
Automating the Analysis of Problem-solving
Activities in Learning Environments: the Co-Lab

Case Study

Rafael Duque
(University of Cantabria, Santander, Spain

rafael.duque@unican.es)

Lars Bollen
(University of Twente, Enschede, The Netherlands

l.bollen@utwente.nl)

Anjo Anjewierden
(University of Twente, Enschede, The Netherlands

a.a.anjewierden@utwente.nl)

Crescencio Bravo
(University of Castilla-La Mancha, Ciudad Real, Spain

crescencio.bravo@uclm.es)

Abstract: The analysis of problem-solving activities carried out by students in learning settings
involves studying the students’ actions and assessing the solutions they have created. This
analysis constitutes an ideal starting point to support an automatic intervention in the student
activity by means of feedback or other means to help students build their own knowledge. In
this paper, we present a model-driven framework to facilitate the automation of this problem-
solving analysis and of providing feedback. This framework includes a set of authoring tools
that enable software developers to specify the analysis process and its intervention mechanisms
by means of visual languages. The models specified in this way are computed by the
framework in order to create technological support to automate the problem-solving analysis.
The use of the framework is illustrated thanks to a case study in the field of System Dynamics
where problem-solving practices are analysed.

Keywords: Computer-supported learning environments, analysis of problem-solving activities,
model-driven development, visual languages.
Categories: L.0.0, L.3.4

1 Introduction

Computer-supported learning environments are now widely used because of their
potential not only to facilitate the communication between learners and teachers or to
create common information repositories but also to provide workspaces where
learners can create and manipulate artefacts to produce a solution to solve a problem
proposed previously by a teacher [de Jong, 98]. These learning environments can also
integrate analysis features [Duque, 12] that allow the characterization of the learners’

Journal of Universal Computer Science, vol. 18, no. 10 (2012), 1279-1307
submitted: 23/5/11, accepted: 24/5/11, appeared: 28/5/12 © J.UCS

activities and provide feedback about the impact of the students’ actions and about the
properties of the solutions produced [Arts, 02]. The feedback information, therefore,
can serve as an evaluation of the work carried out and of the fulfilment of the problem
goals, which is intended to improve the knowledge building of the learners [Bravo,
09]. These analysis processes can be particularly useful in pedagogical paradigms
such as discovery-based learning, which proposes that learners build their own
knowledge through the active participation in problem-solving processes [Dean, 06].
Thus, the analysis process enables the learners to build knowledge by means of
feedback about the impact of their actions, aimed at building and manipulating
artefacts to solve a problem.

A process aimed at producing feedback in the aforementioned learning settings
usually follows an observation-abstraction-intervention life cycle [Bravo, 08]. The
observation phase captures the actions carried out by the students and the solutions
created. The abstraction phase calculates analysis indicators [Dimitracopoulou, 04]
from the information captured usually in the form of raw data. Analysis indicators are
variables that characterize aspects of the problem-solving process (e.g., speed, amount
of work, etc.) and of the solutions (e.g., quality, size, cost, etc.). Finally, the
intervention phase focuses on producing feedback, evaluating the students’ work and
on providing advice on how to better approach a successful problem-solving process.
The intervention can also include other kinds of actions such as to inform the teacher
about the students’ work or, as a more advanced technique, to adapt or modify the
system’s behaviour or user interface to improve the problem-solving activity.

Implementing an analysis system from scratch for analysing problem-solving
activities as mentioned above involves costly and difficult tasks. It is necessary to
gather large amounts of data about students’ actions [Avouris, 05], to infer complex
indicators to characterize the students’ work and solutions produced
[Dimitracopoulou, 05], and to design and implement a set of suitable intervention
mechanisms [Mørch, 03] . In order to deal with the cost and effort of these tasks, we
looked at the challenge of producing computational support that enables the
automation of the observation-abstraction-intervention phases.

This article presents a computational framework that allows software developers
to specify and automate the problem-solving analysis and the generation of feedback.
According to [Booch, 05] [Bosch, 00], a framework is a partially complete software
system that can be extended through the instantiation of specific plug-ins. Our
analysis framework, based on the model-driven paradigm [Mellor, 04], includes
computational models that are the plug-ins to be instantiated for the generation of
software systems to perform the process of analysis. To that end, the framework
includes a set of authoring tools that support the specification of models of the
analysis processes to be automated. Once specified, the models are processed by a
number of transformation tools and, in this way, a software system implementing the
analysis specified is produced. To evaluate the proposal, we present a case study
where the framework is used to analyse the problem-solving processes supported by
Co-Lab [van Joolingen, 05], a computer-supported learning environment that supports
problem-solving processes in the domain of System Dynamics.

Section 2 of this article reviews the major scientific contributions related to
problem-solving analysis and creation of computational support to automate this kind
of analysis. Section 3 presents our approach to specify and automate the problem-

1280 Duque R., Bollen L., Anjewierden A., Bravo C.: Automating ...

solving analysis by means of using models. Section 4 describes a case study showing
the application of the framework for the analysis of the problem-solving activity
supported by Co-Lab. Finally, Section 5 presents the conclusions drawn from the
work carried out and discusses a future research line.

2 Related work

Computer-supported learning environments have integrated analysis features for
various purposes such as studying how a group of learners collaborate on a common
task or producing feedback that recommends efficient ways of working in groups
[Soller, 05], trying to identify which kind of actions a student performed to solve a
problem [Muehlenbrock, 05] or to characterize the composition of the solutions
designed by the learner [Avouris, 02]. The effective execution of this type of analysis
involves establishing methods and computational models to carry out the analysis
automatically. Computer-supported learning systems have traditionally followed two
different approaches to automate this kind of analysis. The first approach, followed by
an important number of ITSs (Intelligent Tutoring Systems), is based on the use of
computational models of the application domain [Ohlsson, 94], which is made up of
the elements that the students can manipulate to build solutions. In this approach,
computational rules are also used to constrain how the students can use the
application domain components. In this case, the system decides whether a student
action denotes a violation of the constraints and consequently the student should be
advised to correct the situation. The so-called constraint-based techniques analyse the
validity of the current state of the solution rather than the entire process that leads up
to the current state. The computer-supported learning systems falling in the second
category are the cognitive tutors [Anderson, 95], which focus on analysing the
students’ work process and, depending on the results of this analysis, showing
feedback to correct the problems identified.

We now review a set of computer-supported learning systems selected from the
literature to illustrate the large amount of proposals that have applied both analysis
approaches to different domains. For instance, the constraint-based techniques have
been applied to diverse domains such as database modelling [Mitrovic, 04], natural
language [Menzel, 06], learning foreign languages [Nicholas, 06], UML class
diagrams [Le, 06], programming [Le, 10], and Thermodynamics [Mitrovic, 11]. In
order to enable the automatic building of this type of ITSs, the WETAS system
[Mitrovic, 07] provides a web-based shell that allows the developers to specify
computational models to define the application domain. However, this system does
not address the automatic construction of computational constraints on how to
manipulate the application domain components. This point is addressed by the
ASPIRE system [Mitrovic, 09], which enables the instantiation of ontologies to define
constraints on how the student should handle the application domain components to
achieve a satisfactory solution.

The cognitive tutors usually process the actions carried out by the student and
evaluate various aspects of their activity. Thus, for instance, [Conati, 09] have
developed an intelligent agent to recognize different student emotions during the
interaction with an educational computer game. In other cases, the student is not

1281Duque R., Bollen L., Anjewierden A., Bravo C.: Automating ...

required to create an artefact to solve a specific problem, but he/she has to carry out a
specific working process that is analysed by the system. For example, [Remolina, 04]
presents a tutoring system that supports flight instruction in which the student pilots
an airplane and this process should be analysed. Following a different approach more
similar to ours, in order to enable software developers to produce computational
support for analysing the student activity, the Natural-K system [Jung, 10] has an
interface that allows one to define rules in natural language on how to analyse the
work process. Then, the system automatically transforms these rules into
computational support to automate the analysis.

In summary, we observed two trends to produce feedback to help students in their
problem solving tasks. The first one is oriented to the display of messages that
provide information about how to improve the quality of the solution built by the
student. The second one is focused on building feedback to improve the students’
work process. In both approaches, the construction of the tutoring system is costly
from the developer‘s point of view because it is necessary to define and implement a
number of computational components such as the application domain, the problem to
be solved, the procedures of analysis of the activities and solutions, etc. At this point,
we observed partial solutions to automate this task, such as those aimed at defining
the application domain by means of a shell or using ontologies to define constraints or
rules in natural language. However, there is a lack of comprehensive proposals that
allow a developer to easily specify the analysis process, for example by means of
visual languages, and automate it as much as possible. This situation led us to design
and build a framework whose main contribution is to enable the configuration and
automation of procedures that analyse both the students’ work and the resulting
solutions in order to produce feedback in some way. In both approaches there is a
high degree of dependence between the feedback support and the specific domain and
tasks supported by the computer-supported system, so that the different development
efforts cannot be easily reused. To avoid this, our framework was developed so that it
was independent of the system in which the framework could be integrated to analyse
problem-solving activities. Therefore, this framework contributes to the literature
because the software developers only need to instantiate a set of models and they will
not have to implement the source code of the analysis system. The analysis will
evaluate the students’ solutions and their work process. Finally, the framework will be
an independent support that can be applied to different learning environments.

3 A framework for analysing problem-solving activities

The framework we present here allows a software developer to automate the analysis
of problem-solving processes carried out by the students. The framework is a software
system whose functionality is auto-configured according to a number of analysis
models provided by the developer, with the help of a teacher, by means of authoring
tools. Therefore, the following users’ roles interact with the framework (Figure 1):

 Student: The students’ activity with the computer-supported learning system
must be observed to generate data repositories that describe the actions and
the resulting products.

1282 Duque R., Bollen L., Anjewierden A., Bravo C.: Automating ...

 Teacher: He/she is interested in evaluating the students’ activity. The teacher
specifies the characteristics of the problem that should be solved by the
student.

 Developer: Implements the analysis process by means of the specification of
computational models. Generally, the teacher provides the developer with
information about the features of the analysis to be automated.

Figure 1: Users’ roles of the framework.

The functional architecture of the framework is made up of a set of levels. These
levels include a set of subsystems that develop a well-defined functionality. The
information generated at a level is processed by another level to carry out their
functions. Therefore, this architecture establishes information flow between levels.
These three levels are the following:

 Meta-information level: At this level, the analysis is configured according to
the features of the collaborative process and the analysis goals. This level
includes the Design subsystem, which consists of a set of authoring tools that
enable the specification of models that describe the artefacts the learner can
create and modify, the characteristics of the problems to be solved, how to
calculate indicators that analyse the student’s work and solutions, and the
interventions considered to provide feedback.

 Analysis level: At this level, the framework builds the computational support
that performs the analysis defined in the meta-level information. This level
includes an Analysis subsystem that processes the models instantiated at the
meta-information level, the actions carried out by the student, and the
resulting artefacts are processed to calculate indicators and to define
interventions. To that end, it is necessary that the computer-supported
learning system is capable of storing both the problem-solving actions and
the solutions in repositories that follow a structure predefined by the

1283Duque R., Bollen L., Anjewierden A., Bravo C.: Automating ...

framework. Therefore, each computer-supported learning system that stores
the solutions and actions generated by the learners in these repositories can
be integrated in the framework to automate the analysis processes.

 Interaction level: At this level the framework intervenes in the student’
activity according to the results of the analysis process. This level contains a
Monitoring subsystem which is responsible for performing the interventions
generated at the analysis level.

The Design, Analysis and Monitoring subsystems are described in the following
subsections.

3.1 Design subsystem

Using the authoring tools, the developers design computable representations of the
analysis process in the form of models created with visual languages. Taking these
models as an input, the framework generates an executable analysis system to be
integrated into a computer-supported learning application. The implementation of the
authoring tools has been carried out using the popular Eclipse integrated development
environment. The Eclipse environment provides a framework, called the Eclipse
Modelling Framework (EMF), which includes among its features support for the
implementation of authoring tools that allow instantiating models. These tools
represent the models using the XMI standard (XML Metadata Interchange) for
exchanging meta-information using XML. In our case, these models are automatically
processed in real time by the framework to implement an analysis system. Therefore,
the internal structure of the analysis system depends on the model instantiated. The
visual authoring tools integrated in the Design subsystem are the following:

 Authoring tool for modelling the application domain: This tool allows
one to create a computational model to specify which artefacts are
manipulated by the student to build solutions and how these artefacts are
made up.

 Authoring tool for modelling the problem-goal: This tool allows for the
creation of a model that specifies the work process that should be followed
by the learner and the characteristics of satisfactory solutions to the problem
proposed by the teacher. To that end, the model includes rules each of which
defines a characteristic of the work process or solution. A rule can be of two
types: constraint or requirement. On the one hand, a constraint rule specifies
a prohibition that limits the learner’s work process (e.g., to limit the number
of accesses to a specific workspace, the time, the use of specific domain
components, etc.) or the resulting solution (e.g., to limit the number of
elements of the solution, etc.). A requirement rule establishes an obligation
that affects the student’s work process (e.g., the first step of the work process
should be to design an outline of the final solution) or the solution (e.g., the
solution must include a particular component of the application domain,
etc.). These rules can be used by the teacher to specify the most important
features the students’ solution should fulfil.

 Authoring tool for modelling the observation: This tool allows the design
of models that specify the subset of student actions that should be captured
for analysis purposes. Moreover, this authoring tool enables the classification
of the different actions supported by the system according to their meaning

1284 Duque R., Bollen L., Anjewierden A., Bravo C.: Automating ...

and semantics [Harrer, 04] (e.g., to modify the solution, to test the solution,
etc.).

 Authoring tool for modelling the quantitative abstraction: This authoring
tool allows the developer of an analysis system to specify the calculation of
quantitative indicators to characterize the student’s activity. The quantitative
indicators are usually low-level indicators of four types: (i) information
about the time spent by the student in carrying out the learning activities; (ii)
information about the actions performed by the student to carry out the
activities; (iii) information about the number of specific application domain
components used in the construction of a solution; and (iv) information about
the number of rules fulfilled or unfulfilled from the ones specified in the
problem-goal model. This tool uses mathematical functions (addition,
subtraction, multiplication, division, percentage, arithmetic mean and
standard deviation) that take a set of low-level indicators as input and high-
level quantitative indicators as output.

 Authoring tool for modelling the qualitative abstraction: Using this tool,
the developer specifies the rules that define how to infer qualitative
indicators. Each rule consists of an antecedent and a consequent. The
antecedent includes quantitative and/or qualitative indicators calculated
previously. The antecedent indicators must take certain values to activate the
rule. The consequent is made up of a new qualitative indicator when the rule
is activated.

 Authoring tool for modelling the intervention: This authoring tool allows
the developer to specify the intervention model as a set of intervention
mechanisms, each of which is described on the basis of six dimensions: (i)
the triggers that specify when the intervention mechanism should be
activated (this usually consists of detecting the execution of a certain type of
an action or meeting a time cycle); (ii) the conditions necessary to intervene,
e.g., that a number of analysis indicators reach specific values; (iii) the form
of intervention in the problem-solving process (e.g., showing textual advice,
adapting the user interface, etc.); (iv) the target users who will receive the
intervention (student, teacher, etc.); (v) the places, i.e., workspaces or tools
where the intervention will be carried out; and (vi) the text, advice message
or specific information required so that the intervention can take place. For
instance, the indicators can inform which rules included in the problem-goal
model have been fulfilled and which have not. These rules can specify the
features of a correct solution to the problem proposed. Therefore, these
indicators can be used in interventions that show a textual advice aimed at
correcting the mistakes in the students’ solution.

As an example, figure 2 shows an excerpt of the user interface of the authoring
tool for modelling the intervention. The authoring tool includes a toolbar on the right
with the elements of the visual language used to specify the intervention phase. First,
the visual language includes icons (Table 1) to specify time cycles or learner’s action
frequencies, which are the triggers of the interventions. Second, components to
express how the analysis indicators should be checked are included. To that end, the
visual language represents each analysis indicator as a rectangle in which the

1285Duque R., Bollen L., Anjewierden A., Bravo C.: Automating ...

developer includes intervals with the maximum and minimum values that the
indicator can take. Moreover, the tool enables grouping analysis indicators by means
of and/or logical operators. When the indicators are grouped by an and operator, all
the values of the indicators must lie outside the intervals to trigger the intervention
mechanism. When the indicators are grouped by an or operator, a single analysis
indicator outside its intervals is enough to perform the intervention mechanism.
Finally, the visual language includes a component to define the specific intervention
mechanism to be used. This component consists of a rectangular compartment that
includes attributes to specify the message or information to be displayed, the place
where the intervention will be produced, the users that will receive the intervention
and a boolean attribute to express whether the values of the indicators that trigger the
intervention should be displayed. A set of relationships labelled with arrow icons are
used to define which triggers are used to launch each intervention (Launch), which
indicators should be analysed to perform each intervention (Process) and which
indicators are linked by a logical operator (Connection And, Connection Or).

Icon Semantic

 Time cycles

 Action frequencies

 Analysis indicator

 Maximum value

 Minimum value

 And operator

Or operator

 Intervention mechanism

 Message

 Intervention place

 User

 Boolean attribute

Table 1: Visual language to specify the intervention phase.

Figure 2 also shows an example in which a developer is defining the intervention
support in a problem-solving activity. It can be seen how the developer has specified
an intervention to advise the student that a set of tasks should be carried out and only
a few of them are being approached. In doing so, the developer uses a trigger element
that specifies that at every 300-second time cycle, the intervention mechanism be
activated. Then, the intervention mechanism checks for the value of two analysis
indicators. The first indicator is Task_division, which evaluates the number of actions
carried out by the student in each task. The second indicator is Time_distribution,
which evaluates how the student has spent the time between the different tasks. When
both analysis indicator values lie outside the specified ranges, the intervention takes
place and an advice message is shown to the student containing the following
suggestion: “Plan your activities better. You must not focus your efforts on a single
task. Review the indicators and try to work on those tasks where you have not worked

1286 Duque R., Bollen L., Anjewierden A., Bravo C.: Automating ...

enough”. Finally, the developer specifies that this intervention is shown to the student
by means of the Monitoring subsystem and that the values of the related analysis
indicators are also displayed. A description in depth of the authoring tools integrated
in the Design subsystem can be read in [Duque, 11].

Figure 2: Authoring tool for specifying interventions.

3.2 Analysis subsystem

This subsystem processes the models designed by means of the authoring tools
included in the Design subsystem and, according to them, implements the three
phases of the analysis life cycle: observation, abstraction and intervention. The
Analysis subsystem processes the observation model to determine the subset of
actions stored in the repository (see Figure 1) that are needed for the analysis process.
The Analysis subsystem also processes the application domain model in order to
know which artefacts can be used by the student to build solutions and should
therefore be analysed. The repositories of the framework (Figure 1) store basic data
about the students’ actions (who performs the action, name of the action, time when
the action is performed, etc.) and about how the application domain components are
manipulated to build a solution.

To automate the abstraction phase, the Analysis subsystem processes the
quantitative and qualitative abstraction models, as briefly presented in subsection 3.1.
The abstraction phase is completed by the processing of the problem-goal model that
specifies the rules that characterize the type of solution to be built for the problem, so
that violations of the established rules can be detected. In summary, the final aim of
the abstraction phase is to compute a number of high-level analysis indicators as the
main information for the intervention phase.

1287Duque R., Bollen L., Anjewierden A., Bravo C.: Automating ...

Finally, this subsystem processes the intervention model and evaluates whether it
is necessary to apply an intervention. This is carried out by testing the corresponding
conditions as presented above and triggering the suitable intervention mechanisms.

3.3 Monitoring subsystem

The Monitoring subsystem automates the intervention actions specifically aimed at
showing advice messages about the problem-solving process. For this purpose,
functionalities for building user interfaces to show feedback are included. Such user
interfaces are built with the information provided by the Analysis subsystem. The
developers can choose to use this support to visualize advice messages and/or analysis
indicators or, instead, use all the information provided by the analysis subsystem
freely, creating specific functionalities for monitoring and advice within the learning
environment.

Figure 3 illustrates how the Monitoring subsystem generates a user interface when
the target user of the intervention is a student. The user interface is structured in three
main areas: (i) a list of analysis indicators, (ii) the representation of the value of the
selected indicator, and (iii) the comment or advice message.

Figure 3: Example of an advice message for the student including the values of the
related indicators.

The list of indicators includes the name of those indicators whose values have
motivated the intervention mechanism. When the student selects an indicator from the
list, the value of the indicator is displayed. At the bottom part of the user interface, an
advice message explaining the purpose of the indicator in more detail is shown.

4 Study

A study was prepared to evaluate the functionalities of the framework for
characterizing a problem-solving process in a learning environment including
intervention support to improve the student’s learning process. According to the
proposal of [Yin, 94], we followed these steps to carry out this study:

1288 Duque R., Bollen L., Anjewierden A., Bravo C.: Automating ...

 Determine and define the research questions: This case study tries to answer
two research questions. The first question asks if the framework is a suitable
computational support for the automation of the analysis of problem-solving
activities, which includes intervention and feedback. The second question
asks if the analysis outcomes (interventions, analysis indicators, etc.) are
useful in the problem-solving process.

 Select the cases and specify data gathering and analysis techniques: We
designed a case in which the Co-Lab system was used to solve a problem in
the System Dynamics domain [van Joolingen, 05]. Co-Lab stores the actions
and solutions produced by the students and for this reason the analysis
framework can be integrated with it. We carried out an experiment that tests
if the framework enables the automatic execution of analysis in Co-Lab and
the adequacy of the analysis outcomes.

 Prepare to collect the data: A teacher proposed a problem in the System
Dynamics domain that could be solved using Co-Lab. A software developer
configured the framework to automate the analysis process.

 Collect data in the field: A group of 40 students used Co-Lab to solve the
problem proposed by the teacher. The students’ actions and the resulting
solutions were collected and analysed. These students received the
intervention actions of the analysis during the problem-solving process.

 Evaluate and analyse the data: With the aim of empirically studying the
analysis carried out in this case study, we built a tool that replays the work
processes of the students and the interventions they received. This enabled an
evaluation of the analysis process.

 Prepare the report: Finally, we show the development of the case study and
its results.

The following four sections describe the study development following this outline: (i)
definition of the case study, in which the learning environment and the application
domain are described; (ii) evaluation method, in which the participants and evaluation
techniques are defined; (iii) conduction of the study, in which the participants carry
out their tasks and data and evidence are recorded; and (iv) discussion of the results,
in which the results of the analysis process are discussed and the fulfilment of goals is
evaluated.

4.1 Case study

Co-Lab supports problem-solving processes by providing a modelling tool that is able
to create and simulate System Dynamics models. System Dynamics [Forrester, 85] is
used as part of a methodology that addresses the modelling of complex systems,
which consist of several interconnected elements. As a result of interactions between
elements, new properties that cannot be explained from the properties of isolated
elements emerge. Examples of complex systems are biological populations or
economic systems. System Dynamics models are typically made up of the following
entities:

1289Duque R., Bollen L., Anjewierden A., Bravo C.: Automating ...

 Stocks: They represent a system variable whose value changes over time.
 Auxiliaries: They correspond to mathematical functions.
 Constants: These represent constant values in a model which do not change

over time.
 The associations between entities in System Dynamics are:

o Relationships: They connect entities to make values accessible
between entities.

o Flows: Flows are connections between stocks that represent the
change of values over time by decreasing one stock and increasing
another, thus building an ordinary differential equation (ODE).

The Co-Lab system is made up of three basic tools. The first one supports the

creation of System Dynamics models through the direct manipulation of graphical
elements. As shown in Figure 4, this tool provides an editor in which the student
inserts, deletes and modifies the components of the model.

Figure 4: Workspace for modelling a dynamic system.

The second tool (Figure 5) enables a student to graphically simulate the models.
To this end, the student defines time intervals in which the model is simulated in a
process in which the output data are plotted on Cartesian axes. This tool allows the
user to select a subset of the components of the model and to apply different methods
of iterative approximations of ODEs.

1290 Duque R., Bollen L., Anjewierden A., Bravo C.: Automating ...

Figure 5: Workspace for graphical simulation of models.

The third tool (Figure 6) integrated in Co-Lab enables a student to simulate the
models designed and visualize the results in tabular form. The student selects the
components to be simulated and the simulation methods to be applied, but in this case
the results are displayed in a table which shows the value that each variable produces
per unit time.

Figure 6: Workspace for tabular simulation of models.

4.2 Method

To achieve the study goals, three different kinds of actors were involved. Firstly, a
computer engineer used the framework to design the required analysis support.

1291Duque R., Bollen L., Anjewierden A., Bravo C.: Automating ...

Secondly, a teacher provided a problem description and an ideal solution. Thirdly, a
group of 40 students used Co-Lab to solve that problem, which requires the students
to model the process of warming the Earth and to simulate its environmental impacts.
To implement this objective, the teacher provided the students with a set of basic data
about the factors influencing global warming (climate model, albedo factor, capacity
and thermal equilibrium, etc.). As mentioned, the teacher provided the developer with
an ideal solution to the problem, which is represented in Figure 7.

Figure 7: Ideal solution to the problem.

After defining the problem-solving task and the participants involved, subsection
4.3 presents the models built by the developer when designing the problem-solving
analysis support and describes a simulation of the intervention provided by that
analysis support. Subsection 4.4 discusses the results.

4.3 Designing a problem-solving analysis support for Co-Lab

By applying the framework, the developer started modelling the application domain
of System Dynamics with the corresponding authoring tool. This model includes the
three kinds of entities of the application domain (stock, auxiliary and constant) (see
subsection 4.1) and specifies the possible connections between them by means of two
associations (flow and relationship). Figure 8 shows an excerpt of the application
domain model as represented by the authoring tool for modelling the application
domain as well as the toolbar of the authoring tool. The toolbar includes icons (Table
2) to represent the domain, the entities and the attributes of both entities and
associations.

1292 Duque R., Bollen L., Anjewierden A., Bravo C.: Automating ...

Figure 8: Excerpt of the application domain model.

Different icons with arrows allow the modeller to express (i) the associations of the
domain (Has association), (ii) the source and target entities of a given association
(Source of association and Target of association) and (iii) the entities of the domain
(Has entity). The entities of the domain have two attributes: a label for the name of
the entity and a numerical value associated with the entity.

Icon Semantic
Domain
Entities

Attributes

Table 2: Visual language to specify the application domain.

Then, the developer specified a problem-goal model that defines four rules that
express requirements and constraints of the student’s work when building the solution
to the problem. The first rule requires that the student include a stock component in
the model. The second rule regulates the solution to include three auxiliaries as a
maximum. The third rule specifies that the learner use at most seven relationships in
the model. Finally, the forth rule requires that the model include two flow
components. Figure 9 shows a fragment of the problem-goal model containing the
second and third aforementioned rules.

1293Duque R., Bollen L., Anjewierden A., Bravo C.: Automating ...

Figure 9: Excerpt of the problem-goal model.

The toolbar of the authoring tool shows icons (Table 3) on the right to represent
the learner and each of the tasks to be performed, characterized by its description and
its complexity as attributes of the task. The rules are represented by an icon with a
hammer. Other icons are used to specify the type of regulation (constraint or
requirement) that establishes the rule, the goal of the rule (e.g., controlling the
maximum working time allowed, regulating the minimum number of elements that
must be included in the solution, etc.) and a reference value for which the proposed
rule is fulfilled (number of components of the application domain that can be used,
amount of time that can be spent to solve the task, etc.).

Icon Semantic
Learner

 Task
Description of the task

Complexity of the task

Rule

Type of rule

Goal of the rule

Reference value

Element regulated

Table 3: Visual language to specify the problems-goals.

1294 Duque R., Bollen L., Anjewierden A., Bravo C.: Automating ...

Finally, it is possible to represent the application domain component or tool of the
system that is regulated by the rule, which is called a resource. The icons with arrows
permit modelling which rules are defined for a particular task (Definition), which
rules are assigned to a student (Assignment) and the elements of the application
domain regulated by each rule (Regulation).

The next step in the developer’s task was to create an observation model with the
actions that should be captured in order to analyse the work carried out in each of the
three workspaces: (i) the modelling workspace, where the student creates a dynamic
model; (ii) the graphical simulation workspace, where the student simulates the
system using graphs, and (iii) the tabular simulation workspace, where the student
simulates the system and examines the outcome using tables.

The developer later created the abstraction models. The quantitative abstraction
model (Table 4) included a set of indicators designed to quantify the learner’s work,
checking the composition of the model built and the accomplishment of the rules
defined in the problem-goal model. A first set of indicators quantifies generic aspects
such as the number of elements included in the solution, the number of actions carried
out by the learner and the time spent on solving the problem. A second set of
indicators quantifies in more detail the development of the three tasks defined in the
observation model (modelling, graphical simulation and tabular simulation),
quantifying the time spent on each task and collecting the actions related to each one.
A third set of indicators counts the type of actions performed on each task: percentage
of insertion and delete actions, number of step-by-step and continuous simulations,
and number of actions that change the specification of elements of the System
Dynamics model. The fourth set of indicators quantifies the fulfilment of the rules
included in the problem-goal. Finally, the fifth set of indicators quantifies the
composition of the model built discriminating the number of entities and associations.
Table 4 also depicts the abstraction level of each indicator: low or high.

The qualitative abstraction model defines a set of indicators (Table 5) that are
either inferred from the previous quantitative indicators, or from other inferred
indicators. For example, we can infer a global indicator that agglutinates the previous
inferred indicators and gives a general assessment of all aspects of the students’
activity (see the quality indicator in Table 5). In the modelling task at hand, the
following qualitative indicators have been considered:

 Speed: This indicator rates the work speed by averaging the number of
actions performed per time.

 Cost: It rates the number of components of the application domain used to
build the model.

 Experimentation: It assesses whether the model has been tested and
simulated enough times to verify its quality.

 Task_division: It measures whether the learner has evenly divided the
number of actions among the three tasks (designing the system, simulating it
using graphs and simulating it using tables).

 Time_distribution: It assesses whether the learner has evenly divided the
time among the three aforementioned tasks.

 Correction: It rates the degree of achievement of the problem-goal.
 Effort: It measures the amount of work from the number of actions

performed and objects included in the model per time.

1295Duque R., Bollen L., Anjewierden A., Bravo C.: Automating ...

Goal Indicator name
Abstraction

level
Description

Quantifying
global aspects

Objects Low
Number of elements used in the
model built

Time Low Time spent in solving the problem
Actions Low Total number of actions carried out

Quantifying
the work on
each
workspace

ActionsTable Low
Number of actions carried out in the
tabular simulation

ActionsGraphic Low
Number of actions carried out in the
graphical simulations

ActionsEditor Low
Number of actions carried out with
the model editor

NDelete Low
Number of delete actions in the
editor

NInsert Low
Number of insertion actions in the
editor

TimeEditor Low Time used in the model editor

TimeGraphic Low
Time used in the graphical
simulation

TimeTable Low Time used in the simulation tables

Quantifying
specific
aspects of the
tasks

NSpecifications Low
Number of actions that change the
specification of any element of the
model

PInsertions High
Percentage of insert actions among
all the actions carried out in the
editor

NSimulation Low Total number of simulation actions

PDeletes High
Percentage of delete actions
compared to all actions carried out
in the editor

Quantifying
the fulfilment
of rules

FRulePG1 Low
Fulfilment of the first problem-goal
rule

FRulePG2 Low
Fulfilment of the second problem-
goal rule

FRulePG3 Low
Fulfilment of the third problem-
goal rule

FRulePG4 Low
Fulfilment of the forth problem-
goal rule

Quantifying
the model
structure

NStocks Low Stocks in the model
NAuxiliaries Low Auxiliaries in the model
NFlows Low Flows in the model
NConstants Low Constants in the model
NRelationships Low Relationships in the model

NEntities High
Entities in the model (stocks,
auxiliaries and constants)

NRelations High
Associations in the model (flows
and relationships)

Table 4: Summary of the quantitative indicators.

1296 Duque R., Bollen L., Anjewierden A., Bravo C.: Automating ...

 Connectivity_product: It evaluates whether there is a suitable number of
associations that connect all the entities of the model.

 Stability: It assesses whether the work follows a stable process where new
components are added gradually and the model is not subject to continuous
changes and deletions. To do this, we compare the percentage of deletions
and the number of changes to the model with insertions performed in the
model.

 Quality: It analyses the overall activity and the solution taking into account
other qualitative indicators.

Qualitative indicator Indicators used in the inference Aspect analysed

Speed
Actions

Work process
Time

Cost Objects Solution

Experimentation
ActionsTable

Work process ActionsGraphic
NSimulation

Task_division

ActionsEditor

Work process ActionsGraphic

ActionsTable

Time_distribution

TimeEditor

Work process TimeGraphic

TimeTable

Correction

FRulePG1

Solution
FRulePG2
FRulePG3
FRulePG4

Effort
Actions

Work process and solution Cost
Time

Connectivity_product
NEntities

Solution
NRelations

Stability
NSpecifications

Solution PInsertions
PDeletes

Quality

Stability

Work process and solution

Effort
Correction
Time_distribution
Task_division
Experimentation
Cost
Connectivity_Product
Speed

Table 5: Summary of the qualitative indicators inferred.

1297Duque R., Bollen L., Anjewierden A., Bravo C.: Automating ...

Figure 10 shows an excerpt of the qualitative abstraction model. This model
shows a set of inference rules to assign values to the qualitative indicators. The
antecedents of the rules specify values of qualitative indicators previously calculated
or intervals for the quantitative indicators calculated so that when they take a value in
the intervals, a new qualitative indicator is inferred whose value is specified in the
consequent of the rule.

Figure 10: Excerpt of the qualitative abstraction model.

Each rule is represented by a set of links with a specific icon (Table 6) that
connects each quantitative indicator of the antecedent with the qualitative indicator of
the consequent. A quantitative indicator that is included in the antecedent of the rule
is represented with an icon that identifies its name, an icon that represents the
maximum value of its activation interval and an icon that represents the minimum
value of its activation interval. The qualitative indicators are represented by an icon
that identifies their name and another icon that specifies their value.

Icon Semantic

 Rule

 Quantitative indicator

 Maximum value

 Minumun value

 Qualitative indicator

 Value of the qualitative indicator

Table 6: Visual language to specify the qualitative abstraction.

1298 Duque R., Bollen L., Anjewierden A., Bravo C.: Automating ...

Finally, the intervention model used the inferred indicators to advise the learner
how to improve his/her activity. A first group of interventions advises the learner to
redirect some aspect of his/her work. This group of interventions tries to correct
situations where there is low speed (see I1 in Table 7) or a small amount of work (I2),
to better divide the effort between different tasks (I3) or to follow a more reflexive
work process (I4). The second set of interventions focuses on the solution and
proposes to reduce the components of the model (I5), to review the fulfilment of the
problem-goal’s rules (I6), to connect all the entities (I7) or to simulate the model more
frequently (I8). Finally, a third type of intervention is performed (I9) when the learner
closes the work session on Co-Lab and the quality indicator does not reach its highest
value; in this case all the analysis indicators are displayed.

Id. Indicator’s value Trigger Text

I1
The speed indicator is not in the range
[intermediate-very high]

3-minute
time
cycle

"You must work faster. Check the
value of the indicator and observe as
you perform very few actions per unit
of time"

I2
The effort indicator is not in the range
[intermediate-very high]

2-minute
time
cycle

"You must work harder. You have
performed a low number of actions
and included a low number of
elements in the solution"

I3

The task_division indicator is not in the
range [intermediate-very high] OR the
time_distribution indicator is not in the
range [intermediate-very high]

5-minute
time
cycle

"Plan your activities better. You must
not focus your efforts on a single task.
Review the indicators and try to work
on those tasks where you have not
worked enough"

I4
The stability indicator is not in the range
[intermediate-very high]

4-minute
time
cycle

"Think about what the solution should
be before inserting new components
in the model and perform simulations:
examine the indicator and notice that
you are constantly removing
components and changing
specifications"

I5
The cost indicator is in the range [high -
very high]

1-minute
time
cycle

"The solution includes too many
components: review the statement and
think about deleting elements"

I6
The correction indicator is not in the range
[intermediate-very high]

1-minute
time
cycle

"The problem formulation specifies a
number of conditions of using the
components of the application
domain. However, your solution does
not fulfil these conditions. Read the
problem formulation and review the
solution"

I7
The connectivity_product indicator is not
in the range [intermediate-high]

3-minute
time
cycle

"Test that all entities of the solution
are linked through associations"

I8
The experimentation indicator is not in the
range
 [intermediate-very high]

5-minute
time
cycle

"Simulate the model more frequently
to check its validity"

I9
The quality indicator is not in the range
[very high-very high]

Close the
work
session

"Check the value of the indicators: try
to improve those which have negative
values in future work"

Table 7: Summary of the interventions specified.

1299Duque R., Bollen L., Anjewierden A., Bravo C.: Automating ...

4.3.1 The Co-Lab’s problem-solving analysis support in action

Figure 11 shows a tool to replay the work processes of the students and the
interventions they received. It includes a central panel that shows descriptions of the
actions that the learner performed during their work in chronological order. The
mechanism to add these actions into the panel is guided by the teacher using two
buttons. The play button collects the next action the learner carried out. If the action
triggers an intervention, the application launches a window with the description of
that intervention. Moreover, this tool stores the interventions received by the student
in a database. Thus, it allows empirically studying how the framework intervened to
help the student in his/her work. The stop button allows the teacher to move
backwards in the reconstruction of the activity and the intervention taking place. In
addition, the tool shows the values of the indicators when the problem-solving process
is finished.

Figure 11: User interface of the tool that replays the student’s actions.

First, we studied the usefulness of the framework to empirically study how the
student organizes his/her work between the modelling and simulation tasks, and the
components used in the solutions. Table 8 collects a set of quantitative indicators that
allow a first generic approach on these issues. The table shows that the students
typically spent 30% more actions on modelling than on the graphic or tabular
simulation tasks (to define time intervals, to select the simulation method, to start, to
stop, etc.). Regarding the structure of the solutions, the models have very similar
numbers of stocks and flows to the ideal solution structure (see Figure 7), a greater
use of auxiliaries, and fewer relationships and constants.

Having studied the students’ actions and the solutions’ structures from a very
general point of view, we analysed the compliance of the rules included in the
problem-goal model (Table 9). We observe that most students structured the model
around a single stock component that represents the Earth’s energy. The second rule,
which stipulates the use of three auxiliaries, was fulfilled by 25% of the students. All
the students complied with the rule that constrains the use of seven relationships as a
maximum. Finally, more than 80% of students fulfilled the requirement to use two
flows.

1300 Duque R., Bollen L., Anjewierden A., Bravo C.: Automating ...

Aspect analysed Average value
S
D

Modelling actions (insert component, delete
component, etc.)

217.16 98.
4

Simulation actions in graphic or tabular form
152.13 85.

76

Stocks used in the solution
1.02 (Ideal solution: 1) 0.1

6

Auxiliaries used in the solution
4.17 (Ideal solution: 3) 1.1

8

Constants used in the solution
0.55 (Ideal solution: 3) 0.8

0

Relationships used in the solution
5.57 (Ideal solution: 7) 1.2

6

Flows used in the solution
2.18 (Ideal solution: 2) 0.5

4

Table 8: Global analysis of actions and solutions.

Rule description Percentage of students
Use only one stock 97.5%
Use three auxiliaries as a maximum 25 %
Use seven relationships as a maximum 100%
Use two flows 82.5 %

Table 9: Percentage of students that fulfil each rule of the problem-goal model

Table 10 collects the values that are adopted more frequently by the qualitative
indicators and the number of students whose analysis indicators take those values. In
this case, we observe that the indicators that characterize the work process never have
a value greater than intermediate. This can be explained by the fact that students
generally spent more time than expected on solving the problem and the time
distribution between the tasks of modelling and simulation was not balanced.
However, the indicators that analyse the solution have a value equal to or greater than
the intermediate value. Although a significant number of students did not comply with
the rule that regulates the use of auxiliaries (see Table 9), this does not imply that the
simulation results are unsatisfactory because in most of the cases the students used
more auxiliaries to specify values that are defined by means of constants in the ideal
solution, but the functionality of the simulation is not altered.

1301Duque R., Bollen L., Anjewierden A., Bravo C.: Automating ...

Qualitative indicator
Aspect analysed by the

indicator
Most frequent

value

Students
whose

indicator
takes this

value
Speed Work process Very Low 35

Cost Solution Intermediate 27
Experimentation Work process Intermediate 24

Task_Division Work process Low 29
Time_ distribution Work process Low 30
Correction Solution High 22
Effort Work process and solution Intermediate 32
Connectivity_Product Solution Very High 24
Stability Solution High 35
Quality Work process and solution Intermediate 27

Table 10: Most frequent value taken by the qualitative indicators and number of
students whose indicator takes this value.

Another purpose of this study was to evaluate the functionality of the framework
in replaying the work process and its analysis. Table 11 depicts the number of
interventions performed and the percentage of students who received each
intervention. The average number of interventions shows that all the interventions,
except the interventions that correct the excessive number of components in the
solution, were performed at least once on average in each work process. Table 11 also
shows that all the participants received an intervention showing an assessment of the
quality of the work carried out at the end of their work process. In summary, we
observe that, except for the interventions that correct problems to relate entities by
means of associations and an excessive number of components in the model built, at
least 30% of students received each of the interventions of the analysis process.

Id. Intervention’s description Interventions
Percentage
of students

I1 Low speed 4.3 87.5%

I2 Little effort 2.8 30%
I3 Time between tasks not well-balanced 3.4 80%
I4 Stability in the modelling 1.1 45%
I5 Excessive number of components in the model 0.7 12.5%

I6
The model does not fulfil the conditions of the
problem

3.1 82.5%

I7 Model entities are not related 1.9 2.5%
I8 Lack of simulation 1.8 40%
I9 Summary of the quality of the work performed 1 100%

Table 11: Average number of interventions carried out in each process and
percentage of students who received the intervention.

1302 Duque R., Bollen L., Anjewierden A., Bravo C.: Automating ...

4.4 Discussion

In conclusion, we can say that this analysis shows that the students usually carry out
the work process much slower than that which is outlined by the teacher. The
indicators that examine whether the students’ work has been distributed equally
among the three work areas show intermediate values. This is because the students
usually focus their efforts more on modelling than on simulating. Thus, it is possible
that the students need more experience to build a solution in less time, or the teacher
should consider in future experiences that the students need to work more slowly or
that the modelling tasks require more effort than the simulation task. However, these
students’ performances do not necessarily lead to the construction of an incorrect
System Dynamics model because in most cases the correction indicator, which
assesses whether the solution fulfils the rules of the problem-goal model, takes a high
value.

The rule that regulates the use of auxiliaries was unfulfilled by a significant
number of students. This is because these students used the auxiliaries to represent the
albedo factor and the heat capacity of the Earth, and these components should be
modelled by means of constants. This is a partial result of the study: the students
usually confuse these two types of elements.

Finally, the quality indicator that summarizes the value taken by all the indicators
has never taken a very high value. The students should basically improve the speed
and the time distribution during the work process to reach a very high value of the
quality indicator in future problem solving activities.

Moreover, the empirical study of the interventions enables us to analyse how the
framework contributes to helping the students during the work process. The data show
that seven interventions were executed for at least 30% of the students. The analysis
process was useful in these cases because it contributed to detecting problems in the
students’ activity, which was corrected thanks to the interventions. However, some
interventions were not frequently performed, such as those aimed at correcting
problems of connections between entities or reducing an excessive number of
components in the solution. Therefore, the teacher should consider changing these
interventions in future activities.

5 Conclusions

The work presented here describes a technological framework that allows software
developers to specify and to automate processes to analyse the activity of a student
when solving problems and to provide feedback to that student in order to understand
the impact of his/her actions. This framework follows a model-based approach in
which the software developer specifies representations of the analysis to be automated
and the feedback to be displayed. These models are processed by the framework to
auto-configure its functionality and to automatically perform the specified
interventions. The framework can be integrated into computer-supported learning
systems that store the actions and solutions produced by the learners in repositories
with a predefined structure. Then, the framework processes these actions and
solutions to produce interventions and feedback that in most cases are automated by
the Monitoring subsystem.

1303Duque R., Bollen L., Anjewierden A., Bravo C.: Automating ...

This framework provides a novel approach with regard to the ITS’s traditional
proposals focusing on evaluating solutions because our proposal also allows the
inference of indicators analysing the work process followed by the student. Moreover,
this framework is a flexible computational support that can be used to analyse
learning processes in various application domains and problems, and be configured
according to the characteristics of each case by means of models.

The model-based approach followed by the framework enables a reduction of the
developer’s effort because they only need to specify models using visual languages
instead of implementing the source code of an analysis system by hand. This
modelling task is supported by a set of authoring tools that enable the software
developer to configure the analysis (the actions that should be analysed, how to
calculate analysis indicators, what intervention should be carried out, etc.).

The framework has been evaluated by means of its application to analyse
problem-solving processes in the System Dynamics domain. To that end, a software
developer configured the framework to automate an analysis process that was
integrated into Co-Lab, a learning environment that supports solving problems in this
domain. Thus, this case study has tested that the framework not only supports the
modelling of the analysis but also produces effective support to integrate and perform
analysis processes in computer-supported learning environments.

The analysis processes produce indicators that assess both the students’ problem-
solving processes and the solutions built. Therefore, these analyses enable teachers to
detect problems during the problem-solving activities that lead to wrong solutions not
solving the problem. For instance, an empirical study of the indicators inferred in the
Co-Lab case study showed that the problem-solving processes carried out by the
students was usually slower (they perform very few actions by unit of time) than
predicted by the teacher and with an unbalanced division of tasks.

The framework also automates intervention in the students’ activity to correct the
problems identified by the analysis indicators. To that end, the analysis processes
evaluate all the students’ actions to detect problems that must be solved. The
intervention actions usually show message that advise the students how to solve these
problems. A study of the interventions carried out in the Co-Lab case study showed
that they were frequently used to guide the work of students.

In the future, we will explore the use of the framework to specify and automate
more complex interventions such as adaptations of the learning system. We are also
applying the framework to automate the analysis and interventions in processes where
groups of students collaborate in solving a single problem. Thus, the framework
would be used to analyse communication and collaboration between the students. In
this case, the intervention mechanisms will be enriched to enable the selection of the
member of the group of students who should receive the intervention, for instance.

Acknowledgements

The Ministerio de Educación y Ciencia (España) has partially supported this research
under Project TIN2011-29542-C02-02. The authors would like to express their
gratitude to Ton de Jong, Wouter R. van Joolingen and Sylvia van Borkulo
(University of Twente), for supporting this research. The work reported here was
done during Rafael Duque’s stay at the Department of Instructional Technology of the
University of Twente.

1304 Duque R., Bollen L., Anjewierden A., Bravo C.: Automating ...

References

[Anderson, 95] Anderson, J.R., Corbett, A.T., Koedinger, K.R. Pelletier, R.: “Cognitive Tutors:
Lessons Learned”; The Journal of the Learning Sciences, 4 (1995), 167-207.

[Arts, 02] Arts, J.A.R., Gijselaers, W.H., Segers, M.S.R.: “Cognitive effects of an authentic
computer-supported, problem-based learning environment”; Instructional Science, 30 (2002),
465-495.

[Avouris, 02] Avouris, N., Dimitracopoulou, A., Komis, V., Fidas, C.: “OCAF: An object-
oriented model of analysis of collaborative problem solving”; In: Proceedings of the
Conference on Computer Support for Collaborative Learning, Colorado (2002), 92-101.

[Avouris, 05] Avouris, N., Komis, V., Fiotakis, G., Margaritis, M., Voyiatzaki, E.: “Logging of
fingertip actions is not enough for analysis of learning activities”; In: Proceedings of The
International Conference on Artificial Intelligence in Education, The Netherlands (2005), 1-8.

[Booch, 05] Booch, G., Rumbaugh, J., Jacobson, I.: “Unified Modeling Language User Guide”;
Addison-Wesley Professional (2005).

[Bosch, 00] Bosch, J.: “Design and use of software architectures: adopting and evolving a
product-line approach”; Addison-Wesley Publishing (2000).

[Bravo, 08] Bravo, C., Redondo, M.Á., Verdejo, M.F., Ortega, M.: “A framework for process-
solution analysis in collaborative learning environments”; International Journal of Human-
Computer Studies, 66, 11 (2008), 812-832.

[Bravo, 09] Bravo, C., Van Joolingen, W.R., De Jong, T.: “Using Co-Lab to build System
Dynamics models: Students' actions and on-line tutorial advice”; Computers & Education, 53
(2009), 243-251.

[Conati, 09] Conati, C., Maclaren, H.: “Empirically building and evaluating a probabilistic
model of user affect”; User Modeling and User-Adapted Interaction, 19 (2009), 267-303.

[de Jong, 98] de Jong, T., van Joolingen, W.R.: “Scientific Discovery Learning with Computer
Simulations of Conceptual Domains”; Review of Educational Research, 68 (1998), 179-201.

[Dean, 06] Dean, D., Kuhn, D.: “Direct instruction vs. discovery: The long view”; Science
Education, 91 (2006), 384-397.

[Dimitracopoulou, 04] Dimitracopoulou, A. et al.: “State of the art of interaction Analysis:
Interaction Analysis Indicators”; Kaleidoscope Network of Excelence, Deliverable D.26.1
(2004).

[Dimitracopoulou, 05] Dimitracopoulou, A. et al.: “State of the art of interaction analysis for
Metacognitive Support & Diagnosis”; Kaleidoscope Network of Excelence, Deliverable
D.31.1.1 (2005).

[Duque, 11] Duque, R., Bravo, C., Ortega, M.: “A framework for the automated model-based
analysis of users' activity in social media systems”; Journal of Network and Computer
Applications 34, 4 (2011), 1200-1209.

[Duque, 12] Duque, R., Rodríguez, M.L., Hurtado, M.V., Bravo, C., Rodríguez-Domínguez,
C.: “Integration of collaboration and interaction analysis mechanisms in a concern-based
architecture for groupware systems”; Science of Computer Programming 77, 1 (2012) 29-45.

[Forrester, 85] Forrester, J.W.: “The model versus a modeling process”; System Dynamics
Review, 1, 1 (1985) 133-134.

1305Duque R., Bollen L., Anjewierden A., Bravo C.: Automating ...

[Harrer, 04] Harrer, A., Bollen, L., Hoppe, U.: “Processing and Transforming Collaborative
Learning Protocols for Learner’s Reflection and Tutor’s Evaluation”; In: Workshop on
Artificial Intelligence in Computer Supported Collaborative Learning, Spain (2004).

[Jung, 10] Jung, S.-Y., VanLehn, K.: “Developing an Intelligent Tutoring System Using
Natural Language for Knowledge Representation”; In: The 10th International Conference on
Intelligent Tutoring Systems, USA (2010), 355-358.

[Le, 06] Le, N.-T.: “A Constraint-based Assessment Approach for Free- Form Design of Class
Diagrams using UML”; In: The 8th International Conference on Intelligent Tutoring Systems,
Taiwan (2006), 11-19.

[Le, 10] Le, N.T., Menzel, W., Pinkwart N.: “Considering Ill-Definedness of problem tasks
under the aspect of solution space”; In: The 23st International Conference of the Florida
Artificial Intelligence Research Society (2010), 534–535

[Mellor, 04] Mellor, S., Scott, K., Uhl, A., Weise, D.: “MDA Distilled: Principles of Model-
Driven Architecture”; Addison-Wesley Professional, 2004.

[Menzel, 06] Menzel, W.: “Constraint-based modeling and ambiguity”; International Journal of
Artificial Intelligence in Education, 16 (2006).

[Mitrovic, 04] Mitrovic, A., Suraweera, P., Martin, B., Weerasinghe, A.: “DB-suite:
Experiences with Three Intelligent Web-based Database Tutors”; Journal of Interactive
Learning Research, 15 (2004), 409-432.

[Mitrovic, 07] Mitrovic, A., Martin, B., Suraweera, P.: “Intelligent Tutors for All: The
Constraint-Based Approach”; IEEE Intelligent Systems, 22 (2007), 38-45.

[Mitrovic, 09] Mitrovic, A., Martin, B., Suraweera, P., Zakharov, K., Milik, N., Holland, J.,
Mcguigan, N.: “ASPIRE: An Authoring System and Deployment Environment for Constraint-
Based Tutors”; International Journal of Artificial Intelligence in Education, 19 (2009), 155-188.

[Mitrovic 11] Mitrovic, A., Williamson, C., Bebbington, A., Mathews, M., Suraweera, P.,
Martin, B., Thomson, D., Holland, J.: “Thermo-Tutor: An Intelligent Tutoring System for
Thermodynamics”; In: The IEEE Global Engineering Education Conference, Jordan (2011),
378-358.

[Mørch, 03] Mørch, A.I., Dolonen, J., Omdahl, K.: “Integrating agents with an open source
learning environment”; In: Proceedings of the international conference on computers in
education, Hong Kong (2003), 393-401.

[Muehlenbrock, 05] Muehlenbrock, M.: “Automatic Action Analysis in an Interactive Learning
Environment”; In: Workshop on Usage Analysis in Learning Systems at the 12th International
Conference on Artificial Intelligence in Education, The Netherlands (2005), 73-80.

[Nicholas, 06] Nicholas, A.: “Dealing with Ambiguity in a Foreign Language ITS”;
Department of Computer Science and Software Engineering, University of Canterbury,
Christchurch (2006).

[Ohlsson, 94] Ohlsson, S.: “Constraint-Based Student Modeling”; In: Greer, J. E. & McCalla J.
E. (Eds.), Student Modeling: The Key to Individualized Knowledge-Based Instruction, (1994)
167-189.

[Remolina, 04] Remolina, E., Ramachandran, S., Fu, D., Stottler, R., Howse, W.R.: “Intelligent
Simulation-Based Tutor for Flight Training”; In: The Interservice/Industry Training,
Simulation, and Education Conference, USA (2004), Paper No. 1743, 1-14.

1306 Duque R., Bollen L., Anjewierden A., Bravo C.: Automating ...

[Soller, 05] Soller, A., Martinez, A., Jermann, P., Muehlenbrock, M.: “From Mirroring to
Guiding: A Review of State of the Art Technology for Supporting Collaborative Learning”;
International Journal of Artificial Intelligence in Education, 15 (2005), 261-290.

[van Joolingen, 05] van Joolingen, W.R., de Jong, T., Lazonder, A.W., Savelsbergh, E.R.,
Manlove, S.: “Co-Lab: research and development of an on-line learning environment for
collaborative scientific discovery learning”; Computers in Human Behaviour, 21 (2005), 671-
688.

[Yin, 94] Yin, R.K.: “Case study research: Design and methods”; Thousand Oaks, CA: Sage
Publications (1994)

1307Duque R., Bollen L., Anjewierden A., Bravo C.: Automating ...

