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Abstract: Data warehouses integrate and aggregate data from various sources to sup-
port decision making within an enterprise. Usually, it is assumed that data are extracted
from operational databases used by the enterprise. Cloud warehousing relaxes this view
permitting data sources to be located anywhere on the world-wide web in a so-called
“cloud”, which is understood as a registry of services. Thus, we need a model of data-
intensive web services, for which we adopt the view of the recently introduced model
of abstract state services (AS2s). An AS2 combines a hidden database layer with an
operation-equipped view layer, and thus provides an abstraction of web services that
can be made available for use by other systems. In this paper we extend this model
to an abstract model of clouds by means of an ontology for service description. The
ontology can be specified using description logics, where the ABox contains the set
of services, and the TBox can be queried to find suitable services. Consequently, AS2

composition can be used for cloud warehousing.
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1 Introduction

A data warehouse stores data that is used for analytical tasks that support

decision making. This is called online-analytical processing (OLAP) and distin-

guished from online transaction processing (OLTP) in databases. As OLAP tasks

do not depend on the latest updates, it is usually assumed that the data are ex-

tracted from operational databases and refreshed in larger time intervals. Thus,

a data warehouse separates the input from operational databases from output
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to the OLAP system, which itself is organised by a collection of extended views

called datamarts.

Since the early days of data warehousing the emphasis has been on the design

of a central data warehouse [Inmon, 1996; Kimball, 1996] using appropriate data

models, and the development of corresponding OLAP systems based on views

[Lawrence and Rau-Chaplin, 2006; Lewerenz et al., 1999; Thomson, 2002]. An in-

tegrated formal approach on the basis of the method of Abstract State Machines

[Börger and Stärk, 2003] emphasizing stepwise refinement has been presented in

[Zhao and Ma, 2006], and a formalisation of OLAP/OLTP was addressed in

[Lenz and Thalheim, 2009]. More recently, the emphasis has shifted to incre-

mental design taking data warehouse and OLAP evolution into account [Ravat

et al., 2008; Theodoratos et al., 2001; Theodoratos and Sellis, 1999; Theodoratos

and Sellis, 2000; Zhao et al., 2009].

Traditionally, the focus of data warehousing is decision support within an

enterprise with little connections to research in emerging areas such as web

services [Benatallah et al., 2006; Brenner and Unmehopa, 2007], service-oriented

architectures [Brenner and Unmehopa, 2007; Kumaran et al., 2007; Papazoglou

and van den Heuvel, 2007], or cloud computing. For instance, decision support

could not only be based on data that is collected within an enterprise, but could

be based on data that is available on the web, and not only data but also useful

functions ranging from simple currency converters to prediction models could be

incorporated. That is, data warehousing could exploit functionality that is made

available by clouds, i.e. service registries. In this sense, a web data warehouse

can be pictured as an aggregation of local components with data and functions

that are extracted and integrated from available services. This ressembles the

fundamental idea of meme media [Tanaka, 2003].

It is even possible that some data and functionality in a data warehouse and

OLAP system is made available as a service. We therefore believe it is worth

the effort to investigate the potential of web-based open data warehouses and

OLAP systems. In such a system data sources could be located anywhere on

the world-wide web. We would like to go even further and propose that web

warehousing should exploit data-intensive web services.

Example 1. Let us first look at a data warehouse supporting sales statistics

as illustrated in Figure 1 by a traditional ER diagram [Thalheim, 2000]. The

schema has the form of a simple star schema with four “dimensions” capturing

the location of each sale, represented by the type Shop, the object of a sale,

represented by Product, the buying Customer, and the Time of the sale.

Products are grouped into categories, for time the usual grouping into months,

quarters and years is available – which is in fact derived data – and for shops a

grouping into town, region and state applies. The “fact” type Purchase permits

capturing quantity (how many of the specific product were bought), sales (how
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Figure 1: A star schema for a sales statistics data warehouse

much did the customer pay), and profit (what is the difference to the price of

the product as paid by the shop).

The annual sales data per region are available through a datamart using a

simple typed ASM rule (see [Schewe and Zhao, 2008] for details on typed ASMs):

Sales := πsales:sum(sales), region, year(Purchase �� Shop �� Time)

this view can be extended by standard OLAP service functions such as drill-

down, roll-up and slice. Assuming that population data per region can be ex-

traced from another service, e.g. providing a binary relation Population with

attributes region and population, a service operation

Samples := πsales, population(Sales �� Population)

provides sample data for linear regression. Taking b0, b1 such that

∑

(p,s)∈Samples

((b0 + b1 · p)− s)2

is minimal, we obtain a service function for forecasting annual sales for all

stores depending on the size of the population using an equation

Ŷi = b0 + b1 ·Xi .

Here, Ŷi denotes the predicted value of Y for the observation i, in our case

the annual sales, and Xi the value of X for the observation i, in our case the

size of the population. ♦
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Recently, we developed the theoretical framework of Abstract State Services

(AS2s) [Ma et al., 2008; Ma et al., 2009b], which formalises the notion of data-

intensive service, and links service-oriented systems with the fundamental ASM

thesis [Gurevich, 2000] and its adaptation to general database transformations

[Schewe and Wang, 2008; Wang and Schewe, 2007]. An AS2 combines a hidden

database layer with an operation-equipped view layer, and can be anything from

a simple function to a full-fledgedWeb Information System. A variant of Abstract

State Machines (ASMs) can be used to specify and capture AS2s.

In our recent conference publication [Ma et al., 2009a] we demonstrated how

open data warehouses and OLAP systems can be considered in a natural way

as AS2s, i.e. selected data and functionality of a data warehouse may be made

available in the form of a generalised data-intensive web service. Using these

services we can then build new services by means of component extraction and

recomposition.

Thus, on one side data warehousing will exploit the web and thus become

web warehousing, and on the other side web warehouses are themselves made

available as services. This constitutes a service-oriented approach to web data

warehousing, which at the same time shifts the focus towards more open systems

based on model suites [Thalheim, 2008], i.e. sets of models with explicit asso-

ciations among the individual models. The two layers of an AS2 plus the AS2

composition on top of them constitute a three-layer, hierarchically structured

model suite.

While AS2s are a suitable abstraction of data-intensive services, it will be cru-

cial for a web-based service-oriented architecture that useful and usable service

can be discovered. In order to support the search for such services we propose

federations of services together with an ontology that specifies their semantics,

i.e. we would lean on the idea of the semantic web. Such an ontology should ide-

ally comprise functional and non-functional characterisations of the services. The

functional characterisation could exploit types for input and output, pre- and

postconditions, and a description of the application area. The non-functional

characterisation could comprise quality-of-service parameters such as perfor-

mance, costs, availability, etc. This leads to a formal model of a cloud as service

registry together with a semantic description.

In the remainder of this paper we develop an abstract model of clouds as

federations of services. In Section 2 we briefly review the ASM-based abstract

model of Abstract State Services (AS2s), which gives an answer to the question

how to specify services. We dispense with all aspects of concrete languages for

AS2s (see [Ma et al., 2009b]). In Section 3 we develop a formal model of clouds as

federations of services that are in addition equipped with an ontology capturing

service descrition. In this way we give an answer to the how to discover services.

In Section 4 we address the problem of extracting relevant components of a cloud
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data warehouse that is available as an AS2 and recombining these components

into a new web-based data warehouse application. In our conclusions in Section

5 we first give a brief summary and place our work into the literature context

by looking at related work. We then analyse what has been achieved so far and

which open questions remain for future research.

2 An Abstract Model for Services

In this section we first address the question how to specify services in an ab-

stract way. Our goal is to provide a concise formal framework that captures all

necessary aspects of data-intensive services rather than focussing on a particular

specification language.

As services that are useful for web warehousing will be data-intensive, we first

look at databases. Traditional database architecture distinguishes at least three

layers: a conceptual layer describing the database schema in an abstract way, a

physical layer implementing the schema, and an external layer made out of views.

The external layer exports the data that can then be used by users or programs.

For our purposes here we can neglect the physical layer, but in order to capture

data-intensive services, we complete this architecture by adding operations on

both the conceptual and the external layer, the former one being handled as

database transactions, whereas the latter ones provide the means with which

users can interact with a database.

Starting with the database layer and following the general approach of Ab-

stract State Machines [Gurevich, 2000] we may consider each database compu-

tation as a sequence of abstract states, each of which represents the database

(instance) at a certain point in time plus maybe additional data that is nec-

essary for the computation, e.g. transaction tables, log files, etc. In order to

capture the semantics of transactions we distinguish between a wide-step tran-

sition relation and small step transition relations. A transition in the former one

marks the execution of a transaction, so the wide-step transition relation defines

infinite sequences of transactions. Without loss of generality we can assume a se-

rial execution, while of course interleaving is used for the implementation. Then

each transaction itself corresponds to a finite sequence of states resulting from

a small step transition relation, which should then be subject to the postulates

for database transformations [Wang and Schewe, 2007].

Definition 1. A database system DBS consists of a set S of states, together with

a subset I ⊆ S of initial states, a wide-step transition relation τ ⊆ S × S, and
a set T of transactions, each of which is associated with a small-step transition

relation τt ⊆ S×S (t ∈ T ) satisfying the postulates of a database transformation

over S.
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A run of a database system DBS is an infinite sequence S0, S1, . . . of states

Si ∈ S starting with an initial state S0 ∈ I such that for all i ∈ N (Si, Si+1) ∈ τ

holds, and there is a transaction ti ∈ T with a finite run Si = S0
i , . . . , S

k
i = Si+1

such that (Sj
i , S

j+1
i ) ∈ τti holds for all j = 0, . . . , k − 1.

Views in general are expressed by queries, i.e. read-only database transfor-

mations. Therefore, we can assume that a view on a database state Si ∈ S is

given by a finite run Si = Sv
0 , . . . , S

v
� of some database transformation v with

Si ⊆ Sv
� – traditionally, we would consider Sv

� − Si as the view. We can use this

to extend a database system by views.

In doing so we let each state S ∈ S to be composed as a union Sd∪V1∪· · ·∪Vk

such that each Sd ∪ Vj is a view on Sd. As a consequence, each wide-step state

transition becomes a parallel composition of a transaction and an operation that

switches views on and off.

Definition 2. An Abstract State Service (AS2) consists of a database system

DBS, in which each state S ∈ S is a finite composition Sd ∪ V1 ∪ · · · ∪ Vk, and a

finite set V of (extended) views. Each view v ∈ V is associated with a database

transformation such that for each state S ∈ S there are views v1, . . . , vk ∈ V
with finite runs Sd = Sj

0 , . . . , S
j
nj

= Sd∪Vj of vj (j = 1, . . . , k). Each view v ∈ V
is further associated with a finite set Ov of (service) operations o1, . . . , on such

that for each i ∈ {1, . . . , n} and each S ∈ S there is a unique state S′ ∈ S with

(S, S′) ∈ τ . Furthermore, if S = Sd ∪ V1 ∪ · · · ∪ Vk with Vi defined by vi and o is

an operation associated with vk, then S′ = S′
d ∪ V ′

1 ∪ · · · ∪ V ′
m with m ≥ k − 1,

and V ′
i for 1 ≤ i ≤ k − 1 is still defined by vi.

In a nutshell, in an AS2 we have view-extended database states, and each

service operation associated with a view induces a transaction on the database,

and may change or delete the view it is associated with, and even activate other

views. These service operations are actually what is exported from the database

system to be used by other systems or directly by users.

The abstract handling of service operations that induce transactions avoids

the view update problem, which has to be taken into account when dealing with

concrete specifications for AS2s, e.g. using the theory developed in [Hegner,

2008].

A formalisation of database transformations by means of postulates is beyond

the scope of this paper and excluded due to space limitations. In a nutshell, the

postulates require a one-step transition relation between states (sequential time

postulate), states as (meta-finite) first-order structures (abstract state postu-

late), necessary background for database computations such as complex value

constructors (background postulate), limitations to the number of accessed terms

in each step (exploration boundary postulate), and the preservation of equiva-

lent substructures in one successor state (genericity postulate) [Ma et al., 2009b;

Schewe and Wang, 2008].
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Data warehouses and OLAP systems provide aninteresting class of examples

of AS2s. The ASM-based approach in [Zhao and Ma, 2006; Zhao et al., 2009]

uses three linked ASMs to model data warehouse and OLAP applications. At its

core we have an ASM modelling the data warehouse itself using star or snowflake

schemata. This will constitute the database layer of an AS2. A second ASM would

be used for modelling operational databases with rules extracting data from them

and refreshing the data warehouse. This ASM is of no further relevance for us

and thus can be ignored. A third ASM models the OLAP interface on the basis

of the idea that datamarts can be represented as extended views [Lewerenz et al.,

1999].

3 An Abstract Model of Clouds

The common understanding of the notion of “cloud” is that it is some kind of

service pool, from which services can be extracted and used. Thus, one of the key

problems is to discover the services that are needed for a particular application.

This should be possible by means of a search engine. Therefore, it is crucial that

the service operations including the view defining queries that are made available

through some cloud are provided with an adequate description, which will allow

a search engine to discover (with some certainty) the required services.

Such a description should at least comprise three parts:

– a functional description of input- and output types as well as pre- and post-

conditions telling in technical terms, what the service operation will do,

– a categorical description by inter-related keywords telling what the service

operation does by using common terminology of the application area, and

– a quality of service (QoS) description of non-functional properties such as

availability, response time, cost, etc.

The QoS description is not needed for service discovery and merely useful to

select among alternatives, but neither functional nor categorical description can

be dispensed with. However, a functional description alone would be insufficient,

as services may have the same functional description, even if they stem from very

different application areas. As for the categorical description, the terminology

has to be specified. This defines an ontology in the widest sense, i.e. we have

to provide definitions of “concepts” and relationships between them, such that

each offered service becomes an instantiation of one or several concepts in the

terminology. In this way we adopt the fundamental idea of the “semantic web”.

In the following we will outline how ontologies can be exploited for service

description. We will pay particular attention to description logics without pre-

scribing a particular language. That is, OWL [W3C, 2003] or more expressive

description logics [Baader et al., 2003] could be exploited.
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3.1 Ontologies

As outlined, the functional, categorical and QoS description of services in a cloud

requires the definition of an ontology [Flahive et al., 2006; Flahive et al., 2009;

Lanzenberger et al., 2010]. That is, we need a terminological knowledge layer

(aka TBox in description logics) describing concepts and roles (or relationships)

among them. This usually includes a subsumption hierarchy among concepts

(and maybe also roles), and cardinality constraints. In addition, there is an as-

sertional knowledge layer (aka ABox in description logics) describing individuals.

Thus, services in a cloud constitute the ABox of an ontology, while the cloud

itself is defined by the TBox.

In principle, instead of TBox and ABox we could use the more classical

notions of schema and instance, and exploit any kind of data model. A query

language associated with the used data model, could then be used to find the

required services. In fact, description logics only provide rather limited logics

with respect to expressiveness. There are two major reasons for giving preference

to description logics:

1. Description logics use two important relationships, which due to the re-

strictions become decidable: subsumption and instantiation. Subsumption is

a binary relationship between concepts (denoted as C1 � C2) guaranteer-

ing that all instances of the subsumed concept C1 are also instances of the

subsuming concept C2. Instantiation defines a binary relationship between

instances in the ABox and concepts in the TBox asserting that an element

A of the ABox is an instance of a concept C in the TBox. Subsumption and

instantiation together allow us to discover services that are more expressive

than needed, but can be projected to a service just as required.

2. Concept and role names in the TBox can be subject to similarity search by

a search engine. That is, the search engine could produce services that are

similar (with a certainty factor) to the ones required with respect to the

categorical description, and match the functional description.

Let us now look more closely into one particular description logic in the DL-

Lite family (see [Baader et al., 2003]). For this assume that C0 and R0 represent

not further specified specified sets of basic concepts and roles, respectively. Then

concepts C and roles R are defined by the following grammar:

R = R0 | R−
0

A = C0 | � | ≥ m.R (with m > 0)

C = A | ¬C | C1 	 C2 | C1 
 C2 | ∃R.C | ∀R.C

Definition 3. A terminology (or TBox) is a finite set T of assertions of the

form C1 � C2 with concepts C1 and C2 as defined by the grammar above.
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Each assertion C1 � C2 in a terminology T is called a subsumption axiom.

Note that Definition 3 only permits subsumption between concepts, not between

roles, though it is possible to define more complex terminologies that also permit

role subsumption. As usual, we use the shortcut C1 ≡ C2 instead of C1 �
C2 � C1. For concepts, ⊥ is a shortcut for ¬�, and ≤ m.R is a shortcut for

¬ ≥ m+ 1.R. The semantics of a terminology is defined by its models. For this

we use structures S.

Definition 4. A structure S for a terminology T consists of a non-empty set

O together with subsets S(C0) ⊆ O and S(R0) ⊆ O × O for all basic concepts

R0 and basic roles R0, respectively. O is called the base set of the structure.

We extend the interpretation of basic concepts and roles and to all concepts

and roles as defined by the grammar above, i.e. for each concept C we define a

subset S(C) ⊆ O, and for each role R we define a subset S(R) ⊆ O ×O:

S(R−
0 ) = {(y, x) | (x, y) ∈ S(R0)}

S(�) = O
S(≥ m.R) = {x ∈ O | #{y | (x, y) ∈ S(R)} ≥ m}

S(¬C) = O − S(C)

S(C1 	 C2) = S(C1) ∩ S(C2)

S(C1 
 C2) = S(C1) ∪ S(C2)

S(∃R.C) = {x ∈ O | (x, y) ∈ S(R) for some y ∈ S(C)}
S(∀R.C) = {x ∈ O | (x, y) ∈ S(R) ⇒ y ∈ S(C) for all y}

Definition 5. A model for a terminology T is a structure S, such that S(C1) ⊆
S(C2) holds for all assertions C1 � C2 in T . A finite model, i.e. a model with a

finite base set, is also called instance or ABox associated with T .

Example 2. The general part of a service ontology could be defined by a termi-

nology as follows:

Service � ∃name.Identifier 	 ≤ 1.name 	 ∃address.URL 	 ≤ 1.address 	
≤ 1.offered by 	 ∃offered by.Provider 	 ∃defining.Query 	

≤ 1.defining 	 ∃offers.Operation

Operation � ∃associated with.Query 	 ≤ 1.associated with

Data Service ≡ Query 	 ≥ 1.defining−

Functional Service ≡ Operation 	 ≥ 1.offers−

Service Operation ≡ Data Service 
 Functional Service

Service Operation � ∃input.Type 	 ≤ 1.input 	 ∃output.Type 	 ≤ 1.output

Type � ∃name.Identifier 	 ≤ 1.name 	 ∃format.Format
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Here we used capital first letters to indicate concept names, and lower case

letters for role names. ♦

3.2 Definition of Clouds

Following our discussion above we can now formally define a cloud as a federation

of services together with a descriptive ontology.

Definition 6. A cloud is a finite collection {Ai | i ∈ I} of AS2s together with a

terminology T , such that the defining queries of views and the associated service

operations of these AS2s define an instance of T .

In principle, this definition permits any kind of terminology, as long as it deals

with service operations. However, as outlined above we expect the terminology

T of a cloud to provide the functional, categorical and QoS description of its

offered services.

Functional Description. The functional description of a service operation

consists of input- and output-types as already indicated in Example 2, and pre-

and postconditions. For the types we need a type system with base types and

constructors. For instance, the following grammar

t = b | 1l | (a1 : t1, . . . , an : tn) | {t} | [t] | (a1 : t1)⊕ · · · ⊕ (an : tn)

describes (the abstract syntax of) a type system with a trivial type 1l, a

non-further specified collection of base types b, and four type constructors (·)
for record types, {·} for finite set types, [t] for list types, and ⊕ for union types.

Record and union types use field labels ai.

The semantics of such types is basically described by their domain, i.e. sets

of values dom(t). Usally, for a base type b such as Cardinal , Decimal , Float ,

etc. the domain is some commonly known at most countable set with a common

presentation. The domain of the trivial type contains a single special value, say

dom(1l) = {⊥}. For constructed types we obtain the domain in the usual way:

dom((a1 : t1, . . . , an : tn)) = {(a1 : v1, . . . , an : vn) | ai ∈ dom(ti)

for i = 1, . . . , n}
dom({t}) = {A | A ⊆ dom(t) finite}
dom([t]) = {[v1, . . . , vk] | vi ∈ dom(t) for i = 1, . . . , k}

dom((a1 : t1)⊕ · · · ⊕ (an : tn)) =
⋃n

i=1
{(ai : vi) | vi ∈ dom(ti)}

In particular, a union type (a1 : 1l) ⊕ · · · ⊕ (an : 1l) has the domain {(a1 :

⊥), . . . , (an : ⊥)}, which can be identified with the set {a1, . . . , an}, i.e. such
types are in fact enumeration types.
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It is no problem to add the specification of types to the general service

terminology as outlined in Example 2 thereby defining part of the functional

description.

Example 3. We can extend the terminology in Example 2 by the following ax-

ioms for types:

Type ≡ Base type 
 Trivial type 
 Composed type

Composed type ≡ Record 
 Set 
 List 
 Union

Record � ∀component.Field

Field � ∃field name.Identifier 	 ≤ 1.field name 	 ∃type.Type 	 ≤ 1.type

Union � ∀component.Field

Record 	 Union � ⊥
Set � ∃component.Type 	 ≤ 1.component

List � ∃component.Type 	 ≤ 1.component

Set 	 List � ⊥

The specification of composed types impacts directly on the format, which is

defined by field names and the format for the component type(s). Nevertheless,

this constraint can be handled by the specification of ABox assertions. ♦

In addition to the types, the functional description of a service operation

includes pre- and postconditions, which are defined by (first-order) predicate

formulae. These formulae may contain further functions and predicates, which

are subject to further (categorical) description.

Example 4. The terminology in Examples 2 and 3 can be further extended by

the following axioms:

Service Operation � ∀pre.Condition 	 ≤ 1.pre 	 ∃post.Condition 	 ≤ 1.post

Condition � Formula 	 ∀uses.(Predicate 	 Function)

Predicate � ∃in.Type 	 ≤ 1.in 	 ¬ ≥ 1.out

Function � ∃in.Type 	 ≤ 1.in 	 ∃out.Type 	 ≤ 1.out

This would complete the functional part of the terminology. ♦

Quality of Service. Quality of service properties are availablity, cost, re-

sponse time, etc. These can be added directly by means of roles to the concept

Service Operation.
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Example 5. By means of the axiom

Service Operation � ∃cost.Amount 	 ∃availability.Times

	response time.Duration

the terminology in Example 2 will be extended by a QoS description. ♦

Categorical Description. The core of the service description by means of

the terminology of a cloud is the categorical description, which refers to the

standard terminology of the application area, and relates the used notions to

each other. There are no general requirements for the categorical description, as

it depends completely on the application domain. However, it will always lead

to subconcepts of the concept Service Operation plus additional concepts and

roles. It will also add more details to the predicates and functions used in the

pre- and postconditions.

Example 6. Let us look again at the regression in Example 1, for which the

categorical description may consist of the following axioms:

Annual Sales Q � Data Service 	 ∃output.Sales Stats

Sales Stats � Set 	 ∃component.Sales Record

Sales Record � Record 	 component.Sales 	 ∃component.Region

	∃component.Year

Population Q � Data Service 	 ∃output.Population Stats

Samples � Data Service 	 ∃uses.Annual Sales 	 ∃uses.Population Stats

Regression � Service Operation 	 ∃requires.Samples 	 ∃produces.Sales Estim

This specification is of course incomplete, but it shows how to proceed. That

is, annual sales are defined by a data service, i.e. a query that produces a relation

with at least three attributes Sales, Region and Year. Similarly, population is

defined by a data service, and samples result from combining both (using a

join). The regression service operation requires these samples and produces a

sales estimate. ♦

The terminology of a cloud enables the discovery of services, as it can be

queried. For this we assume that the terminology T is complete with respect to

subsumption, i.e. whenever C1 � C2 is implied by the axioms in T , it is added to

T . Implication is defined in the usual way, i.e. T |= C1 � C2 iff S(C1) ⊆ S(C2)

holds for every model of T .

We further assume that the assertions in the ABox have been completed

as well, i.e. whenever C1(o) is such an assertion and the axiom C1 � C2 is in

T , then also C2(o) is asserted in the ABox. With these assumptions we can
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treat the ABox as a simple relational database with unary and binary relation

symbols for the concepts and roles of the terminology T , respectively. Then any

query language for relational databases, calculus, algebra, SQL, fixed-point logic,

DATALOG, etc. can be used to query a cloud.

However, the success of a search depends on the compatibility of the ontolo-

gies used by the service seeker and the service provider. If there is no common

understanding of the terms used used in the terminology, in particular in the

categorical description, the service seeker may apply a service, which does not

deliver the required functionality.

4 Extraction and Composition of Services

In the previous two sections we developed a general model for clouds as service

federations, thus answering how services can be specified and discovered. In this

section we address the related question how services that have been identified

for solving an application problem can be composed. For this we only have to

consider the composition of AS2s. We follow and generalise [Ma et al., 2009b]

and discuss how to extract components from AS2s, and how to recompose them

to form new AS2s. The application to cloud data warehouses is a special case.

4.1 Component Extraction

In order to extract components from an AS2 we first build a subset V ′ ⊆ V of

the set of views, and for each view v ∈ V ′ we restrict the service operations to

a subset O′
v ⊆ Ov. These subset restrictions obviously produce an AS2 with the

same underlying database system as before.

In a second step we actually restrict the views v ∈ V ′ themselves by defining

a view pv on top of it, i.e. pv is a database transformation that will transform

a state V into a state V ∪ V ′. Practically speaking, service extraction can only

be performed by service users, and they only have access to the view layer, not

to the underlying database system. Nevertheless, by forgetting the original view

V , the composed database transformation pv ◦ v defines a view on top of the

original database system transforming states S ∈ S into states S ∪ V ′.

Furthermore, o ∈ O′
v still induces the same transaction, and if v would be

replaced by {v1, . . . , vk}, then pv ◦ v would have to be replaced by {pvi ◦ vi |
i ∈ {1, . . . , k}, vi ∈ V ′}. In this way, the collection of views pv defines an AS2

with the same underlying database system as before. We will call this an AS2

component.

Definition 7. Let A = (DBS,V) = (S, τ, {τt}t∈T , {(v, {o1, . . . , onv})}v∈V) be

an AS2. A component of A is an AS2 (S, τ, {τt}t∈T , {(pv ◦v, {o′1, . . . , o′n′
v
})}v∈V′)

with V ′ ⊆ V and {o′1, . . . , o′n′
v
} ⊆ {o1, . . . , onv}.
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Note that in order to define a component of an AS2 A, it is not necessary

to know anything about the DBS of A, as only the views and associated service

operations are affected. In a practical sense this reflects the request that the

database layer of an AS2 should be hidden.

The functions pv that are used to define a component primarily constitute

views over views, but can be interpreted in the most general way, as they are fully

under control of those extracting components. In particular, functions extracted

from any other AS2 can be used.

4.2 AS2 Composition

In order to recombine the data extraction and service operations from several

AS2s it is natural to use functional composition, if input and output are compat-

ible. In addition, we may use aggregation operations and other locally defined

auxiliary functions. For instance, if qv1 and qv2 are defining queries of two views

v1 and v2 resulting in relations, we can aggregate them by building the natural

join of the corresponding results. We denote this view by v1 �� v2, and call it

an aggregated view of {v1, v2} with aggregate functions {��}. More general, any

functional composition of given views with other functions defines an aggregated

view, provided the views have to be executed first.

Similarly, any such functional composition (without the restriction that views

have to come first) can define a new service operation. This leads to the following

definition of an aggregated AS2.

Definition 8. Let Ai = (Si, τ i, {τ it}t∈T i , {(vi, {oi1, . . . , oinvi
})}vi∈Vi) be AS2

components (i = 1, . . . , n). An AS2 A = (S, τ, {τt}t∈T , {(v, {o1, . . . , onv})}v∈V)

is an aggregation of A1, . . . ,An with a set of local functions F iff each view v ∈ V
is an aggregated view of

n⋃
i=1

V i with the aggregate functions

F ∪
n⋃

i=1

⋃

vi∈Vi

{oi1, . . . , oinvi
},

and each service operation o ∈ V is composed out of
n⋃

i=1

⋃
vi∈Vi

{oi1, . . . , oinvi
}∪F ∪

n⋃
i=1

{qv | v ∈ V i}.

5 Evaluation and Conclusions

In this paper we combined our ASM-based approach to the dynamic design of

data warehouses and OLAP systems [Zhao et al., 2009] with our recent foun-

dational approach to data-intensive software services [Ma et al., 2009b]. Techni-

cally, a data warehouse and OLAP system can be considered as an instantiation
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of an abstract state service. We elaborated this view and provided examples to

illustrate this idea. In this way we obtain some form of decision support services.

Components of such services can be extracted and recombined with other service

components to define other services. Thus, also the data warehouse and OLAP

system itself can benefit from other services, in particular other decision support

services. This constitutes an approach to web warehousing and interoperability

focusing on decision support extending our previous work in [Ma et al., 2009a].

Furthermore, we extended our work in the direction of search for services.

For this we picked up the idea from [Ma et al., 2009c] of clouds as federations

of services that are in addition equipped with a detailed ontology of the ser-

vices. We argued that such an ontology should comprise three parts: a functional

part comprising types and pre- and postconditions for the service operations, a

quality-of-service part comprising non-functional properties such as availability,

performance, etc., and a categorical part comprising the concepts and relation-

ships of the application domain. Using description logics for such ontologies

permits searching for services by querying the ABox of the terminology. With

this extension we obtain a model of data warehousing in the cloud.

Our work stands out in the service-oriented and cloud computing community,

as we are aiming at solid formal foundations addressing the key questions instead

of ad-hoc technological solutions for isolated problems. For instance, the idea of

using service-orientation to build web applications is also stressed in [Zaupa

et al., 2008], and the composition of complex web applications leading to so-

called mashups is addressed in [Ikeda et al., 2009]. With [Altenhofen et al., 2008]

we have in common that we exploit ASMs in our work, but we do not start with

an ASM-based specification language. Instead we started from the sequential

ASM thesis [Gurevich, 2000], which we first extended to a thesis for database

transformations, which are a key notion in the formal model of AS2s. None of

the mentioned related articles address the particular area of data warehousing.

Leaving the technical aspects aside we argued that cloud web warehousing

makes sense, while traditionally, warehousing is considered an intra-enterprise

activity. We provided examples supporting this generalised view. However, even

if the focus remains on enterprise-centric warehousing, our service-based ap-

proach can be useful, e.g. for enterprises with a variety of diverse activities or

international branches, as it enables a separation between decision support on

various levels.

What is still missing in our formal model of clouds is a treatment of service

queries. That is, how can we decompose a request for a particular service into

elementary services that are then searched for in the clouds. Furthermore, in the

context of such search we will have to exploit the quality-of-service properties

to make an optimal selection among alternative solutions.
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