
QoS-based Approach for Dynamic Web Service

Composition

Frederico G. Alvares de Oliveira Jr.

(Tecnological Institute of Aeronautics - ITA

São José dos Campos-SP, Brazil

fred@ita.br)

José M. Parente de Oliveira

(Tecnological Institute of Aeronautics - ITA

São José dos Campos-SP, Brazil

parente@ita.br)

Abstract: Web Services have become a standard for integration of systems in dis-
tributed environments. By using a set of open interoperability standards, they allow
computer-computer interaction, regardless the programming languages and operating
systems used. The Semantic Web Services, by its turn, make use of ontologies to de-
scribe their functionality in a more structural manner, allowing computers to reason
about the information required and provided by them. Such a description also allows
dynamic composition of several Web Services, when only one is not able to provide the
desired functionality. There are scenarios, however, in which only the functional cor-
rectness is not enough to fulfill the user requirements, and a minimum level of quality
should be guaranteed by their providers. In this context, this work presents an ap-
proach for dynamic Web Service composition that takes into account the composition
overall quality. The proposed approach relies on a heuristics to efficiently perform the
composition. In order to show the feasibility of the proposed approach, a Web Ser-
vice composition application prototype was developed and experimented with public
test sets, along with another approach that does not consider quality in the compo-
sition process. The results have shown that the proposed approach in general finds
compositions with more quality, within a reasonable processing time.

Key Words: Semantic Web Service, Web Service Composition, Quality of Service

Category: H.3, H.3.5

1 Introduction

A web service can be defined as a piece of software that conforms to a set of open

interoperability facilities [Erl(2007)], such as WSDL (Web Service Description

Language) [Christensen et al.(2007)], SOAP (Simple Object Access Protocol)

[Box et al.(2000)], and UDDI (Universal Description, Discover and Integration)

[OASIS(2004)], for description, messaging protocol and discovering, respectively.

These facilities allow the integration of systems written in different languages

and running on computers with different platforms. However, all of them offer

only a common grammar for describing, publishing and exchanging information

Journal of Universal Computer Science, vol. 17, no. 5 (2011), 712-741
submitted: 8/2/10, accepted: 4/11/10, appeared: 1/3/11 © J.UCS

of web service and workflows, which means that there is a lack of semantics in the

information provided by services defined with those facilities [Akkiraju(2007)].

The Semantic Web is intended to extend the current web in order to make

it more meaningful so that machines can interpret the information that flows

across the web. In practice, Semantic Web relies on a formal description frame-

work called ontology to describe the information produced by web resources

(webpages, services etc) in a more structured manner. As a consequence, current

web services (also called syntactic) may also be a beneficiary of this structured

description, since their properties, capabilities, interfaces, and effects can be en-

coded in an unambiguous, and machine-interpretable fashion. A web service with

such an encoding is known as Semantic Web Service [Mcilraith et al.(2001)].

Generally, a Semantic Web Service (SWS) is a service whose input, output,

preconditions and effects (IOPEs) are associated with a formal description rather

than just a datatype. A straightforward impact of having Web Services semanti-

cally annotated is the fact that their functionality can be automatically matched

(discovered) and composed with functionalities provided by other services when

only one service is not able to produce the desired functionality. Consequently,

new functionalities or applications can be dynamically built based on existing

services. By dynamic we mean that one application can be conceived automati-

cally on demand according to users’ requests by composing several services.

Sometimes, however, only the matching of service functionalities based on

input and output description is not enough to fulfill the users requirements. A

service user, i. e. a person or another computer, may impose constraints on the

required service. For this purpose, services should guarantee a minimum level of

quality delivered to their consumers. The quality of a service is often expressed

by means of non-functional attributes, such as performance, availability, cost

etc.

Lately, research on automatic SWSs discovery and composition has been re-

ceiving a lot of attention. However, there are not many works that deal with

automatic web service composition, and make use of quality of service (QoS)

constraints [Zeng et al.(2004),Aversano et al.(2004),Canfora et al.(2005),Claro

et al.(2008), Aggarwal et al.(2004)] at the same time. Considering such con-

straints while composing web services is not a trivial task because when dealing

with composite services, i.e., services that are composed of two or more other

services, individual quality must be used in order to determine an overall quality

of the composite service.

According to [Tsetsos et al.(2007)] service discovery consists in finding a ser-

vice that matches a given set of requirements. When dealing with SWSs, service

matching should be based on ontology description. A composition of web ser-

vices, in turn, is a practice where new services are built relying on several other

services to deliver a desired functionality [Casati and Shan(2001)]. A dynamic

713de Oliveira Jr. F.G.A., de Oliveira J.M.P.: QoS-based Approach ...

web service composition is defined as a task of discovering a set of services that

together can fulfill a given requirement, when a single service alone is not able to

do so [Sirin et al.(2004)]. This requirement is expressed by means of input and

output parameters and QoS constraints.

There is a body of approaches [Zeng et al.(2004),Canfora et al.(2005),Claro

et al.(2008)] that perform discovery of SWSs considering QoS based on a prede-

fined high-level composition definition. By following this strategy it is possible

to dynamically select one service for each item of the composition so that a com-

position meet the overall QoS imposed constraints. However, those approaches

are more focused on providing the best quality values for a predefined flow of

tasks.

Another body of approaches [Weise et al.(2008), Yan et al.(2008)], on the

other hand, provides efficient algorithms that make use of Artificial Intelligence

techniques in order to find a set of services for a given requirement, without

considering QoS. Other approaches [Sirin et al.(2004),Aversano et al.(2004),Oh

et al.(2007)] consider QoS during composition, but do not make use of any ef-

ficient technique and relies on an exhaustive search over the available services.

This kind of strategy certainly become infeasible when a great number of services

are made available.

In this paper, we propose an approach for semantic web service composi-

tion that considers QoS constraints during the composition. The work extends

our previous work [de Oliveira Jr. and de Oliveira(2009)] by providing a more

detailed view of the approach and presenting the experimental results. The al-

gorithm presented follows a heuristic approach previously proposed in [Weise

et al.(2008)].

The remainder of this paper is organized as follows. [Section 2] presents the

related works. [Section 3] describes the proposed approach for dynamic web ser-

vice composition. [Section 4] presents a motivating scenario to illustrate how the

approach can be applied in a practical context. [Section 5] shows the experiments

performed in order to validate the proposed approach. [Section 6] concludes the

paper and presents the future works.

2 Related Works

In this section, a selected set of relevant works related to web service compo-

sition is discussed. In order to establish a comparison among all investigated

approaches, a set of features that covers most of web service composition ap-

proaches was taken into consideration as parameters for comparison, as follows:

– Dynamic Composition - The approach provides a way to find a struc-

tured set of service according to end users’ requests. Some classical ap-

proaches assume that a structure will be provided, while others assume hu-

714 de Oliveira Jr. F.G.A., de Oliveira J.M.P.: QoS-based Approach ...

man interactions. This parameter is used to distinguish fully dynamic and

automatic composition approaches from the others;

– Parallel Composition - The approach takes into account that two or

more services can be executed at the same time if there is no dependence

between them. This should be taken into account because it can increase the

time to find a solution, but once a solution is found, the execution time (and

other QoS attributes) can be improved comparing to sequential solutions;

– Quality of Service - The approach deals with QoS constraints. As QoS

is mechanism that measure the end users’ satisfiability on a given service or

the conditions to consume it, we believe that it is also a very important issue

to be considered;

– Fast Search - The approach makes use of efficient search algorithms to

find a composition. This is a important feature, because the time to find a

solution depends on the search strategy used;

– Optimal Solution - The approach is able to find the optimal solution.

This feature is very important, since we can take into account the trade-off

between the search strategy and the solution optimality.

In [Sirin et al.(2004)], it was proposed an interactive approach for Semantic

Web Service Composition that allows users to build workflows based on seman-

tic web services. This approach makes use of OWL-S to semantically filter and

select the services for a composition. First, the composer lists all available ser-

vices in a repository. When the user selects one, the composer lists all services

whose outputs feed the chosen service as inputs. This approach makes use of

subsumption-based matching (i.e. a concept a subsumes another concept b if a

is a superclass of b) to filter services that can provide a concept as input for

the current service at each step. The composer also allows users to invoke the

completed composition by inserting values as inputs.

The main advantage of this proposal is the possibility to build and test frag-

ments of compositions as they are built. However, this process is semi-automated

and totally dependent on human interaction. Therefore, it may be infeasible for

large service repositories. Moreover, this approach does not consider QoS con-

straints.

In [Pistore et al.(2005)], an automatic approach for synthesis of Business

Process Execution Language (BPEL) [BPEL (2007)] components was proposed.

The BPEL components are modeled in State transition system (STS) and the

user requirements on the composition are expressed in a specific requirement

language. Given that, the synthesis is performed by using model checking. This

approach has the advantage of allowing the use of complex compositional struc-

tures of BPEL like parallel composition and conditional branches. In fact, as the

715de Oliveira Jr. F.G.A., de Oliveira J.M.P.: QoS-based Approach ...

authors state, the work focuses on the assistance to the task of building business

process structures, rather than dynamic web service composition. Thus, QoS is-

sues are not addressed in that work. Moreover, according to the results, even for

small compositions (e.g. less than ten) the approach take a considerable amount

of time (more than ten seconds) to compose components. Although it can be

considered acceptable at design time, it may be unacceptable for end users at

runtime.

In [Aversano et al.(2004)], an extension of the Semantic Web Service Com-

position algorithm described in [Akkiraju et al.(2003)] was proposed in order to

consider non-functional properties such as Response Time, Cost and Availabil-

ity. Services are discovered based on three different levels of similarity: (i) lexical

level, where the tool Wordnet [Fellbaum(1998)] is used to identify synonymous

terms (e. g. Clinic and Hospital); (ii) property level, where the properties (ob-

ject properties and datatype properties) of two concepts are compared; (iii) the

semantic level, where class relations such as subsumption-based ones are used.

These three different levels are useful to resolve similarities of concepts defined

in different ontologies.

The composition algorithm adopts a backward strategy and then starts by

finding services whose outputs match with sufficient similarity to the required

outputs (goal). Next, the concepts needed as inputs of the found services are

made as the new goal, and the algorithm finds services that are able to provide

outputs that match with this new goal. These steps are repeated until the service

inputs can be provided by the inputs provided by the request. It is also considered

when two or more independent services are used to provide a required goal or

when it exceeds a beforehand specified timeout. When more than one service

can provide a given goal, the one with best QoS values is chosen.

The algorithm also distinguishes sequential (called vertical) and horizontal

(called parallel) compositions so that it is possible to make a right computation of

QoS values. For example for Response Time in a parallel composition should be

the maximum among services in the composition. So these services are composed

in a horizontal way (parallel composition).

This approach has several advantages. Besides performing a dynamic web

service composition considering the QoS criteria, it also provides both sequential

and parallel composition. On the other hand, a drawback of this approach is

the fact that the algorithm performs an exhaustive search in the repository. In

fact, the solution proposed is similar to an Iterative Depth-first Search approach

[Russell and Norvig(2003)] which becomes infeasible as the number of available

service increases.

An algorithm for semantic and syntactic web service composition was pro-

posed in [Oh et al.(2007)]. The problem is modeled into an Artificial Intelligence

Planning Problem [Russell and Norvig(2003)], where the initial state corresponds

716 de Oliveira Jr. F.G.A., de Oliveira J.M.P.: QoS-based Approach ...

to the set of inputs provided in the request, the target (goal) state is such that

the set of matched services are able to provide all the required outputs specified

in the request, and the available services correspond to the search space. The

cost of invocation of a service is fixed in 1.

The algorithm is divided into two phases: the first one performs a forward

search, and thus starts from the initial state (input data provided in the request)

and, following a subsumption reasoning, matches services that require this data

as input to be invoked until all required outputs specified in the request can

be provided by the matched services. Each matched service is added in a graph

whose nodes store the cost needed to go from the initial state to it. The second

phase performs a backward search in the graph produced in the first phase in

order to get the optimal path, i.e. the path with minimum cost, from the start

to the target node.

An advantage of this approach is that it is able to find the optimal solution.

However, it performs a exhaustive search in order to obtain the optimal solution.

In addition, even though the cost of executing a service is taken into account,

QoS models are not mentioned in the algorithm.

In [Weise et al.(2008)], three different approaches for service composition

were used and compared: (i) an Iterative Depth-First Search approach; (ii) a

Greedy Approach; (iii) and an Evolutionary Approach [Russell and Norvig(2003)].

All the three approaches consider a subsumption-based matching of services, but

none of them considers non-functional characteristics or QoS attributes. The

Iterative Depth-First Search [Russell and Norvig(2003)] approach performs a

backward search similar to that proposed in [Aversano et al.(2004)]. The Greedy

Approach, which is based on Greedy Algorithm [Russell and Norvig(2003)], also

performs a backward search, but relies on a heuristic function that takes into ac-

count some properties of the candidate compositions and always chooses the com-

position which, according to the heuristics, is the most appropriate. Finally, the

third approach presents a Genetic Algorithm (GA) [Russell and Norvig(2003)] in

order to take into account multiple objectives such as the size and the correctness

composition and thus provide an optimal solution.

Experiments have shown that the heuristic-based approach outperformed (in

execution time) the others in many situations. Although this approach does not

guarantee neither the optimal nor the algorithm completeness, the experiments

showed that the heuristics provided results approximated to the optimal solution

and was able to provide solutions for all experiments performed. The Genetic

Approach, on the other hand, guarantees the optimal solution but at the cost of

a worse performance. Finally, the experiments showed that the Iterative Depth-

First Search approach has an acceptable performance in small repositories, but

fails in large ones.

717de Oliveira Jr. F.G.A., de Oliveira J.M.P.: QoS-based Approach ...

In [Yan et al.(2008)], an approach for dynamic semantic web service compo-

sition based on AND-OR Graphs [Konar(2000)] was proposed. The problem is

modeled into a Service Dependency Graph (SDG) in which two kind of nodes are

allowed: services and data (inputs and outputs). Two service nodes are linked

through a data node also following the subsumption relations. The approach

implements the SDG in a AND-OR graph, where AND-nodes correspond to ser-

vice nodes and OR-nodes corresponds to data nodes. Another dummy AND-node

representing the goal (required outputs) is also created.

The algorithm performs a backward search starting from the dummy AND-

node until it can be resolved, i.e. when all its input OR-nodes are also resolved.

An OR-node can be resolved when an AND-node can provide it as output, and

so on. The selection criterion of a node is the cost it represents from the dummy

node to it. This cost is a fixed cost of a service and the number of inputs required

by the service to be invoked. Thus, all the possible paths in the AND-OR Graph

are taken into account, and the best one, that is, the optimal solution is chosen.

In addition, it is also considered parallel composition of services rather than just

sequences. All possible solutions are analyzed, but the overhead is mitigated by

the use of a reverse index technique on the data provided by each service. Despite

the cost of a service node is taken into account, no QoS model is mentioned as well

as nothing is stated about multiple QoS criteria such as Availability, Reputation

etc.

[Tab. 1] summarizes all the investigated works. The objective of our approach

is to combine the advantages of other approaches, like the use of good search

strategies like in [Weise et al.(2008)] while considering QoS during the composi-

tion, as proposed in [Aversano et al.(2004)].

Approach Dynamic Optimal Parallel Fast Search QoS

Sirin et al. No Yes Yes No No

Oh et al. Yes Yes No No No

Weise et al. Yes No No Yes No

Yan et al. Yes Yes Yes Yes No

Aversano et. al. Yes Yes Yes No Yes

Pistore et. al. Yes No Yes No No

Table 1: Summarization of the related works main characteristics.

718 de Oliveira Jr. F.G.A., de Oliveira J.M.P.: QoS-based Approach ...

3 QoS-Based Approach for Dynamic Web Service

Composition

Dynamic Web Service Composition consists in composing at runtime two or

more services in order to solve a problem that cannot be solved by any service

individually. This section aims to present an approach for Dynamic Web Service

Composition [de Oliveira Jr. and de Oliveira(2009)]. The proposed approach ex-

tends the Heuristic-based Approach for Dynamic Web Service Composition pro-

posed by [Weise et al.(2008)] by adding Quality of Service constraints to the

heuristic.

The section is organized as follows. Firstly, the main concepts involved in the

proposed approach are presented. Then, the algorithm is presented along with

the proposed heuristic.

3.1 Proposal Overview

Semantic Web Service Composition consists in composing two or more well-

described (ontology-based) services in order to accomplish a requested func-

tionality. The proposed approach in this work is intended to perform Dynamic

Service Composition taking into account both the semantic description of a ser-

vice and its non-functional properties that composes the quality it delivers. The

algorithm to perform this composition receives as input a request, which consists

of the provided input concepts, required output concepts and QoS constraints,

and produces as output a set of services that together can provide the required

concepts specified in the request, as illustrated in [Fig. 1].

Figure 1: Proposal Overview.

Each concept in the request input (cin
1 , . . . , cin

m) or output (cout
1 , . . . , cout

m) is

defined in a ontology named Domain Ontology. Each QoS constraint consists of a

triple with the quality criterion, a value representing a constraint on this criterion

and a weight representing the user’s preference on this criterion. Following are

some definitions extended from [Weise et al.(2008)] to incorporate QoS.

719de Oliveira Jr. F.G.A., de Oliveira J.M.P.: QoS-based Approach ...

Definition 3.1 (Domain Ontology) A domain ontology O consists of a set

of concepts used to describe the domain in which a group of services is inserted.

These concepts are related to each other according to subsumption relations, i.

e. a concept c1 ∈ O subsumes another concept c2 ∈ O if c1 is a superclass of c2;

c1 and c2 subsume each other if they are the same concept.

Definition 3.2 (Request) A composition request R consists of a set of pro-

vided inputs Rin ⊆ O, a set of required outputs Rout ⊆ O and a set of quality of

service constraints Rqos = {(q1, v1, w1), (q2, v2, w2), . . . , (qk, vk, wk)}, where qi

(i = 1, 2, . . . , k) is a quality criterion, vi is the required value for criterion qi, wi

is the weight assigned to this criterion such that
∑k

i=1 wi = 1, and k the number

of quality criteria involved in the request. A quality criterion can be either neg-

ative, i.e. the higher the value the lower the quality, or positive, i.e. the higher

the value the higher the quality.

A service composition is built by discovering services available in a Service

Repository that match with concepts required by either service inputs or request

output. A service is selected to take part of certain composition if at least one

of its output concepts is related to a required concept (request output or a re-

quired input of another service in the composition) according to the subsumption

relations above mentioned.

A valid composition is a composition where all the required output concepts

can be provided by its constituent services as well as each service input concepts

should be provided by either the available concepts in the request or other ser-

vices in the composition. In addition, a valid composition also must meet the

imposed QoS constraints.

Definition 3.3 (Service Repository) A Service Repository D consists of a

set of available services. Each service s ∈ D is composed of a set of required

inputs sin ⊆ O, a set of provided outputs sout ⊆ O and a set of provided quality

criteria sqos = {(q1, v1), (q2, v2), . . . , (qk, vk)}, where qi (i = 1, 2, . . . , k) is a

quality criterion, vi is the value associated to criterion qi provided by the service,

and k is the number of criteria involved.

Definition 3.4 (Service Composition) A Service Composition C is a Direct

Acyclic Graph (DAG) with vertices Cv = {s | s ∈ D} and edges Ce = {(u, v) |

∀u, v ∈ Cv ∃c1 ∈ uout ∃c2 ∈ vin : c2 subsumes c1}

Definition 3.5 (Valid Composition) A composition C is considered valid for

a request R if the predicate valid(C,R) in Equation 1, holds.

valid(C,R)⇔ ∀c1 ∈ (Rout

⋃
∀s∈Cv

sin) ∃c2 ∈ (Rin

⋃
∀s∈Cv

sout) : c1 subsumes c2

∧ ∀(q, v, w) ∈ Rqos (q is negative ∧ overall(C, q) ≤ v) ∨

(q is positive ∧ overall(C, q) ≥ v))

(1)

720 de Oliveira Jr. F.G.A., de Oliveira J.M.P.: QoS-based Approach ...

where overall(C, q) represents the model that calculates the overall value of cri-

terion q in composition C.

The following subsections gives an overview of the Greedy Search strategy,

used to construct the algorithm which is the basis of the proposed approach.

3.1.1 The Greedy Approach

Greedy Search Algorithm [Russell and Norvig(2003)] is a kind of best-first search

algorithm which, by its turn, is a graph search algorithm where a node (vertex)

is selected to be expanded based on an evaluation function f(n). The evaluation

function measures the distance between a node n to the target node. In a web

service composition scenario, a target scenario would be a composition that

holds for predicate valid (Equation 1). Thus, the node with lowest evaluation is

usually selected. In a Greedy Search Algorithm, the evaluation function f(n) is

a heuristic function h(n). A heuristic function is an estimation of the cost of the

best path from a node n to the target node.

The greedy algorithm for service composition proposed by [Weise et al.(2008)]

receives as input a request similar to that shown in Figure 1, but without the

QoS constraints. The algorithm internally sorts a list of currently known states

according to a comparator function ch(x1, x2) ∈ R. Here, states are possible

solutions, that is, candidate compositions, and the target node is achieved when

a candidate composition does not require any concept, i.e. all concepts required

by either the request outputs and services inputs can be provided by the request

input and services outputs.

The comparator function ch(x1, x2) compares the results of the heuristics

applied to each state (h(x1), h(x2)) and returns a negative value if h(x1) >

h(x2), a positive value if h(x2) > h(x1) or zero if h(x1) = h(x2). Thus, the

last element of the (sorted) list will be the most suitable candidate solution

and should be chosen to be expanded. In fact, instead of using the candidate’s

properties to build an heuristics, the comparator function is derived directly.

And each property of one candidate is compared to the corresponding of the

other candidate.

Every time a candidate solution cannot be expanded anymore, i.e. when-

ever there is no more services that can supply the concepts required by that

composition, this composition is discarded and the second most suitable com-

position is chosen. This behavior is very similar to a Depth-first search [Russell

and Norvig(2003)] and indicates the worst case of execution when all available

states (candidates) achieve a stage where it is not possible to expand any state

anymore. The time and memory complexity in the worst case is O(bm) where b

is the maximum number successors of any nodes, namely, the number of services

that can produce any concept required by the candidate composition, and m is

721de Oliveira Jr. F.G.A., de Oliveira J.M.P.: QoS-based Approach ...

the maximum depth of the search space, namely, the maximum number of ser-

vices in a composition. Moreover, a greedy strategy is neither complete (it does

not guarantee to find a solution when it exists) nor optimal (not always find the

best available solution). It is not complete because can invest in a infinite path

and never return to check other candidate solutions.

On the other hand, a good heuristics can lead good approximations to the

optimal solution as well as to a real improvement in the algorithm complexity

[Russell and Norvig(2003)]. Experiments performed in [Weise et al.(2008)] and

in this work [see Section 5] show that.

Despite of the fact that the approach proposed by [Weise et al.(2008)] is

suitable even for big repositories, the algorithm and heuristics does not take into

account quality of service of the compositions, that is, the heuristics considers

only properties of compositions that lead to a correct composition from the

functional point of view. In addition, the algorithm does not restrain candidate

compositions that no longer meet the constraints imposed in the request.

3.2 Quality of Service Models

As previously mentioned, the quality of a given service is expressed by means of

nonfunctional properties. Although this work is not limited to any particular set

of QoS criteria, a simplified version of QoS Models proposed in [Zeng et al.(2004)]

is used. Other models such those proposed in [Cardoso(2002)] could also be used.

[Zeng et al.(2004)] consider five generic quality criteria for elementary (atom-

ic) services, namely:

– Duration (qdu(s)) of a service s measures the expected delay between the

moment when a request is sent and the moment when the result is received.

It is calculated by summing the service processing time, which is given by

the service provider as a fixed value or as a method to inquire about it; and

the average of transmission times of past executions;

– Reputation (qrep(s)) of a service s is a measure of its trustworthiness. It

is calculated by the average of different end users’ ranged ranking ([0,1]) on

the service;

– Availability (qav(s)) of a service s is the probability that it is accessible

and

– Price (qpr(s)) of a service s is the fee that its requesters have to pay for

invoking it.

In addition to the means of computation of the criteria defined above, [Zeng

et al.(2004)] also proposed an aggregation function for each criterion in order to

722 de Oliveira Jr. F.G.A., de Oliveira J.M.P.: QoS-based Approach ...

Criterion Function

Reputation qrep(C) = 1
n

∑n

i=1 qrep(si)

Price qpr(C) =
∑n

i=1 qpr(si)

Duration qdu(C) =
∑n

i=1 qdu(si)

Availability qav(C) =
∏n

i=1 qav(si)

Successful Execution Rate qrat(C) =
∏n

i=1 qrat(si)

Table 2: Aggregation Functions for QoS Models

provide the QoS Models for composite services. Although that work also provides

models for computing quality values in composition with loop and conditional

choices constructs, this work omits these models since they go beyond its scope.

The aggregation functions used in this work are described in [Tab. 2], for a

given composition C where Cv = {s1, . . . , sn}. The Overall Reputation model is

given by the average of all constituent services’ reputation. The Overall Price,

in turn, is calculated simply by summing the price of all constituent services.

Unlike the Duration model defined in [Zeng et al.(2004)], where the critical

path (i.e. the more time-consuming path in the composition DAG) is considered,

the Overall Duration model was defined in [Tab. 2] as a sum of all constituent

services duration of a given composition. The reason is that this work does not

consider parallel compositions, which allows multiple execution paths. After all,

a sequential composition will be always the critical path.

Similarly, simplified versions of Availability and Successful Execution Rate

models were also defined in [Tab. 2]. Since parallel compositions are not consid-

ered in this work, both of them can be redefined as a simple product of factor

of probability without taking into account whether or not a service is part of a

critical path.

Only by looking at the models defined in [Tab. 2] it is possible to see the

consequences of not considering parallelism. Indeed, the execution time can be

increased and the availability decreased. The difficulty is in how to calculate the

model during the composition, since it will be necessary to maintain a graph

structure and apply a critical path algorithm, while in a sequence structure,

although it is represented as graph as well, its implementation is much simpler

so that the QoS model is much easier to be calculated.

3.2.1 The Composition Algorithm

The Algorithm 1 performs a service composition for a given request R. It starts

by finding all services that can provide as output a concept which is semanti-

cally equivalent (by subsumption reasoning) to the required outputs specified in

723de Oliveira Jr. F.G.A., de Oliveira J.M.P.: QoS-based Approach ...

Rout ∈ R (Algorithm 1, lines 2-9). A service will be a candidate solution if it can

meet the QoS constraints specified in Rqos ∈ R. The predicate meetQoS(R, C)

(Algorithm 1, lines 5-7) filters the candidate compositions that no longer meet

the constraints imposed in the request and therefore should be discarded. The

Equation 1 cannot be used since in some criteria, such as Reputation, it is not

possible to determine if a certain composition does not meet the constraints

imposed by the request without knowing the final number of services in the

composition, because its value is determined by the average of the services’ in-

dividual values. In such cases, this kind of criterion is just ignored and is not

checked.

The candidate compositions are sorted according to a comparator function

which compares two candidate compositions C1 and C2 and return a value below

zero if C2 is a more suitable composition than C1, above zero if C1 is a more

suitable composition than C2, and zero if both are equally evaluated (Algorithm

1, line 11). The comparator function proposed by [Weise et al.(2008)] considers

four composition properties: (i) known concepts; (ii) unknown concepts; (iii)

eliminated concepts; and the number of services in a composition. The property

known (Equation 2) of a given composition C and request R is the set of all

known concepts, i.e. the input concepts provided by the requester and output

concepts provided by the output of all services presented in composition C. The

property unknown (Equation 3) of a given composition C is a set of the required

concepts needed to make the composition C (functionally) valid. This set is com-

posed of the concepts required in the request and concepts required to execute

each service in the composition C. The property eliminated (Equation 4) is a

set of unknown concepts that has already been provided.

known(C) = Rin

⋃
∀s∈Cv

sout (2)

unknown(C) = Rout

⋃
{c | ∃s ∈ Cv : c ∈ sin ∧ c �∈ known(C)} (3)

eliminated(C) = {c | ∃s ∈ Cv : c ∈ sin ∧ c ∈ known(C)} (4)

In this work, a fifth property was added: The Overall Quality of Service

Score. This property aims at representing in a single value all the quality criteria

values of a composition. For this purpose, the Multiple Criteria Decision Making

(MCDM) [Yoon et al.(1995)] named Simple Additive Weighting (SAW) [Yoon

et al.(1995)] technique is used. This technique, also used in [Zeng et al.(2004)],

allows the calculation of a score taking into account several, and sometimes

conflicting, criteria. First, all criteria are put in the same scale. Equations 5

and 6 provides a function that calculates the scaled value of a criterion q of

composition C considering if q is a positive (5) or negative (6).

724 de Oliveira Jr. F.G.A., de Oliveira J.M.P.: QoS-based Approach ...

Input: R - the user Request, D - the Service Repository

Result: C - the composition found or ∅

Data: X - the set of candidate compositions

begin1

foreach outR ∈ Rout do2

foreach s ∈ D | ∃ c ∈ sout(outR subsumes c) do3

Cv ←− {s};4

if meetQoS(R, C) then5

append(X, C);6

end7

end8

end9

while X �= ∅ do10

sort(X, comparator);11

C ←− removeMostSuitable(X);12

if valid(C,R) then13

return C;14

end15

foreach outR ∈ unknown(C) do16

if ¬∃s ∈ D(∃ c ∈ sout(outR subsumes c)) then17

break;18

end19

foreach s ∈ D | ∃ c ∈ sout · (outR subsumes c) do20

newv ←− Cv ∪ {s};21

newe ←− Ce ∪∀s2 ∈ cv(∃ c2 ∈ s2in· c2 subsumes outR) {(s, s2)};22

if meetQoS(R, new) then23

append(X, new);24

end25

end26

end27

end28

return ∅;29

end30

Algorithm 1: Composition Algorithm Considering the QoS Criteria.

scale(C, q) =

{
overall(C,q)−qmin(q)

qmax(q)−qmin(q) if qmax(q)− qmin(q) �= 0

1 otherwise
(5)

scale(C, q) =

{
qmax(q)−overall(C,q)

qmax(q)−qmin(q) if qmax(q)− qmin(q) �= 0

1 otherwise
(6)

725de Oliveira Jr. F.G.A., de Oliveira J.M.P.: QoS-based Approach ...

where qmax = Max{overall(C, q) : C ∈ X} and qmin = Min{overall(C, q) :

C ∈ X} and X is the list of candidate compositions.

The overall QoS value of a composition considering all quality criteria can be

determined by a score which takes into account the scaled values and the weights

provided in the request R associated with each criterion. Equation 7 defines the

function that calculates the Overall QoS Score for a given composition C.

score(C) =
∑

∀(q,v,w)∈Rqos

scale(C, q) ∗ w (7)

Originally, the comparator function choose one of the compositions that has

no unknown concepts left. If both compositions does not need any unknown

concept left, it returns the composition that has less services. If both of them have

unknown concepts, the function returns the composition with more eliminated

concepts. But, if both have the same number of eliminated concepts, it returns

the composition that has less unknown concepts. If both of them have the same

number of unknown concepts, it returns the composition with less services. But

if both of them have the same number of services, the function returns the

composition with more known concepts.

The comparator function now should also take the Overall QoS Score into

account, along with the other four composition properties (unknown concepts,

eliminated concepts, composition size, and known concepts). A number of ex-

periments were performed in order to figure out the best place in terms of priority

to put the QoS Score property in the comparator function without affecting the

algorithm performance. The comparator function works as follows:

1. unknown = 0 (↑) - The comparator function returns the composition that

has no unknown concepts left, that is, the composition that is functionally

valid.

1.1. score (↑) - The Overall QoS Score takes place as a tiebreaker when

both compositions have the same number of unknown concepts. Thus,

when both compared compositions have no unknown concepts left, the

compositions with higher score is chosen.

1.1.1. size (↓) - If both compositions have the same score, the one with

less services is chosen.

2. eliminated (↑) - The composition with more eliminated concepts is chosen

when both compositions still have unknown concepts.

3. unknown (↓) - When both compositions have the same number of elimi-

nated concepts, the one with less unknown concepts is chosen.

4. score (↑) - The composition with higher score is chosen, when both com-

positions have the same number of unknown concepts.

726 de Oliveira Jr. F.G.A., de Oliveira J.M.P.: QoS-based Approach ...

5. size (↓) - When both compositions have the same score, the one with less

services is chosen.

6. known (↑) - Finally, if both compositions are of the same size, the com-

position with more known concepts is chosen.

Once the list is sorted using the comparator function, it is possible to choose

the composition which is the most appropriate in terms of both functionality

and Quality of Service (Algorithm 1, line 12).

If the chosen composition is valid, that is, if the composition does not need

any additional concept, to supply the services inputs or request outputs, and

meets the constraints imposed in the request, it is returned by the algorithm

(Algorithm 1, lines 13-15). Otherwise, the chosen composition is expanded to

form new candidate compositions with services that provide concepts required

by the composition (Algorithm 1, lines 16-27). Again, if the actual composition

does not meet the QoS constraints, it is discarded (Algorithm 1 lines 23-25).

If at least one unknown concept cannot be provided with the services in the

repository this composition is also discarded (Algorithm 1, lines 17-19). The

algorithm runs until a candidate solution is found or all candidate solutions are

expanded and rejected, which is the worst case of execution.

If the Overall QoS Score property had preference against the unknown and

eliminated, the algorithm would perform similar to a Breadth-first search. For

instance, suppose the set of criteria Price, Duration and Availability. The com-

positions with less services would more likely have higher scores, since it would

be cheaper, more available and with less time-demanding. As a consequence,

these compositions would be always selected to be expanded. However, as the

composition is expanded, it gets larger, decreasing its chance to be chosen in the

next time.

On the other hand, by considering the Overall Score as a tiebreaker when

properties eliminated and unknown of the compared compositions are equal,

the search process will not be affected very much in terms of performance. The

advantage then is that it will always expand the composition with higher score.

Experiments [see Section 5] show a significant improvement in the QoS of the

composition by simply considering the Overall QoS Score in the comparator

function.

4 Motivating Scenario

This section describes a scenario elaborated by the Brazilian Air Force [Marques

et al.(2010)] and how the proposed approach is suitable for it.

727de Oliveira Jr. F.G.A., de Oliveira J.M.P.: QoS-based Approach ...

4.1 Scenario Description

The most common involvement of the Brazilian armed forces outside conven-

tional military operations occurs in the form of humanitarian relief operations.

To reflect this fact, the 2008 Santa Catarina flooding [SC-Flood (2008)] where

the whole Itajáı’s valley was completely flooded for a month and an enormous

effort took place to provide assistance to the affected population, was chosen as a

case. During this event, it was necessary to mobilize a small Numbered Air Force

to ensure efficient coordination of the air transportation assets and to establish

a supply corridor in order to receive the medical supplies, food and clothes to

the affected population.

The main goal of the application is to make available to all organizations

involved with the flood situation the following: available assets (ground-based,

fluvial and aerial); location of all support installations; field solicitations for res-

cue missions and transport of supplies; and the schedule of the assets movement

throughout the affected area. All those informations are made available by web

services. However, as one organization has no previous knowledge about the ac-

cess to services of another organization and can make available new services at

any time, a small ontology is used as the domain descriptor and will be used to

establish the basic concepts present in the semantic service descriptions. The idea

is that organizations can query the information necessary to plan its missions

on-demand. To this end it might be also necessary to compose several services.

4.2 Application of The Proposed Approach

The main elements of the scenario are modeled as follows:

– Ontology. The domain ontology O, based on the relevant information

about the events is given in the form of a taxonomy, as shown in [Fig. 2].

– Repository. The service repository D is the set of web services made

available by the organizations involved in the flood. Their description consists

of Inputs and Outputs, parameters associated to concepts of ontology O

and values for each quality criterion, as shown in [Tab. 3]. As can be seen,

there are some services with similar or the same purpose. For example, both

WeatherCond1 and WeatherCond2 aim at providing the weather conditions

of a given address, but one via GSM and the other one by using the GSM

network.

– Request. The request R has a set of available inputs Rin = {V ictim,

Weight, Address}, set of required outputs Rout = {Route} and a vector of

quality Rqos = {(qdu, 175, 0.2), (qav, 0.55, 0.2), (qrep, 0.8, 0.2), (qpr , 1.4, 0.2),

(qrat, 0.55, 0.2)}, where qdu is Duration, qav is Availability, qrep is Reputation,

728 de Oliveira Jr. F.G.A., de Oliveira J.M.P.: QoS-based Approach ...

qpr is Price and qrat is Successful Execution Rate. This request expresses a

scenario where the user wants to the system to give him/her a Route to

transport a certain Victim with a certain Weight to a certain Address

Figure 2: Domain Ontology of the Motivating Scenario.

The algorithm starts by trying to find out the services that produce as output

concepts that are related under subsumption reasoning to the concept Route.

Service TraceRoute is then selected as a candidate composition, as shown in [Tab.

4], where e is the number of eliminated concepts, u is the number of unknown

concepts and k is the number of known concepts. At that moment, the algorithm

will search for services that provide as output the concepts needed to execute

service TraceRoute which are Transport, CurrentCoordinate or RemoteCoordinate.

The second iteration will provide as result the candidate compositions shown

in [Tab. 5]. The process will be iterativelly repeated until no more unknown

concepts (u) is necessary and the composition is valid. In the last iteration two

compositions are functionally valid: {CurrCoordGPS, WeatherCond2, GetAccess,

GetRemCoord, GetPersTransp, TraceRoute} and {CurrCoordGSM, WeatherCond2,

GetAccess, GetRemCoord, GetPersTransp, TraceRoute}, as shown in [Tab. 6]. How-

ever, the first one has a score higher than the second one. Moreover, the overall

duration of the second composition is 179 i.e. it does not meet the constraints

imposed in the request.

729de Oliveira Jr. F.G.A., de Oliveira J.M.P.: QoS-based Approach ...

Service sin sout qdu qav qrep qpr qrat

GetAccess RemoteCoordinate Access 45 0.9 0.92 0.15 0.95

RainMeasures

CloudMeasures

GetRemCoord Address RemoteCoordinate 32 0.95 0.9 0.1 0.87

TraceRoute Transport Route 19 0.96 0.86 0.25 0.99

CurrentCoordinate

RemoteCoordinate

GetPersTransp Personnel Transport 35 0.85 0.95 0.07 0.9

Weight

Access

GetCargoTransp Cargo Transport 40 0.91 0.97 0.17 0.9

Weight

Access

WeatherCond1 Address RainMeasures 30 0.89 0.99 0.2 0.95

CloudMeasures

WeatherCond2 Address RainMeasures 23 0.92 0.95 0.4 0.86

CloudMeasures

Temperature

Humidity

Pressure

CurrCoordGPS CurrentCoordinate 16 0.98 0.9 0.33 0.94

CurrCoordGSM CurrentCoordinate 25 0.89 0.9 0.3 0.96

Table 3: Service repository of the Motivating Scenario (D).

It should be noticed that other solutions could still be composed. For exam-

ple, if the service WeatherCond1 had better QoS values than WeatherCond2, it

could as well be selected to take part in the composition.

Candidates e u k qdu qav qrep qpr qrat QoS Score

{TraceRoute} 1 3 3 19,00 0,96 0,86 0,25 0,99 1,00

Table 4: Candidate compositions in the first iteration.

730 de Oliveira Jr. F.G.A., de Oliveira J.M.P.: QoS-based Approach ...

Candidates e u k qdu qav qrep qpr qrat QoS Score

{GetPersTransp,TraceRoute} 4 3 3 54,00 0,82 0,90 0,32 0,89 0,45

{GetCargoTransp,TraceRoute} 3 4 3 59,00 0,87 0,92 0,42 0,89 0,48

{CurrCoordGPS,TraceRoute} 2 2 4 35,00 0,94 0,88 0,58 0,93 0,56

{CurrCoordGSM,TraceRoute} 2 2 4 44,00 0,85 0,88 0,55 0,95 0,41

{GetRemCoord,TraceRoute} 3 2 4 51,00 0,91 0,88 0,35 0,86 0,40

Table 5: Candidate compositions in the second iteration.

Candidates e u k qdu qav qrep qpr qrat QoS

Score

.

.

.

{CurrCoordGPS,. . . ,TraceRoute} 12 0 10 170,00 0,63 0,91 1,30 0,60 0,20

{CurrCoordGSM,. . . ,TraceRoute} 12 0 10 179,00 0,57 0,91 1,27 0,61 0,16

Table 6: Candidate compositions in the last iteration.

5 Experiments

This section aims at describing the experiments used to validate the approach

presented in [Section 3]. The main purposes of these experiments are to analyze

the feasibility of the proposed approach concerning the processing time as well

as the benefits of its use in terms of quality of service. The experiments were

performed in a computer with processor Intel Core 2 Duo - 2.16 GHz, with 2GB

of RAM. The remaining parts of this section is organized as follows. Firstly, the

experimental environment created to perform the experiments is explained. Next,

the results obtained from those experiments are shown. Finally, the experimental

results are discussed and analyzed.

5.1 Benchmark

The experiments were performed under a variety of test sets from the Web

Service Challenge (WSC) [Blake et al.(2007)]. These test sets consist of groups

of repositories, ontologies, requests and solutions; namely, for each repository,

there is an ontology associated, a set of requests and their respective solutions, as

illustrated in [Tab. 7]. In WSC, the service specification was limited to required

inputs and provided outputs, so Quality of Service was not considered in this

competition. Thus, it was necessary to prepare the WSC test sets in order to

731de Oliveira Jr. F.G.A., de Oliveira J.M.P.: QoS-based Approach ...

Request No of Services No of Concepts Composition Size No of Solutions

1 118 1590 2 9

2 118 1590 3 8

3 118 1590 4 81

4 481 15541 4 81

5 481 15541 3 125

6 481 15541 2 100

7 481 15541 4 64

8 481 15541 3 30

9 481 15541 2 48

10 1000 56210 5 3125

11 1000 56210 12 500000

12 2000 58254 15 160000

13 4000 10891 8 6561

14 4000 10891 4 81

15 4000 58254 30 78125

16 8000 58254 40 177147

17 10000 58254 10 337500

Table 7: Experimental Test Sets.

accommodate quality values for each service presented in each test set. The set

of criteria used in these experiments is composed of those defined in [Section 3],

that is, Duration, Price, Availability, Successful Execution Rate and Reputation,

with values ranging from 20 to 500, 0.10 to 1.75, 0.3 to 1.0, 0.3 to 1.0 and 0.3

to 1.0, respectively, randomly generated, following a uniform distribution.

5.2 Experimental Setup

The experiments are intended to evaluate the impacts of the insertion of QoS in

the algorithm proposed by [Weise et al.(2008)]. The impacts can be negative, for

instance the overhead in the processing time, or positive, such as on the improve-

ment of the overall quality of the compositions. The experiments were performed

by executing the original algorithm, i.e. the algorithm not considering the QoS

criteria, and the algorithm considering QoS criteria under each request of test

sets of [Tab. 7]. Primarily, several executions for each request were performed in

order to measure the mean processing time of both versions of the algorithm.

Then, the overall criteria values of each composition found were computed and

contrasted in order to determine whether or not a composition is better than

the other in terms of a specific QoS criterion.

732 de Oliveira Jr. F.G.A., de Oliveira J.M.P.: QoS-based Approach ...

In addition, as the WSC provides the possible solution for each request, it is

possible to have a QoS-based ranking of these possible solutions by exhaustively

searching the solutions with highest QoS score (Equation 7). This allows the

comparison of compositions found by the algorithm considering, the algorithm

not considering QoS and the optimal solution for a certain request.

All requests were performed using the following weight distribution: Dura-

tion: 0.3; Price: 0.3; Availability: 0.1; Reputation: 0.2; Successful Execution Rate:

0.1. The restriction imposed by the user on each quality criteria was omitted in

these experiments, since it is just simple control checking performed after a com-

position is found. As previously stated, these experiments aim at evaluating the

proposed approach in terms of feasibility and improvement on the QoS of the

compositions.

5.3 Results

This subsection presents the results from the execution of the experiments men-

tioned in the last subsection. These results are expressed in several charts, where

the first one expresses the mean processing time, in milliseconds (ms), of the al-

gorithm considering and not considering the QoS criteria for each request. The

second one expresses the overall score of the compositions found by the two al-

gorithms and the optimal solution for each request. The other charts are plotted

per criteria, showing the contrast between the two algorithms. Due to the lack

of space, only the results of Overall Duration and Overall Price are described.

To have further information about the results see [de Oliveira Jr.(2009)].

5.3.1 Mean Processing Time

[Fig. 3] shows the mean processing time of the execution under each one of the

17 requests (50 executions per request) for the algorithm with and without QoS

concerns. In practice, both algorithms have the same processing time, which

indicates that even large compositions in huge repositories with huge ontologies,

the use of QoS criteria does not affect the performance of the original algorithm.

From request 1 to 10, the processing times was less than 20ms. It starts increasing

as the composition and repository sizes increase. Nevertheless, the maximum

mean processing time was not greater than 450ms, which can be considered

acceptable.

Although it is not presented in the WSC test sets and therefore not shown in

[Fig. 3], it is important to discuss the behavior of the algorithm when there is no

solution for a given request. The algorithm execution time will depend of course

on the depth of candidate compositions, since all of them have to be analysed

and discarded. As said before, in this case, the behavior will be very similar to

a Depth-first search algorithm.

733de Oliveira Jr. F.G.A., de Oliveira J.M.P.: QoS-based Approach ...

With respect to request 13, despite the differences of the execution time

between the two approaches, so far there is no easy explanation for that. Things

like this deserve more investigations.

Figure 3: Mean Processing Time.

5.3.2 Overall Quality of Service Score

[Fig. 4] corresponds to a chart that compares the overall score (Equation 7) of

the algorithm considering QoS, not considering QoS, and the optimal solution

(with respect to QoS) for each given request. It can be seen that the algorithm

considering QoS is always nearer to the optimal solution than the algorithm

not considering QoS. In average, the overall score of the compositions found by

the algorithm considering QoS is 95% (standard deviation 0.07) of that of the

optimal solution, against 65% (standard deviation 0.16) from those found by the

algorithm not considering QoS.

5.3.3 Overall Quality of Service per Criterion

This section presents the results obtained from each one of the 17 requests with

the algorithm considering the QoS criteria, the algorithm not considering the

QoS criteria and the optimal solutions focusing on each criterion individually.

[Fig. 5] shows the Overall Duration of the composition found by both algo-

rithms as well as the Overall Duration of the optimal solution. In 12 requests

734 de Oliveira Jr. F.G.A., de Oliveira J.M.P.: QoS-based Approach ...

Figure 4: Overall Composition Score.

(1, 2, 4, 6, 7, 8, 10, 13, 14, 15, 16, 17), the Overall Duration of the compositions

found by the algorithm considering QoS was nearer to the corresponding value

of the optimal solution than the Overall Duration of the compositions found

by the algorithm not considering QoS. In 4 requests (5, 9, 11, 12), the Overall

Duration of the compositions found by the algorithm not considering QoS was

nearer to that of the optimal solution than the corresponding value of composi-

tions provided by the other algorithm. In only one case (request 3) the Overall

Duration of compositions found by both algorithms was equally near to that of

the optimal solution.

According to results presented in [Fig. 6], in 13 requests (1, 2, 4, 7, 8, 9,

10, 11, 12, 13, 14, 16, 17), the Overall Price of the compositions found by the

algorithm considering QoS was nearer to the corresponding value of the optimal

solution than the Overall Price of the compositions found by the algorithm not

considering QoS. In 3 requests (5, 6, 15), the Overall Price of the compositions

found by the algorithm not considering QoS was nearer to the corresponding

value of the optimal solution than that of compositions provided by the other

algorithm. Only in one case (request 3), the Overall Price of the compositions

found by both algorithms was equally near to the corresponding value of the

optimal solution.

One important point to be considered is the fact that it is hard to draw

conclusions on the quality provided by each criterion isolated, since a low value of

one criteria may be compensated by a high value of another one. Thus, the results

shown in this section do not have the objective to compare the quality criteria

provided by two found compositions. Instead, these results are useful to illustrate

735de Oliveira Jr. F.G.A., de Oliveira J.M.P.: QoS-based Approach ...

Figure 5: Overall Duration.

the approximation to the optimal solution for each criterion in the light of the

weights assigned to them. The chart in [Fig. 4], on the other hand, provides a

more clear idea about the overall QoS provided by a certain composition because

it takes into account all criteria together as well as the weights assigned to each

one of them.

5.4 Discussion

The results presented in the last section show that the proposed approach can

dynamically find compositions that besides being correct in terms of functional-

ity, also provide acceptable values of non-functional attributes that encompass

their quality. In the matter of the approach feasibility, the experiments have

shown that even in extreme situations such as in scenarios with huge service

repositories, ontologies with a large number of concepts and large compositions,

the proposed approach was able to find either the best solution, or a solution

that is near to the best one.

Considering the approaches mentioned in [Section 2], some of them [Sirin

et al.(2004),Oh et al.(2007),Weise et al.(2008),Yan et al.(2008)] do not consider

QoS during composition. [Aversano et al.(2004)] considers QoS while performing

dynamic composition, but does not make use of efficient strategy to make their

approach feasible for large repositories. Therefore, the main advantage of the

approach proposed in this paper in comparison with the others is the possibility

736 de Oliveira Jr. F.G.A., de Oliveira J.M.P.: QoS-based Approach ...

Figure 6: Overall Price.

to efficiently and dynamically find a composition with a certain level of quality,

even if it is not the optimal one.

Although the algorithm proposed by [Weise et al.(2008)] and consequently

its QoS version proposed in this work are not complete, i.e. even if there is a

solution, the algorithm might not find one, and have time and memory complex-

ity O(bm), where b is the maximum number of services that can produce any

concept required by the candidate composition, and m is the maximum number

of services in a composition, the executed experiments have shown its practical

feasibility, even when executed in large repositories and ontologies. Moreover, the

algorithm was able to find solutions for each one of the requests in reasonable

time.

By contrasting the compositions resulting from the proposed approach to

those resulting from the original algorithm, it is possible to perceive the substan-

tial improvement in the overall quality of those compositions and the importance

of taking into account the QoS criteria in the heuristics, since the heuristics is

the main responsible for sorting the candidate compositions according to their

functionality and quality.

As mentioned before, the user constraint on QoS criteria was not considered

in these experiments, since it is just a simple checking on overall values. Sup-

pose that, for request 8 of [Tab. 7], a user establishes a maximum Duration of

600, maximum Price of 0.75, minimum Availability of 0.2, minimum Successful

Execution Rate of 0.3 and minimum reputation of 0.5. The composition found

737de Oliveira Jr. F.G.A., de Oliveira J.M.P.: QoS-based Approach ...

for this request by the proposed approach has Overall Duration of 467, Over-

all Price 0.35, Overall Availability 0.28, Overall Successful Execution Rate 0.32

and Overall Reputation 0.71. Hence, the found composition meets the QoS con-

straints imposed by the user. If the composition had other values so that it was

not possible for it to meet the QoS constraints, it would be discarded and the

algorithm would continue to try to find another composition.

6 Conclusion

Over the last years, web services have been used as an important tool for integra-

tion of distributed systems over the Internet. Recently introduced, the semantic

web aims at adding meaning to current web and services published in it so that

computers can be able to interpret information provided by them. As a conse-

quence, machines can automatically find and compose more than one service in

order to achieve a given goal. However, only the correctness of the composition

goal might not be enough to fulfill the user requirements, and other constraints

such as maximum cost or minimum execution duration should be taken into

account. In other words, the composition should guarantee a minimum level of

quality.

In this context, this paper presented an efficient algorithm for dynamic web

service composition that considers a set of Quality of Service (QoS) criteria con-

straints imposed by the user. The proposed approach extends the one proposed

by [Weise et al.(2008)] by considering QoS aspects of the composition.

In order to show the feasibility of the proposed approach, experiments were

performed in a public benchmark and a significant improvement in the overall

quality of the found compositions was noticed. This section shows the main

contributions proposed by this work as well as the future work.

6.1 Contributions

The proposed approach relies on a heuristics function in order to guide the com-

position process. In practice, this heuristics tries to estimate how far a candidate

composition is from the solution. The approach presented in this paper added

to this heuristics a value that represents all the quality criteria involved in the

composition construction process.

In addition, based on a modified version of the QoS models proposed by

[Weise et al.(2008)], the algorithm for dynamic web service composition ignores

the candidate compositions that no longer meet the QoS constraints imposed by

the requester who, in turn, can assign different weights to criteria as means of

expressing preference on a particular set of criteria.

738 de Oliveira Jr. F.G.A., de Oliveira J.M.P.: QoS-based Approach ...

In order to validate the proposed approach, a composer prototype that takes

into account QoS was created. The prototype was modeled so that it is possible

to accommodate several composition strategies and QoS criteria.

6.2 Future Work

Although the proposed approach has advanced in some aspects regarding the

dynamic composition of semantic web services, some other important problems

were not addressed due to the lack of time or to the limitation inherent to the

adopted strategy. The overcoming of these limitations opens great opportunities

for future research.

Parallel composition is one of the problems that were not addressed in this

work. In fact, it is a strong limitation of the proposed approach, because Paral-

lelization of Services has an impact on the overall quality, more specifically, in

the Execution Duration of the composition. According to the models proposed

by [Zeng et al.(2004)], other criteria like Availability and Successful Execution

Rate could also be improved in compositions with parallel service execution.

Therefore, it is really important to address this problem.

The fact that the proposed approach is neither complete nor optimal is indeed

a limitation. However, as the experiments have shown, the heuristics was efficient

either in finding a solution when it exists or in approximating to the optimal

solution. Other techniques have to be applied in order to provide the optimal

solution. It would be interesting to assess the tradeoff of having, in most of

cases, a good approximation to the optimal solution versus the optimal solution

in more time.

Other programming techniques could not be further analyzed in this work

due to the lack of time. Techniques such as Dynamic Programming [Cormen

et al.(1990)], where a complex problem is solved based on previous calculation of

subproblems, indicates a promising direction toward the problem of the optimal

dynamic web service composition taking into account the QoS aspects.

Despite the WSC provides a good benchmark for evaluating the scalability of

service composition approaches, we are aware that for generality reasons it will be

necessary to evaluate our approach in other benchmarks or rather in real world

repositories and requests. It is also our intent to experimentaly evaluate and

compare our solution with other approaches like [Aversano et al.(2004)] and [Yan

et al.(2008)]. In addition, we should also investigate the overhead incurred by

the composition algorithm in our approach.

Finally, although this work focused on web service composition, the proposed

approach has a great potential to be applied in other other procedural abstrac-

tions. So, the use of our approach in other kinds of component-based application

must also be investigated. In a near future after aditional experiments, we intend

to make the algorithm available for download.

739de Oliveira Jr. F.G.A., de Oliveira J.M.P.: QoS-based Approach ...

Acknowledgement

Thanks are due to CAPES (Coordenação de Aperfeiçoamento de Pessoal de

Nı́vel Superior) and FAPESP (Fundação de Amparo à Pesquisa do Estado de

São Paulo) for funding this work.

References

[Aggarwal et al.(2004)] Aggarwal, Rohit, Verma, Kunal, Miller, John, Milnor, Willie,
2004. “Dynamic web service composition in meteor-s. Technical report, LSDIS Lab,
Computer Science Deptartment”, University of Georgia.

[Akkiraju(2007)] Akkiraju, R.: “Semantic web services”; K. Klinger, K. Roth,
J. Neidig, S. Reed, S. Berger, J. LeBlanc, eds., Semantic Web Services: Theory,
Tools and Applications; 191–216; IGI Global, London, UK/Hershey, PA, USA,
2007.

[Akkiraju et al.(2003)] Akkiraju, R., Goodwin, R., Doshi, P., Roeder, S.: “A
method for semantically enhancing the service discovery capabilities of uddi”;
S. Kambhampati, C. A. Knoblock, eds., IIWeb; Acapulco, Mexico, 2003.

[Aversano et al.(2004)] Aversano, L., Canfora, G., Ciampi, A.: “An algorithm for web
service discovery through their composition”; Web Services, IEEE International
Conference on; 0 (2004), 332.

[Blake et al.(2007)] Blake, M. B., Cheung, W. K., Jaeger, M. C., Wombacher, A.:
“Wsc-07: Evolving the web services challenge”; E-Commerce Technology, IEEE
International Conference on, and Enterprise Computing, E-Commerce, and E-
Services, IEEE International Conference on; 0 (2007), 505–508.

[Box et al.(2000)] Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn,
N., Nielsen, H. F., Thatte, S., Winer, D.: Simple Object Access Protocol (SOAP)
1.1 (2000).

[BPEL (2007)] Web Service Business Process Execution Language (WSBPEL). Avail-
able from: http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=
wsbpel. Last visited in may 24th 2010.

[Canfora et al.(2005)] Canfora, G., Penta, M. D., Esposito, R., Villani, M. L.: “Qos-
aware replanning of composite web services”; Web Services, IEEE International
Conference on; 0 (2005), 121–129.

[Cardoso(2002)] Cardoso, J.: Quality of Service and Semantic Composition of Work-
flows; Ph.D. thesis; University of Georgia, Athens, GA (2002).

[Casati and Shan(2001)] Casati, F., Shan, M.-C.: “Dynamic and adaptive composition
of e-services”; Information Systems; 26 (2001), 3, 143–163.

[Christensen et al.(2007)] Christensen, E., Curbera, F., Meredith, G., Weerawarana,
S.: “Web services description language (wsdl) 1.1”; W3C note; W3C (2007).

[Claro et al.(2008)] Claro, D. B., Licchelli, O., Albers, P., de Araújo Macêdo,
R. J.: “Personalized reliable web service compositions”; F. L. G. de Freitas,
H. Stuckenschmidt, H. S. Pinto, A. Malucelli, Ó. Corcho, eds., WONTO; volume
427 of CEUR Workshop Proceedings; CEUR-WS.org, Salvador-Bahia, Brazil, 2008.

[Cormen et al.(1990)] Cormen, T. H., Leiserson, C. E., Rivest, R. L.: Introduction to
algorithms; MIT Press and McGraw-Hill, Cambridge, MA, USA, 1990.

[de Oliveira Jr.(2009)] de Oliveira Jr., F. G. A.: A QoS-Based Approach for Dynamic
Web Service Composition; Master’s thesis; Instituto Tecnológico de Aeronáutica,
São José dos Campos, Brasil (2009).

[de Oliveira Jr. and de Oliveira(2009)] de Oliveira Jr., F. G. A., de Oliveira, J. M. P.:
“A heuristic-based runtime ranking for service composition”; ICITST-2009: In-
ternational Conference for Internet Technology and Secured Transactions; IEEE
Computer Society, London, UK, 2009.

740 de Oliveira Jr. F.G.A., de Oliveira J.M.P.: QoS-based Approach ...

[Erl(2007)] Erl, T.: SOA Principles of Service Design (The Prentice Hall Service-
Oriented Computing Series from Thomas Erl); Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2007.

[Fellbaum(1998)] Fellbaum, C., ed.: WordNet An Electronic Lexical Database; The
MIT Press, Cambridge, MA ; London, 1998.

[Konar(2000)] Konar, A.: Artificial intelligence and soft computing: behavioral and
cognitive modeling of the human brain; CRC Press, Inc., Boca Raton, FL, USA,
2000.

[Marques et al.(2010)] Marques, Henrique C.; Oliveira, Jos M. P.; and Costa, Paulo
C. G.: “C2 framework for interoperability among an air component command and
multi-agencies systems”; Accepted to the Fifteenth International Command and
Control Research and Technology Symposium (ICCRTS 2010). June 22-24, 2010,
Santa Monica, CA, USA.

[Mcilraith et al.(2001)] Mcilraith, S. A., Son, T. C., Zeng, H.: “Semantic web services”;
Intelligent Systems, IEEE [see also IEEE Intelligent Systems and Their Applica-
tions]; 16 (2001), 2, 46–53.

[OASIS(2004)] OASIS: “Universal description, discovery, and integration (UDDI) ver-
sion 3.0.2”; (2004).

[Oh et al.(2007)] Oh, S.-C., Yoo, J.-W., Kil, H., Lee, D., Kumara, S. R. T.: “Seman-
tic web-service discovery and composition using flexible parameter matching”; E-
Commerce Technology, IEEE International Conference on, and Enterprise Com-
puting, E-Commerce, and E-Services, IEEE International Conference on; 0 (2007),
533–542.

[Pistore et al.(2005)] Pistore, M., Traverso, P., Bertoli, P., Marconi, A.: “Automated
Synthesis of Composite BPEL4WS Web Services”; ICWS ’05: Proceedings of the
IEEE International Conference on Web Services; 293–301. IEEE Computer Society.
Washington, DC, USA, 2005.

[Russell and Norvig(2003)] Russell, S., Norvig, P.: Artificial Intelligence: A Modern
Approach; Prentice-Hall, Englewood Cliffs, NJ, USA, 2003; 2nd edition edition.

[SC-Flood (2008)] “2008 Santa Catarina Floods in Wikipedia”. Available from: http:
//en.wikipedia.org/wiki/2008_Santa_Catarina_floods. Last visited in may
24th 2010.

[Sirin et al.(2004)] Sirin, E., Parsia, B., Hendler, J.: “Filtering and selecting semantic
web services with interactive composition techniques”; IEEE Intelligent Systems;
19 (2004), 4, 42–49.

[Tsetsos et al.(2007)] Tsetsos, V., Anagnostopoulos, C., Hadjiefthymiades, S.: “Se-
mantic web services”; K. Klinger, K. Roth, J. Neidig, S. Reed, S. Berger,
J. LeBlanc, eds., Semantic Web Services: Theory, Tools and Applications; 191–
216; IGI Global, London, UK/Hershey, PA, USA, 2007.

[Weise et al.(2008)] Weise, T., Bleul, S., Comes, D., Geihs, K.: “Different approaches
to semantic web service composition”; ICIW ’08: Proceedings of the 2008 Third
International Conference on Internet and Web Applications and Services; 90–96;
IEEE Computer Society, Washington, DC, USA, 2008.

[Yan et al.(2008)] Yan, Y., Xu, B., Gu, Z.: “Automatic service composition using
and/or graph”; E-Commerce Technology and Enterprise Computing, E-Commerce
and E-Services, IEEE Conference and Fifth IEEE Conference; 0 (2008), 335–338.

[Yoon et al.(1995)] Yoon, P. K., Hwang, C.-L., Yoon, K.: Multiple Attribute Decision
Making: An Introduction (Quantitative Applications in the Social Sciences); Sage
Publications Inc, Thousand Oaks, CA, USA, 1995.

[Zeng et al.(2004)] Zeng, L., Benatallah, B., Ngu, A. H., Dumas, M., Kalagnanam, J.,
Chang, H.: “Qos-aware middleware for web services composition”; IEEE Transac-
tions on Software Engineering; 30 (2004), 5, 311–327.

741de Oliveira Jr. F.G.A., de Oliveira J.M.P.: QoS-based Approach ...

