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Abstract: Insertion of a local search technique is often considered an effective mechanism to 
increase the efficiency of a global optimization algorithm. In this paper we propose and analyze 
the effect of two local searches namely; Trigonometric Local Search (TLS) and Interpolated 
Local Search (ILS) on the working of basic Differential Evolution (DE). The corresponding 
algorithms are named as DETLS and DEILS. The performances of proposed algorithms are 
investigated and compared with basic DE, modified versions of DE and some other 
evolutionary algorithms. It is found that the proposed schemes improve the performance of DE 
in terms of quality of solution without compromising with the convergence rate. 
 
Keywords: global optimization, differential evolution, trigonometric mutation, quadratic 
interpolation, local search 
Categories: C.2.m, F.2, G.1.6, G.1.10, I.6, J.0 

1 Introduction  

Two competing goals that govern the design of global search methods are exploration 
and exploitation. Exploration  is important to ensure global reliability, i.e., every part 
of the domain is searched enough to provide a reliable estimate of the global 
optimum; exploitation on the other hand is important since it concentrates the search 
effort around the best solutions found so far by searching their neighborhoods to 
produce better solutions. One of the methods by which the performance of a global 
optimization metaheuristics can be enhanced is their hybridization with a local search. 
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This may accelerate the performance of such algorithms by providing additional 
information about the search domain.  

Local search (LS) mechanism can be applied in several ways for example the 
initial population may be generated by using a LS so that the search technique has 
some a priori knowledge about the domain. It may also be applied during the 
processing of the algorithm to explore its neighborhood or it may be applied in any 
other manner. 

In the present study we have concentrated our focus on applying local search 
mechanism in Differential Evolution (DE), proposed by Storn and Price in 1995 
[Storn and Price, 1995]. DE has emerged as a popular choice for solving global 
optimization problems [Storn and Price, 1997]. Using a few parameters, DE exhibits 
an overall excellent performance for a wide range of benchmark as well as real-world 
application problems [Price et al., 2005]. However, despite having several attractive 
features, it has been observed that the performance of DE is not completely flawless. 

DE has certain unique features that distinguish it from other population based 
evolutionary algorithms (EA). It has a distinctive manner in which it generates the 
new points and performs selection of points for the next generation. In DE every 
individual produces a single offspring with the help of directional information and it 
is designed in such a manner that after the selection process, the points for the next 
generation are either better or as good as the points of the previous generation. 
Although these features are there to make DE an effective algorithm, they sometimes 
hinder its performance by slowing down the convergence rate. Some other drawbacks 
of DE [Lampinen and Zelinka, 2000] include premature convergence, where the 
algorithm stops without even reaching a local optimal solution and stagnation, where 
the algorithm accepts new points in the population but shows no improvement in 
fitness function value. Therefore, researchers are now concentrating on improving the 
performance of the classical DE algorithm by using various modifications [Pant et al., 
2009, Ali et al., 2009, Brest et al., 2009, Epitropakis et al., 2009, Menchaca-Mendez 
and Coello Coello, 2009, Faith et al., 2009, Pant et al., 2009, Lai et al., 2009, Omran 
et al., 2009, Fan and Lampinen, 2003, Rahnamayan et al., 2007, Chakraborty, 2008]. 

Noman and Iba in their work [Noman and Iba, 2008] pointed out that the adaptive 
nature of the LS mechanism exploits the neighborhood quite effectively and 
significantly improves the convergence characteristics of the algorithm. They 
proposed the use of simplex crossover operator (SPX) as LS and named their 
algorithm as DEahcSPX, which reportedly gave a good performance on a test suite of 
global optimization problems. Inspired by the performance DEahcSPX, in the present 
study we propose two new LS methods namely Interpolated Local Search (ILS) and 
Trigonometric Local Search (TLS) and analyze their effect on the convergence of 
basic DE. 

We have applied both ILS and TLS in an adaptive manner and have named the 
corresponding DE algorithms as DETLS and DEILS. Its comparison with basic DE 
and other algorithms show that the proposed schemes enhance the convergence rate 
besides maintaining the solution quality. 

The remainder of the paper is structured as follows. Section II gives the basics 
DE. Section III describes the local search methods, ILS and TLS, used in this study. 
Section IV presents the proposed algorithms. Experimental setting and Benchmark 
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problems are given in Section V. Section VI provides comparisons of results. Finally 
the paper is concluded in section VII. 

2 Differential Evolution 

Like other population based search heuristics, DE starts with a population of 
NPcandidate solutions: Xi,G, i = 1, . . . ,NP, where the index i denotes the i-th 
individual of the population and Gdenotes the generation to which the population 
belongs. There are three main operators in DE; mutation, crossover and selection. The 
working of these operators is defined as follows: 

Mutation: The mutation operation of DE applies the vector differentials between 
the existing population members for determining both the degree and direction of 
perturbation applied to the individual subject of the mutation operation. The mutation 
process at each generation begins by randomly selecting three individuals Xr1,G, 
Xr2,Gand Xr3,G, from the population set of NP elements. The ith perturbed individual, 
Vi,G+1, is generated from the three chosen individuals as follows: 

 
Vi,G+1 = Xr3,G + F * (Xr1,G − Xr2,G)                                                (1)       

 
Where, i = 1. . .NP, r1, r2, r3 {1. . . NP} are randomly selected such that r1  r2  r3  
i,  
F is the control parameter such that F  [0, 1]. 

Crossover: once the mutation phase is complete, the perturbed individual, Vi,G+1 = 
(v1,i,G+1, . . . , vn,i,G+1), and the current population member, Xi,G = (x1,i,G, . . . , xn,i,G), are 
subject to the crossover operation, that finally generates the population of candidates 
known as “trial” vectors,Ui,G+1 = (u1,i,G+1, . . . , un,i,G+1), as follows: 

 

, . 1

, . 1
, .

j i G j r

j i G
j i G

v if rand C j k
u

x otherwise




  
 
                                      

(2) 

 
Where, j = 1. . . n, k  {1, . . . , n} is a random parameter’s index, chosen once for 
each i. The crossover rate, Cr [0, 1], is set by the user. 

Selection: The selection scheme of DE differs from that of other EAs. Here, the 
population for the next generation is selected from the individual in current 
population and its corresponding trial vector according to the following rule: 
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. 1

.

( ) ( )i G i G i G
i G

i G

U if f U f X
X

X otherwise
 
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                          (3) 

 
Thus, each individual of the temporary (trial) population is compared with its 
counterpart in the current population. The one with the lower objective function value 
survives the tournament selection and enters the population of the next generation. As 
a result, all the individuals of the next generation are as good as or better than their 
counterparts in the current generation. In DE trial vector is not compared against all 
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the individuals in the current generation, but only against one individual, its 
counterpart, in the current generation. 

3 Proposed local search methods 

In this section we describe the local search methods proposed in the present study. 

3.1 Trigonometric local search (TLS) 

The first local search used in this study is Trigonometric Local Search (TLS) which is 
based on the Trigonometric Mutation Operator (TMO) proposed by [Fan and 
Lampinen, 2003]. The working of this operator is described as follows: Select three 
mutually different individuals, Xr1,G, Xr2,Gand Xr3,G, randomly to implement a mutation 
operation for the i-th individual  Xi,G. Here r1, r2, r3 є{1, . . . ,NP} are randomly 
selected and satisfy: r1  r2  r3  i. In Trigonometric Mutation Operation, the donor to 
be perturbed is taken to be the centre point of a hypergeometric triangle. 
Mathematically, a new point T is generated as follows: 
 

 1, 2, 3, 2 1 1, 2, 3 2 2, 3, 1 3 3, 1,/3 ( )( ) ( )( ) ( )( )r G r G r G r G r G r G r G r G r GT X X X p p X X p p X X p p X X           
 

Such that r1 ≠ r2≠  r3 ≠  i where: '/)( ,11 pXfp Gr , '/)( ,22 pXfp Gr , 

'/)( ,33 pXfp Gr and )()()(' ,3,2,1 GrGrGr XfXfXfp   

As it can be seen from the above formulation, the perturbation part in the 
trigonometric mutation is contributed together by the three legs of the triangle defined 
with Xri,G, i = 1, 2, 3, i.e., by (Xr1,G−Xr2,G), (Xr2,G−Xr3,G) and (Xr3,G−Xr1,G). This 
perturbation can also equivalently be viewed as yielded by the donor, namely, the 
triangle’s centre, through shifting along the directions of each leg of the triangle with 
different step-sizes respectively. The weight terms (p2 − p1), (p3 − p2) and (p1− p3) 
multiplied to the vector differentials are defined along the two considerations. Firstly, 
these terms can make the perturbation have a tendency to produce a better individual. 
This can further be explained from the case that the perturbation is viewed as the 
result from the donor’s shifts. Evidently, with these weight terms the donor is insured 
to move along in the direction from a vertex with a higher value of objective function 
towards a vertex with a lower value of objective function. Secondly, the weight terms 
can automatically scale the contribution magnitudes of the vector differentials to the 
perturbation in such a way that the greater the difference in the objective function 
values between the individuals that form a vector differential, the larger the 
contribution the corresponding vector differential offers to the perturbation. In [Fan 
and Lampinen, 2003], the authors applied it stochastically along with the basic 
mutation operation given by equation (1). 

3.2 Interpolated local search (ILS)  

The second LS operator is based on Quadratic Interpolation (QI) and is therefore 
named as Interpolated Local Search or ILS. The ILS method is one of the simplest 
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and the oldest direct search method used for solving optimization problems that 
makes use of gradient in a numerical way. In this method we try to select the three 
distinct points randomly from the population. A parabolic curve is fitted into the 
selected points and the point lying at the minimum of this quadratic curve is then 
evaluated. Mathematically, the new point (say T)is produced as follows: 
 

2 2 2 2 2 2
1, 2, 3, 2, 3, 1, 3, 1, 2,

1, 2, 3, 2, 3, 1, 3, 1, 2,

( ) ( ) ( ) ( ) ( ) ( )1

2 ( ) ( ) ( ) ( ) ( ) ( )
r G r G r G r G r G r G r G r G r G

r G r G r G r G r G r G r G r G r G

X X f X X X f X X X f X
T

X X f X X X f X X X f X

    


    
 

 
The symbols have the usual meaning as described in the previous section. ILS has 

been used in conjugation with several variants of random search/ evolutionary 
algorithms and has given good results. [Li et al., 2005]  proposed a hybrid genetic 
algorithm (HGA), incorporating QI, for solving constrained optimization problems. 
[Zhang et al., 2009], used it in DE. Some other papers using QI approach are [Mohan 
and Shanker, 1994, Ali et al., 1997, Deep and Das, 2008]. 

4 Proposed algorithms  

In the present study we have made slight changes in the ILS and TLS methods. Here, 
we select one best point and two random points distinct from each other and also from 
the best point in contrast to three distinct random points used in original versions of 
these operators. This is done to bias the search in the neighbourhood of the individual 
having the best fitness. These algorithms start like basic DE up to the selection 
process. Then at the end of every generation, the point having the best fitness is 
selected and its neighbourhood is explored with the help of local search schemes. The 
LS is applied in an adaptive manner as suggested in [Noman and Iba, 2008]. That is to 
say, the process of LS is repeated till the time there is an improvement in the fitness 
of the best particle (say XBest). In case there is no improvementin the fitness the 
algorithm moves on to the next generation. The working of these algorithms is 
described with the help of a flowchart given in Figure 1. 

5 Experimental setup and numerical problems 

In order to make a fair comparison of proposed algorithms and basic DE, we have 
used C++ rand ( ) function to generate initial population for both the algorithms with 
same seed. The number of individuals in the population is taken as the dimension of 
the problem. Value of scaling factor F outside the range of 0.4 to 1.2 are rarely 
effective, so F=0.5 is usually considered a good initial choice. In general very large 
values of Cr may end up in premature convergence, while very small values of Cr may 
slow down the convergence. Consequently we have taken Cr =0.5, which is neither 
too high nor too low. All the algorithms are executed on a PIV PC, using DEV C++, 
thirty times for each problem. We have compared the algorithms taking two criteria 
one error and other evaluation so according to these, termination criteria is different in 
both cases. For error the termination criteria maximum number of function evaluation  
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Code Name Search range 
fsph Sphere [-100,100] 
fack Ackley [-32,32] 
fsch Generalized Schwefel [-500,500] 
fsal Salomon [-100,100] 
fras Rastrigin [-5,5] 
fros Rosenbrock [-100,100] 
fgrw Griewank [-600,600] 
fpn1 Generalized Penalized 1 [-50,50] 
fpn2 Generalized Penalized 2 [-50,50] 
fwht Whitely [-100,100] 

Table 1: Benchmark problems 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Flow chart of proposed algorithms 

No 

Start 

Input : Problem Dim=n, Control parameters 
 F, Cr and Population size NP. 

Generate in itia l population 
and  compute function values 

Set i= 1 

Generate an indiv idual by DE mutation, 
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and perform selection operation 

Is  termination criteria met ? 
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i=i+1  
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Update the population for next generation 
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Apply local search operator on 
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Is  new point better 
than current best?  
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No 
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(NFE=10,000*Dim).  For evaluation termination criterion is   * 6
min 10f f     . 

Where f* is global optimum.
 

Benchmark problems:  
The performances of the proposed algorithms are tested on a set of ten benchmark 

problems taken from literature [Noman and Iba, 2008]. These all are scalable 
problems, here we have taken dimension thirty. This test set though small provides a 
suitable platform for testing the efficiency of an optimization algorithm. A brief 
description of the name of the function, its code and search range are given Table I. 

Real life problems: 
To further validate the algorithm we have considered three real life problems. 

These problems are described in the following subsections. 

5.1 Water pumping system formulation 

A water pumping system [Stoecker , 1971] consists of two parallel pumps drawing 
water from a lower reservoir and delivering it to another that is 40 m higher, as shown 
in fig 2. In addition to overcoming the pressure difference due to the elevation, the 
friction in the pipe is 7.2w2 kPa, where w is the combined flow rate in kilograms per 
second. The pressure-flow-rate characteristics of the pumps are: 

 
Pump 1:   ∆ܲ(݇ܲܽ) = 810 − ଵݓ25 −  ଵଶ                           (4)ݓ3.75
Pump 2:   ∆ܲ(݇ܲܽ) = 900 − ଶݓ65 −  ଶଶ                              (5)ݓ30

Where w1 and w2 are the flow rates through pump 1 and pump 2, respectively. The 
system can be represented by four simultaneous equations. The pressure difference 
due to elevation and friction is: 
 

 

Figure 2: Water Pumping System 
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∆ܲ = ଶݓ7.2 + (ସ଴௠)(ଵ଴଴଴௞௚/௠)(ଽ.଼଴଻௠/௦)(ଵ଴଴଴	௉௔/௞௉௔)                                                      (6) 

Equation (4), (5) and mass balance    ݓ = ଵݓ +  ଶ                                           (7)ݓ
The objective here is to minimize ∆ܲsubject to the constraints (4), (5), (6), and (7). 
[Leibman et al., 1986] modified the above problem as given below: min ݂ =  ଷݔ
Subject to; ݔଷ = 250 + ଵݔ30 − ,ଵଶݔ6 ଷݔ = 300 + ଶݔ20 − ଷݔ 	,ଶଶݔ12 = 150 + ଵݔ)5. +  0					ଶ)ଶ,ݔ ≤ ܺ ≤ (9.422,5.903,276.42) 
In general, the equality constraints are difficult to deal with. So there is a need to 
transform equality constraints into inequality constraints by some means or the other.  
Typically, they are handled by either of the following two methods, viz., (1) 
eliminating the parameter and hence reducing the dimensions of the problem (2) an 
equality constraint is formulated into two inequalities by introducing deviation 
variables on problem parameter. In the present study, one variable is eliminated while 
the other two equalities are transformed into inequalities using method 1. Hence, the 
reformulated problem is as follows: min ݂ = ଷݔ = 150 + ଵݔ)5. +  ଶ)ଶݔ
Subject to; ݃1 = 12ݔ6 − 1ݔ30 − 249.9999999 + 150 + 1ݔ)5. + 2(2ݔ ≥ 0 ݃2 = 22ݔ12 − 2ݔ20 − 299.9999999 + 150 + 1ݔ)5. + 2(2ݔ ≥ 0				 0 ≤ ܺ ≤ (9.422,5.903) 
The global optimum obtained is: (x; f) = (6.293429, 3.821839; 201.159334). 
 

5.2 Parameter estimation of water quality model 

The second problem is a one-dimensional diffusion pollution problem[Wang et al., 
2008]. Consider a homogeneous stream region, where it is assumed that the flow field 
is steady. In this circumstance, the general advection-diffusion-reaction equation of 
the pollutant is defined by [Loughlin and Bowmer, 1975]. 
 

fun 
Error std 

DE DETLS DEILS DE DETLS DEILS 
fsph 5.50e-97 2.87e-93 0.00e+00 4.55e-96 2.34e-95 0.00e+00 
fack 3.70e-15 3.69e-15 3.70e-15 8.34e-23 5.54e-24 7.43e-21 
fsch 6.82e-04 6.82e-04 6.82e-04 7.43e-07 7.54e-06 5.43e-06 
fsal 1.99e-01 9.99e-02 9.99e-02 5.34e-02 6.45e-02 1.35e-02 
fras 8.26e+01 6.26e+01 5.46e+01 1.45e+01 1.43e+01 5.57e+01 
fros 2.45e+01 2.13e+01 2.05e+01 3.45e+02 4.54e+01 4.39e+01 
fgrw 0.00e+00 0.00e+00 0.00e+00 4.32e-31 4.55e-35 8.55e-34 
fpn1 1.35e-19 1.35e-19 1.35e-19 4.32e-26 9.36e-32 5.35e-28 
fpn2 1.29e-19 1.29e-19 1.29e-19 2.43e-23 4.56e-22 7.54e-22 
fwht 3.63e+02 1.36e+02 3.53e+02 5.59e+01 5.54e+01 4.44e+01 

Table 2: Comparison of proposed DEILS and DETLS with basic DE in terms of 
Mean error and standard deviation for benchmark functions 
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2

2

C C C
u D KC

t X X

  
  

                                                        (8) 
Where C(X, t) (mass/volume) is the concentration of the pollutant at downstream 
distance X and time t; X is distance from upstream boundary condition (length); u the 
cross-sectional mean stream velocity (length/time); D is longitudinal dispersion 
coefficient (length2/time); K denotes the first order reaction rate of the pollutant (time-

1).  
Assuming that the pollutant is injected instantaneously into the stream, we can 

obtain the equation of the pollutant for the process of diffusion, convection, and 
absorption, as follows: 

2

2

0

(0 ,0 )

( ,0) 0 (0 )

(0, ) ( ) ( , ) 0, (0 )

C C C
u D KC X t

t X X
C X X

C t C t C t t

  
         

    
                              (9) 

Where C0=m/Au, m the mass of the pollutant, A the mean cross sectional area of the 
stream. By using Laplace transform, we can easily obtain the analytic solution of (9): 

2( )
( , ) exp( )

44

m X ut
C X t Kt

DtA Dt


  
                               (10) 

According to the measured histories of the pollutant concentration, estimation of 
parameter vector Q = (u, D, K) can be formulated as an optimization problem, whose 
objective function is the total summation of square error (SSE). The total summation 
of square error, for the predicted data compared to measured data, can be cast in the 
discrete normalized form as 

' 2
0 0

1

( ( , , ) ( , ))
n

i

SSE C X t Q C X t


 
 

Where C’(X0, t) is the measured data of the pollutant concentration at X0, C (.) the 
predicted data at X0, and n the number of data 
 

fun DE DETLS DEILS 
fsph 21270 21110 19482 
fack 31950 30976 26839 
fsch 300000 300000 300000 
fsal 300000 300000 300000 
fras 300000 300000 300000 
fros 300000 300000 300000 
fgrw 23370 22474 19876 
fpn1 20730 20335 16521 
fpn2 21780 21885 18445 
fwht 300000 300000 300000 

Table 3: Mean number of function evaluation to achieve 
accuracy 10-6. 
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5.3 Transistor Modelling 

The mathematical model of the transistor design [Price, 1983]  is given by, 

Minimize 



4

1

222 )()(
k

kkxf 
                                                 (11)

 

Where 3
7315321 10({exp[)1(  xggxxxx kkk 245

3
85 }1)]10 xggxg kkk    

3
73216421 10({exp[)1(  xgggxxxx kkkk kkk gxgxg 415

3
94 }1)]10  

4231 xxxx   

Subject to: 0ix and the numerical constants ikg  are given by the matrix. 























4823.2113884.1348467.1115132.28

267.191461.111779.1013037.23

2153.209274.220677.102095.5

455.1703.0254.1369.0

982.0869.0752.0485.0

 

This objective function provides a least-sum-of-squares approach to the solution of 
a set of nine simultaneous nonlinear equations, which arise in the context of transistor 
modeling. 

6 Numerical results and comparisons 

6.1  Comparison between DETLS, DEILS and DE 

In this section we compare DETLS and DEILS with DE algorithm. The results in 
terms of average error and standard deviation are listed in Table II. Average error is 
defined as the difference between the true global optimum value and the value  

 

 

Figure 3(a): Performance curves of Ackley function 
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Figure 3(b): Performance curves of Griewank function 

 

 

Figure 3(c): Performance curves of PN1 function 

obtained by the algorithm. Table III provides number of function evaluations (NFE) 
obtained to achieve the desired accuracy of error i.e. 10-06. As it is clear from Table II 
that in term of average error and standard deviation all the algorithms give more or 
less similar results although in some cases DEILS performs slightly better than other 
algorithms. The superior performance of the proposed algorithms is more evident 
from Table III, which gives the average number of functions evaluations. If the 
algorithm does not achieve the desired accuracy then we have taken maximum 
number of function evaluation (=3, 00,000). From Table III we can see that DEILS 
takes less number of function evaluations to achieve the required fitness in 
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comparison to the basic DE and DETLS in five cases and there is a tie in remaining 
five cases. Second place goes to the DETLS algorithm. Performance curves  
 

 

Figure 3(d): Performance curves of sphere function 
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Deahc 
SPX 
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1.01e-32 

7.25e-13 
2.33e-30 

8.23e-07 
4.64e-07 

1.48e+01 
4.17e+00 

1.68e+00 
2.99e-01 

fsch 6.81e-04 
7.54e-06 

6.81e-04 
5.43e-06 

2.89e+02 
5.48e+02 

6.81e-01 
1.23e-01 

4.12e+03 
1.72e+03 

4.04e+03 
1.09e+03 

8.70e+03 
2.41e+02 

fsal 9.99e-02 
6.45e-02 

9.99e-02 
1.34e-02 

1.83e-01 
3.45e-03 

1.99e-01 
9.98e-02 

1.50e-01 
4.95e-02 

4.64e+00 
4.74e+00 

3.82e-01 
4.29e-02 

fras 6.25e+01 
1.43e+01 

5.46e+01 
5.56e+01 

2.45e+01 
2.43e+01 

1.29e+01 
8.56e+01 

1.35e+00 
1.03e+00 

1.75e+02 
3.37e+01 

5.78e+00 
1.83e+00 

fros 2.12e+01 
4.54e+01 

2.058e+01 
4.38e+01 

1.87e+00 
5.01e+01 

2.23e+00 
1.02e-01 

2.81e+01 
1.23e+01 

4.18e+00 
9.68e+01 

1.38e+03 
6.45e+02 

fgrw 0.00e+00 
4.54e-35 

0.00e+00 
8.54e-34 

4.94e-03 
4.79e-04 

7.39e-03 
1.08e-19 

2.96e-04 
1.48e-03 

1.07e-02 
1.30e-02 

1.09e+00 
2.24e-02 

fpn1 1.35e-19 
9.35e-32 

1.35e-19 
5.34e-28 

3.45e-06 
5.53e-05 

1.35e-19 
1.84e-18 

4.93e-02 
3.50e-02 

4.35e+00 
6.94e+00 

2.57e-01 
6.90e-02 

fpn2 1.29e-19 
4.55e-22 

1.29e-19 
7.54e-22 

2.39e-30 
4.34e-31 

1.29e-19 
7.34e-21 

4.39e-04 
2.20e-03 

1.50e+01 
1.58e+01 

2.29e+00 
3.72e-01 

fwht 1.35e+02 
5.54e+01 

3.52e+02 
4.43e+01 

3.05e+02 
2.34e+02 

1.49e+02 
4.34e+02 

4.28e+02 
3.82e+01 

7.90e+02 
1.27e+02 

3.28e+03 
2.77e+03 

Table 4: comparison of proposed DETLS and DEILS with other algorithms in 
terms of mean error and standard deviation (STD) for 10 benchmark function 
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(convergence graphs) of few selected functions are given in Fig3(a) – Fig3(d).From 
these illustrations it is evident that the convergence of proposed algorithms is faster 
than basic DE. 

6.2 Comparisons of proposed DETLS and DEILS with other algorithms 

The performances of the proposed algorithms are further compared with two other  
modified versions of DE namely DEahcSPX [Noman and Iba, 2008] and 
Trigonometric Mutation Differential Evolution, TDE [Fan and Lampinen, 2003]. We 
executed these algorithms with same parameter settings as given in relevant literature. 
Also we have compared the proposed algorithms with some state of the art 
evolutionary algorithms like G3+PCX, MGG+UNDX and MGG+SPX. For these 
three algorithms we have taken the results given in [Noman and Iba, 2008]. All these 
algorithms have reportedly given a good performance for a set of benchmark 
problems. The results obtained are summarized in Tables IV and V. In Table IV, the 
results are compared in term of average error and standard deviation. From this Table 
we can see that the proposed algorithms perform better in almost cases in comparison 
to the other algorithms. From Table V, which gives the number of function 
evaluations (NFE) we can see that DEILS takes less NFE in most of the functions to 
achieve the accuracy given in last column. Performance curves (convergence graphs) 
of few selected functions showing the comparison of the proposed algorithms with 
TDE and DESPX are illustrated in Fig. 4(a) – 4(d). 
 

fun DEahcSPX TDE DETLS DEILS 
fsph 87013 30750 21110 19482 
fack 129189 44340 30976 26839 
fsch 300000 300000 300000 300000 
fsal 300000 300000 300000 300000 
fras 300000 300000 300000 300000 
fros 299913 193380 300000 300000 
fgrw 121579 29880 22474 19876 
fpn1 96121 37500 20335 16521 
fpn2 85432 39060 21885 18445 
fwht 300000 300000 300000 300000 

Table 5: Mean number of function evaluation to achieve accuracy 10-6 
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Figure 4(a): Performance curves of Ackley function 

 

 

Figure 4(b): Performance curves Griewank function 
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Figure 4(c): Performance curves of PN1 function 

6.3 Numerical results of real life problems 

The experimental setting for this comparison is same as for benchmark problems 
except the population size NP=50. Method proposed by Deb [Deb, 2000], is used in 
the present study to handle constraints. Numerical result of water pumping system is 
given in Table VI. From this table it is clear that all the algorithms give almost same 
solution but DEILS takes lesser number of functions evaluations to find out the 
solution in comparison to other algorithms. 
Numerical results for parameter estimation of water quality model are summarized in 

Table VII. For the solution of this problem parameters are taken as X0 = 8km, the 

injected pollutant m=378.52g, cross sectional area A=14m2. And the exact values 
 

 

Figure 4(d): Performance curves of sphere function 
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 DE DETLS DEILS 

x1 6.29343 6.29343 6.29343 
x2 3.82184 3.82184 3.82184 
x3 201.15978 201.15934 201.15933 
g1 8.78565e-05 6.79518e-05 6.32518e-05 
g2 7.89362e-05 2.58852e-05 2.58832e-05 
f(X) 201.15978 201.15934 201.15933 
NFE 8762 6532 5825 

Table 6: Parameters, fitness and nfe values for the water pumping system 

 DE DETLS DEILS 
x1=u 0.530027 0.530003 0.52856 
x2=D 22.0001 22.0001 20.36604 
x3=K 0.0669998 0.0670001 0.07087 
f(X) 3.17559e-11 2.24631e-16 7.40720e-07 
NFE 6820 5630 6154 

 
Table 7: Parameters, fitness and nfe values for the water quality model problem 

of parameters (u, D, K) were assumed to be fixed at 0.53m/s, 22.0m2/s and 0.065/h 
respectively. We have taken a sample of 20 points with same interval 0.1158h 
between 3.2h and 5.4h. From Table VII it is clear that DETLS outperforms all the 
algorithms. The numerical results of transistor modeling problem is given in Table 
VIII. Here the proposed algorithms are compared with DE in terms objective function 
value and NFEs. From this Table we can see the excellent performance of DEILS 
which is clearly better than all remaining algorithms. 

7 Discussions and conclusions  

In this paper we proposed two LS schemes; Trigonometric Local Search (TLS) and 
Interpolated Local Search (ILS). These schemes are embedded in the structure of 
basic DE and are applied adaptively to explore the neighborhood of the best 
individual of the population. The corresponding algorithms are termed as DETLS and 
DEILS. Both the schemes make a judicious use of the exploration and exploitation 
abilities of the search mechanism and are therefore more likely to avoid false or 
premature convergence. These schemes are rather greedy in nature as they bias the 
new trial solution strongly in the direction where the best one of three individuals 
chosen for the mutation is and can therefore be viewed as good local searches. 

The simulation of results showed that the resulting DE variants are quite competent 
for solving problems of different dimensions in less number of function evaluations 
without compromising with the quality of solution. We have also compared our 
results with other variants of DE as well as with some other algorithms (DEahcSPX, 
TDE, G3+PCX, MGG+UNDX and MGG+SPX). The set of problems considered, 
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though small and limited show the promising nature of proposed algorithms. 
However, we would like to maintain that the work is still in the preliminary stages 
and efforts continue for advanced study. We intend to apply it for more complex 
problems and compare its performance with other versions of DE and with other 
optimization algorithms. 

 
 DE DETLS DEILS 

x1 0.901340 0.901337 0.901337 
x2 0.891164 0.891043 0.891043 
x3 3.87857 3.87943 3.87943 
x4 3.94653 3.94663 3.94663 
x5 5.32623 5.32509 5.32509 
x6 10.6267 10.6171 10.6171 
x7 0.0 0.0 0.0 
x8 1.08924 1.08832 1.08832 
x9 0.705675 0.706734 0.706734 

f(X) 0.0937829 0.0643636 0.0643636 
NFE 15940 11780 10710 

Table 8:  Parameters, fitness and nfe values for the transistor modeling problem 
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