
New Results of Related-key Attacks on All Py-Family of
Stream Ciphers

Lin Ding
(Information Science and Technology Institute, Zhengzhou, China

dinglin_cipher@163.com)

Jie Guan
(Information Science and Technology Institute, Zhengzhou, China

guanjie007@163.com)

Wen-long Sun
(Information Science and Technology Institute, Zhengzhou, China

swl881010@126.com)

Abstract: The stream cipher TPypy has been designed by Biham and Seberry in January 2007
as the strongest member of the Py-family of stream ciphers. At Indocrypt 2007, Sekar, Paul and
Preneel showed related-key weaknesses in the Py-family of stream ciphers including the
strongest member TPypy. Furthermore, they modified the stream ciphers TPypy and TPy to
generate two fast ciphers, namely RCR-32 and RCR-64, in an attempt to rule out all the attacks
against the Py-family of stream ciphers. So far there exists no attack on RCR-32 and RCR-64.
In this paper, we show that the related-key weaknesses can be still used to construct related-key
distinguishing attacks on all Py-family of stream ciphers including the modified versions RCR-
32 and RCR-64. Under related keys, we show distinguishing attacks on RCR-32 and RCR-64
with data complexity 2139.3 and advantage greater than 0.5. We also show that the data
complexity of the distinguishing attacks on Py-family of stream ciphers proposed by Sekar et

al. can be reduced from 193.72 to 149.32 . These results constitute the best attacks on the strongest
members of the Py-family of stream ciphers Tpypy, RCR-32 and RCR-64. By modifying the
key setup algorithm, we propose two new stream ciphers TRCR-32 and TRCR-64 which are
derived from RCR-32 and RCR-64 respectively. Based on our security analysis, we conjecture
that no attacks lower than brute force are possible on TRCR-32 and TRCR-64 stream ciphers.

Keywords: Cryptanalysis, Related-key Attack, Distinguishing Attack, Py-family of Stream
Ciphers, TRCR-32, TRCR-64.
Categories: D.4.6, E.3, K.6.5

1 Introduction

RC4 was designed by Rivest in 1987. It has inspired the design of a number of fast
stream ciphers, such as ISAAC [Robert, 96], Py [Biham, 05] and MV3 [Keller, 07].
Being the most widely used software stream cipher, RC4 is extremely simple and
efficient. At the time of the invention of RC4, its array based design was completely
different from the previous stream ciphers mainly based on linear feedback shift
registers.

Journal of Universal Computer Science, vol. 18, no. 12 (2012), 1741-1756
submitted: 15/9/11, accepted: 15/2/12, appeared: 28/6/12 © J.UCS

The stream ciphers Py [Biham, 05] and Py6 [Biham, 05], designed by Biham and
Seberry, were submitted to the eSTREAM project for analysis and evaluation in the
category of software based stream ciphers. However, due to several cryptanalytic
attacks on them [Paul, 06, Crowley, 06], a strengthened version Pypy [Biham, 06] was
proposed to rule out those attacks. The ciphers were promoted to the ‘Focus’ ciphers
of the Phase II of the eSTREAM project. The impressive speed of the ciphers made
them the forerunners in the competition. However, at Eurocrypt 2007, Wu and
Preneel showed key recovery attacks against the ciphers Py, Pypy, Py6 with chosen
IVs [Wu, 07]. This attack was subsequently improved by Isobe et al. [Isobe, 06].
Distinguishing attacks were reported against Py6 with 268.6 data and comparable time
by Paul and Preneel [Paul, 06]. These three attacks force the designers to again go for
modifications. As a result, three new ciphers TPypy, TPy and TPy6 were built, which
can very well be viewed as the strengthened versions of the previous ciphers Py, Pypy
and Py6 where the above attacks should not apply [Biham, 07]. Among all the
members of the Py-family of stream ciphers, the TPypy is conjectured to be the
strongest. The ciphers are normally used with 32-byte keys and 16-byte initial values
(or IV). However, the key size may vary from 1 to 256 bytes and the IV from 1 to 64
bytes. The ciphers were claimed by the designers to be free from related-key and
distinguishing attacks [Biham, 05, Wu, 07, Biham, 07].

For the analysis of TPypy, TPy and TPy6, several distinguishing attacks have
been proposed.
 Sekar, Paul and Preneel published distinguishing attacks on Py, Pypy, TPy

and TPypy with data complexities 2281 each [Sekar, 07a].
 (at ISC 2007). Sekar, Paul and Preneel showed new weaknesses in the

stream ciphers TPy and Py [Sekar, 07b]. Exploiting these weaknesses
distinguishing attacks on the ciphers are constructed where the best
distinguisher requires 2268.6 data and comparable time.

 (at WEWoRC 2007). Sekar, Paul and Preneel mounted distinguishing
attacks on TPy6 and Py6 with 2224.6 data and comparable time each [Sekar,
07c].

 (at SAC 2007). Yukiyasu Tsunoo et al. proposed a distinguishing attack on
Tpypy that requires 2199 words of keystreams [Tsunoo, 07].

 (at Indocrypt 2007). Sekar, Paul and Preneel presented related-key
distinguishing attacks on TPypy, TPy, Pypy and Py, whose data complexity
is 2193.7 [Sekar, 07d]. Moreover, they have modified Tpypy and TPy to
design two new ciphers RCR-32 and RCR-64 which were claimed to be free
from all attacks excluding brute force ones.

Compared with other results, the paper [Sekar, 07d] constitutes the best attack on
the strongest member of the Py-family of stream ciphers Tpypy. So far there exist no
attacks on RCR-32 and RCR-64. In this paper, we show that the related-key
weaknesses can be still used to construct related-key distinguishing attacks on all Py-
family of stream ciphers including the modified versions RCR-32 and RCR-64. Under
related keys, we show distinguishing attacks on RCR-32 and RCR-64 with data
complexity 2139.3 and advantage greater than 0.5. We also show that the data
complexity of the distinguishing attacks on Py-family of stream ciphers proposed by
Sekar et al. can be reduced from 193.72 to 149.32 . These results constitute the best attacks
on the strongest members of the Py-family of stream ciphers Tpypy, RCR-32 and

1742 Ding L., Guan J., Sun W.-L.: New Results of Related-key Attacks ...

RCR-64. By modifying the key setup algorithm, we propose two new stream ciphers
TRCR-32 and TRCR-64 which are derived from RCR-32 and RCR-64 respectively.
Based on our security analysis, we conjecture that no attacks lower than brute force
are possible on TRCR-32 and TRCR-64 stream ciphers.

This paper is organized as follows. In Section 2, the structure of all Py-family of
stream ciphers is briefly described and the previous related-key attacks are discussed.
In Section 3, related-key attacks against RCR-32 and RCR-64 are presented. In
Section 4, the improved related-key attacks against Py-family of stream ciphers are
presented. Two new stream ciphers TRCR-32 and TRCR-64 are proposed in Section
5. Section 6 concludes this paper.

2 Preliminaries

2.1 Brief Description of Py-family of Stream Ciphers

In each of the Py-family of stream ciphers two rolling arrays have been used. One
array P is of 256 bytes that contains a permutation of all the values from 0 to 255 and
second array Y is an array of size 260 where each word is of 32 bit and is indexed
from -3 to 256. Each of the Py-family of stream ciphers is composed of three parts:
(1) a key setup algorithm, (2) an IV setup algorithm and (3) a round function or
pseudorandom bit generation algorithm (PRBG). The first two parts are used for the
initial one-time mixing of the secret key and the IV. These parts generate a
pseudorandom internal state composed of (1) a permutation P of 256 elements, (2) a
32-bit array Y of 260 elements and (3) a 32-bit variable s. The key/IV setup uses two
intermediate variables: (1) a fixed permutation of 256 elements denoted by
internal_permutation and (2) a variable EIV whose size is equal to that of the IV. The
round function, which is executed iteratively, is used to update the internal state (i.e.,
P, Y and s) and to generate pseudorandom output bits. The key setup algorithms of
the TPypy, the TPy, the Pypy and the Py are identical. Notation for different parts of
the four ciphers is provided in Table 2.

Part RCR-32 RCR-64 TPypy TPy Pypy Py

Key Setup KS KS KS KS KS KS
IV Setup IVS1 IVS1 IVS1 IVS1 IVS2 IVS2

Round Function RF3 RF4 RF1 RF2 RF1 RF2

Table 1: Description of the ciphers RCR-32, RCR-64, TPypy, TPy, Pypy and Py

Due to space constraints, the KS, the IVS1, the IVS2, the RF1 and the RF2, as
mentioned in Table 2, are described in Appendix A. The RF3 and RF4 are described in
Appendix B. The details of the algorithms can also be found in [Biham, 05, Wu, 07,
Biham, 07, Sekar, 07d].

In this paper, the notation and the convention followed are described below.
 The outputs generated when key1 and key2 are used are denoted by O and Z

respectively.
 ()

a
bO (or ()

a
bZ) denotes the b-th bit (b=0 is the least significant bit or lsb) of

1743Ding L., Guan J., Sun W.-L.: New Results of Related-key Attacks ...

the second output word generated at round a when key1 (or key2) is used. We
do not use the first output word anywhere in our analysis.

 1 1,a aP Y and 1
as are the inputs to the PRBG at round a when key1 is used. It is

easy to see that when this convention is followed the aO takes a simple

form:  [1] [[208]]a a a aO s Y Y P    . The same applies to key2.

 1 1[], []a aP b Y b denote the b-th elements of arrays 1
aP and 1

aY respectively, when

key1 is used. The same applies to key2.
 1 () 1 ()[] , []a a

i iP b Y b denote the i-th bits of

elements 1 []aP b and 1 []aY b respectively, when key1 is used. The same applies

to key2.
 The operators ‘+’, ‘-’ and ‘⊕’ denote addition modulo 232, subtraction

modulo 232 and bitwise exclusive-or respectively, ∩ denotes set intersection
and ∪ denotes set union.

2.2 Sekar et al.'s Attacks on Py-family of Stream Ciphers at Indocrypt 2007

In paper [Sekar, 07d], Sekar, Paul and Preneel presented related-key distinguishing
attacks on TPypy, TPy, Pypy and Py, whose data complexity is 2193.7. They show that,
when used with the identical IVs of 16 bytes each, if two long keys key1 and key2 of
256 bytes each, are related in the following manner,

C1. key1[16]⊕key2[16] = 1,
C2. key1[17]≠key2[17] and
C3. key1[i]=key2[i], {16,17}i 

Then, they showed that the relation between two keys (C1-C3) can be traced
through various parts of the Py-family of stream ciphers (i.e., TPypy, TPy, Pypy and
Py). That is, using the above relation, they exploited the weaknesses of the key setup
algorithms of Py-family of stream ciphers, and propagated through the IV setup
algorithms and finally induced biases in the keystream outputs. Here, the process of
trace is skipped, and we consider only the result of this process. Let D denote the
event 1 2[] []Y i Y i (where 3 12i  ) after IV setup. Then we have a proposition from

[Sekar, 07d].
Proposition 1 [Sekar, 07d]. Under the relation between the keys (C1-C3), the

event D after key setup and IV setup occurs with probability
16

28.4 28.5255
Pr() 2 2

256
D      

 

As shown in paper [Sekar, 07d], in the first 17 rounds of IV setup part-2 (see
Algorithm 2 of Appendix A), the differences in key [16] and key [17] between key1
and key2 causes the internal state s to be different, and then causes EIV to be different
in the following round and hence 1 2P P . In the subsequent rounds, the mixing

becomes more random. Finally, at the end of IV setup,

1 2[] []Y i Y i (where 3 12i  ), 1 2P P , 1 2s s and 1 2[] []Y i Y i (where 13 256i ).

Thus, the internal state P, s and []Y i (where 13 256i ) after IV setup can be

considered to be uniformly distributed and independent.

1744 Ding L., Guan J., Sun W.-L.: New Results of Related-key Attacks ...

After the process of trace, they finally induced biases in the least significant bit of
the outputs at the 1st and the 3rd rounds. That is,

 1 3 1 3
(0) (0) (0) (0) 96.4

1 1
Pr 0 1

2 2
O O Z Z

       
 

Therefore, using Theorem 6 of [Baigneres, 04], they showed that the number of
samples required to establish an optimal distinguisher with advantage greater than 0.5
is 2193.7.

3 Related-key Distinguishing Attacks on RCR-32 and RCR-64

In this section, we will present our related-key distinguishing attacks on RCR-64 and
RCR-32 stream ciphers. The key/IV setup algorithms of RCR-64 and RCR-32 are
identical with those of TPy and TPypy. The round function of RCR-64 and RCR-32
are also very similar to those of the TPy and TPypy. The only changes in the round
function are that: the variables rotation of the quantity s is replaced by a constant
rotation of 19. Single round of RCR-64 and RCR-32 are shown in algorithm 4 of
Appendix B.

Since the first 32-bit keystream word of RF3 at each round is skipped, thus, they
consider only the round function RF3 of Algorithm 4 (see Appendix B). Let

1 1 1
1 1 1, ,s P Y (or 1 1 1

2 2 2, ,s P Y) denote the internal state s, P and Y after IV setup when key1 (or

key2) is used. At the end of any round i(i≥1), the internal state is updated
to 1 1 1

1 1 1, ,i i is P Y   (or 1 1 1
2 2 2, ,i i is P Y  ) when key1 (or key2) is used. In our attacks on RCR-

64 and RCR-32, we will induce biases in the outputs at the 1st and the 2nd rounds, not
1st and the 3rd rounds. The formulas for the least significant bit of the outputs
generated at rounds 1 and 2 when key1 (the output words are denoted by O) and key2
(the output words are denoted by Z) are used are given below.

1 2 1 1 2
(0) 1 (0) 1 (0) 1 1 (0)[1] [[208]]O s Y Y P    (1)

 2 3 2 2 3
(0) 1 (0) 1 (0) 1 1 (0)[1] [[208]]O s Y Y P    (2)
1 2 1 1 2
(0) 2 (0) 2 (0) 2 2 (0)[1] [[208]]Z s Y Y P    (3)
2 3 2 2 3
(0) 2(0) 2 (0) 2 2 (0)[1] [[208]]Z s Y Y P    (4)

Recall the round function RF3 of Algorithm 3. When the event D occurs,
1 1

1 2[1] [1]Y Y   and 2 2
1 2[1] [1]Y Y   are always satisfied. Thus,

1 1 1 1
1 2 1 (0) 2 (0)[1] [1] [1] [1]Y Y Y Y      

2 2 2 2
1 2 1 (0) 2 (0)[1] [1] [1] [1]Y Y Y Y      

Let 1 2 3, ,C C C and 4C denote 1 2 2 3 1 2
1 1 (0) 1 1 (0) 2 2 (0)[[208]] , [[208]] , [[208]]Y P Y P Y P and

2 3
2 2 (0)[[208]]Y P , respectively. In order to make 1 2 3 4 0C C C C    (denoted by

event G) to be satisfied with a high probability, some conditions on the elements of P1
and P2 should be simultaneously satisfied. Concluded from a large number of
experiments, it is determined that when the two conditions 2 3

1 1[208] [208] 1P P 

(denoted by event U1) and 2 3
2 2[208] [208] 1P P  (denoted by event U2) are

1745Ding L., Guan J., Sun W.-L.: New Results of Related-key Attacks ...

simultaneously satisfied, the probability that the event G occurs is quite close to 1.
Running simulation, it is determined that

8 8 16
1 2Pr() Pr() 2 2 2G U U      

The formulas for 3
1s and 3

2s is given below:
3 2 2 3 2 3
1 1 1 1 1 132([[72]] [[239]],19)s RTOTL s Y P Y P   (5)
3 2 2 3 2 3
2 2 2 2 2 232([[72]] [[239]],19)s RTOTL s Y P Y P   (6)

Let 2 3 2 3
1 1 1 1 1[[72]] [[239]]c Y P Y P  and 2 3 2 3

2 2 2 2 2[[72]] [[239]]c Y P Y P  .

Let and  represent the carry bits from the additions in the equations (5) and (6),

respectively. Thus, we know 2 2
1 1 1 1s c s c     and 2 2

2 2 2 2s c s c     .

Therefore,
2 3 2 3
1 (0) 1 (0) 2 (0) 2(0)s s s s  
2 2 2 2
1 (0) 1 (19) 1(19) (19) 2 (0) 2 (19) 2(19) (19)s s c s s c        
2 2 2 2
1 (0) 1 (19) 2 (0) 2 (19) 1(19) 2(19) (19) (19)s s s s c c         

Where
2 2

(19) 1 (18) 1(18) (18) 1 (18) (18) 1(18)s c s c    
2 2

(19) 2 (18) 2(18) (19) 2 (18) (19) 2(18)s c s c    

We now state the following proposition.
Proposition 2. 2 3 2 3

1 (0) 1 (0) 2 (0) 2(0) 0s s s s    when the following conditions are

simultaneously satisfied.
1. 2 2 2 2

1 (0) 1 (19) 2 (0) 2 (19) (19) (19) 0s s s s        (event E1)

2. 3 3
1 2[72] [72]P P { 3, 2, ,11}a     ,
3 3

1 2[239] [239]P P b  { 3, 2, ,11}    and b a (event E2)

Proof. Recall the round function RF3 of Algorithm 4.
Since it has 1 2[] []Y i Y i (where 3 12i  ) at the end of IV setup, and then the

event E2 implies 2 3 2 3
1 1 2 2[[72]] [[72]]Y P Y P and 2 3 2 3

1 1 2 2[[239]] [[239]]Y P Y P . That is,

1 2 1(19) 2(19)c c c c   .

Thus,
2 3 2 3
1 (0) 1 (0) 2 (0) 2(0)s s s s  
2 2 2 2
1 (0) 1 (19) 1(19) (19) 2 (0) 2 (19) 2(19) (19)s s c s s c        
2 2 2 2
1 (0) 1 (19) 2 (0) 2 (19) (19) (19)s s s s       

Therefore, condition 1 and condition 2 together
imply 2 3 2 3

1 (0) 1 (0) 2 (0) 2(0) 0s s s s    .

This completes the proof. □
Since the internal state P, s and []Y i (where13 256i ) after IV setup can be

considered to be uniformly distributed and independent, and then we know

1
1Pr() 2E  and 8 8 23.7

2

15 14
Pr() 2 2 2

256 256
E        .

1746 Ding L., Guan J., Sun W.-L.: New Results of Related-key Attacks ...

The two events E1 and E2 are assumed to be independent to facilitate calculation
of bias. The actual value without independence assumption is in fact more, making
the attack marginally stronger. Let E denote the event 1 2E E . Hence,

24.7
1 2 1 2Pr() Pr() Pr() Pr() 2E E E E E     .

Therefore, from Proposition 1 and equations (1-4), we observe
that 1 2 1 2

(0) (0) (0) (0) 0O O Z Z    holds when the following events simultaneously

occur.
D, G and E.

In the following, we calculate the probability that 1 2 1 2
(0) (0) (0) (0) 0O O Z Z    is

satisfied. Let L denote the event ()D G E  . Thus,

  28.5 16 24.7 69.2Pr() Pr() Pr() Pr 2 2 2 2L D G E          

Assuming randomness of the outputs when event L does not occur, we have

     1 2 1 2 69.2 69.2 69.2
(0) (0) (0) (0)

1 1
Pr 0 2 1 1 2 1 2

2 2
O O Z Z             

To compute the number of samples required to establish an optimal distinguisher
with advantage greater than 0.5, we use the following equation from [Paul, 06,
Baigneres, 04].

2

1
0.4624N

p
 

Here, 70.22p  . Therefore, the number of samples is 139.32 .

Therefore, the number of samples required for our distinguishing attack is 139.32 .

4 Improved Related-key Distinguishing Attacks on Py-family
Stream Ciphers

In this section, we will apply our related-key attacks on Py-family of stream ciphers
(i.e., TPypy, TPy, Pypy and Py) to improve the attacks presented by Sekar et al.

Since the first 32-bit keystream word of RF1 at each round is skipped, thus, we
consider only the round function RF1 of Algorithm 3 (see Appendix A).

The formulas for 3
1s and 3

2s is given below:
3 2 2 3 2 3 3
1 1 1 1 1 1 132([[72]] [[239]], ([116] 18) mod 32)s RTOTL s Y P Y P P    (7)
3 2 2 3 2 3 3
2 2 2 2 2 2 232([[72]] [[239]], ([116] 18) mod 32)s RTOTL s Y P Y P P    (8)

Let 2 3 2 3
1 1 1 1 1[[72]] [[239]]e Y P Y P  , 2 3 2 3

2 1 1 1 1[[72]] [[239]]e Y P Y P  ,
3

1 1([116] 18) mod32d P  and 3
2 2([116] 18) mod32d P  . Let  and  represent the

carry bits from the additions in the equations (7) and (8), respectively. Thus, we
know 2 2

1 1 1 1s e s e     and 2 2
2 2 2 2s e s e     . Without loss of generality, set

lsb of  and  (denoted by (0) and (0)) be 0.

Therefore,
2 3 2 3
1 (0) 1 (0) 2 (0) 2(0)s s s s  

1747Ding L., Guan J., Sun W.-L.: New Results of Related-key Attacks ...

1 1 1 2 2 2

2 2 2 2
1 (0) 1 () 1() () 2 (0) 2 () 2() ()d d d d d ds s e s s e        

1 2 1 2 1 2

2 2 2 2
1 (0) 1 () 2 (0) 2 () 1() 2() () ()d d d d d ds s s s e e         

Where

1

1 1 1 1 1 1

1

() 2 2
1 (1) 1(1) (1) 1 (1) (1) 1(1) 1

0, 0

, 1 31d
d d d d d d

d

s e s e d


      

     

2

2 2 2 2 2 2

2

() 2 2
1 (1) 1(1) (1) 1 (1) (1) 1(1) 2

0, 0

, 1 31d
d d d d d d

d

s e s e d


      

     

Similarly, we now state the following proposition.
Proposition 2. 2 3 2 3

1 (0) 1 (0) 2 (0) 2(0) 0s s s s    when the following conditions are

simultaneously satisfied.
1. 1 2d d (event F1)

2.
1 2 1 2

2 2 2 2
1 (0) 1 () 2 (0) 2 () () () 0d d d ds s s s        (event F2)

3. 3 3
1 2[72] [72]P P { 3, 2, ,11}a     ,
3 3

1 2[239] [239]P P b  { 3, 2, ,11}    and b a (event F3)

Proof. Recall the round function RF3 of Algorithm 4.
Since it has 1 2[] []Y i Y i (where 3 12i  ) at the end of IV setup, and then the

condition F3 implies 2 3 2 3 2 3 2 3
1 1 1 1 2 2 2 2[[72]] [[239]] [[72]] [[239]]Y P Y P Y P Y P   . Conditions F1

and F3 together imply
1 21() 2() 0d de e  .

Thus,
2 3 2 3
1 (0) 1 (0) 2 (0) 2(0)s s s s  

1 2 1 2 1 2

2 2 2 2
1 (0) 1 () 2 (0) 2 () 1() 2() () ()d d d d d ds s s s c c         

1 2 1 2

2 2 2 2
1 (0) 1 () 2 (0) 2 () () ()d d d ds s s s       

Therefore, condition 1, condition 2 and condition 3 together
imply 2 3 2 3

1 (0) 1 (0) 2 (0) 2(0) 0s s s s    .

This completes the proof. □
Since the internal state P, s and []Y i (where13 256i ) after IV setup can be

considered to be uniformly distributed and independent, and then we know

5
1Pr() 2F  , 1

2Pr() 2F  and 8 8 23.7
3

15 14
Pr() 2 2 2

256 256
F        .

Let F denote the event 1 2 3F F F  . Hence,
29.7

1 2 3 1 2 3Pr() Pr() Pr() Pr() Pr() 2F F F F F F F       .

Therefore, we observe that 1 2 1 2
(0) (0) (0) (0) 0O O Z Z    holds when the following

events simultaneously occur.
D, G and F.

Let Q denote the event ()D G F  . Then, we get

  28.5 16 29.7 74.2Pr() Pr() Pr() Pr 2 2 2 2Q D G F          

1748 Ding L., Guan J., Sun W.-L.: New Results of Related-key Attacks ...

Assuming randomness of the outputs when event Q does not occur, we have

     1 2 1 2 74.2 74.2 74.2
(0) (0) (0) (0)

1 1
Pr 0 2 1 1 2 1 2

2 2
O O Z Z             

To compute the number of samples required to establish an optimal distinguisher
with advantage greater than 0.5, we use the following equation from [Paul, 06,
Baigneres, 04].

2

1
0.4624N

p
 

Here, 75.22p  . Therefore, the number of samples is 149.32 . Compared with paper

[Sekar, 07d], in our related-key attacks on Py-family of stream ciphers, we induce
biases in the outputs at the 1st and the 2nd rounds, not 1st and the 3rd rounds. We
make a more accurate evaluation on the probability that 2 3 2 3

1 (0) 1(0) 2(0) 2(0) 0s s s s    holds.

Hence, our attacks improve the attacks proposed in [Sekar, 07d] obviously in terms of
data complexity.

5 New Stream Ciphers: TRCR-32 and TRCR-64

5.1 Comparison of Our Results with Previous Attacks

The stream cipher TPypy has been designed by Biham and Seberry in January 2007
as the strongest member of the Py-family stream ciphers. At Indocrypt 2007, Sekar,
Paul and Preneel showed related-key weaknesses in the Py-family of stream ciphers
including the strongest member TPypy. Furthermore, they modified the stream
ciphers TPypy and TPy to generate two fast ciphers, namely RCR-32 and RCR-64, in
an attempt to rule out all the attacks against the Py-family of stream ciphers. So far
there exist no attacks on RCR-32 and RCR-64.

Attacks Py6 Py Pypy TPy6 TPy TPypy RCR-32 RCR-64

[Paul, 06] X 289.2 X X 289.2 X X X

[Crowley, 06] X 272 X X 272 X X X

 [Wu, 07] ＜224 224 224 X X X X X

[Isobe, 06] ＜224 224 224 X X X X X

 [Paul, 06] 268.6 X X 268.6 X X X X

[Sekar, 07a] X 2281 2281 X 2281 2281 X X

[Sekar, 07b] X 2268.6 X X 2268.6 X X X

 [Sekar, 07c] 2224.6 X X 2224.6 X X X X

 [Tsunoo, 07] X X X X X 2199 X X

 [Sekar, 07d] X 2193.7 2193.7 X 2193.7 2193.7 X X

Related key(this paper) X 2149.3 2149.3 X 2149.3 2149.3 2139.3 2139.3

Table 2: Comparison of our results with previous attacks on Py-family of stream
ciphers (Note: ‘X’ denotes that the attack does not work.)

1749Ding L., Guan J., Sun W.-L.: New Results of Related-key Attacks ...

In Section 3 and 4, we show that the related-key weaknesses can be still used to
construct related-key distinguishing attacks on all Py-family of stream ciphers
including the modified versions RCR-32 and RCR-64. Under related keys, we show
distinguishing attacks on RCR-32 and RCR-64 with data complexity 2139.3 and
advantage greater than 0.5. We also show that the data complexity of the
distinguishing attacks on Py-family of stream ciphers proposed by Sekar et al. can be
reduced from 193.72 to 149.32 . These results constitute the best attacks on the strongest
members of the Py-family of stream ciphers Tpypy, RCR-32 and RCR-64. It is shown
that the above attacks also work on the other members TPy, Pypy and Py.

Table 3 summarizes the attacks on Py-family of stream ciphers. Compared with
previous attacks, our results constitute the best attacks on the strongest members of
the Py-family of stream cipher Tpypy. We also introduce the first attack on RCR-32
and RCR-64, which shows the modifications made by Sekar, Paul and Preneel to
generate RCR-32 and RCR-64 are not reasonable. In the next subsection, we will
present our modifications to improve all Py-family of stream ciphers.

5.2 New Proposal for Key Setup Algorithm

In [Sekar, 07d], Sekar, Paul and Preneel showed related-key weaknesses in the Py-
family of stream ciphers, and then made simple modifications to the ciphers Tpypy
and TPy to build RCR-32 and RCR-64 respectively. In their modified designs, the key
scheduling algorithms of RCR-32 and RCR-64 are identical with those of TPypy and
TPy. They modified the round function of TPypy and TPy to build RCR-32 and RCR-
64 respectively. Our attacks on RCR-32 and RCR-64 show their modifications are not
reasonable. In this subsection, we propose a new proposal for key setup algorithm
which is similar to the original.

Our attacks can succeed mainly because of the weaknesses of the key setup
algorithms of Py-family of stream ciphers. Hence, modifying the key setup algorithm
is a more reasonable choice. According to Proposition 1, under the relation between
the keys (C1-C3), the event D after key setup and IV setup occurs with
probability 28.52 . This show the initialization of Py-family of stream ciphers is quite
bad in terms of the completeness property. Recall the key setup algorithm (see
Algorithm 1 of Appendix A). Each element of array Y has been updated only once in
key setup algorithm, which makes the event D after key setup and IV setup occur with
high probability.

In this subsection, we propose two new stream ciphers, TRCR-32 and TRCR-64
derived from RCR-32 and RCR-64, which are shown to be secure against all the
existing attacks on RCR-32 and RCR-64.The IV setup algorithms and round functions
of TRCR-32 and TRCR-64 are identical with those of RCR-32 and RCR-64. The only
changes in the key setup algorithms are that: the array Y is updated twice not once.
The new proposal for key setup algorithm of all Py-family of stream ciphers is shown
in Algorithm 5.

1750 Ding L., Guan J., Sun W.-L.: New Results of Related-key Attacks ...

Algorithm 5 Key Setup Algorithm of TRCR-32 and TRCR-64
Require: A key, an IV and an initial permutation
Ensure: An array Y [−3, . . . , 256] and a 32-bit variable s
keysizeb = size of key in bytes;
ivsizeb = size of IV in bytes;
YMININD=-3;
YMAXIND=256;
s = internal_permutation[keysizeb-1];
s = (s<<8) | internal_permutation[(s ^(ivsizeb-1))&0xFF];
s = (s<<8) | internal_permutation[(s ^ key[0])&0xFF];
s = (s<<8) | internal_permutation[(s ^ key[keysizeb-1])&0xFF];
for(j=0; j<keysizeb; j++) /* Part-1*/
{

s = s + key[j];
s0 = internal_permutation[s&0xFF];
s = ROTL32(s, 8) ^ (u32)s0;

}
/* Tweak - Initialize the array Y */
for(i=YMININD, j=0; i<=YMAXIND; i++) /* Part-2*/
{

s = s + key[j];
s0 = internal_permutation[s&0xFF];
Y(i) = s = ROTL32(s, 8) ^ (u32)s0;
j = j+1 mod keysizeb;

}
/* Tweak - Update the array Y */
for(i=YMAXIND, j= YMININD; i>=YMININD; i--) /* Part-3*/
{

s = s +Y[j];
s0 = internal_permutation[s&0xFF];
Y(i) = s = ROTL32(s, 8) ^ (u32)s0;
j++;

}

5.3 Security Analysis

In this section we justify how the new stream ciphers TRCR-32 and TRCR-64 should
be able to resist several common attacks against array-based stream ciphers.
(i) Resistance to Distinguishing Attacks, Differential attacks, Algebraic attacks

and Guess-and-Determine Attacks: Since the IV setup algorithms and round
functions of TRCR-32 and TRCR-64 are identical with those of RCR-32 and
RCR-64, these attacks are no longer applicable in new stream ciphers.

(ii) Resistance to Related-key attacks [Sekar, 07d, this paper]: When tracing the
relation between two keys (C1-C3) through various parts of the Py-family of
stream ciphers, we find that the internal state (i.e., P, Y and s) are uniformly
distributed at random after key/IV setup algorithms. At the end of Part-2 of

1751Ding L., Guan J., Sun W.-L.: New Results of Related-key Attacks ...

Algorithm 5, we have 1 2P P , 1 2s s and 1 2[] []Y i Y i (where 13i ). In the

Part-3 of Algorithm 5, we use one element of array Y to update the other
element of array Y, instead of the key. The difference in arrays Y1 and Y2
(i.e., 1 2[13] [13]Y Y) causes the internal state s to be different, and then

causes the array Y to be different. In the subsequent rounds of IV setup
algorithm, the mixing becomes more random. Finally, at the end of IV
setup, 1 2Y Y , 1 2P P and 1 2s s . Hence, the new stream ciphers TRCR-32

and TRCR-64 have much better completeness properties than the original
RCR-32 and RCR-64 stream ciphers, and then the internal state P, s and Y
after IV setup algorithm can be considered to be uniformly distributed and
independent. Therefore, the outputs generated in the keystream generation
algorithm are not expected to be correlated. Hence, the new stream ciphers
TRCR-32 and TRCR-64 are expected to be free from any correlations
between the outputs.

Based on our security analysis, we conjecture that no attacks lower than brute
force are possible on TRCR-32 and TRCR-64 stream ciphers.

6 Conclusions

In this paper, we show that the related-key weaknesses can be still used to construct
related-key distinguishing attacks on all Py-family of stream ciphers including the
modified versions RCR-32 and RCR-64. Under related keys, we show distinguishing
attacks on RCR-32 and RCR-64 with data complexity 2139.3 and advantage greater
than 0.5. We also show that the data complexity of the distinguishing attacks on Py-
family of stream ciphers proposed by Sekar et al. can be reduced from 193.72 to 149.32 .
These results constitute the best attacks on the strongest members of the Py-family of
stream ciphers Tpypy, RCR-32 and RCR-64. By modifying the key setup algorithm,
we propose two new stream ciphers TRCR-32 and TRCR-64 which are derived from
RCR-32 and RCR-64 respectively. Based on our security analysis, we conjecture that
no attacks lower than brute force are possible on TRCR-32 and TRCR-64 stream
ciphers.

We hope our results can be helpful in evaluating the security of Py-family stream
ciphers against related-key distinguishing attacks and we look forward to further work
in evaluating TRCR-32 and TRCR-64 against other kinds of cryptanalytic attacks.

Acknowledgements

I would like to thank David G. Rosado, Eduardo Fernández-Medina, Luis Enrique
Sánchez, Jan Jurjens and anonymous reviewers for their helpful comments on this
paper. This work was sponsored in part by the Science and Technology on
Communication Security Laboratory Foundation of China under Grant
No.9140C110202110C1101.

1752 Ding L., Guan J., Sun W.-L.: New Results of Related-key Attacks ...

References

[Baigneres, 04] Baigneres, T., Junod, P., Vaudenay, S.: How Far Can We Go Beyond Linear
Cryptanalysis?, In Proc. Int. Conf. on Asiacrypt, December 2004, 432–450.

[Biham, 05] Biham, E., Seberry, J.: Py (Roo): A Fast and Secure Stream Cipher using Rolling
Arrays, eSTREAM, ECRYPT Stream Cipher Project, Report 2005/023, 2005.

[Biham, 06] Biham, E., Seberry, J.: Pypy (Roopy): Another Version of Py, Ecrypt Record,
March 2006.

[Biham, 07] Biham, E., Seberry, J.: Tweaking the IV Setup of the Py Family of Ciphers – The
Ciphers Tpy, TPypy, and TPy6, January 2007 http://www.cs.technion.ac.il/biham/

[Crowley, 06] Crowley, P.: Improved Cryptanalysis of Py, In Record of Int. Workshop of
SASC 2006 - Stream Ciphers Revisited, ECRYPT Network of Excellence in Cryptology,
February 2006, 52-60.

[Isobe, 06] Isobe, T., Ohigashi, T., Kuwakado, H., Morii, M.: How to Break Py and Pypy by a
Chosen-IV Attack, eSTREAM, ECRYPT Stream Cipher Project, Report 2006/060.

[Keller, 06] Keller, N., Miller, S., Mironov, I., Venkatesan, R.: MV3: A new word based stream
cipher using rapid mixing and revolving buffers, In Proc. Int. Conf. on Topics in Cryptology-
CT-RSA, February 2007, 1-19.

[Paul, 06] Paul, S., Preneel, B., Sekar, G.: Distinguishing Attacks on the Stream Cipher Py. In
Proc. Int. Conf. on Fast Software Encryption, February 2006, 405-421.

[Paul, 06] Paul, S., Preneel, B.: On the (In)security of Stream Ciphers Based on Arrays and
Modular Addition, In Proc. Int. Conf. on Asiacrypt, December 2006, 69-83.

[Robert, 96] Robert, J.: ISAAC. In Proc. Int. Conf. on Fast Software Encryption, February
1996, 41–49.

[Sekar, 07a] Sekar, G., Paul, S., Preneel, B.: Weaknesses in the Pseudorandom Bit Generation
Algorithms of the Stream Ciphers TPypy and TPy, February 2007
http://eprint.iacr.org/2007/075.pdf

[Sekar, 07b] Sekar, G., Paul, S., Preneel, B.: New Weaknesses in the Keystream Generation
Algorithms of the Stream Ciphers TPy and Py. In Proc. Int. Conf. on Information Security,
June 2007, 249-262.

[Sekar, 07c] Sekar, G., Paul, S., Preneel, B.: New Attacks on the Stream Cipher TPy6 and
Design of New Ciphers the TPy6-A and the TPy6-B, In Western European Workshop on
Research in Cryptology-WEWoRC, July 2007, 127-141.

[Sekar, 07d] Sekar, G., Paul, S., Preneel, B.: Related-key Attacks on the Py-family of Ciphers
and an Approach to Repair the Weaknesses. In Proc. Int. Conf. on Indocrypt, December 2007,
58-72.

[Tsunoo, 07] Tsunoo, Y., Saito, T., Kawabata, T., Nakashima, H.: Distinguishing Attack
against TPypy. In Proc. Int. Conf. on Selected Areas in Cryptography, August 2007, 396-407.

[Wu, 07] Wu, H., Preneel, B.: Differential Cryptanalysis of the Stream Ciphers Py, Py6 and
Pypy, In Proc. Int. Conf. on Eurocrypt, May 2007, 276-290.

1753Ding L., Guan J., Sun W.-L.: New Results of Related-key Attacks ...

Appendix A Various Parts of Py-family of Stream Ciphers

Algorithm 1 Key setup: KS
Require: A key, an IV and an initial permutation
Ensure: An array Y [−3, . . . , 256] and a 32-bit variable s
keysizeb = size of key in bytes;
ivsizeb = size of IV in bytes;
YMININD=-3;
YMAXIND=256;
s = internal_permutation[keysizeb-1];
s = (s<<8) | internal_permutation[(s ^(ivsizeb-1))&0xFF];
s = (s<<8) | internal_permutation[(s ^ key[0])&0xFF];
s = (s<<8) | internal_permutation[(s ^ key[keysizeb-1])&0xFF];
for(j=0; j<keysizeb; j++)
{

s = s + key[j];
s0 = internal_permutation[s&0xFF];
s = ROTL32(s, 8) ^ (u32)s0;

}
/* Again */
for(j=0; j<keysizeb; j++)
{

s = s + key[j];
s0 = internal_permutation[s&0xFF];
s ^= ROTL32(s, 8) + (u32)s0;

}
/* Initialize the array Y */
for(i=YMININD, j=0; i<=YMAXIND; i++)
{

s = s + key[j];
s0 = internal_permutation[s&0xFF];
Y(i) = s = ROTL32(s, 8) ^ (u32)s0;
j = j+1 mod keysizeb;

}

1754 Ding L., Guan J., Sun W.-L.: New Results of Related-key Attacks ...

Algorithm 2 The IV setup algorithms of IVS1 and IVS2 - initialization of P and
EIV
Require: The Y, the s from the key setup algorithm and the IV
Ensure: Rolling arrays P[0, . . . , 255], EIV [0, . . . , ivsizeb − 1], the variable s
/* Create an initial permutation */
u8 v= iv[0] ^ ((Y(0)>>16)&0xFF);
u8 d=(iv[1 mod ivsizeb] ^ ((Y(1)>>16)&0xFF))|1;
for(i=0; i<256; i++)
{

P(i)=internal_permutation[v];
v+=d;

}
/* Now P is a permutation */
/* Initialize s */
s = ((u32)v<<24) ^ ((u32)d<<16) ^ ((u32)P(254)<<8) ^ ((u32)P(255));
s ^= Y(YMININD)+Y(YMAXIND);
for(i=0; i<ivsizeb; i++)
{

s = s + iv[i] + Y(YMININD+i);
u8 s0 = P(s&0xFF);
EIV(i) = s0;
s = ROTL32(s, 8) ^ (u32)s0;

}
/* Again, but with the last words of Y, and update EIV */
for(i=0; i<ivsizeb; i++)
{

s = s + iv[i] + Y(YMAXIND-i);
/*s = s + EIV((i+ivsizeb-1)mod ivsizeb) + Y(YMAXIND-i); for IVS1.*/
u8 s0 = P(s&0xFF);
EIV(i) += s0;
s = ROTL32(s, 8) ^ (u32)s0;

}

for(i=0; i<260; i++) //IV setup part-2
{

u32 x0 = EIV(0) = EIV(0) ^ (s&0xFF);
rotate(EIV);
swap(P(0), P(x0));
rotate(P);
Y(YMININD)=s=(s ^ Y(YMININD))+Y(x0);
/*s=ROTL32(s,8)+Y(YMAXIND);Y(YMININD)+=s^Y(x0); for IVS1.*/
rotate(Y);

}
s=s+Y(26)+Y(153)+Y(208);
if(s==0)

s=(keysizeb*8)+((ivsizeb*8)<<16)+0x87654321;

1755Ding L., Guan J., Sun W.-L.: New Results of Related-key Attacks ...

Algorithm 3 Round functions: RF1 and RF2
Require: Y [−3, ..., 256], P[0, ..., 255], a 32-bit variable s
Ensure: 32-bit random output (for RF1) or 64-bit random output (for RF2)
/*Update and rotate P*/
swap (P[0], P[Y [185]&255]);
rotate (P);
/* Update s*/
s+ = Y [P[72]] − Y [P[239]];
s = ROTL32(s, ((P[116] + 18)&31));
/* Output 4 or 8 bytes (least significant byte first)*/
output ((ROTL32(s, 25) � Y [256]) + Y [P[26]]);/* This step is skipped for RF1.*/
output ((s�Y [−1]) + Y [P[208]]);
/* Update and rotate Y */
Y [−3] = (ROTL32(s, 14) � Y [−3]) + Y [P[153]];

rotate(Y);

Appendix B Round Function of RCR-32 and RCR-64

Algorithm 4 Round functions of RCR-32 and RCR-64: RF3 and RF4
Require: Y [−3, ..., 256], P[0, ..., 255], a 32-bit variable s
Ensure: 64-bit random output (for RCR-64) or 32-bit random output (for RCR-32)
/*Update and rotate P*/
swap (P[0], P[Y [185]&255]);
rotate (P);
/* Update s*/
s+ = Y [P[72]] − Y [P[239]];
s = ROTL32(s, 19); /*Tweak - the variable s undergoes a constant, non-zero rotation
(c = 19).*/
/* Output 4 or 8 bytes (the least significant byte first)*/
output ((ROTL32(s, 25) � Y [256]) + Y [P[26]]);/* This step is skipped for RF3.*/
output ((s �Y [−1]) + Y [P[208]]);
/* Update and rotate Y */
Y [−3] = (ROTL32(s, 14) � Y [−3]) + Y [P[153]];
rotate(Y);

1756 Ding L., Guan J., Sun W.-L.: New Results of Related-key Attacks ...

