
Algorithms for the Evaluation of Ontologies for Extended
Error Taxonomy and their Application on Large

Ontologies

Najmul Ikram Qazi
(Center for Distributed & Semantic Computing, Mohammad Ali Jinnah University

Islamabad, Pakistan
najmalikram@yahoo.com)

Muhammad Abdul Qadir

(Center for Distributed & Semantic Computing, Mohammad Ali Jinnah University
Islamabad, Pakistan

aqadir@jinnah.edu.pk)

Abstract: Ontology evaluation is an integral and important part of the ontology development
process. Errors in ontologies could be catastrophic for the information system based on those
ontologies. As per our experiments, the existing ontology evaluation systems were unable to
detect many errors (like, circulatory error in class and property hierarchy, common class and
property in disjoint decomposition, redundancy of sub class and sub property, redundancy of
disjoint relation and disjoint knowledge omission) as defined in the error taxonomy. We have
formulated efficient algorithms for the evaluation of these and other errors as per the extended
error taxonomy. These algorithms are implemented (named as OntEval) and the
implementations are used to evaluate well-known ontologies including Gene Ontology (GO),
WordNet Ontology and OntoSem. The ontologies are indexed using a variant of already
proposed scheme Ontrel. A number of errors and warnings in these ontologies have been
discovered using the OntEval. We have also reported the performance of our implementation,
OntEval.

Keywords: Ontology Evaluation, Ontological Engineering, Knowledge Engineering,
Knowledge Modelling, Semantic Computing, Information Systems Applications
Categories: M.1, M.2, M.3, H.3, H.4

1 Introduction

As we are moving from traditional Web to the Semantic Web, new technologies are
being developed rapidly to facilitate this transition. XML [Bray, 00] came as a
powerful language to represent information classified in a hierarchical fashion. Soon,
it was realized that we need some thing more expressive than XML. So RDF
[Berners-Lee, 01] was introduced, and it was seen as more powerful tool to represent
information in the form of triples. As researchers moved ahead, they invented the
Web Ontology Language (OWL), which is richer than RDF [Antoniou, 04]. An
Ontology [Antoniou, 04] models a domain of interest. It defines domain concepts,
their hierarchies, and relationships among them, object and data type properties and
many other constructs that enable automated agents to understand and process the

Journal of Universal Computer Science, vol. 17, no. 7 (2011), 1005-1020
submitted: 30/10/10, accepted: 15/3/10, appeared: 1/4/11 © J.UCS

information according to the semantics of the domain. Once the ontology is built,
diverse teams can develop information processing systems in their own ways based
upon the original or extended ontology. The systems built upon the agreed-upon and
correct ontology can interoperate in a meaningful way. Therefore, correct and agreed-
upon ontologies play a key role in describing the semantics of data, which enables
globally distributed machines to understand the meaning of data.

The ontology evaluation [Antoniou, 04] is an integral part of the ontology
development lifecycle. Each ontology should be evaluated against inconsistency,
incompleteness and redundancy errors before it is put into operation [Gomez-Perez,
04]. Errors in the ontology can be catastrophic for the information system built on it
[Qadir, 07]. Researchers have recently identified new types of errors in ontologies
written in OWL-DL that can harm the information systems built upon the ontologies
[Qadir, 07], [Fahad, 08b].

Previously identified errors include circulatory errors in class hierarchy, common
class in disjoint decompositions, common instances in disjoint decomposition,
external instances in exhaustive decomposition, incomplete concept classification,
disjoint knowledge omission between classes, exhaustive knowledge omission,
redundancy of sub class relation, redundancy of instance-of relations and identical
formal definition of classes/instances.

The extended error taxonomy defines new errors as; circulatory errors in property
hierarchy, common property in disjoint decompositions, more generalised concept by
subclass, domain violation by subclass, disjoint domain by subclass, disjoint
knowledge omission between properties, functional and inverse-functional property
omission, sufficient knowledge omission, redundancy of sub property, identical
formal definition of properties and redundancy of disjoint relation.

A large ontology may contain thousands of concepts and relations, each of them
being crucial for the information system. While developing the ontology, domain
experts may not remember what they have declared at some other place. Moreover,
there may be many experts developing the same ontology. So they may declare some
thing wrong, miss some thing, or duplicate some thing. Experts need to check the
ontology thoroughly to verify that each concept and its relations have been defined
correctly and nothing is missing. This is a very difficult task, and without automated
tools, one would always be in doubt.

2 Related Work

Gomez-Perez et al. have proposed a framework for evaluation of ontolingua
ontologies as per the design principles of ontologies [Gomez-Perez, 04]. She has
contributed a number of situations that can exist in the design of ontologies where an
error occurs. On this basis, she formed error taxonomy for assistance of the
ontologists.

Qadir et al. [Qadir, 07] and Fahad et al. [Fahad, 08b] revised that error taxonomy
and included some new errors that can be harmful to the semantic-based information
systems. Fahad [Fahad, 08a] presented a survey of this domain, and present extended
error taxonomy for the ontologies [Fahad, 07], incompleteness [Qadir, 07], and
redundancy [Noshairwan, 07]. Racer, Pallet and Fact++ are commonly used
evaluation tools that come as plug-ins with Protégé. Since the extended errors have

1006 Qazi N.I., Qadir M.A.: Algorithms for the Evaluation ...

been discovered only recently, these systems cannot detect such errors [Fahad, 07].
There is an urgent need to develop and implement algorithms to detect the extended
errors.

Researchers have reported that the previously identified errors are only partially
handled by existing systems. Qadir inspects the existing evaluation system’s
capabilities by artificially inserting these new errors in some ontologies [Qadir, 07].
They reported that even previous errors are not fully handled by these systems. Fahad
also introduced errors in some ontologies and inspected the existing systems [Fahad,
08c]. Results show that the dangerous circulatory errors make these systems behave
abnormally and even crash.

2.1 OWL DL Reasoning Systems

Protege is a well-known system for ontology development. Ontology engineers use
this tool to create an ontology, edit it and do various experiments to validate its
design. It provides numerous facilities to view and maintain the taxonomy of terms
that are defined in the ontology. An important function of the ontology development
tools is reasoning. A reasoner is an agent that goes through the taxonomy of terms
(formally known as concepts), properties and the relationships among terms and
discovers knowledge from them.

During this process, a reasoner may encounter some errors that were overlokked
by the designer. A good reasoning system should detect and report these errors. Since
these errors are semantic rather than syntactic, it may be difficult for a reasoner to
detect all of them. Protégé provides interoperability with the third party reasoning
systems that can be installed as add-ons. We mention three such systems that are
popular among the ontology development community.

RACER (Renamed ABox and Concept Expression Reasoner) was developed by
Haarslev and Moller of the University of Hamburg [Haarslev, 01] in 2001. It is based
on the well-known tableaux calculus. An ontology consists of two parts: Tbox, which
defines the terms of the domain and Abox, which maintains the asserted facts about
the terms. RACER implements reasoning process for TBox as well as for Abox.
RACER is claimed to be the first full-fledged ABox description logic system and its
algorithms are sound and complete. In order to provide optimized search, RACER
incorporates standard techniques known as dependency-directed backtracking and
DPLL-style semantic branching. By implementing these techniques in ABox
reasoning, RACER has an edge over the reasoners that provide only TBox reasoning.

Pellet was developed by Parsia et al. In the University of Maryland [Parsia, 05] in
2003. It has a number of distinct features which address the issues of Semantic Web.
It is claimed to have the ability to perform some kind of ontology repair. The reasoner
uses standard tableau rules and implements various standard optimizations known as
dependency directed backjumping, semantic branching and early blocking. The
capabilities of Pellet are exposed from Java API, command line and Web forms.
Pellet is the default reasoner in Swoop, a lightweight ontology browser and editor. It
has some features to detect inconsistent concept description, and future versions are
planned to generate explanations for inconsistencies. Although the other reasoning
systems are more efficient as compared to Pellet, but they are not as rich in features as
Pellet is.

1007Qazi N.I., Qadir M.A.: Algorithms for the Evaluation ...

FaCT++ is an improved version of FaCT system, developed in the University of
Manchester [Horrocks, 05]. It has limited user interface and services as compared to
other reasoners. It implements a number of novel optimization techniques in addition
to the standard ones. A new “ToDo list” architecture is used, that is suitable for
complex tableaux algorithms and reasoning with OWL ontologies. During a
preprocessing phase, an ontology is loaded, normalized and transformed into an
internal form. Initial optimizations are performed at this stage. It uses a satisfiability
checker, which helps decide subsumption for given concept pairs. Further
improvements in the algorithms and technology are planned for future versions of
FaCT++. Parallel reasoning process and more elaborate heuristics are also planned.

2.2 Limitations of Existing Systems

In order to investigate how RACER, Pellett and FaCT++ handle various errors, we
loaded OntoSem ontology in Protégé, introduced some errors in it, and then
performed classification using the three reasoners. The concept “pepper” lies down
the hierarchy of concept “material”. We defined “material” as the sub class of
“pepper”. This introduces a circulatory error in the ontology. Next, we define the
concept “pepper” as sub class of the concept “physical-object”. It was sub class of
“spice” in the original ontology and was already down the hierarchy of “physical-
object”. Making this new relationship introduces redundancy of sub class.
Now we perform classification using the above-mentioned reasoners. Figure 1 shows
the strange behavior of RACER. It has treated our definition of “material” as sub class
of “spice” to be a normal one, and gave no error or warning. Moreover, it did not
detect redundancy of sub class we introduced. It has made all the concepts from
“material” down to “pepper” as equivalent concepts and has disturbed all the
hierarchies in the range.

Figure 1: RACER showing strange behavior to circulatory error

1008 Qazi N.I., Qadir M.A.: Algorithms for the Evaluation ...

3 Ontology Evaluation Algorithms

In the following, we describe how the algorithms are formulated and discuss the
approach used to design and implement them. Algorithms’ complete listing can be
found in [Qazi, 10].

3.1 Efficient Storage and Organization of Ontology

Before we start on the design of algorithms, we have to work out an appropriate
scheme for the efficient storage and retrieval of ontologies. We have to take into
consideration the possible large size of ontologies. Today’s ontologies may consist of
tens of thousands of concepts. For example, Gene Ontology consists of more than
29000 concpts, while Wordnet ontology consists of over 60,000 concepts. Future
ontologies may contain hundreds of thousands of concepts.

If an indexing scheme is totally based on RAM, it may not be appropriate for
large ontologies. On the other hand, a scheme based on both RAM and persistent
storage will not suffer from such limitation. Ontology evaluation algorithms have to
access the concepts (and properties) of the ontology very frequently. So the scheme
has to provide fast access in order to process the ontologies in a reasonable time. We
suggest that ontology be represented in the form of indexed lists or tuples. A database
system like SQL Server or MySql can be used for this purpose. Figure 2 shows our
representation of concept hierarchy in Wordnet ontology.

Figure 2: Representation of concept hierarchy in Wordnet ontology

3.2 Circulatory Error in Class Hierarchy

Circulatory error means some hierarchy chain makes a cycle. In a correct ontology,
traversing down the hierarchy chain starting from a node d will take us to a leaf node,
and never lead to d again. In an ontology with circulatory errors, such traversal will
lead to d again and again. This is very dangerous for reasoners because they will stuck
in an infinite loop.

1009Qazi N.I., Qadir M.A.: Algorithms for the Evaluation ...

This suggests that, to detect circulatory error, we should traverse the nodes of the
ontology along the chain of hierarchy. Our algorithm starts from the root(s) node of
the ontology and performs depth-first traversal. During this traversal, it maintains a
(indexed) list of concepts that form the chain of hierarchy. Concepts should not be
repeated in the chain. If they do repeat, it will mean circulatory error. When a new
concept is inserted in the chain, it is checked whether it already exists in the chain or
not. If it already existed, the circulatory error is reported.

Performance Issues: The simple depth-first search does not pose performance
bottleneck. However, checking the chain for repetition will be costly. This is
optimized by using indexed list to maintain the chain. To further optimize it, we
observe that the circulatory error will occur only at the nodes having more than one
parent. So before checking the repetition, the algorithm should check if the node has
multiple parents. If not, then the checking should be skipped.

Complexity: Each time when we access a node of the ontology graph, we
actually locate it in the list of concept hierarchy tuples. The complexity of this
operation depends upon the indexing scheme used. If a database is used for indexing,
the complexity will depend upon the database engine. For a reasonable scheme, this
complexity should be log n. Our algorithm visits each node of the hierarchy and
applies checks on it. Therefore the complexity of the algorithm is n log n.

3.3 Common Class in Disjoint Decompositions

This inconsistency error occurs when the designer declares two concepts as disjoint
with each other, but later, declares a concept which is subclass of both the disjoint
concepts. Our algorithm starts with the pairs of concepts which have been declared
disjoint. It inspects each disjoint pair. For each concept of the pair, the algorithm
performs depth-first traversal and stores the descendants of the concept in a list. It
then takes intersection of the two (indexed) lists, which should be empty in normal
case. If the intersection is not empty, the algorithm gives error.

3.4 Redundancy of Subclass

Redundancy of subclass occurs when a concept c is declared as direct child of a
concept p, whereas, it was already indirect child of p through a chain of hierarchy. To
detect such redundancy, the concepts having more than one parent are significant.
Redundancy of sub class will occur when a concept is child of a concept directly as
well as indirectly through some intermediate concepts. This means that such concept
will have multiple parents.

3.4.1 Algorithm before optimization

The algorithm uses greedy approach to detect redundancy of subclass. It starts with
determining the list of nodes M having more than one parent. It takes first node a
having multiple parents. It selects first parent p of a to traverse upwards. Before
starting the traversal, all the parent nodes of a other than p are stored in a list L. Then
a traversal is performed upwards, starting from the selected parent node p. During
this traversal, each visited node is compared with the list L. Since the nodes in L are
immediate parents of a, and the traversal is done through the indirect ancestors of a,
therefore no match should be found.

1010 Qazi N.I., Qadir M.A.: Algorithms for the Evaluation ...

When some concept traversed matches with one in the list, it means redundancy.
The concept is immediate parent of a since it is in the list, and is indirect parent of a
because it is encountered during upward traversal.

Performance Issue: Although this algorithm produces correct results, it has an
inherent performance problem. Figure 3 depicts a pattern of nodes which represents
complexity of some ontologies like Gene Ontology. Node d has several children and
each one of them will have further descendants. It has two parents, and each one has
in turn two parents. When traversing upwards from a node like d, algorithm writers
may not expect that the algorithm will diverge exponentially, whereas in practice, it
may do so. To inspect one node below d, the algorithm visits several nodes along its
chain of hierarchy. A large portion of this chain will be visited again, when it inspects
some other nodes. This repetition, although difficult to avoid completely, causes
serious performance problem. We overcome this performance problem by employing
another approach to detect redundancy.

Figure 3: A pattern representing complexity of Gene Ontology

3.4.2 Optimized Algorithm

The optimized algorithm avoids the repeated processing of same nodes. To achieve
this, it traverses the ontology in a top-down depth-first manner. When it visits a node,
it saves it in a (indexed) list L. When it leaves a node, it deletes it from L. So at any
point, the list contains the chain of hierarchy from root to the current node. When the
algorithm visits a node b, it also checks its immediate parents P. If the node has only
one parent, there is no question of redundancy of sub class. If the node has more than
one parent, it checks whether any of the parents, other than that in the chain of
hierarchy, also exists in the chain. In an ontology free of redundancy, it should not be
present in the chain.

If any of the immediate parents also exists in the chain of hierarchy, it means that
this node has been declared the parent of b twice: once as direct parent and once as
indirect parent. So the redundancy error is reported.

d

1011Qazi N.I., Qadir M.A.: Algorithms for the Evaluation ...

Figure 4: Revised algorithm to diagnose redundancy of sub class

3.5 Redundancy of Disjoint Relation

The algorithm to detect redundancy of disjoint relation loops for every disjoint
declaration in the ontology. For each pair of concepts (d1, d2) declared disjoint, it
inspects whether their ancestors are also declared mutually disjoint. It takes the first
concept of the disjoint pair and visits its ancestors up the hierarchy. For each ancestor
visited, it checks whether there is some disjoint declaration for it. If there is a disjoint
declaration, it notes the disjoint concept. Then it checks whether this disjoint concept
is among the ancestors of d2. If so, the redundancy is reported.

3.6 Disjoint Knowledge Omission

Ontology designers may omit disjoint declaration between concepts which are
actually disjoint in the domain. It is strongly recommended that if the two concepts
are disjoint in the domain, they should be declared so. This helps information systems
in better reasoning.
The algorithm given in Figure 5 detects the disjoint knowledge omission in an
ontology. In the start, it initializes a (indexed) list of all disjoint declarations Ω in the
ontology. The algorithm has to repeat for every pair of sister concepts in the ontology.
This is quite expensive due to the large number of possible combinations of sister
concepts. One solution for this is to prioritize the search. Inspecting the nodes higher
in the hierarchy has more chances of finding the disjoint knowledge omission cases.

SCRed(Ontology O)
{
 R = root(O)
 Ω = {R}
 CheckSCRed (R, Ω)
}
CheckSCRed (α,Ω)
{
 For all β ε children (α)
 {
 Ω = Ω U {β}
 Π = Parents(β) \ {α}
 For all γ ε Π
 {
 If γ ε Ω Then
 Redundancy of subclass found
 }
 CheckSCRed (β,Ω)
 Ω = Ω \ {β}
 }

1012 Qazi N.I., Qadir M.A.: Algorithms for the Evaluation ...

For each pair of sister concepts (β1, β2), the algorithm first checks if the two concepts
are declared disjoint, by searching them in the list of disjoint declarations Ω. If they
are not declared disjoint, the algorithm checks if there are common concepts among
the children of the two concepts. It visits the nodes down the hierarchy of the first
node, and prepares a (indexed) list of these nodes Π. It does the same for the second
node, and makes the second list Π‘. It then takes intersection of the two lists. If the
intersection is empty, then the algorithm considers the two concepts as the candidates
for disjoint knowledge omission. It stores the two concepts in a list, along with the
number of descendants.

When the list is presented to human expert, the number of descendants is helpful
in ranking. The candidate cases which have higher number of descendants, have more
chances to be endorsed by human expert as the valid disjoint omission case.

Figure 5: Algorithm to diagnose disjoint knowledge omission

4 Evaluation of well known ontologies
The algorithms were applied to evaluate three well known ontologies: OntoSem,
WordNet and Gene Ontology (GO). Since many systems are dependant on them,
evaluation of these ontologies will be an important contribution.

4.1 WordNet Ontology

WordNet® is a large lexical database of English, developed in Princeton University.
Nouns, verbs, adjectives and adverbs are grouped into sets of synonyms (synsets),
each representing a particular concept. Synsets are linked together by means of
conceptual-semantic and lexical relations. This makes a network of meaningfully

DisjointOm(Ontology O, Depth)
{
 Ω = {Disjoint declarations in O}
 For each node α of depth <= Depth
 {
 For each pair (β1, β2) ε ImmChildren (α)
 {
 If not (β1, β2) ε Ω
 {
 Π = FindDesc(β1)
 Π‘= FindDesc(β2)
 If Π ∩ Π‘ = φ Then
 Warning for disjoint omission
 }
 }
 }
}

1013Qazi N.I., Qadir M.A.: Algorithms for the Evaluation ...

related words and concepts which can be processed by software systems. WordNet is
an open system and is freely available for download. WordNet's structure makes it a
useful tool for computational linguistics and natural language processing. The goal of
WordNet was to develop a system that would be consistent with the knowledge
acquired over the years about how human beings process language.

WordNet Ontology organizes the concepts and properties in a hierarchical
manner, specifying generelization and specialization relations. The network of nouns
is far deeper than that of the other parts of speech. Verbs have a bushier structure, and
adjectives are organized into many distinct clusters. Adverbs are defined in terms of
the adjectives they are derived from

Figure 6 shows one of three circulatory errors in class hierarchy found in
Wordnet ontology. Region is defined as being a Location. Location is a Space region,
Space region is a Physical region, while Physical region is a Region. This makes a
circle. These errors have serious consequences for the systems built on this ontology.
For example, a system needs to find all descendants of concept ‘space-region’. It will
repeatedly visit the four concepts in the circle and will get stuck in the infinite loop.
The right side of Figure 6 shows a redundancy of sub class.

Figure 6: Left: a circulatory error, right: a redundancy of sub class in Wordnet

ontology

List of all three circulatory errors in class hierarchy is given in Figure 7 while
Figure 8 lists two cases of redundancy of sub class found in this ontology.

Figure 7: Three circulatory errors in WordNet Ontology

Region

Physical region

Space Region

Location

Is a

Is a

Is a

Is a

role

social-role

status

agent-driven-role

1. region is-a location is-a space-region is-a physical-
region is-a region

2. method is-a know-how is-a ability_power is-a
technique is-a method

3. gestalt is-a form_shape_pattern is-a gestalt

1014 Qazi N.I., Qadir M.A.: Algorithms for the Evaluation ...

Figure 8: Redundancy of sub class in WordNet Ontology

Our algorithm was applied on the Wordnet ontology to find the candidate cases for
disjoint knowledge omission. It found over 48,000 candidate cases and took 90
minutes for complete processing. It was observed that number of children of the
candidate concepts is a relevant factor. It helps the human expert in determining the
real cases from the candidates and saves his time.
We applied a threshold of 20 on the number of children and processed the ontology
again. This means that the leaf nodes and nodes slightly above the leaves are
eliminated from the candidate cases. The algorithm then produced 2582 candidates.
These were sorted on the number of children in descending order, further assisting the
human expert as shown in Figure 9.

Figure 9: Candidate cases of disjoint knowledge omission in WordNet Ontology

At the top of the list, there are two candidates having over 9,000 children. The
algorithm has highlighted them from thousands of cases to facilitate the human
expert. We can see that both these cases are rightly identified as those of disjoint
knowledge omission. We can strongly recommend that they should be declared as
disjoint. By looking at the candidates, we have identified some cases which show that
the disjoint knowledge was omitted. They are shown in Figure 10.

Parent: geographical-object
Child: GEOGRAPHIC_POINT__GEOGRAPHICAL_POINT
Redundant Hierarchy: geographical-object**region **physical-region
space-regionLOCATION**POINT_6

**GEOGRAPHIC_POINT__GEOGRAPHICAL_POINT
Parent: agent-driven-role
Child: status
Redundant Hierarchy: **agent-driven-role**ROLE **social-role**status

1015Qazi N.I., Qadir M.A.: Algorithms for the Evaluation ...

Figure 10: Some cases of disjoint knowledge omission after human inspection

Disjoint omission between Autopilot and Living_Thing is of special interest.
Without disjoint, it will be possible to define a concept which is both autopilot and
living thing at the same time. The ontology will allow that, causing strange effects. So
it is recommended that these two concepts be declared disjoint.

4.2 OntoSem Ontology

OntoSem ontology is a large ontology and knowledge representation system for
language understanding tasks developed by the Institute for Language and
Information Technologies (ILIT). OntoSem contains natural language words
organized as a hierarchy of concepts and properties. Like WordNet Ontology, this
ontology is useful for natural language processing.

We found 10 redundancy of sub class errors in OntoSem, five of which are shown
in Figure 11. Figure 12 shows some cases of disjoint knowledge omission in
OntoSem Ontology.

1016 Qazi N.I., Qadir M.A.: Algorithms for the Evaluation ...

Figure 11: Five out of 10 redundancy of subclass errors in OntoSem ontology

Figure 12: Some disjoint knowledge omission cases in OntoSem ontology

4.3 Gene Ontology

The Gene Ontology project is a well-known bioinformatics initiative with the aim to
standardize the representation of gene and gene product attributes across species. The
project makes available a vocabulary of terms that describe gene product
characteristics and gene product annotation data from GO Consortium members.
The Gene Ontology (GO) project is a collaborative effort to meet the need for
consistent descriptions of gene products in different databases. The project began in
1998 as a collaboration among three famous organism databases: FlyBase
(Drosophila), the Saccharomyces Genome Database (SGD) and the Mouse Genome
Database (MGD). Since then, the GO Consortium has grown to include many
databases, including several of the world's major repositories for plant, animal and
microbial genomes.
We found Gene Ontology free of circulaory and redundancy of sub class errors.
Figure 13 shows candidate cases of disjoint knowledge omission in Gene Ontology.

Parent: independent-device, Child: buzzer
Redundant Hierarchy: *** independent-device*** communication-
device*** buzzer
Parent: non-work-activity, Child: dance
Redundant Hierarchy: *** non-work-activity*** hobby-activity***
artistic-activity*** dance
Parent: artifact-part, Child: handle
Redundant Hierarchy: *** artifact-part*** furniture-part*** handle
Parent: printed-media, Child: illustration
Redundant Hierarchy: *** printed-media*** picture*** illustration
Parent: artifact-part, Child: wheel
Redundant Hierarchy: ***artifact-part***vehicle-part***wheel

1017Qazi N.I., Qadir M.A.: Algorithms for the Evaluation ...

Initial informal inspection of these cases by human expert leads to interesting and
useful results.

Figure 13: Candidate cases of disjoint knowledge omission in Gene Ontology

4.4 Evaluation of Algorithms

The algorithms were first run on fictitious ontologies to verify their correctness. Then
they were tested on the real ontologies. Errors were induced in the ontologies and then
algorithms were applied on them. The algorithms were found correct since they
successfully detected the induced errors. After verification of correctness, the
algorithms were applied on original ontologies to detect the actual errors. The actual
errors were again verified manually.

Table 14 shows the number of errors detected and (time taken in minutes) by
some of our algorithms to process three well known ontologies. To our surprise,
redundancy of sub class algorithm took 420 minutes on Gene Ontology containing
29,534 concepts. This is drastically high as compared to 2.5 minutes on WordNet
ontology containing 61,299 concepts. An analysis of Gene Ontology shows complex
graph structure of this ontology where many concepts have multiple parents. When
the algorithm scans ancestors of a node, the scan diverges in exponential manner, thus
incurring high computational cost. Therefore, concepts having multiple parents should
be given due consideration while designing algorithms for ontologies. The revised
algorithm outperforms normal algorithm in Gene Ontology, but not in other ones,
where normal algorithm proves more efficient.

1018 Qazi N.I., Qadir M.A.: Algorithms for the Evaluation ...

Error OntoSem WordNet Gene

Ontology
Circulatory error in class hierarchy 0 (0.7) 3 (1.8) 0 (10)
Common class in disjoint
decompositions and partitions

0 (0) 0 (27) 0 (3.5)

Redundancy of Subclass-of relation 10 (0.7) 2 (2.5) 0 (420)
Redundancy of Subclass (revised) 10 (15) 2 (18) 0 (23)
Disjoint Knowledge Omission
(warnings)

404(7) 2582(55) 2008 (65)

Table 14: Errors detected, time taken (in minutes) in 3 well known ontologies

5 Conclusions and Future Work

The existing facilities for detection of inconsistency, redundancy and incompleteness
errors in the ontologies are inadequate as demonstrated in this paper. In order to
develop high quality ontology-based systems, such facilities are needed urgently.
Even the well-known ontologies contain errors, that were left unchecked by the
existing tools. To fill this gap, the algorithms to evaluate ontologies against published
error types are designed and implemented. The algorithms are tuned for optimum
performance, and are able to process large ontologies in reasonable time. By carefully
designing algorithms, we can reduce the processing time by more than 10 times. The
algorithms do not require to load the entire ontology in memory, and therefore do not
put limit on the size of ontology being processed. Various errors have been reported
in the well known ontologies: Gene Ontology, Wordnet Ontology and OntoSem
Ontology. The algorithms will be useful for researchers working in Semantic
Computing.

The algorithms may be used to evaluate more ontologies to improve their
accuracy. The errors, specially disjoint knowledge omission may be verified by
human experts. Algorithms may be further tested for correctness and performance.

References

[Antoniou, 04] Antoniou, G. and Harmelen, F.V., (2004): A Semantic Web Primer. MIT Press
Cambridge, ISBN 0-262-01210-3

[Berners-Lee, 01] T. Berners-Lee, J. Hendler, and O. Lasila: The Semantic Web. Scientific
American 284, May 2001, 34-43.

 [Bray, 00] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, eds: Extensible Markup
Language (XML) 1.0, 2nd ed, W3C Recommendation, October 6, 2000,
http://www.w3.org/TR/REC-xml.

[Corcho, 05] Corcho et at., (2005): A survey on ontology tools. Technical report no. D 1.3

[Denny, 04] Denny, M., (2004): Ontology Editor Survey Results. Technical report.

1019Qazi N.I., Qadir M.A.: Algorithms for the Evaluation ...

[Fahad, 07] Fahad, M., Qadir, M.A., and Noshairwan, W., (2007): Semantic Inconsistency
Errors in Ontologies. Proc. of Intl Conf. on Granular Computing, Silicon Valley, USA, IEEE.

[Fahad, 08] Fahad, M. (2008): Ontology Evaluation, Mapping and Merging. M.S Thesis,
Muhammad Ali Jinnah University Islamabad.

[Fahad, 08a]Fahad, M., Qadir, M. A., Noshairwan, M. W., (June 2008): Ontological Errors:
Consistency, Incompleteness and Redundancy. Proceedings of 10th International Conference
on Enterprise Information Systems (ICEIS’08). Barcelona, Spain.

[Fahad, 08b]Fahad, M., and Qadir, M.A., (July 2008): A Framework for Ontology Evaluation.
Proceeding of 16th International Conference on Conceptual Structures (ICCS’08), Toulouse,
France. Vol-354, pages 149-158.

[Fahad, 08c]Fahad, M., Qadir, M.A., and HussainShah, S.A., (Oct 2008c): Evaluation of
Ontologies and DL Reasoners. Proceeding of 5th International Conference on Intelligent
Information Processing (iip’08) Oct 2008. Beijing China.

[Gomez-Perez, 94] Gomez-Perez, A., (1994): Some ideas and examples to evaluate ontologies.
Knowledge Systems Laboratory, Stanford University.

[Gomez-Perez, 99] Gomez-Perez et al., (1999): Evaluation of Taxonomic Knowledge on
Ontologies and Knowledge-Based Systems. International Workshop on Knowledge
Acquisition, Modeling and Management.

[Gomez-Perez, 04] Gomez-Perez, A., Fernández-López, M., Corcho, O., (2004): Ontological
engineering: With examples from the Areas of Knowledge Management, E-Commerce and the
Semantic Web. Springer, London.

[Haarslev, 01] Haarslev, V. and M¨oller, R., (2001): Racer system description. International
Joint Conference on Automated Reasoning, IJCAR’ 01, June 18-23, Siena, Italy, Springer-
Verlag (2001) 701–705.

[Horrocks, 05] Horrocks, I., Sattler, U., (2005): A tableaux decision procedure for SHOIQ.
Proceedings of Nineteenth International Joint Conference on Artificial Intelligence.

[Khalid, 09] Khalid A., Shah S.A.H., Qadir M.A., (2009): OntRel: An Ontology Indexer to
Store OWL-DL Ontologies and Its Instances. International Conference of Soft Computing and
Pattern Recognition Malacca, Malaysia.

[Noshairwan, 07] Noshairwan, W., Qadir, M.A., Fahad, M. 2007: Sufficient Knowledge
Omission error and Redundant Disjoint Relation in Ontology, InProc. 5th Atlantic Web
Intelligence Conference June 25-27, 2007 - Fontainebleau, France.

[Parsia, 05] Parsia, B., and Sirin, E., (2005): Pellet: An owl dl reasoner. Proc. International
Semantic Web Conference.

[Qadir, 07] Qadir M.A., Nosherwan W., (2007): Warnings for Disjoint Knowledge Omission in
Ontologies. 2nd International Conference on Internet and Web Applications and Services
(ICIW 07).

[Qazi, 10] Qazi N.I., Qadir, M.A. (2010): Algorithms to Evaluate Ontologies Based on
Extended Error Taxonomy. International Conference on Information and Emerging
Technologies (ICIET 10).

1020 Qazi N.I., Qadir M.A.: Algorithms for the Evaluation ...

