
Least Slack Time Rate First: an Efficient Scheduling
Algorithm for Pervasive Computing Environment

Myunggwon Hwang
(Korea Institute of Science and Technology Information, Daejeon, South Korea

mgh@kisti.re.kr, mg.hwang@gmail.com)

Dongjin Choi
(Chosun University, Gwangju, South Korea

Dongjin.Choi84@gmail.com)

Pankoo Kim1
(Chosun University, Gwangju, South Korea

pkkim@chosun.ac.kr)

Abstract: Real-time systems like pervasive computing have to complete executing a task
within the predetermined time while ensuring that the execution results are logically correct.
Such systems require intelligent scheduling methods that can adequately promptly distribute the
given tasks to a processor(s). In this paper, we propose LSTR (Least Slack Time Rate first), a
new and simple scheduling algorithm, for a multi-processor environment, and demonstrate its
efficient performance through various tests.

Keywords: Least Slack Time Rate First, multi-processor scheduling, pervasive computing
environment, scheduling algorithm
Categories: C.1, C.2

1 Introduction

Recently, studies of pervasive computing are in progress for various purposes.
Pervasive computing environment (PCE) aims at real-time interaction between human
and computer by collecting and integrating all the information related to daily life,
and provides intelligent services for the people’s convenience and the prevention from
dangerous situations. PCE is already involved deeply into many areas such as houses,
hospitals (Jara, 2010), and schools, and into many devices like mobile devices (Costa,
2010), cars, medical assistances, and emergency detectors (Brooks, 1997, Mann, 2001,
Su-Jin, 2002, Xiong, 2009). As having to complete processing the information
inputted from various sensors and provide intelligent service before the user leaves
from the terminal, pervasive computing requires more prompt and accurate data
processing within predetermined deadline than general computers do, otherwise the
result can even cause serious damage to human life. In this point, pervasive
computing can be considered as a representative type of real-time system.
Furthermore, as people’s behaviour pattern consists of a wide range of information, it

1 Corresponding author

Journal of Universal Computer Science, vol. 17, no. 6 (2011), 912-925
submitted: 15/5/10, accepted: 30/11/10, appeared: 28/3/11 © J.UCS

has to promptly process user information including behaviour and position and
continuously provide the required services. To implement various functions available
for the user requires a processor scheduler that can provide services in a timely
manner by effectively and intelligently processing the information inputted from the
user. Moreover, there are numerous sensor data that pervasive computing tools need
to process and sometimes the systems require more than one processor. However, the
previously proposed multi-processor scheduling algorithms (Stavrinides, 2009,
Stavrinides, 2010) require complicated operations and thus are rarely appropriate for
pervasive computing environment which needs to be lightweight. Due to such
characteristics of pervasive computing, in this paper a simple scheduling algorithm is
proposed appropriate for multi-processor environment.

This paper is an expansion of the paper (Hwang, 2010) presented in the workshop
(IMIS 2010) held as part of International Conference on CISIS 2010. In the previous
paper, all tests have demonstrated the probability of 100% scheduling within the
predetermined deadline. In the process of preparing this paper, however, it appeared
that it was a rather hasty conclusion because the tests were performed for a small
number of task sets and a wide range of utilization. Therefore, this paper revises part
of LSTR described in the previous paper and evaluates the algorithm by applying it to
more task sets and more specified utilization range.

This paper is organized as follows: Chapter 2 describes the fundamental studies
of this research. In chapter 3, we indicate the limitations of existing algorithms and
then propose LSTR scheduling algorithm. Further, we show the experimental results
and performance evaluation in the fourth chapter. Finally, we summarize our research
in the fifth chapter.

2 Fundamental Studies

This chapter describes general characteristics of tasks and the scheduling algorithms
that served as a motive for LSTR algorithm.

2.1 Tasks and Schedulers

All tasks in real-time systems have timing constraints such as release time, relative
deadline, absolute deadline, and execution time, as shown in Figure 1. The release
time (ri) represents the time when a task arrives at the ready queue for execution; the
relative deadline (Di, or di-ri) is the maximum amount of time within which a task
should be completed; the absolute deadline (di, or Di+ri) is the time within which
execution of a task should be completed; and lastly, the execution time (ei) represents
the amount of time (theoretical minimum execution time) required for the entire task
process.

ei
ri di

Di

t

ei
ri di

Di

ei
ri di

Di

t

Figure 1: Timing constraints: release time, relative deadline, absolute deadline, and
execution time. This figure is excerpted from (Hwang, 2010).

913Hwang M., Choi D., Kim P.: Least Slack Time Rate ...

Many tasks occur simultaneously and each has its own timing constraints. For
satisfying these constraints, especially task deadline, a system requires scheduling
methods that allocate tasks to appropriate processor(s). According to the scheduling
methods used, scheduling algorithms are classified into dynamic and static (fixed)
priority scheduling algorithms. Dynamic priority scheduling algorithms such as EDF
(Earliest Deadline First) and LST (Least Slack Time first) assign different priorities to
an individual job in each task. On the other hand, static priority scheduling algorithms
such as RM (Rate Monotonic) and DM (Deadline Monotonic) assign the same
priority to all jobs in each task (Labrosse, 2002, Liu, 2000, and Stallings, 2004). In
this paper, we deal with the dynamic priority algorithms only.

2.2 Earliest Deadline First (EDF)

EDF is a very simple and famous algorithm in which the earlier the deadline is, the
higher the priority is and the scheduler operates when a job is completed on a
processor or when a task wakes up in the ready queue. Let us assume three tasks with
time constraints in a ready queue, as shown in Table 1. Each task is scheduled and
divided into several jobs. According to the timing constraints listed in Table 1, the
scheduling process is carried out as outlined in Table 2.

Tasks ri Di ei
T1 0 12 3
T2 0 6 3
T3 0 4 1

Table 1: Three tasks with timing constraints (ri: release time, Di: relative deadline, ei:
execution time, the tasks are periodic and the deadline coincides with the period)

t 0 1 2 3 4 5 6 7 8 9 10 11
T1 12 11 8 7 6 - - -
T2 6 5 - - 6 4 -
T3 4 - - 4 - - 4 1

Table 2: Priority calculating process based on EDF algorithm (t: current time)

J3 J2 J3 J1 J1 J2 J3

0 1 2 3 4 5 6 7 8 9 10 11 t12

Scheduler wakes up

Figure 2: EDF scheduling result (J: a job of a task)

The three tasks are released at the initial time (t = 0). The scheduler attempts to
compare the deadline of each task and then assigns the highest priority to T3 because
its deadline is the earliest as value 4. Therefore, a job (J3) of T3 is executed on the
processor. At t = 1, the scheduler wakes up since T3 has just completed. The

914 Hwang M., Choi D., Kim P.: Least Slack Time Rate ...

scheduler then determines that T2 has the highest priority. At t = 4, T2 is completed
and T3 is awakened due to its period, and between T1 and T3, the scheduler selects
T3 (T2 is already finished at t = 4). T1 is then processed by the scheduler for the first
time when t = 5. At t = 6, T2 is awakened due to its period and the priorities are the
same between T1 and T2. In this case, the scheduler selects T1 because of tie-break
rule2. At t = 8, the scheduler completes all the works of T1 and T2 is executed due to
the tie-break rule again. After T2 is completed, T3 is carried out on the processor at t
= 11. The three tasks are processed while each timing constraint is satisfied through
iterative operations. Therefore, the EDF scheduling algorithm can be considered to be
an optimal algorithm only for a single processor.

It is possible to determine whether given tasks are schedulable or not, by
measuring processor utilization using timing constraints of given tasks without
simulations. The processor utilization is measured by (1).

∑
=

≤=Δ
n

i i

i

D
e

u
1

1 (1)

Equation (1) measures processor utilization, where �u denotes the utilization; Di
the relative deadline; ei the execution time of each task; and n the total count of tasks.
If the utilization of given tasks is 1, the processor should run without idle state for
satisfying each deadline. The utilization of the tasks listed in Table 1 is 1 (3/12 + 3/6
+ 1/4 = 1). Therefore, we can assume that these tasks are schedulable.

2.3 Least Slack Time First (LST)

LST algorithm follows a rule that the smaller slack time, the higher priority. The slack
time means the remaining spare time (di - ei

r - t) at the current time. The ei
r represents

the time required to complete the remaining work of a task as shown in Figure 2. LST
algorithm can schedule all tasks under the condition of satisfying (1). And, it can be
considered to be the optimal algorithm for a single processor.

ri

ei

t di

r
ie

slack

ri

ei

t di

r
ie

slack

Figure 3: Slack is di - ei
r - t. This figure is excerpted from (Hwang, 2010).

3 Scheduling Policies

In this chapter, we analyze the existing scheduling algorithms described in the
previous chapter and examine their limitations in a multi-processor environment. We
then propose an efficient scheduling algorithm that has the optimal possibility within

2 Tie-break rule: the scheduler selects a task having the first index or the processed
jobs at the last processing time.

915Hwang M., Choi D., Kim P.: Least Slack Time Rate ...

a limited range of utilization for real-time systems like pervasive computing. Figure 4
describes the scheduling operation in pervasive computing.

diverse
sensors

Global waiting queue

Local waiting queue 1

Local waiting queue 2

Local waiting queue n

Scheduler

()
td

etaskrate
i

r
i

i −
=

tasks tasks with
timing

constraints

Processor
1

Processor
2

Processor
n

Figure 4: Scheduler model for pervasive computing environment

3.1 Limitations of existing algorithms

Algorithms described in the previous chapter are optimal in the uni-processor
environment but not in the multi-processor one. Table 4 lists the results of scheduling
on two processors using EDF according to timing constraints listed in Table 3. For the
optimal scheduling, the utilization of each processor should be 1 but processor 2 is
idle at times (t) 5 and (t) 11. In case LST is used, it also leaves some processors idle.
Therefore, missing deadlines occur.

Tasks ri Di ei
T1 0 2 1
T2 0 3 2
T3 0 12 10

Table 3: Three tasks with timing constraints

t 0 1 2 3 4 5 6 7 8 9 10 11
T1 2 - 2 - 2 - 2 - 2 - 2 -
T2 3 2 - 3 2 - 3 2 - 3 2 - T
T3 12 11 10 9 8 7 6 5 4 3 2 1
P1 J1 J2 J1 J2 J1 J3 J1 J2 J1 J2 J1 J3 P P2 J2 J3 J3 J3 J2 IS J2 J3 J3 J3 J2 IS

Table 4: Scheduling process and result on two processors based on EDF (P:
processor IS: idle state). If missing deadline occurs, the task is discarded for periodic

task at its relative deadline.

916 Hwang M., Choi D., Kim P.: Least Slack Time Rate ...

Missing deadlines frequently occur because the scheduling algorithms depend on
release time or slack time of given tasks. Further, scheduling based on these factors
cannot exactly determine which task should be carried out first. Upon this, we suggest
a new scheduling algorithm that can assign all of jobs on processor(s) while
minimizing idle state.

3.2 Least Slack Time Rate first (LSTR): Prerequisites

LSTR scheduling algorithm has the same prerequisites as those for the existing
scheduling algorithms for real-time systems. These prerequisites are listed in Table 5.

Conditions Prerequisites
Pre-emption Accept
Migration Accept

Periodic task Only
Release time 0

Timing constraints Task set should satisfy (2)
Scheduling time Basic time unit

Table 5: Prerequisites for LSTR scheduling algorithm

The first condition is pre-emptive scheduling, which means that the execution of
jobs can be interleaved. The scheduler suspends the execution of less urgent jobs and
gives processor control to a more urgent job. Later, after the urgent job is executed,
the scheduler returns processor control to the previous job. The second prerequisite is
migration. In the multi-processor environment, jobs that are ready for execution are
placed in the priority queue. When a processor is available, the job at the head of the
queue is carried out on the processor. In other words, an available processor can
immediately execute any job in the ready queue. The third and fourth prerequisites,
we assume that all tasks are periodic and the release time is 0 for well-understood
behaviour of the algorithm. The fifth prerequisite is that all timing constraints have to
satisfy (2).

1

,
1

≤

≤=Δ ∑
=

i

i

n

i
c

i

i

D
e

n
D
eu

 (2)

where, nc denotes the number of processors. Equation (2) represents the ranges of
timing constraints. The total processor utilization of a given task set cannot be higher
than the number of processors and the processor utilization of each task is not more
than 1. If the utilization of a task equals to 1, it implies that the task should occupy
one processor till completion. In addition, if the total utilization equals to the number
of processors, optimal scheduling is possible only if all processors work without idle
state. And the last prerequisite is scheduling time which awakens the scheduler. Every
scheduling algorithm has scheduling time that is used by the scheduler to determine
which task should be executed first. Generally, the scheduler operates when tasks are

917Hwang M., Choi D., Kim P.: Least Slack Time Rate ...

released, when the execution of a task is completed, and when a task is awakened in
the ready queue (when the time for its execution has arrived). However, LSTR
scheduling algorithm operates on every basic time unit. Here, we consider the basic
time unit of 1 (ms).

The six prerequisites discussed above are fundamental for dynamic scheduling
algorithm in real-time systems, and the scheduling algorithm described in this paper
also depends on these prerequisites.

3.3 Least Slack Time Rate first (LSTR): Scheduler

LSTR scheduling algorithm measures the rate of execution time of each task at every
scheduling time. The aim of LSTR is to minimize that any processor has idle state.
All tasks have deadline and execution time as timing constraints. The scheduler
determines at the scheduling time which task to be executed on a processor. Tasks are
carried out on the processor(s) and both the remaining execution time and the
remaining deadline of these tasks decrease accordingly. However, the remaining
execution times of other tasks do not decrease. This explains the limitations of
existing scheduling algorithms such as EDF and LST which use only the deadline,
release time, or slack time. Therefore, these algorithms cannot determine which task
is really urgent. Also, in these algorithms, once the scheduler determines a task with
the highest priority, others cannot be carried out for some fixed time during which the
task is executed. This causes some processors to be in idle state. On the other hand,
the LSTR scheduling algorithm determines the priorities of tasks by computing the
rates between their remaining execution times and remaining deadlines so as to satisfy
all of the timing constraints of the tasks. Equation (3) presents this scheduler. A task
with a higher rate has a higher priority.

()
td

etaskrate
i

r
i

i −
= (3)

Although this is a simple equation, it can schedule tasks while minimizing idle
states of processors. Here, t denotes the current time; ei

r the remaining execution time
of i-th task at t; and di the remaining absolute deadline of i-th task at t. The LSTR
algorithm is similar to the LST algorithm which uses the slack time, but different in
that it uses the rate of remaining execution time and remaining deadline. This is why
we named this algorithm Least Slack Time Rate first. As described in the previous
chapter, the scheduler operates at every basic time unit, which is 1. In our tests under
these conditions, LSTR returned almost all of optimal scheduling results in both uni-
and multi-processor environments. As an example, Table 6 shows the scheduling
results using the timing constraints of Table 3 (three tasks) for multi-processor
environment (two processors). As shown in the Tables 6, no processor has an idle
state.

918 Hwang M., Choi D., Kim P.: Least Slack Time Rate ...

t 0 1 2 3 4 5 6 7 8 9 10 11

T1 1/2 1/1 1/2 1/1 1/2 1/1 1/2 1/1 1/2 1/1 1/2 -
T2 2/3 1/2 1/1 2/3 2/2 1/1 2/3 1/2 1/1 2/3 1/2 1/1 T
T3 10/12 9/11 8/10 7/9 6/8 6/7 5/6 4/5 3/4 2/3 2/2 1/1
P1 J3 J1 J2 J1 J2 J1 J3 J1 J2 J1 J3 J2 P P2 J2 J3 J3 J3 J3 J2 J2 J3 J3 J2 J1 J3

Table 6: LSTR based scheduling process and result on two processors

4 Experiment and Performance Evaluation

In the previous chapter, we presented the successful scheduling results of the given
tasks using LSTR algorithm. In order to evaluate this algorithm, we implemented a
simulation system and tested it using total 3,310,000 task sets. Further, in order to
measure the amount of elapsed time by the LSTR algorithm, we evaluated its
performance by comparing it with the EDF algorithm. For the purpose of test, we
used a computer system with 4GB memory and two 2.80GHz CPU running Vista OS.
Even though the system has two processors, the simulation was carried out on one
processor.

4.1 Scheduling Results

In order to evaluate the scheduling performance of LSTR algorithm, we tested the
algorithm for the uni-processor and the multi-processor environments. We tried to
apply various conditions according to the numbers of processes and tasks in each
environment, which are summarized in Table 7.

Num. of tasks Num. of
processors

(p) 2 3 4 5 7 9 11 12 13 15 17 20 23 25
1 (x10000) 7 7 7 7 7 7 - - - - - - - -
2 (x10000) - 9 9 9 9 9 9 - 5 3 - - - -
3 (x10000) - - 9 9 9 9 9 - 9 3 3 - - -
4 (x10000) - - - 9 9 9 9 - 9 9 3 3 - -
5 (x10000) - - - - 9 9 9 - 9 9 9 3 3 -
7 (x10000) - - - - - 9 - 9 - 9 - 9 - 9

Table 7: Pairs of processor(s) and tasks (The number in each rectangle for the pair (p,
t) means total count of task sets used for the scheduling test, where p and t are
numbers of processor(s) and task sets respectively. For example, it is 7 in the

rectangle (1, 5) and means that the simulation system uses 70,000 different task sets
which consist of 5 tasks.)

As shown in Table 7, the scheduling performance was tested with the varying
number of processors and tasks. For 1, 2, 3, 4, 5, and 7 processors, 420,000, 620,000,
600,000, 600,000, 600,000, and 450,000 task sets were used respectively. In addition,
a random number creator was implemented and it could create timing constraints for

919Hwang M., Choi D., Kim P.: Least Slack Time Rate ...

processor-task pairs listed in Table 7 according to the utilization ranges. The
utilization range of each processor environment and its scheduling result are described
in respective sections.

4.1.1 Results for uni-processor environment

To test the scheduling performance for the uni-processor environment, a total of
420,000 task sets were created, which were grouped into 10,000 task sets respectively
according to the utilization range. Table 8 shows the composition of task sets to be
scheduled in the uni-processor environment.

△ u (utilization) ranges, p = 1
Num. of
tasks (t)

0.5<
△ u
≤0.6

0.6<
△ u
≤0.7

0.7<
△ u
≤0.8

0.8<
△ u
≤0.9

0.9<
△ u
≤0.95

0.95<
△ u
≤0.98

0.98<
△ u
≤1.0

2 10,000 10,000 10,000 10,000 10,000 10,000 10,000
3 10,000 10,000 10,000 10,000 10,000 10,000 10,000
4 10,000 10,000 10,000 10,000 10,000 10,000 10,000
5 10,000 10,000 10,000 10,000 10,000 10,000 10,000
7 10,000 10,000 10,000 10,000 10,000 10,000 10,000
9 10,000 10,000 10,000 10,000 10,000 10,000 10,000

Table 8: Total counts of task sets given according to number of tasks and utilization
ranges. The sum of task sets in the same row is exactly same to the total count of tests

for pair (p, t) in table 7 (in here, p is 1).

LSTR scheduler made the optimal scheduling result for all the task sets given
above, which confirms that LSTR scheduler could make the optimal result in the uni-
processor environment under the condition where the utilization is 1 or less, like EDF
scheduler.

4.1.2 Results for multi-processor environment

Though being capable of making the optimal scheduling result in the uni-processor
environment, LSTR algorithm was originally designed for high-performance
scheduling results in the multi-processor environment. In order to test its performance
under the multi-processor environment, the LSTR algorithm was tested for 10,000
task sets for each condition consisting of tasks, processors and utilization ranges. The
utilization ranges used for the test are listed in Table 9.

△ u
ranges

0.5<
△ u
≤0.6

0.6<
△ u
≤0.7

0.7<
△ u
≤0.8

0.8<
△ u
≤0.9

0.9<
△ u
≤0.95

0.95<
△ u
≤0.98

0.98<
△ u
≤0.99

0.99<
△ u

≤0.995

0.995<
△ u
≤1.0

Table 9: utilization ranges for each pair (p, t), where p is 2 or more. And, according
to utilization range and pair (p, t), 10,000 task sets are prepared.

920 Hwang M., Choi D., Kim P.: Least Slack Time Rate ...

For all task sets whose utilization ranges were 0.99 or lower, the LSTR algorithm
appeared to meet the predetermined deadline. For those whose utilization ranges were
higher than 0.99, however, it failed to meet deadlines in very small parts. Table 10
summarizes the parts where the algorithm missed the deadline.

△ u ranges 0.99< △ u ≤ 0.995 0.995< △ u ≤ 1.0
Num. of Processors 2 3 4 5 7 2 3 4 5 7

3 0 - - - - 0 - - - -
4 0 0 - - - 0 0 - - -
5 0 0 0 - - 0 0 0 - -
7 0 0 0 0 - 0 0 0 0 -
9 0 0 0 0 0 0 0 1 1 0

11 0 1 0 0 - 4 0 2 0 -
12 - - - - 0 - - - - 0
13 0 0 0 0 - 0 0 1 1 -
15 0 0 0 0 0 0 0 15 0 0
17 - 0 0 0 - - 0 0 1 -
20 - - 0 0 0 - - 0 0 0
23 - - - 0 - - - - 3 -

Num. of
Tasks

25 - - - - 0 - - - - 0

Table 10: Failure cases: in case of pair (4, 15) in 0.995<△ u≤ 1.0, the number in the
rectangle is 15. It means that its failure rate is 0.15(%) because 10,000 different task

sets were used for each test.

However, the percentage of the LSTR algorithm not meeting the deadline was
extremely low and it produced the optimal results when the utilization ranges were
0.99 or lower. Considering that 10,000 task sets were used for each pair (p, t) and
utilization range, it can be said that such result proves high reliability of the LSTR
algorithm. Table 11 shows some of task sets of which deadlines were missed.

△ u ranges Pair(p,t) Task sets (D, e)

(4,1) (4,1) (12,3) (3,1) (3,1) (3,1)
0.99~0.995

Pair(3,11)
△ u=0.994 (3,1) (20,4) (4,1) (20,4) (12,3)

(32,4) (6,1) (40,5) (4,1) (6,1) (16,4) Pair(2,11)
△ u=1.000 (4,1) (12,2) (6,1) (6,1) (12,2)

(20,6) (8,3) (16,5) (4,2) (8,4) (8,4) Pair(4,9)
△ u=0.997 (2,1) (2,1) (2,1)

(32,4) (10,2) (24,3) (4,1) (10,2) (5,1)
(8,2) (8,2) (10,2) (10,2) (4,1) (8,2)
(4,1) (4,1) (8,2) (4,1) (10,2) (5,1)

0.995~1.0

Pair(5,23)
△ u=1.000

(5,1) (5,1) (8,2) (4,1) (5,1)

Table 11: Task sets missing deadline

921Hwang M., Choi D., Kim P.: Least Slack Time Rate ...

4.2 Elapsed Time Evaluation

In the previous section, we demonstrated the scheduling performance of LSTR
algorithm. However, this algorithm would have scheduling time more frequent than
those of other algorithms such as EDF and LST. Schedulers of other scheduling
algorithms wake up when a job on a processor is released or completed, and when a
task of higher priority wakes up. In case of LSTR, however, the scheduler wakes up at
every basic time unit. Therefore, we need to know how much time is wasted by the
LSTR. We have attempted to evaluate the elapsed time by comparing LSTR with
EDF because this is one of the simplest and the fastest. However, it is not optimal
algorithm for the multi-processor environment. So, we evaluated the difference of
elapsed time under a single-processor environment using task sets which consists of
three, five, seven, and nine tasks respectively, and with the utilization range of 0.95 or
higher.

In the computer system, a measurable time unit is 1 ms (0.001 second); however,
the scheduling time for one task set is smaller than 1 ms. Therefore, we needed to
iterate each task set 10,000 times to obtain appropriate values. We prepared 200 task
sets consisting of 50 sets of three, five, seven, and nine tasks respectively. Using these
sets, both the EDF and the LSTR simulators were operated under the same conditions.

The results of the performance evaluation are shown in Figure 5, where the x-axis
represents the index of a task set and the y-axis the time required (ms) for scheduling.
The scheduling time of LSTR is slightly higher than that of EDF, as indicated in
Table 12 which presents the summarization of this performance evaluation. For the
task sets consisting of three tasks, EDF spent 186 (ms) on average for scheduling;
LSTR 281 (ms), showing the time difference of 95. As this was the result of iterating
one task set 10,000 times, the actual elapsed time was 0.0186 (ms) and 0.0281 (ms)
respectively, making the time difference 0.0095. Moreover, in case of the nine-task
set which LSTR wasted the longest average time, its time difference with EDF is
0.0449. Considering that the time EDF spent for scheduling this task set was 0.197,
the time difference is not weak point because LSTR has excellent performance under
the multi-processor environment. It showed the 13th set of 9 tasks (EDF: 2061 (ms)
and LSTR: 3731 (ms)) had the greatest time difference of 1670 (ms). For this set, the
actual time difference was 0.167 (ms) and LSTR spent more time. These results
indicate that LSTR wastes slightly more scheduling time than EDF does. Still, LSTR
is more valuable because it shows the possibility of optimal scheduling with the
utilization range of 0.99 or less in the multi-processor environment.

Num. of tasks 3 tasks 5 tasks 7 tasks 9 tasks
Method EDF LSTR EDF LSTR EDF LSTR EDF LSTR
Avg. ET 186 281 518 762 1,074 1,436 1,970 2,419

Worst ET 761 910 1,685 2,321 2,886 3,160 6,928 7,571
Difference

(LSTR-EDF)
95

(0.0095 ms)
254

(0.0254 ms)
363

(0.0363 ms)
449

(0.0449 ms)

Table 12: Scheduling process using EDF algorithm (ET: Elapsed Time)

922 Hwang M., Choi D., Kim P.: Least Slack Time Rate ...

Figure 5-1. 50 sets of 3 tasks

Figure 5-2. 50 sets of 5 tasks

Figure 5-3. 50 sets of 7 tasks

Figure 5-4. 50 sets of 9 tasks

Figure 5: Comparison results for elapsed time, x-axis: index of task set, y-axis:
elapsed time (ms)

923Hwang M., Choi D., Kim P.: Least Slack Time Rate ...

5 Conclusions

This paper proposed LSTR scheduling algorithm which has excellent performance in
the multi-processor environment. The LSTR algorithm overcomes the limitations that
EDF and LST which are optimal schedulers in the uni-processor environment have in
the multi environment, as well as satisfying the pre-determined deadlines of all tasks
in the uni-processor environment. In the multi processor environment, it produced the
optimal scheduling result for the utilization range of 0.99 or less and at least 99.85(%)
success rate at the utilization range higher than 0.99. It appears that LSTR spends
more scheduling time than the existing scheduling algorithms do because it measures
the priorities of tasks at every basic time unit. However, it is proven through the
experiments that LSTR has slightly higher elapsed time than EDF algorithm does. In
other words, though LSTR spends a little bit more scheduling time, it still can be
considered as a better scheduling algorithm as it has higher performance in the multi-
processor environment.
Even though it is expected that LSTR scheduler can be utilized in diverse field for
real-time services like pervasive computing as well as for data transmission in general
processors and networks, it is still necessary to further study the resource management
for job migration and theoretic proof. We will continuously research on it.

Acknowledgements

This research was financially supported by the Ministry of Education, Science
Technology (MEST) and National Research Foundation of Korea (NRF) through the
Human Resource Training Project for Regional Innovation.

References

[Brooks, 1997] Brooks, R.A.: The Intelligent Room Project, Second International Conference
on Cognitive Technology 1997: ‘Humanizing the Information Age,’ pp. 271~278, 1997.

[Costa, 2010] Costa, G., Lazouski, A., Martinelli, F., Matteucci, I., Issarny, V., Saadi, R.,
Dragoni, N., and Massacci, F.: Security-by-Contract-with-Trust for Mobile Devices, Journal of
Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, Vol. 1, No.
4, pp. 75~91, 2010.

[Hwang, 2010] Hwang, M.G., Choi, D.J., and Kim, P.K.: Least Slack Time Rate first: New
Scheduling Algorithm for Multi-Processor Environment, CISIS 2010, pp. 806~811, Feb 2010.

[Jara, 2010] Jara, A. J., Zamora, M. A., and Skarmeta, A. F. G.: An Initial Approach to Support
Mobility in Hospital Wireless Sensor Networks based on 6LoWPAN (HWSN6), Journal of
Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, Vol. 1, No.
2/3, pp. 107~122, 2010.

[Labrosse, 2002] Labrosse, J.J, MicroC OS-II: The Real-Time Kernel (Second Edition),
CMPBOOKS, Manhasset NY, 2002.

[Liu, 2000] Liu, J.W.S., Real-Time System, Printice Hall, New Jersey, 2000.

[Liu, 2003] Liu, J. and Lee, E.A.: Timed Multitasking for Real-Time Embedded Software,
IEEE Control System Magazine, pp. 65~75, Feb 2003.

924 Hwang M., Choi D., Kim P.: Least Slack Time Rate ...

[Mann, 2001] Mann, S., Wearable Computing: Toward Humanistic Intelligence, IEEE
Intelligent Systems, 16(3), pp.10~15, 2001.

[Stallings, 2004] Stallings, W., Operating Systems: Internals and Design Principles (fifth
international edition), Printice Hall, New Jersey, 2004.

[Stavrinides, 2009] Stavrinides, G.L. and Karatza, H.D., Fault-tolerant Gang Scheduling in
Distributed Real-time Systems Utilizing Imprecise Computations, Simulation, 85(8), pp.
525~536, 2009.

[Stavrinides, 2010] Stavrinides, G.L. and Karatza, H.D., Scheduling multiple task graphs with
end-to-end deadlines in distributed real-time systems utilizing imprecise computations, The
Journal of Systems and Software, online published first, 2010.

[Su-Jin, 2002] Su-Jin, P.P., Lebeltel, O., and Laugier, C., Parking a Car using Bayesian
Programming, ICARCV 2002, Vol. 2, pp. 728~733, 2002.

[Xiong, 2009] Xiong, N., He, J., Park, J.H., Cooley, D., and Li, Y., A Neural Network based
Vehicle Classification System for Pervasive Smart Road Security, Journal of Universal
Computer Science, 15(5), pp. 1119-1142, 2009.

925Hwang M., Choi D., Kim P.: Least Slack Time Rate ...

