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Abstract: Query algorithms are used to compute Boolean functions. The definition
of the function is known, but input is hidden in a black box. The aim is to com-
pute the function value using as few queries to the black box as possible. As in other
computational models, different kinds of query algorithms are possible: deterministic,
probabilistic, as well as nondeterministic. In this paper, we present a new alternative
definition of nondeterministic query algorithms and study algorithm complexity in this
model. We demonstrate the power of our model with an example of computing the
Fano plane Boolean function. We show that for this function the difference between
deterministic and nondeterministic query complexity is 7N versus O(3N ).
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1 Introduction

Let f(x1, x2, ..., xn) : {0, 1}n → {0, 1} be a Boolean function. We consider the

query model, where the definition of the function is known, but a black box con-

tains the input (x1, x2, ..., xn), which can be accessed only by querying xi values.

The goal is to compute the value of the function for arbitrary input. The complex-

ity of a query algorithm is measured by the number of questions it asks. The clas-

sical version of this model is known as decision trees [Buhrman, de Wolf 2002].

In this paper, we are considering nondeterministic algorithms. A nondeter-

ministic finite automata, as introduced in [Rabin, Scott 1959], is a machine with

many choices in its moves. At each stage such machine may choose one of several

next internal states. Nondeterministic machine accepts a tape if there is at least

one winning combination of choices of states leading to a designated final state.

This is a traditional point of view on nondeterminism. In [Floyd 1967], nonde-

terministic algorithms are considered to be conceptual devices to simplify the

design of backtracking algorithms. There is a point of view presented that algo-

rithms are nondeterministic not in the sense of being random, but in the sense

of having free will. The detailed definitions of nondeterministic finite automata,
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pushdown automata, Turing machine, and related results in complexity theory

are presented and discussed in [Hopcroft, Ullman 1969].

In this paper, we are investigating the nature of the above-mentioned nonde-

terministic free will. We provide a way to measure the amount of nondeterminism

in an algorithm. In the traditional nondeterministic query model, the power of

nondeterminism comes at no cost. Our idea is that we must pay with additional

queries for the nondeterministic help. We introduce an alternative definition of

the nondeterministic query model, which incorporates behavior described above.

The main field of our research interest is quantum computing. In recent years,

we have been actively studying quantum query complexity in different models -

exact [Vasilieva 2009], exact with a promise [Freivalds, Iwama 2009], bounded-

error [Vasilieva, et. al., 2010], postselection [Scegulnaja-Dubrovska, et. al., 2010]

and also nondeterministic [Vasilieva (Dubrovska) 2007], as well as non-standard

classical models of computation, for instance, non-constructive methods for finite

probabilistic automata [Freivalds 2008]. The definition of the nondeterministic

quantum query algorithms, as first introduced in [de Wolf 2003] and further in-

vestigated in [Vasilieva (Dubrovska) 2007], seems to us a bit counterintuitive. It

was another motivation for us to introduce a new approach for nondeterminism

in query algorithms. Based on our knowledge, we believe that this kind of a non-

deterministic query model is going to be more natural for quantum computing.

However, in this paper we limit ourselves to considering classical model only.

This paper is organized as follows. In Section 2, we provide a brief overview

of the traditional query model. In Section 3, we introduce our alternative model

for nondeterministic query computation. Finally, in Section 4, we demonstrate

an example of computing the Fano plane Boolean function in our model.

2 Query Algorithms

In this section, we give a brief overview of the classical query algorithms and

provide all necessary definitions.

Definition 1 Boolean function is total if it is defined for all inputs. If for some

subset of inputs function value is not defined, function is called partial.

The classical version of the query model is known as decision trees, for details

see the survey [Buhrman, de Wolf 2002]. The definition of the Boolean function

is known to everybody, but the input (x1, x2, ..., xn) is hidden in a black box, and

can be accessed by querying xi values. The algorithm must be able to determine

the value of a function correctly for arbitrary input. The complexity of the

algorithm is measured by the number of queries on the worst-case input.

A deterministic decision tree is an ordered tree with internal nodes labeled

with variables xi, arrows exiting internal nodes labeled with possible variable
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values and leaves labeled with function values. Deterministic decision tree always

follows the same path for each input and produces result with probability p = 1.

Definition 2 [Buhrman, de Wolf 2002] The deterministic complexity of a func-

tion f, denoted by D(f), is the maximum number of questions that must be asked

on a worst-case input by an optimal deterministic algorithm for f.

The traditional nondeterministic decision tree differs from the deterministic

one with an additional possibility that there can be more than one arrow labeled

with the same value exiting each tree vertex.

Definition 3 The nondeterministic decision tree computes Boolean function

f(X), if for an arbitrary input X it is true that:

– if f(X)=1, then a legal path exists from the root to the leaf with result 1;

– if f(X)=0, then a legal path exists from the root to the leaf with result 0;

– there is no path from the tree root to the leaf with incorrect function value.

3 Alternative Nondeterministic Query Model

In this paper, we propose an alternative definition of a nondeterministic query

model. This model is different from the traditional one and allows to get inter-

esting behavior. The main idea and difference is that in this variation we do not

receive the power of nondeterminism free of charge, but have to spend additional

queries to obtain nondeterministic help. In some sense this is a way to measure

the amount of nondeterminism in an algorithm.

Suppose that we need to compute some arbitrary Boolean function F(X) in

a nondeterministic query model 1. Then, the first step is to define a nondeter-

ministic helper function G(X,Y). This function has to satisfy definite conditions,

we will specify them precisely a little bit later. The second step is to design a

deterministic query algorithm for the function G(X,Y) . Finally, the nondeter-

ministic query complexity of the function F(X) is equal to the complexity of the

deterministic query algorithm for a nondeterministic helper function G(X,Y).

Now, we will give formal definitions for the computational model informally

described above.

1 Here and later on in this paper, when we are talking about nondeterministic model
we mean our alternative definition, not the traditional one.

861Vasilieva A., Freivalds R.: Nondeterministic Query Algorithms



Definition 4 The nondeterministic helper function G(X,Y) for the Boolean

function F(X) is a partial Boolean function, which satisfies the following condi-

tions:

1. ∀x1, ..., xn, ∃y1, ..., yk, such that G(x1, ..., xn, y1, ..., yk) = F (x1, ..., xn);

2. ∀x1, ..., xn,¬∃y1, ..., yk, such that G(x1, ..., xn, y1, ..., yk) �= F (x1, ..., xn).

When computing G(X,Y) deterministically we will get either an answer that

G(X,Y ) = b (b ∈ {0, 1}) or will receive indefinite answer “don’t know”. If some

Boolean value b is retrieved during calculation, it implies that F (X) = b.

Definition 5 The nondeterministic query complexity of the function F (X) with

the fixed helper function G(X,Y ) is denoted with NDG(F ) and is equal to the

deterministic complexity of the G(X,Y): NDG(F ) = D(G).

An additional restriction on the deterministic query algorithm for the helper

functionG(X,Y) is that after computing this function deterministically we should

be able to re-calculate or verify the value of F(X) independently, using variable

values extracted from the black box during the calculation of G(X,Y).

Definition 6 The nondeterministic query complexity of the function F (X) is

denoted with ND(F ) and is equal to the minimal nondeterministic query com-

plexity of the function F (X) over all possible fixed helper functions G(X,Y ):

ND(F ) = minG(X,Y ) NDG(F ).

4 Computing the Fano Plane Function

In this section, we demonstrate our alternative nondeterministic query model in

action. We demonstrate that a gap between deterministic and nondeterminis-

tic query complexity for a certain Boolean function can be large. We define a

function based on the Fano plane and proposed nondeterministic query model

appears to be well-suited for computing this kind of function.

4.1 Definition of the Fano Plane Boolean Function

The Fano plane is the two-dimensional finite projective plane with the least

number of points and lines [Weisstein]. This plane has seven points and seven

lines with three points on every line. Fano plane has many applications includ-

ing factoring integers via quadratic forms [Lehmer, D.H., Lehmer, E. 1974]. We

define a 7-variable Boolean function based on the structure of the Fano plane.

We label each vertex of the Fano plane with a variable number xi. [Fig. 1] rep-

resents a variant of variables assignment and we will use this fixed definition in

the sequel of this paper.
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Figure 1: Fano plane with vertices labeled with function FANO(X) variables

Definition 7 A line of the Fano plane with Boolean values assigned to vertices

is called constant if all vertices in a line have the same Boolean value assigned.

There are two important properties of the Fano plane with Boolean values

assigned to vertices. For any variable values assignment (xi ∈ {0, 1}) there always
is a constant line. Second property is that for any variable values assignment

there cannot be two constant lines assigned with the different Boolean value at

the same time. These two properties allow us to define a Boolean function based

on the Fano plane.

Definition 8 Boolean function FANO(x1, ..., x7) is defined as follows. For an

arbitrary input X = (x1, ..., x7) find a constant line in the Fano plane. Value of

the FANO(x1, ..., x7) function equals Boolean value assigned to vertices in that

constant line.

An example of FANO(X) function value assignment is illustrated in [Fig. 2].

The Fano plane Boolean function can be represented also with a logical for-

mula:

FANO(x1, ..., x7) = (x1 ∧ x2 ∧ x3) ∨ (x5 ∧ x3 ∧ x7) ∨ (x7 ∧ x1 ∧ x6)∨
∨(x6 ∧ x2 ∧ x5) ∨ (x3 ∧ x4 ∧ x6) ∨ (x1 ∧ x4 ∧ x5) ∨ (x2 ∧ x4 ∧ x7).

4.2 Deterministic Complexity of the Fano Plane Boolean Function

To determine FANO(X) function value using the deterministic decision tree we

need to query all variables.

Theorem 1 Deterministic complexity of the Fano plane Boolean function is

equal to the number of function variables: D(FANO)=7 .
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Figure 2: Illustration of FANO(X) Boolean function value assignment

Proof. To prove this lower bound we use a kind of adversary method. We view

the computation as a game between arbitrary algorithm and adversary, which

is playing against that algorithm. Algorithm is querying variables in order to

determine function value, but adversary is providing variable values trying to

use a strategy that will force algorithm to query all variables. We consider all

possible scenarios and show that for any deterministic algorithm always exists

such adversary strategy that forces to query all variables. In other words, it

means that for any fixed algorithm such input X always exists on which all

variables must be queried.

First of all, we define a winning game state for an algorithm. In such a state

next query will give function value for sure, either 0 or 1. We say that variable is

open if its value is already known to an algorithm, otherwise variable is closed.

State is winning if there are two crossing lines, where crossing point is closed,

two points on one line are open as “0”, but two points on other line are open

as “1”. Query about crossing point surely will be the last. See [Fig. 3] for an

example of winning state.

Now let us examine all possible cases. Because of the symmetry of the Fano

plane, number of cases to consider is rather small. After first three queries, only

two different in essence states are possible: (1) three open points are located on

one line, (2) three open points form a triangle. In both cases adversary strategy

is to open two “0” and one “1”. See example in [Fig. 4].
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Figure 3: Example of winning game state for an algorithm

Figure 4: Example of two possible in essence distinguishable states after three

queries

Case 1 (line). All four choices of variable for the fourth query are equivalent

because of the symmetry. Adversary strategy in any case is to open “1”. After

such fourth query there remains four potential constant lines:

– L1, with two “1” already open;

– L2, with one “0” already open;

– L3, with one “0” already open;

– L4, with one “1” already open.
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See example in [Fig. 5].

Figure 5: Case 1: illustration of potential constant lines and closed points after

the fourth query

At the same time there remains three closed points:

– P1 ∈ L2, L4;

– P2 ∈ L1, L2, L3;

– P3 ∈ L3, L4.

We consider three possible cases for an algorithm to choose variable for the

fifth query.

Case 1.1. If algorithms chooses point P1 for the fifth query, adversary strategy

is to open “1”. Result - there is no winning state and thus adversary is able to

force algorithm to query all seven variables. See [Fig. 6.A].

Case 1.2. If algorithms chooses point P2 for the fifth query, adversary strategy

is to open “0”. There again is no winning state. So, adversary will be able to

give non-finishing variable value to any next query and seventh query will be

required. See [Fig. 6.B].

Case 1.3. For the last remaining option, point P3, adversary strategy is to

open “0”. No winning state, so adversary again is able to force algorithm to

query all seven variables. See [Fig. 6.C].
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Figure 6: Cases 1.1, 1.2, 1.3: illustration of possible states after fifth query

Case 2 (triangle). Four closed points that remain after third query can be

divided to two sets. We consider two different cases (2.1 and 2.2) based on this

separation.

Case 2.1. There are three points (e.g. lower line in [Fig. 4.2]), opening of which

after fourth query will bring a game to the state equivalent to that described

in Case 1 2. Adversary strategy for such fourth query is to open “1”. As shown

above, in such situation adversary is able to force querying all seven variables.

Case 2.2. There is one point (e.g. central point in [Fig. 4.2]), after opening

of which one line of the Fano plane will remain still fully closed. Adversary

strategy is to open “0” for such fourth query. Otherwise, winning state would

appear. Next, for any algorithm choice for fifth query adversary strategy is to

open “1”. There will be no winning state, so, adversary is able to force algorithm

to query all seven variables. See example in [Fig. 7].

We analyzed all possible cases and demonstrated that for any fixed deter-

ministic algorithm such input X always exists on which all seven variables must

be queried.

2 The roles of “0” and “1” are interchanged in some cases.
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Figure 7: Case 2.2: illustration of possible states after fourth and fifth queries

4.3 Nondeterministic Algorithm for the Fano Plane Boolean

Function

In this subsection, we demonstrate the computation of the Fano plane Boolean

function in proposed alternative nondeterministic query model.

The first step is to define helper function GFANO(X,Y ). We add three helper

variables, so in total there will be ten variables:

GFANO(x1, ..., x7, y1, y2, y3).

We assign a binary sequence number to each line of the Fano plane. This

assignment can be arbitrary, we will use variant presented in [Tab. 1].

Line variables Line number Line variables Line number

x1, x2, x3 000 x3, x4, x6 100

x5, x3, x7 001 x1, x4, x5 101

x7, x1, x6 010 x2, x4, x7 110

x6, x2, x5 011

Table 1: Binary numbering of the Fano plane lines

Variables of the partial helper function GFANO(X,Y ) are divided to two

subsets. Variables of the X subset represent variable assignment of original

FANO(X) Boolean function. Variables of the Y subset represent the Fano plane
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line binary number. Since there is no line numbered with “111”, function GFANO

is not defined for all inputs where y1 = y2 = y3 = 1.

Definition 9 Partial Boolean function GFANO(X,Y ) is defined as:

– GFANO(X, y1, y2, y3) = 1, if the Fano plane line numbered with y1y2y3 is

constant and variables on that line are assigned Boolean value 1;

– GFANO(X, y1, y2, y3) = 0, if the Fano plane line numbered with y1y2y3 is

constant and variables on that line are assigned Boolean value 0;

– Otherwise, function value is not defined.

For the illustration purpose partial truth table for inputs X=0000001 and

X=0110110 is given in [Tab. 2].

X = (x1, x2, ..., x7) Y = (y1, y2, y3) FANO(X) GFANO(X,Y )

0000001

000 0

001 not defined

010 not defined

011 0

100 0

101 0

110 not defined

111

0

not defined

... ... ... ...

0110110

000 not defined

001 not defined

010 not defined

011 1

100 not defined

101 not defined

110 not defined

111

1

not defined

Table 2: Partial truth table for GFANO(X,Y )

Now, when we have the definition of helper function GFANO(X,Y ), the next

step if to design an algorithm for computing this function. We would like to

remind that this algorithm has to be deterministic and variable values retrieved

during computation process shall give us enough information to verify the value

of FANO(X) function independently.
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The deterministic decision tree algorithm for computing GFANO(X,Y ) con-

sists of the following steps:

1. Sequentially query variables y1, y2 and y3.

2. Find the Fano plane line numbered with y1y2y3 and sequentially query all

three variables composing this line.

3. If all variable values retrieved in the second step are equal - output this

Boolean value. Otherwise, output “not defined”.

All three variables composing the line must be queried in the step 2 because

of the restriction that retrieved information should allow us to verify the value of

FANO(X) function. To perform such verification we simply substitute retrieved

variable values to the logical formula of FANO(X) and ensure that it evaluates

to the correct value.

Theorem 2 Nondeterministic query complexity of the Fano plane Boolean func-

tion FANO(X) with the fixed helper function GFANO(X,Y ) is

NDGFANO
(FANO) = 6.

Proof. Algorithm described above performs three queries to the black box in the

first step and next three queries to the black box in the second step. 	


4.4 Complexity of the Recursive Fano Plane Function

Finally, we show that a gap between deterministic and nondeterministic query

complexity can be asymptotically large.

Definition of the Fano plane function can be applied recursively.

Definition 10 Recursive Boolen function FANOi is defined as follows:

– FANO1(X1) = FANO(x1, x2, ..., x7);

– FANOi(Xi) = FANO1(FANOi−1(Xi−1
1 ), ..., FANOi−1(Xi−1

7 )),

where Xi = Xi−1
1 Xi−1

2 ...Xi−1
7

Recursively defined Boolean function FANON (X) has 7N variables.

Theorem 3 Deterministic decision tree complexity of the recursive Fano plane

Boolean function FANON is D(FANON ) = 7N .

Proof. Since D(FANO1) = 7, on each recursion level we need to know values of

all seven sub-functions. So, on the last level, when we come down to variables,

the total number of variables to be queried is equal to 7N . 	
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In a nondeterministic helper function GFANON (X,Y ) for a recursive Fano

plane function FANON three additional helper variables are defined for each

recursion level. These helper variables indicate which three sub-functions need

to be computed in order to determine function value. The total complexity of

the deterministic algorithm for the helper function evaluates to O(3N ) .

Theorem 4 Nondeterministic query complexity of the recursive Fano plane

Boolean function FANON with the fixed helper function is

NDG(FANON ) = O(3N ).

Proof. For each recursion level, first, we query three helper variables to deter-

mine three sub-functions that compose a line. Next, we go one level deeper and

calculate value of each sub-function. Calculation of number of queries3 is pre-

sented in [Tab. 3].

Recursion level Number of queries

i = 1 NDG(FANO1) = 3y + 3x = 6

i = 2 NDG(FANO2) = 3y + 3(3y + 3x) = 3y + 9y + 9x = 21

NDG(FANO3) = 3y + 3(3y + 3(3y + 3x)) =
i = 3

= 3y + 9y + 27y + 27y = 66

... ...

NDG(FANON ) = 3y + 3(NDG(FANON−1)) =
i = N

= (
∑N

i=1 3
i
y) + 3Nx

Table 3: Calculation of nondeterministic query complexity for different recursion

levels

Finally, we use partial sum formula for the term
∑N

i=1 3
i and derive the

complexity estimation for the case of recursion level i = N :

NDG(FANON ) =

(
N∑
i=1

3i

)
+ 3N = 3

2 (3
N − 1) + 3N = 5

2 · 3N − 3
2 = O(3N )

	


3 Subscript s near each number is (e.g. 3x or 3y) indicates that variable from subset
S (X or Y ) is queried.
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5 Conclusion

In this paper, we studied nondeterministic query algorithms for computing

Boolean functions. We presented a new vision of nondeterminism in query al-

gorithms and introduced an alternative definition of a nondeterministic query

model. The main difference from traditional nondeterministic model is that non-

deterministic behavior is not obtained free of charge, but additional queries must

be spent to obtain nondeterministic help. In some sense, this is a way to mea-

sure the amount of nondeterminism in an algorithm. We demonstrated our model

using an example of computing the Fano plane Boolean function. Proposed alter-

native nondeterministic query model appeared to be well-suited for computing

this kind of function. We demonstrated that when the definition of the function

is applied recursively, a gap between deterministic and nondeterministic query

complexity is 7N versus O(3N ).

Future work includes developing and improving the nondeterministic query

model introduced in this paper. The main field of our interest is quantum al-

gorithms, so next we are going to extend the model to a quantum case. The

scope of further investigation is very wide, from designing algorithms for certain

problems in this model to performing a detailed complexity analysis and com-

parison to other computational models. Considering Boolean function based on

projective finite geometries, similar to the Fano plane function, seems to be a

promising direction for searching for interesting examples.
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