delegator and the delegatee:

del rv(Ui, Uj) =

{

0, if l(Uj) ≥ l(Ui)

1−
l(Uj)
l(Ui)

, otherwise

Risk is not explicitly included in the usual RBAC model, so in the permission

and delegation rules presented in Section 3 we did not consider the effects of risk.

In this section, we add a risk parameter in these rules, and we define the following

predicates:

– permit with risk(u, a, o, c, v): User u is permitted to perform action a on

object o in context c with a risk value v.

– risk threshold(a, o, c): This predicate specifies a risk threshold value. The

value is used to determine whether the risk is acceptable for the Access Con-

trol Decision Point (ACDP). Note that we cannot give a general definition

for this predicate. Its definition is rather related to specific access control ap-

plications (banking, hospital, etc.). For instance, in a banking application,

the threshold may be higher if the requested loan (parameters a and o) is

not high, and the economic indicators (parameter c) are good.

2440 Ma J.: A Formal Approach for Risk Assessment in RBAC Systems

R4. Permission assignment with risk assessment.

permit(r, a′, o′, c′) ∈ PA(s), s ⊢ c′, holds(u, r),

rv(u, r) ≤ risk threshold(a, o, c), a ≤ a′, o ≤ o′, c ≤ c′

permit with risk(u, a, o, c, v)

where s is access state, and PA(s) is the set of permission assignments in the

state s. The permission rule states that: if permission permit(r, a′, o′, c′) is in

PA(s), context c′ is satisfied in state s, and user u holds role r, then for any

subaction a of a′ (a ≤ a′), any subobject o of o′ (o ≤ o′), and any subcontext

c of c′ (c ≤ c′, for example, c = [1pm, 5pm], and c′ =[9am, 5pm]). If the risk

value v given by the function rv(u, r) ≤ the risk threshold given by the function

risk threshold(a, o, c), then user u is permitted to perform action a on object o

in context c with the risk value v.

Base on the rule, we can reason about permission assignment with risk as-

sessment.

Proof Example 2 (Permission assignment with risk assessment)

(1) permit(r4, a2, o2, c2) ∈ PA(s) (assumption)

(2) s ⊢ c2. (assumption)

(3) holds(u4, r4). (assumption)

(4) l(r4) = 8. (assumption)

(5) l(u4) = 10. (assumption)

(6) a1 ≤ a2. (assumption)

(7) o1 ≤ o2. (assumption)

(8) c1 ≤ c2. (assumption)

(9) risk threshold(a1, o1, c1) = 0.1. (assumption)

(10)rv(u4, r4) = 0. (by (4) and (5))

(11)rv(u4, r4) ≤ risk threshold(a1, o1, c1). (by (9) and (10))

(12)permit with risk(u4, a1, o1, c1, 0).

(by assumptions, (11), and rule R4)

�

The last formula means that user u4 is permitted to perform action a1 on

object o1 in context c1 with a risk value 0.

R5. Delegation assignment with risk assessment.

delegate(ui, uj , a
′, o′, c′) ∈ DA(s), s ⊢ c′,

permit with risk(ui, a, o, c, v),

v + del rv(ui, uj) ≤ risk threshold(a, o, c), a ≤ a′, o ≤ o′, c ≤ c′

permit with risk(uj , a, o, c, v + del rv)

2441Ma J.: A Formal Approach for Risk Assessment in RBAC Systems

where s is access state, and DA(s) is the set of delegation assignments in the

state s, and ui, uj ∈ U , ui is the delegator, uj is the delegatee. The delegation

rule states that: If a delegation delegate(ui, uj , a
′, o′, c′) is in DA(s), context c′

is satisfied in state s, for any subaction a of a′ (a ≤ a′), any subobject o of o′

(o ≤ o′), and any subcontext c of c′ (c ≤ c′). If the risk ≤ the risk threshold

given by the function risk threshold(a, o, c), then user ui can delegate to user

uj to conduct action a on object o in context c,

This rule reveals an accumulation of risk due to the delegation. Suppose that

a user ui can perform an action a on an object o in context c with a risk value v,

and that user ui can delegate this permission to another user uj with a delegation

risk value del rv, then the risk value for user uj to perform action a on object o

in context c is (v + del rv).

Base on the rule, we can reason about delegation assignment with risk as-

sessment.

Proof Example 3 (Delegation assignment with risk assessment)

(1) can delegate(u4, u3, (a2, o2), c2) ∈ DA(s) (assumption)

(2) s ⊢ c2. (assumption)

(3) permit with risk(u4, a1, o1, c1, 0). (by Proof Example 2, step (12))

(4) a1 ≤ a2. (assumption)

(5) o1 ≤ o2. (assumption)

(6) c1 ≤ c2. (assumption)

(7) l(u4) = 10 (assumption)

(8) l(u3) = 9. (assumption)

(9) risk threshold(a1, o1, c1) = 0.15. (assumption)

(10)v = 0. (by (3))

(11)del rv(u4, u3) = 0.1. (by (7) and (8))

(12)v + del rv(u1, u2) = 0.1. (by (10) and (11))

(13)v + del rv(u1, u2) ≤ risk threshold(a1, o1, c1). (by (9) and (12))

(14)permit with risk(u3, a1, o1, c1, 0.1).

(by assumptions, (13), and rule R5)

�

The last formula means that user u3 is permitted to perform action a1 on

object o1 in context c1 with a risk value 0.1.

5 Implementation

In this section, we discuss the implementation issues of risk assessment for RBAC

systems.

2442 Ma J.: A Formal Approach for Risk Assessment in RBAC Systems

5.1 An generic access control architecture

Access control systems need to handle many different scenarios, where security

requirements and environments can be highly dynamic. There are a number of

papers [Chen et al. 2006, Eyers et al. 2008] that discuss dynamic access control

systems.

Figure 3 presents a generic access control architecture, which includes the

following components:

- User: in access control systems, a user needs a permission to access a re-

source.

- Object: an accessible resource.

- Access control enforcement point (ACEP): controls access based on access

control decisions, contains a set of enforcement functions (EF).

- Access control decision point (ACDP): makes access control decisions, con-

tains a set of decision functions (DF).

- Access state(S): contains data for authentication and authorisation.

 !"#$%&$'(

)!"*&$+, -!"#$'./0'$

1!"#$'./0'$

2$+34(56$0,7892:'$+ ;<=$>(

7862

7>>$''"?(@($

A!"*&$+,

B!"#$'./0'$

Figure 3: Generic access control architecture

The generic access control architecture, is a 5-tuple,

〈U,O,ACEP,ACDP, S〉

It is a dynamic framework, since access state changes dynamically. Within the

framework, we address the following aspects:

2443Ma J.: A Formal Approach for Risk Assessment in RBAC Systems

(1) A user u ∈ U could be a single user or a group of users acting as a single

user.

(2) For any object o ∈ O, there is a set of services Servo = {Servo1, . . . , Serv
o
n}

that it provides. For example, an ATM machine provides a set of services:

servATM = {balance checking, deposit, withdraw}.

(3) A request is in the form: (u, servoi), which means user u requires to access

service servoi .

(4) For any request (u, servoi), access state contains related data for decision

making.

(5) For any request (u, servoi), there is a decision function df ∈ DF that related

to service servoi .

(6) For any request (u, servoi), there is an enforcement function ef ∈ EF that

related to service servoi .

Definition 4 (Access control Decision Function) An access control deci-

sion function df , is a mapping of the form:

df : U × Servoi
S

−→ D,

where U ×Servoi is the request set, any pair (u, servoi) ∈ U ×Servoi is a request.

S is the access state. D = {1, 0} is called the decision set.

The access control decision function (DF), which is implemented in the

ACDP, is defined as: If conditions hold, the request (u, servoi) is permitted,

otherwise is denied.

df(u, servoi)(s) =

{

1 : c1 ∧ ... ∧ cn = ⊤.

0 : c1 ∧ ... ∧ cn = ⊥.

Definition 5 (Access control Enforcement Function)An access control en-

forcement function ef , is a mapping of the form:

ef : U × Servoi
DF
−→ E ,

where DF is the set of decision functions, and E is called the execution set,

which consists of all actions that the system may take.

After the decision is taken, an execution e will start. The execution e consists

of a sequence of activities that the system will take, i.e., e = {act1, . . . , acti},

(1 ≤ i ≤ n).

2444 Ma J.: A Formal Approach for Risk Assessment in RBAC Systems

The access control enforcement function (EF), which is implemented in the

ACEP, is defined as:

ef(u, servoi)(df) =

{

ep : df = 1.

ed : df = 0.

Here ep is the execution set corresponding to the permit decision, such as:

{permit notification, execution, record, termination}.

and ed is the execution set corresponding to the deny decision, such as:

{deny notification, ...}.

Suppose that for a loan approval, the decision function considers three factors:

the applicant’s identity, the applicant’s reputation, and the amount he wants to

borrow. For an example, if Alice wants to borrow $10, 000, her identity is verified,

her reputation is satisfied, but the amount is exceeded.

In this case, the decision function returns false:

df(alice, loan $10, 000) = 0.

Then the enforcement function starts the sequence of activities corresponding

to the deny decision:

ef(alice, loan $10, 000) = {deny notification, record, termination}.

5.2 System Implementation in Prolog

For the Prolog implementation, we define a unified predicate, lessEq(X,Y),

to represent the relations X ⊑a Y and X ⊑o Y . Note that, when using the

predicate, X and Y must be the same type of variables or constants, i.e., in any

instance of the predicate, both X and Y are actions or both are objects. Thus,

in the Prolog program, we may have the following facts:

lessEq(a1,a1).
lessEq(a1,a2).
lessEq(a2,a2).
lessEq(o1,o1).
lessEq(o1,o2).
lessEq(o2,o2).
lessEq(c1,c1).
lessEq(c1,c2).
lessEq(c2,c2).

In Prolog, the permission assignment rule can be expressed as the following:

user_permit(U,A1,O1,C1) :- permit(R,A2,O2,C2), exists(C2), holds(U,R),
lessEq(A1,A2), lessEq(O1,O2), lessEq(C1,C2).

2445Ma J.: A Formal Approach for Risk Assessment in RBAC Systems

This rule says, user U is permitted to perform action A1 on object O1 within

context C1, iff the conditions permit(R,A2, O2, C2), exists(C2), holds(U,R),

lessEq(A1, A2), lessEq(O1, O2), lessEq(C1, C2) are all true.

In first-order logic, the permission assignment rule can be expressed as the

following:

∀u∀a∀o∀c(user permit(u, a, o, c) → ∃R∃A∃O∃C(permit(R,A,O,C) ∧

exists(C)∧holds(u,R)∧ lessEq(a,A)∧ lessEq(o,O)∧ lessEq(c, C))).

where A, O and C are variables, and a, o and c are specific subject, object and

context, respectively.

In order to translate FOL formulas to Prolog rules, we need to define some

predicates that can be specifically used for this purpose. For example, for this

risk function:

rv(U,R) =

{

0, if l(U) ≥ l(R)

1− l(U)
l(R) , otherwise

We introduce the following predicates:

- rv(U,R, V): The risk value of assigning role R to user U is V .

- l(N,D): The security level of N is D, where N is a user or a role.

- is user(N): N is a user.

- is role(N): N is a role.

Then, the risk function rv(U,R) can be translated into two Prolog rules:

(1) rv(U,R,V):- holds(U,R), is_user(U), is_role(R), l(U,X), l(R,Y),
X >= Y, V = 0.

(2) rv(U,R,V):- holds(U,R), is_user(U), is_role(R), l(U,X), l(R,Y),
Y > X, V is 1 - X/Y.

When l(U) ≥ l(R), the first rule is applied, otherwise, the second one is

applied.

For obtaining appropriate Prolog rules for a practical application, we need

to consider the access state, S, where each context has a certain truth value.

For example, if in a state s we have permit(r, a′, o′, c′) ∈ PA(s), and s ⊢ c′,

then at the state s we have that both permit(r, a′, o′, c′) and exists(c′) are true.

For example, assume that r, a′, o′, c′ represents “trainee”, “write”, “records”,

and “guidance” respectively, and exists(c′) represents “guidance is available”.

Therefore, we defined the permission assignment with risk assessment rule as

the following:

2446 Ma J.: A Formal Approach for Risk Assessment in RBAC Systems

permit(r, a′, o′, c′) ∈ PA(s), s ⊢ c′, holds(u, r),

rv(u, r) ≤ risk threshold(a, o, c), a 6 a′, o 6 o′, c 6 c′

permit with risk(u, a, o, c, v)

In order to translate FOL formulas to Prolog rules, for risk threshold, we

introduce the following predicate.

- risk threshold(A,O,C,M): The risk threshold for performing action A on

object O in context C is M .

In Prolog, the permission assignment with risk assessment rule can be ex-
pressed as the following:

permit_with_risk(U,A1,O1,C1,V) :- permit(R,A2,O2,C2), exists(C2),
holds(U,R), lessEq(A1,A2),
lessEq(O1,O2), lessEq(C1,C2),
rv(U,R,V),
risk_threshold(A1,O1,C1,M), V =< M.

After the system implementation, the correctness of the implementation must

be checked. Model checking is a technique for verifying finite state systems. There

are a number of model checking tools, such as SPIN [Holzmann and Peled 1996],

SMV [Zhang and Jia 2006], and PRISM [Hinton et al. 1999]. In this paper, we

choose SMV for verifying the correctness of the Prolog implementation.

A SMV program has two main components:

- The abstraction of a given system.

- The set of security assertions of the system.

As shown in Figure 4, SMV supports the integration of the implementation

and validation of systems. The SMV program verifies the system by checking:

- Whether the policies are correctly implemented.

- Whether the desired security assertions are satisfied.

In a Prolog program, if a fact is in the program, then it is true; if a fact is

absent in the program, then it is false. For example, if only the following facts

are in a program.

holds(u_1, r_1).
holds(u_2, r_2).
holds(u_3, r_3).
holds(u_4, r_4).

then, we have

2447Ma J.: A Formal Approach for Risk Assessment in RBAC Systems

 !"#"$%
&'(#)')*+,+&"* -./%(!"$!,'

,01+!,2+&"*

/)!&3&2,+&"*

4567%181+)'

3))90,2:

3))90,2:

Figure 4: SMV Model Checking

holds(u_1, r_1) = 1 (true).
holds(u_2, r_2) = 1 (true).
holds(u_3, r_3) = 1 (true).
holds(u_4, r_4) = 1 (true).
holds(u_1, r_2) = 0 (false).
holds(u_4, r_3) = 0 (false).
...

That is, for any user u and any role r, the Prolog program defines the truth

values of holds(u, r). Therefore, in the corresponding SMV program we have:

forall (u in USERS)

forall (r in ROLES)

holds[u][r] := {0, 1};

This means that, for any user u and any role r, we assign holds(u, r) = 1 or 0.

Model checking will check all possible cases. Therefore, all possible assignments

are considered. Here, assume USERS = {u1, u2}, ROLES = {r1, r2}, then there

will be 16 role assignments.

If we have a Kripke model M = 〈S,R, I〉 for a given system and a logical

formula ϕ expressing a property of the system, we need to identify the set of all

states in S that satisfy ϕ: {s ∈ S, |M, s |= ϕ}.

In first-order logic, the permission assignment with risk assessment rule can

be expressed as the following:

∀u∀a∀o∀c∃V (permit with risk(u, a, o, c, V) →

∃R∃A∃O∃C∃M(permit(R,A,O,C) ∧ exists(C) ∧ holds(u,R)

∧lessEq(a,A) ∧ lessEq(o,O) ∧ lessEq(c, C) ∧ rv(u,R, V)

∧risk threshold(A,O,C,M) ∧ (V ≤ M))).

2448 Ma J.: A Formal Approach for Risk Assessment in RBAC Systems

In the SMV program, permission assignment with risk assessment rule in

the Prolog implementation can be abstractly translated by the following SMV

statement:

forall (u in USERS)

forall (a in ACTIONS)

forall (o in RESOURCES)

forall (c in CONTEXTS)

permit with risk[u][a][o][c][E V] :=

permit[E R][E A][E O][E C]

& holds[u][E R]

& exists[E C]

& lessEq[a][E A]

& lessEq[o][E O]

& lessEq[c][E C]

& rv[u][E R][E V]

& risk threshold[a][o][c][E M]

& (E V <= E M);

where [E R], [E A], [E O], [E C], [E V], [E M] represent ∃R, ∃A, ∃C, ∃C, ∃V, ∃M

in the logic formula, respectively.

SMV has two basic temporal operators, F and G, G corresponds to �, and

F corresponds to ♦. Formula Fφ is true at a given time, if φ is true at some later

time. Formula Gφ is true, if φ is true at all times. The following assertion is used

for verifying whether the Prolog program correctly implements the permission

assignment with risk assessment rule:

G permit with risk[u][a][o][c][E V] →

permit[E R][E A][E O][E C]

& holds[u][E R]

& exists[E C]

& lessEq[a][E A]

& lessEq[o][E O]

& lessEq[c][E C]

& rv[u][E R][E V]

& risk threshold[a][o][c][E M]

& (E V <= E M);

The SMV model checking program checks whether the security assertions

are satisfied by this implemented model. If all assertions are proved to be true.

That is, the model satisfies the security requirements of the given system, then

the model is a successful model. Otherwise, it is a failing model.

2449Ma J.: A Formal Approach for Risk Assessment in RBAC Systems

6 Conclusion

Risk analysis is an important issue for access control systems. In this paper, we

propose a formal risk assessment approach for RBAC Systems, which enables

systems to evaluate the risks associated with access requests. This approach can

be used for the designing and implementation of access control systems. There

are no existing general and systematic risk management techniques or tools

for access control systems. Therefore the approach proposed in this paper have

potential to be applicable in many diverse applications, such as could computing,

E-commerce, and services computing.

Risk value is based on many factors, such as trust, assurance, cost, etc. There-

fore, for risk management, the following issues should be investigated: how to

evaluate risk values, and how to determine the risk thresholds. Different trust

thresholds may lead to different policy implementations. Future work will also

include refining the partial orders to include more sophisticated risk measures.

Dynamic aspects of RBAC will also be taken into consideration, an inter-

esting topic is policy revision [Gabbay and Rodrigues 1997, Gabbay et al. 2003,

Mazzieri and Dragoni 2007]. The base revision approach and controlled revi-

sion approach [Gabbay and Rodrigues 1997, Gabbay et al. 2003] are particu-

larly useful for practical applications.

Acknowledgement

This research has been supported in part by the Christian Doppler Society. Ji Ma

would like to thank Prof. Kamel Adi and Prof. Luigi Logrippo for many fruitful

discussions while he was at the Université du Québec en Outaouais, Canada.

References

[Ahn et al. 2000] Ahn, G., Sandhu, R., Kang, M., Park, J.: “Injecting RBAC to se-
cure a web-based workflow system”; Proc. ACM Workshop on Role-Based Access
Control, (2000), 1-10.

[Asnar et al. 2007] Asnar, Y., Giorgini, P. , Massacci, F., Zannone, N.: “From trust to
dependability through risk analysis”; Proc. ARES, (2007), 19–26.

[Aziz et al. 2006] Aziz, B., Foley, S., Herbert, J., Swart, G.: “Reconfiguring role based
access control policies using risk semantics”; J. High Speed Networks, 15,3 (2006),
261-273.

[Bell and LaPadula 1996] Bell, D., LaPadula, L.: “Secure computer systems: A math-
ematical model”; Volume II:. Journal of Computer Security, 4, 2/3 (1996), 229-263.

[Bhargava and Lilien 2004] Bhargava, B., Lilien, L.: “Vulnerabilities and threats in
distributed systems”; Proc. ICDCIT, (2004), 146-157.

[Biba 1977] Biba, K.: “Integrity considerations for secure computer systems”; Techni-
cal report, MITRE Corp., (Apr 1977).

[Celikel et al. 2007] Celikel, E., Kantarcioglu, M., Thuraisingham, B., Bertino, E.:
“Managing risks in rbac employed distributed environments”; Proc. OTM Con-
ferences (2), (2007), 1548-1566.

2450 Ma J.: A Formal Approach for Risk Assessment in RBAC Systems

[Chakraborty and Ray 2006] Chakraborty, S., Ray, I.: “Integrating trust relationships
into the rbac model for access control in open systems”; Proc. SACMAT, (2006),
49-58.

[Chen et al. 2006] Chen, Y., Yang, S., Guo, L., Shen, K.: “I A dynamic access control
scheme across multi-domains in grid environment”; Journal of Computer Research
and Development, 43,11 (2006), 1863-1869.

[Denning 1976] Denning, D.: “A lattice model of secure information flow”; Commun.
ACM, 19,5 (1976), 236-243.

[Dimmock et al. 2004] Dimmock, N., Belokosztolszki, A., Eyers, D., Bacon, J., Moody,
K.: “Using trust and risk in role-based access control policies”; Proc. SACMAT,
(2004), 156-162.

[Eyers et al. 2008] Eyers, D., Srinivasan, S., Moody, K., Bacon, J.: “Compile-time en-
forcement of dynamic security policies ”; Proc. POLICY, (2008), 119-126.

[Gabbay et al. 2003] Gabbay, D., Pigozzi, G., Woods, J.: “Controlled revision - an
algorithmic approach for belief revision”, Journal of Logic and Computation, 13,1
(2003), 3-22.

[Gabbay and Rodrigues 1997] Gabbay, D., Rodrigues, O.: “Structured Belief Bases: A
Practical Approach to Prioritised Base Revision”, Proc. ECSQARU-FAPR, (1997),
267-281.

[Holzmann and Peled 1996] Holzmann, G., Peled, D.: “The state of spin”, Proc. CAV,
(1996), 385-389.

[Hinton et al. 1999] Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: “Prism:
A tool for automatic verication of probabilistic systems”, Proc. TACAS, (2006),
441-444.

[Jonker and Treur 1999] Jonker, C., Treur. J.: “Formal analysis of models for the dy-
namics of trust based on experiences”, Proc. Multi-Agent System Engineering’99,
volume 1647 of LNAI, Springer, (1999), 221-231.

[Kondo et al. 2008] Kondo, S., Iwaihara, M., Yoshikawa, M., Torato, M.: “Extending
RBAC for large enterprises and its quantitative risk evaluation ”; Proc. II3E, (2008),
99-112.

[Ma et al. 2010a] Ma, J., Adi, K., Logrippo, L., Mankovski, S.: “Risk analysis in access
control systems based on trust theories”; Proc. The 2010 IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT),
IEEE Computer Society Press, (2010), 415-419.

[Ma et al. 2010b] Ma, J., Adi, K., Logrippo, L., Mankovski, S.: “Risk management in
dynamic role based access control systems”; Proc. The Fifth International Confer-
ence on Digital Information Management (ICDIM), IEEE Computer Society Press,
(2010), 442-451.

[Ma et al. 2010c] Ma, J., Adi, K., Mejri, M., Logrippo; L.: “Risk analysis in access
control systems”; Proc. The 2010 International Conference on Privacy, Security and
Trust (PST), IEEE Computer Society Press, (2010), 160-166.

[Ma and Orgun 2006] Ma, J., Orgun, M.: “Trust management and trust theory revi-
sion. IEEE Transactions on Systems”; Man and Cybernetics, Part A, 36,3 (2006)
451-460.

[Mazzieri and Dragoni 2007] Mazzieri, M., Dragoni, A.: “Ontology revision as non-
prioritized belief revision”; Proc. ESOE, (2007), 58-69.

[Nissanke and Khayat 2004] Nissanke, N., Khayat, E.: “Risk based security analysis of
permissions in RBAC”; Proc. WOSIS, (2004), 332-341.

[Sandhu 1993] Sandhu, R.: “Lattice-based access control models”; J. IEEE Computer,
26,11 (1993), 9-19.

[Thuraisingham et al. 2007] Thuraisingham, B., Kantarcioglu, M., Iyer, S.: “Extended
RBAC-based design and implementation for a secure data warehouse”; J. IJBIDM,
2,4 (2007), 367-382.

[Zhang and Jia 2006] Zhang, Y., Jia, S.: “Common program analysis of two-party se-
curity protocols using SMV”; Proc. APWeb, (2006), 923-930.

2451Ma J.: A Formal Approach for Risk Assessment in RBAC Systems

