
Context-Aware Composition and Adaptation based on

Model Transformation

Javier Cubo

(Department of Computer Science, University of Málaga, Málaga, Spain

cubo@lcc.uma.es)

Carlos Canal

(Department of Computer Science, University of Málaga, Málaga, Spain

canal@lcc.uma.es)

Ernesto Pimentel

(Department of Computer Science, University of Málaga, Málaga, Spain

ernesto@lcc.uma.es)

Abstract: Using pre-existing software components (COTS) to develop software sys-
tems requires the composition and adaptation of the component interfaces to solve
mismatch problems. These mismatches may appear at different interoperability levels
(signature, behavioural, quality of service and semantic). In this article, we define an
approach which supports composition and adaptation of software components based on
model transformation by taking into account the four levels. Signature and behavioural
levels are addressed by means of transition systems. Context-awareness and semantic-
based techniques are used to tackle quality of service and semantic, respectively, but
also both consider the signature level. We have implemented and validated our proposal
for the design and application of realistic and complex systems. Here, we illustrate the
need to support the variability of the adaptation process in a context-aware pervasive
system through a real-world case study, where software components are implemented
using Windows Workflow Foundation (WF). We apply our model transformation pro-
cess to extract transition systems (CA-STS specifications) from WF components. These
CA-STSs are used to tackle the composition and adaptation. Then, we generate a CA-
STS adaptor specification, which is transformed into its corresponding WF adaptor
component with the purpose of interacting with all the WF components of the system,
thereby avoiding mismatch problems.

Key Words: Reusability, Composition, Adaptation, Model Transformation, Context-
Aware Systems, Components, Windows Workflow, Interfaces, Transition Systems.

Category: D.2, D.2.1, D.2.2, D.2.10, D.2.11, D.2.12, D.2.13

1 Introduction

Reuse of software entities (software components, Web services, agents, etc.)1

is one of the internal factors that determines the quality of software. Thus,

component-based and service-oriented systems are developed from the selec-

tion, composition and adaptation of pre-existing software entities rather than

as a result of programming applications from scratch. Component-Based Soft-

ware Engineering (CBSE) [Szyperski 2003] and Service-Oriented Architecture

1 In the sequel, we use the terms component and service indistinctly.

Journal of Universal Computer Science, vol. 17, no. 5 (2011), 777-806
submitted: 8/2/10, accepted: 4/11/10, appeared: 1/3/11 © J.UCS

(SOA) [Erl 2005] promote the use of Commercial-Off-The-Shelf (COTS) com-

ponents and services, respectively. Due to their black-box nature, to promote

and facilitate their reuse, as well as to enable their automatic composition, com-

ponents and services must be equipped with rich interfaces enabling external

access to their functionality. However, a certain degree of adaptation is required

to avoid mismatches, since the interfaces of the constituent components of a

system may not be compatible. Several interoperability levels can be distin-

guished in interface description languages [Canal et al. 2006a]: (i) the signature

level describes operation names, types of arguments and return values, (ii) the

behavioural or protocol level specifies the order in which messages for operation

invocation are exchanged with their environment, (iii) the quality of service level

groups other sources of mismatch, usually related to non-functional properties,

such as temporal requirements, resources, security, etc., and (iv) the semantic

or conceptual level is concerned with service functional specifications.

The need to automate these adaptation tasks has driven the development of

Software Adaptation (SA) [Yellin and Strom 1997, Canal et al. 2006a]. This dis-

cipline manages the interaction between entities by means of adaptors, looking

for the automation of the adaptation process and enabling components with mis-

matching to interoperate. The adaptors are automatically built from an abstract

description (adaptation contract) of how the mismatches can be solved w.r.t. the

component interfaces. SA is characterised by highly dynamic procedures that oc-

cur as devices and applications move from network to network, modifying their

behaviour, and enhancing flexibility and maintainability of systems.

Our proposal focuses on composing context-aware mobile and pervasive sys-

tems, where devices and applications dynamically find and use components from

their environment, providing a semantic representation instead of only a syntac-

tic one. Context-aware computing covers all the topics related to the building

of systems which are sensitive to their context (location, identity, time and ac-

tivity). These systems are different from traditional distributed computing ap-

proaches, since some component features may change at run-time depending

on the conditions of the environment. Therefore, software adaptation needs to

address the issue of quality of service requirements to solve mismatches at run-

time, self-adapting those systems to the changing conditions of the environment

and the user preferences, thus reducing human effort in the human-computer in-

teraction [Schilit et al. 1994]. On the other hand, there exist different languages

focus on Semantic Web technologies, such as Web Services Modeling Ontol-

ogy (WSMO)2, METEOR-S [Patil et al. 2004], Semantic Annotations for WSDL

and XML Schema (SAWSDL)3, or Web Ontology Language for Services (OWL-

2 http://www.wsmo.org/ Accessed on 20 September 2010.
3 http://www.w3.org/TR/sawsdl/ Accessed on 20 September 2010.

778 Cubo J., Canal C., Pimentel E.: Context-Aware Composition ...

S, formerly DAML-S)4. W3C recommends the use of OWL-S to capture the

semantic description of components and services. OWL-S is built on the Ontol-

ogy Web Language (OWL)5, which proposes a formal representation, expressed

in a machine-readable format (XML file), of a set of concepts within a domain

by capturing the relationships between those concepts. This is called an ontol-

ogy, and OWL is currently the de facto standard for constructing ontologies.

For this reason, we use OWL-S ontologies to capture and manage the seman-

tic information of the components. Nevertheless, we could consider other tech-

niques such as Natural Language Processing (NLP)6 or heuristic-based method-

ologies [Burton-Jones et al. 2003], preserving the relevance of our proposal.

Considering the aforementioned paradigms, we deal with the reusing of soft-

ware components based on model transformation. Our contributions (more de-

tailed in Section 2.1) are the following: (i) we propose a model transformation ap-

proach that extracts transition systems from component interfaces implemented

on existing platforms, and viceversa, (ii) we use verification techniques to vali-

date components against a set of properties, and (iii) we automatically generate

an adaptor component addressing all the interoperability levels.

The remainder of this article is organised as follows. Section 2 overviews our

proposal and main contributions, as well as a motivating example which will be

the case study used throughout the article for illustration purposes. Section 3

presents our context-aware component model, which transforms WF components

in CA-STS specifications. Sections 4 and 5 describe the discovery process based

on semantic matchmaking and protocol compatibility, and the verification tech-

niques we apply to the CA-STS specifications, respectively. In Section 6, our

composition and adaptation process based on model transformation to generate

a WF adaptor component from a CA-STS adaptor is presented. Section 7 details

some experimental results of applying the developed prototype that implements

our approach. In Section 8, we compare our proposal to related work. Finally, in

Section 9 some conclusions are drawn and plans for future work are outlined.

2 Overview of the Proposal

In this section, we present our approach and a case study to motivate our pro-

posal, which will be used throughout the article for illustration purposes.

2.1 Approach

Mismatches may occur at the four interoperability levels. However, industrial

platforms only deal appropriately with the signature level (e.g. CORBA’s IDL7).

4 http://www.daml.org/services/owl-s/ Accessed on 20 September 2010.
5 http://www.w3.org/TR/owl-ref/ Accessed on 20 September 2010.
6 http://www.w3.org/TR/nl-spec/ Accessed on 20 September 2010.
7 http://www.corba.org/ Accessed on 20 September 2010.

779Cubo J., Canal C., Pimentel E.: Context-Aware Composition ...

Several approaches tackling composition and adaptation based on models focus

on the different levels, such as we will compare in Section 8, and aim at gener-

ating adaptors which are used to solve mismatch and inconsistences in a non-

intrusive way. However, to the best of our knowledge, those approaches do not

combine their efforts to tackle the four interoperability levels together. In this

article, we focus on all four levels, extending interfaces with context information

and a description of their protocol which maintains the conditions. We use on-

tologies to determine the relationship among the different concepts that belong

to a domain. In our previous work [Cubo et al. 2007a], we advocated flexible in-

teraction between an arbitrary number of components depending on the current

state of the execution of the system (i.e., current context). These states were

defined at design-time. Here, we tackle the need to support the variability of

the adaptation process in context-aware systems by continuously reevaluating

the context information at run-time. This new adaptation process is based on

semantic matchmaking and protocol compatibility mechanisms.

Furthermore, most of those aforementioned approaches abstract from the im-

plementation framework, and few of them relate to existing programming lan-

guages and platforms. To the best of our knowledge, the only attempts in this

direction have been carried out using CORBA [Gaspari and Zavattaro 1999],

COM/DCOM [Inverardi and Tivoli 2003], BPEL [Brogi and Popescu 2006],

[Marconi et al. 2009], and SCA components [Motahari et al. 2007]. To relate our

model transformation process with realistic and complex examples, we use Win-

dows Workflow Foundation (WF) [Bukovics 2008] developed by Microsoft R©. It

belongs to the .NET Framework 3.5 and is supported by Visual Studio 2008,

interacting with Windows Communication Foundation (WCF) to define com-

ponent and service interfaces. We have chosen WF because this platform sup-

ports behavioural descriptions of components and services using workflows (busi-

ness processes). In addition, the .NET Framework is widely used in many com-

panies, and WF is increasingly prevalent in the software engineering commu-

nity [Zapletal 2008, Zapletal et al. 2009]. It makes the implementation of compo-

nents easier thanks to its workflow-based graphical support and the automation

of the code generation. Furthermore, a user could request components or services

implemented using WF through mobile devices with Windows Mobile R© as the

operating system, so our component model could be used in these situations.

Our proposal is based on model transformation, which according to the

Model-Driven Architecture (MDA)8, takes a source model (in our case WF)

and produces a target model (in our case transition systems), and viceversa. We

illustrate our proposal using a real-world pervasive system as case study. Fig-

ure 1 outlines our context-aware composition and adaptation approach, which

focuses on systems composed of a component repository, different kinds of users

8 http://www.omg.org/mda/ Accessed on 20 September 2010.

780 Cubo J., Canal C., Pimentel E.: Context-Aware Composition ...

(clients requesting components)9, and a shared domain ontology. Our process

consists of a set of steps which have been implemented as a set of tools consti-

tuting a framework called DAMASCo (Discovery, Adaptation and Monitoring of

Context-Aware Services and Components), which is integrated in our toolbox

ITACA [Cámara et al. 2009]. When a user performs a request from either a mo-

bile device, a personal computer or a laptop, the composition and adaptation

process is executed. First, (1) abstract interface specifications (Context-Aware

Symbolic Transition Systems, CA-STSs [Cubo et al. 2009a]) are extracted from

the WF components, which implement the client and the components, by means

of our model transformation process, and (2) a discovery process based on se-

mantic and compatibility mechanisms finds the WF components satisfying that

request. Next, (3) verification techniques are useful in two cases: first, (a) they

may help to identify mismatch situations that will determine whether the com-

ponents involved need adaptation or not, and secondly, (b) they allow validation

of a set of properties for the CA-STS client and components selected in (2), by

applying symbolic model checking (specifically we use Ordered Binary Decision

Diagrams, OBDD [Bryant 1986] because of the use of context information and

conditions over transitions). If adaptation is required, then (4) from the discovery

process, an adaptation contract is automatically obtained, and (5) being given

the CA-STSs corresponding to client and components, as well as the adaptation

contract, our process generates a CA-STS adaptor specification, whose resulting

composition preserves the properties previously validated in step (3.b). Finally,

(6) the corresponding WF adaptor component is generated using our model

transformation process, and (7) the whole system is deployed, allowing the WF

client and components to interact via the WF adaptor. This article tackles the

reusing of software components and makes the following contributions:

– We propose a model transformation approach that extracts transition sys-

tems from component interfaces implemented on existing programming lan-

guages/platforms, and viceversa. Our model extends [Mateescu et al. 2008]

and improves substantially [Cubo et al. 2009a, Cubo et al. 2009b] by consid-

ering context information, and supporting conditions to control the execu-

tion of the protocols according to certain changes at run-time. Users can

execute several requests simultaneously (concurrent interactions), and the

components can be instantiated several times.
– Verification techniques are used to validate if the client and the components

are free of mismatches and inconsistences (with respect to a set of prop-

erties). We have redesigned the algorithms presented in [Cubo et al. 2009b]

with respect to this extended version of our model.
– We automatically obtain the adaptation contract by using similarity of con-

text information, and mechanisms based on both semantic matchmaking

9 We distinguish between clients and components with the purpose of the comprehen-
sion -clients requesting components- although both refer to components or services.

781Cubo J., Canal C., Pimentel E.: Context-Aware Composition ...

Context-Aware Composition and Adaptation of Software Components based on Model Transformation

Users or Clients
requesting

Components

Context
Information

Context Profile

WF2CASTS

WSDL>Signature

WF>CA-STS Protocol

XML files

Composition and Adaptation

Context Profile

Signature >WSDL

CA-STS Protocol>WF

XML filesCA-STS Adaptor

CASTS2WF

Deployed System

Component
Repository

Ontology
XML file

CA-STS Client
and Components

Adaptation
Contract

Adaptor
Generation

1

Discovery

Semantic Matching
and Protocol
Compatibility

2
4

5

6

7 7

WF Client and
Components

WF Adaptor

Client

Context
Info

Context
Info

Component
Discovered

No Adaptation
required

Mismatch
Detection and

Validation Patterns

3 Verification

Figure 1: Overview of our Context-Aware Composition and Adaptation approach

of the operations and protocol compatibility. The adaptor component gener-

ated considers not only the signature and behaviour levels of the components,

but also the quality of service and semantic levels. Therefore, our proposal

generates an adaptor addressing all the interoperability levels.

2.2 Motivating Example: On-line Booking System

To illustrate our proposal, we describe an on-line booking system consisting of

clients and a component repository. Clients can perform different requests; they

can book a restaurant and/or a taxi by means of either a mobile device, a per-

sonal computer or a laptop. We assume the component repository contains com-

ponents named Restaurant, Restaurant Database (or simply RestDB) and Taxi.

When a user executes several requests simultaneously or a reasonable number of

users make requests concurrently, instances of the requested components are gen-

erated for each request. The system considers the context information given by

the client, which is not sent explicitly, since components infer it from the client re-

quest (through the HTTP header of SOAP messages [Cubo et al. 2009b]). Thus,

the Restaurant component can receive a client request to find restaurants close

to a particular address, taking into account the context information related to

the client privileges. We assume the system accepts two client profiles which

defines the client privileges: (i) “VIP” refers to clients with a certain priority

(memberships paying a fee to access to the system), or (ii) “Guest”, i.e., regular

clients. Depending on the privileges of a particular client, the list of restaurants

returned will be different. Once the client knows the restaurants in the vicinity

of that address, he/she can book one of them. The Restaurant component uses

the Restaurant Database (RestDB) component to check whether the selected

restaurant has a table available for a given date and a number of persons. After

782 Cubo J., Canal C., Pimentel E.: Context-Aware Composition ...

these interactions, the Restaurant component may receive a booking message

and send an acknowledgement back. On the other hand, the Taxi component re-

ceives a client request to book a taxi, with a destination address and the context

information related to the client location and his/her privileges (both inferred

from the client request). The client will book a taxi only if the price does not

exceed a limit amount, and he/she can either pay on reservation or later on. In

the case where the client pays the taxi immediately, the Taxi component will

send a receipt in the correct format depending on the context information cor-

responding to the client device (mobile or PC/laptop), and the client language.

This case study corresponds to a context-aware pervasive system in which the

client location and profile can change at run-time. Depending on such variations,

the system must adapt to work correctly in any situation. For the sake of com-

prehension, in the remainder of this article we focus on a single session which

corresponds to the connection and use of the system by one client. An exam-

ple handling any number of sessions can be derived from our simplified version,

generating instances of the requested components.

In next section, we present the implementation of this example using the

WF platform. Then, we describe our formal model to manage the variability

and transform WF components into CA-STS specifications.

3 Context-Aware Component Model

Several platforms or languages already exist and can be used to implement com-

ponents and services, such as UML10, BPEL11 or WF. To illustrate our model

transformation approach we have chosen WF because it is an interesting alter-

native compared to the others available. Nevertheless, we have also validated

our proposal using BPEL. In this section, we describe a formal model for the

WF component interfaces using Context-Aware Symbolic Transition Systems

(CA-STS). Different automata-based or Petri net-based models can be used to

describe behavioural interfaces. We have chosen CA-STS, which is based on

transition systems, because it is simple, graphical, and provides a good level of

abstraction to tackle discovery, verification, composition, or adaptation issues.

Furthermore, any formalism to describe dynamic behaviour may be expressed

in terms of a transition system [Foster et al. 2006]. Thus, our approach becomes

general enough to be applied in other contexts.

3.1 Abstraction of WF Workflows

In order to illustrate our example, we use a representative kernel of the WF

activities, namely Code, Sequence, Terminate, Receive, Send, IfElse, While,

and Listen with EventDriven activities. These activities are enough to under-

stand the example. In Table 1, we formalise the grammar defined for a textual

10 http://www.uml.org/ Accessed on 20 September 2010.
11 http://www.oasis-open.org/committees/wsbpel/ Accessed on 20 September 2010.

783Cubo J., Canal C., Pimentel E.: Context-Aware Composition ...

notation (left side) of the WF activities considered (on the right the meaning of

these activities is provided), which abstracts several implementation details. Our

grammar considers as input textual workflows (defined in XML) corresponding

to the graphical description of the WF workflows, with WF activities A, where

C, Ci are boolean conditions, I, Ii (inputs), O, Oi (outputs) are parameters of

activities, and Id are component or service identifiers.

A ::= Code executes a chunk of code
| Terminate ends a workflow’s execution
| Receive(Id,Op[,O,I1,. . . ,In]) receives a msg from a component/service
| Send(Id,Op[,O1,. . . ,On,I]) sends a msg from a component/service
| Sequence(A1,A2) executes first A1 and then A2

| IfElse((C1,A1),. . . ,(Cn,An),An+1) executes Ai if Ci is true, An+1 otherwise
| While(C,A) executes A while C is true
| Listen(E1,. . . ,En) fires one of the Ei branches

E ::= EventDriven(Receive(Id,Op[,Ii]),A) executes A when Id is received

Table 1: Grammar for the abstract notation of WF workflow activities

WF platform has capabilities for developing workflows in different scenarios,

from simple sequential ones to realistic and complex state machine-based work-

flows with human interaction. The programming languages available are Visual

Basic and C#. Our example have been implemented in C#.

Example.We have designedWF workflows for the Client-restaurant and Client-

taxi requests, and for the Restaurant, RestDB and Taxi components. WF pro-

vides a WSDL description for each WF workflow. In Figure 2, we show the

WF workflow that represents the behaviour of the Client-restaurant request.

For space reasons, we do not depict the others WF workflows of our example.

In the workflow, the message names prefixed with send and receive, such as

Client-Restaurant Request

send_search
Rest

receive_getList
send_exit send_bookRest

code_search
Rest

code_getList
code_book

Rest
code_exit

code_abort

code_ack

receive_abort

receive_ack

Sequential Workflow

while_exit
 _ book

while_exit_book

ifElse_exit_book

ifElseBranch_exit ifElseBranch_book

listen_abort_ack

eventDriven_abort eventDriven_ack

terminate_exit

terminate_ack

listen_abort
 _ ack

Figure 2: WF workflow corresponding to the Client-restaurant request

send searchRest and receive getList, represent a Send and a Receive activ-

ity, respectively. Those prefixed with code, such as code getList, correspond to

784 Cubo J., Canal C., Pimentel E.: Context-Aware Composition ...

the execution of C# code. The while exit book label denotes that the client will

enter in a loop where the ifElse exit book label indicates that the client will

exit if the branch condition ifElseBranch exit is true ([list==null]), or he/shell

will begin the booking of a restaurant if the branch condition ifElseBranch book

is true ([list �=null]). Conditions are mutually exclusive, and we have previously

defined their ranges of values. In the booking process, the client will receive ei-

ther an abort, receive abort message, because of the unavailability of tables

in the selected restaurant or an acknowledgement of the booking receice ack.

This is controlled by means of the listen activity listen abort ack with two

EventDriven activities, eventDriven abort and eventDriven ack. The activ-

ities terminate exit and terminate ack conclude the client session. To illus-

trate our textual notation, we focus on the Listen construct.

Sequence(...,Listen(EventDriven(Receive(receive abort, abort),Code),
EventDriven(Receive(receive ack, ack) ,Sequence(Code,Terminate))))

Note in the abstract notation we remove the suffixes used in the workflow

(except those related to identifiers) to distinguish activity names.

3.2 CA-STS Interface Model

This section introduces our model to describe component interfaces, which are

given using context information, a signature, and a behavioural or protocol de-

scription, taken into account through the use of abstractions of WF workflows.

A context is defined as “the information that can be used to characterise

the situation of an entity. An entity is a person, place, or object that is consid-

ered relevant to interaction between a user and an application including the user

and application themselves” [Dey and Abowd 2000]. We consider context infor-

mation from both a user-centric and a service-centric point of view, by allowing

interaction between user requirements and service capabilities depending on run-

time changes of both user and service contexts, and discovering component or

services according to certain non-functional properties. Context information can

be represented in different ways, by including complex functions involving re-

quired properties [Mostéfaoui and Hirsbrunner 2003]. For our purpose, we only

need a simple representation where contexts are defined by context attributes

with associated values. Thus, we represent the component context information

by using a context profile, which is a set of tuples (CA,CV,CK,CT), where:

CA is a context attribute or simply context with its corresponding value CV ,

CK determines if CA is static or dynamic, and CT indicates that CA is public

or private (e.g., (priv, Guest, dynamic, public)). Both clients and components

are characterised by public (e.g., weather, temperature, ...) and private (e.g.,

personal data, bandwidth, ...) context attributes. We also differentiate between

static context attributes (e.g., role, day, ...) and dynamic ones (e.g., network con-

nectivity, location, ...), because the latter can change continuously at run-time,

785Cubo J., Canal C., Pimentel E.: Context-Aware Composition ...

therefore they have to be dynamically evaluated during the composition. On the

other hand, a signature corresponds to a set of operation profiles. This set is a

disjoint union of provided and required operations. An operation profile is the

name of an operation, together with its argument types (input/output parame-

ters) and its return type. A protocol is represented using a Labelled Transition

System (LTS) extended with value passing, context variables and conditions,

that we call Context-Aware Symbolic Transition System (CA-STS). Conditions

specify how applications should react (e.g., to context changes). We take ad-

vantage of using ontologies to determine the relationship among the different

concepts that belong to a domain. Let us introduce the notion of variable, ex-

pression, and label required by our CA-STS protocol. We consider two kinds

of variables, those representing common variables or static context attributes,

and variables corresponding to dynamic context attributes (named context vari-

ables). In order to distinguish between them, we will mark the context variables

with the symbol “∼” over the specific variable. An expression is defined as a

variable or a term constructed with a function symbol f (an identifier) applied

to a sequence of expressions, i ∈ f(F1, . . . , Fn), Fi being expressions.

Definition 1 CA-STS label. A label corresponding to a transition of a CA-

STS is a tuple (B,M,D, F) representing an event, where: B is a condition (rep-

resented by a boolean expression), M is the operation name, D is the direction

of operations (! and ? represent emission and reception, respectively), and F

is a list of expressions if the operation corresponds to an emission, or a list of

variables if the operation is a reception.

Definition 2 CA-STS Protocol. A Context-Aware Symbolic Transition Sys-

tem (CA-STS) Protocol is a tuple (A,S, I, F c, T), where: A is an alphabet corre-

sponding to the set of CA-STS labels associated to transitions, S is a set of states,

I ∈ S is the initial state, Fc ⊆ S are correct final states, and T ⊆ S × A× S is

the transition function whose elements (s1, a, s2) ∈ T are denoted by s1
a−→ s2.

Finally, a CA-STS interface (or CA-STS specification) is constituted by a

tuple (CP, SI, P), where: CP is a context profile, and SI is the signature cor-

responding to a CA-STS protocol P .

Both client and components consist of a set of interfaces, since we assume

they have several protocols with their corresponding signatures, and a context

profile for each one. For instance, in our example a client may perform two differ-

ent requests. The client consists of two interfaces: one for the Client-restaurant

request CR = (CPCR, SICR, PCR) and the other one for the Client-taxi request

CT = (CPCT , SICT , PCT), as is depicted in Figure 5. In the Client-restaurant

request, CPCR refers to the context information priv, SICR is composed by

all the operation profiles, such as lcr1 = searchRest!address, ˜priv, and PCR is

the protocol which indicates the behaviour of the CA-STS. For example, lcr1
means that a client with the context information related to privileges priv issues

786 Cubo J., Canal C., Pimentel E.: Context-Aware Composition ...

an emission looking for a restaurant in a specific address, and then this client

receives a list of restaurants found lcr2 = getList?list, and so on. Initial and

final states are respectively depicted in CA-STSs using bullet arrows and hollow

states. Our proposal is suitable for synchronous systems where clients inter-

act with composite components (client/server model), such as mobile systems.

Therefore, we adopt a synchronous and binary communication model, where

clients can execute several protocols simultaneously (concurrent interactions),

and client and component protocols can be instantiated several times. Note that

we consider binary communication because of the composite components.

At the user level, client and component interfaces can be specified by using: (i)

context information into XML files for context profiles, (ii) WSDL for signatures,

and (iii) business processes defined in industrial platforms, such as Abstract

BPEL or abstraction of WF workflows, for protocols. In this work, we assume

context information is inferred by means of the client requests (header of SOAP

messages), and we consider processes (client and components) implemented as

WF workflows which provide the WSDLs and the protocol descriptions.

3.3 Extracting CA-STSs from WF Components

CA-STSs are used as an abstraction to focus on behavioural composition issues

by describing component interfaces in a standard notation. These CA-STSs are

automatically generated from the WF components. For each WF component,

our model transformation process parses the three XML files corresponding to

its context information, WSDL description, and WF workflow. A new XML file

containing its context profile, signature, and CA-STS protocol is automatically

generated. This XML corresponds to the behavioural interface of a CA-STS

specification. This process has been implemented in a prototype tool, called

WF2CASTS, following our model transformation process presented in Figure 3.

We have developed an ad-hoc transformation language to translate WF ac-

tivities (WF workflows defined in XML files) in CA-STS elements (XML files

represented in a graphical notation by means of transition systems) and vicev-

ersa. The extracted CA-STS specifications must preserve the semantics of work-

flows as encoded in the WF platform. A formal proof of semantics preservation

between both levels is not achieved yet since the WF formal semantics is not

rigorously documented. Our encoding has been deduced from our experiments

using the WF platform. The main ideas of the CA-STS specification obtained

from abstract description of workflow constructs are the following:

– Code is internal and hence interpreted as an internal transition;

– Terminate corresponds to a final state;

– Receive and Send are reception and emission, respectively;

– Sequence is translated to preserve the order of the involved activities. Final

states of the first activity are linked to the initial state of the second one;

787Cubo J., Canal C., Pimentel E.: Context-Aware Composition ...

Receive(Id,Op[,O,I1,…,In) s0 s1

Op?[I1,…,In] Op!O
s0 s1 s2

Send(Id,Op[,O1,…,On,I)
s0 s1

Op?I
s0 s1 s2

Op?[I1,…,In]

Op![O1,…,On] Op![O1,…,On]

or Terminate

s0

sn

Sequence (A1,A2)

or

or

IfElse((C1,Send(Id1,Op1[,Oi,I1])),
 …,(Cn,Send(Idn,Opn[,Oj,In])),

 Send(Idn+1,Opn+1[,Ok,In+1]))

A1………....A2

s0
………...

While(C,A) s0 ………...[C] A

Listen(EventDriven(Receive(Id1,Op1[,O1,Ii],A1)),
 …,EventDriven(Receive(Idn,Opn[,On,Ij],An)))

s0 ………...Op1?[Ii]

Opn?[Ij]

s1

s1

s1

s1

s1

[C1]Op1![Oi]

[Cn]Opn![Oj]

Opn+1![Ok]

Code
Internal actions such as assignations ,

write to console, and so on

or FINAL
sn

s2

s2

s2

[

[

[

Op1?I1

Opn?In

Opn+1?In+1

]

]

]

s2

s2

[

[

Op1!O1

Opn!On

]

]

WF workflow activities abstraction CA-STS protocol elements abstraction

Figure 3: Patterns of our Model Transformation process from WF workflow

activities abstraction to CA-STS protocol elements abstraction and viceversa

– IfElse corresponds to an internal choice. This corresponds to as many tran-

sitions as there are branches in the IfElse construct (even the else). Each

of these transitions leads to the initial state of the corresponding activity;
– While is translated as a looping behaviour, where the condition determines

the choice between termination or loop;

– Listen corresponds to an external choice. This corresponds to as many out-

going transitions as there are branches in the Listen construct. These tran-

sitions are labelled with receptions corresponding to the messages that can

be received and target the initial state of the related activity.

Initial and final states in the CA-STS come respectively from the initial

and final states that appear in the workflow. There is a single initial state that

corresponds to the beginning of the workflow. Final states correspond either to

a Terminate or to the end of the workflow, so several final states may appear in

the CA-STS because several branches in the workflow may lead to a final state.

Example. We apply the model transformation process to the WF components

of our scenario in order to obtain the corresponding CA-STS specifications. To

facilitate comprehension, Figure 4 illustrates the transformation process which

generates CA-STS internal (emissions) and external (receptions) choices (with

the corresponding states, transitions and labels), from WF IfElse and Listen

activities, respectively. Figure 5 shows the whole interfaces corresponding to the

Client-restaurant and Client-taxi requests (CR and CT, respectively), and the

Restaurant (R), RestDB (RD) and Taxi (T) components. Each interface has a

context profile, a signature and a CA-STS protocol. With the purpose of the com-

prehension, we present the signature corresponding to the Client-restaurant re-

quest: searchRest!(string,Tpriv); getList?(Tlist); bookRest!(string,DateTime,int);

ack?(); abort?(); exit!().

788 Cubo J., Canal C., Pimentel E.: Context-Aware Composition ...

WF IfElse activity CA-STS internal
choice

WF Listen activity CA-STS external
choice

ack?

abort ?

cr2

[list≠null]bookRest!
rest,date,nbpers

cr3

cr4

[list==null]exit!

cr2

cr3

cr4

send_exit send_book
Rest

code_book
Rest

code_exit

ifElse_exit_book

ifElseBranch_exit ifElseBranch_book

terminate_
exit

listen_abort
 _ack

code_abort

code_ack

receive_abort

receive_ack

listen_abort_ack

eventDriven_abort eventDriven_ack

terminate_
ack

Figure 4: Transformation Process of WF IfElse and Listen activities

Component Interface Model
Restaurant
ComponentClient Interface Model

CA-STS
Client-Restaurant

Request (CR)

lcr1=searchRest!
address ,prĩv

cr0

cr1

lcr2=getList?list

cr2

lcr3=[list≠null]
bookRest!

rest,date,nbpers
cr3

lcr4=ack?

cr4

Context Profile
priv (dynamic)

CA-STS
Restaurant (R)

r0

Initial state

Transition

lcr6=[list==
null]exit!

CA-STS Client-Taxi
Request (CT)

ct0

ct1

lct2=priceTaxi?price

ct2

ct3

lct4=ack?

ct6

lct5=payTaxi!dẽv,lãng

Context Profile
loc (dynamic)
priv (dynamic)

dev (static)
lang (static)

lct1=reqTaxi!
address,lõc,prĩv

ct5 ct4

lct3=[price≤limit]
bookTaxi!

r1

r2

lr3=[priv==”Guest”]
listRest!Guestlist

r4

Context Profile
priv (dynamic)

lr5=checkAvailability!
rest,date,nbpers

lr6=getAvailability?
tables

lr2=[priv==”VIP”]
listRest!VIPlist

lr1=findRest?
address ,priv

lct6=getReceipt?
invoice

r3

lr7=[tables==True]
confirm!

lr8=[tables==False]
cancel!

Taxi
Component

CA-STS
Taxi (T)

t0

t1

t2

lt3=[priv==”Guest”]
priceTaxi!Guestprice

lt2=[priv==”VIP”]
priceTaxi!VIPprice

lt1=getTaxi?
address ,loc,priv

lt4=reserveTaxi ?

Context Profile
loc (dynamic)
priv (dynamic)

dev (static)
lang (static)

lr9=quit?

lt9=abort?

r6

r5

lr4=reserveRest?
rest ,date,nbpers

t4

t3

lt5=confirm!

t6

t5

lt6=payTaxi?dev,lang

lt8=[dev==Mobile]
sendReceipt !sms

lt7=[dev==PC║
dev==Laptop]

sendReceipt !email
CA-STS RestDB (RD)

rd0 rd1lrd2=sendAvailability !tables

lrd1=checkAvailability?rest ,date,nbpers

lcr5=abort?

lct7=[price>
limit]cancel!

Final state rd2

Request
message

Response
message

Figure 5: CA-STS specifications of Client, Restaurant, RestDB and Taxi

Our CA-STS protocols maintain conditions appearing in WF While and

ifElse constructs, since our interface model considers them. Thus, transitions

tagged with conditions must assure their mutual exclusion and that they control

the full range of possible values. For instance, if we consider the conditions

[list==null] and [list �=null] of the CA-STS Client-restaurant request CR, because

of Tlist definition, it is trivial to see that both conditions are mutually exclusive.

In the case of the conditions [priv==“VIP”] and [priv==“Guest”] of the CA-

STS Restaurant R, the range of values of the type Tpriv ({“VIP”, “Guest”}) has
been defined previously, and we can determine that both are mutually exclusive.

4 Semantic-Based Component Discovery

We propose a context-aware component discovery process, that consists of two

steps. First, we perform a semantic matchmaking process that selects the most

appropriate component interfaces for a client request depending on their contexts

and signatures. Second, an analysis of the behavioural part of the model deter-

mines whether two protocols are compatible. Our process establishes a ranked

789Cubo J., Canal C., Pimentel E.: Context-Aware Composition ...

list of the component interfaces that better match the client request.

Semantic Matchmaking. This process is based on OWL-S ontologies.

Thus, context attributes included in a context profile and operation profiles of a

signature refer to OWL-S concepts with their associated semantics. Our goal is

to measure the semantic matchmaking of context attributes and operation pro-

files. The semantics of OWL-S descriptions allows to define a ranking function

which distinguishes multiple degrees of match between two OWL-S concepts.

We choose the notion of degree of match introduced in [Paolucci et al. 2002] to

define the semantic matchmaking based on ontologies.

Definition 3 Degree of Match. Being cr and cp either two context attributes,

operation names, arguments, or return types, that respectively belong to a re-

quester (client or component interacting with another component) and a provider

interface, we define their degree of match with in an ontology Ont as follows:
degree match(cr, cp, Ont) =⎧⎪⎪⎨

⎪⎪⎩

exact if (cr = cp ∨ cr subclass of cp) in Ont

plugIn if (cp subsumes cr) in Ont

subsume if (cr subsumes cp) in Ont

fail otherwise

The order of matching patterns is the following: 1) exact, 2) plugIn because

the context attribute, operation name, argument or type of the provided compo-

nent can be used in place of the one that is expected by the requester, 3) subsume

indicates that the requirements of the requester are only partially satisfied, and 4)

fail represents an unacceptable result. This order is determined by the function

� that compares two degrees of match: exact � plugIn � subsume � fail.

We discretise each degree of match to a numeric value (exact=3, plugIn=2,

subsume=1, fail=0) to obtain the average among several degrees of match.

Then, this average value is rounded (upward if the first decimal number is greater

than 5 or downward in otherwise) to be transformed into its respective degree

of match that determines the final degree of the average (e.g., the average value

of exact and subsume is 2, whose degree of match is plugIn).

This process have been implemented in a prototype tool, ConTexTive, which

takes as input a requester (client or component) interface, a list of provider

component interfaces corresponding to the available components into a repos-

itory, and a shared domain ontology. First, the process selects the component

interfaces whose context attributes are similar to the requester ones. Then, con-

sidering these pre-selected component interfaces, the process returns a list with

the candidate component interfaces that satisfy the request at the signature and

semantic levels, and their corresponding matching tuple set. The list contains

the respective composite component interfaces. Each matching tuple set consists

of tuples which constitute an operation profile from the requester interface, the

operation profile from the provider component interface which best matches the

requester one and the degree of match for both operation profiles.

790 Cubo J., Canal C., Pimentel E.: Context-Aware Composition ...

Example. Figure 6 gives the shared domain ontology related to the on-line

booking system. We present the classes used in our scenario with their rela-

tionships. These classes represent concepts which may be either a context at-

tribute, an operation name, or an argument (return types are not represented to

simplify). This ontology has been generated graphically using Protégé 4.0.212,

obtaining directly the corresponding XML file.

eBooking

quit

is-a is-a is-a is-a is-a is-a is-a is-a is-ais-a

loc address restaurant ack cancel dev priv taxi invoice

emailsmspayTaxireserveTaxipriceTaxisendReceiptreqTaxiabortconfirmcheckAvailabilityrestlist

VIPlistGuestlistgetAvailability

sendAvailabilityreserveRestnbperslistRest

getList

tablesfindRest

searchRest

dateexit

is-a is-a is-a is-a is-a is-a is-a

is-ais-a

is-a is-a is-a is-a is-ais-a is-a is-ais-a

is-a

is-a

is-a is-a

pricegetTaxi getReceipt bookTaxi

Guestprice VIPprice

is-a is-a is-a is-a is-a is-a is-a is-a is-a is-a

bookRest

Figure 6: On-line Booking System Ontology generated using Protégé 4.0.2

The semantic matchmaking process is executed individually for each client

interface: restaurant and taxi requests. Let us focus on the Client-restaurant

request CR. First, the process uses the function degree match to select the

component interfaces whose context attributes are similar to the client ones,

considering also those interfaces whose context profiles are empty. Restaurant

R and Taxi T components are selected, since both include the context attribute

priv of Client among theirs context attributes. RestDB RD component is also

selected, because its context profile is empty and our process needs to know more

information about it. Next, our process computes the semantic matchmaking of

the operation profiles, and it determines that only the signature of R matches

semantically the CR. In the following, we present the matching tuple sets cal-

culated by the process for the interaction of the Client-restaurant interface CR

with the Restaurant component interface R:

MTCR,R = {(lcr1, lr1 , exact), (lcr2 , lr2 , exact), (lcr2 , lr3 , exact), (lcr3 , lr4 , exact),
(lcr4 , lr7 , subsume), (lcr5 , lr8 , exact), (lcr6 , lr9 , exact), (, lr5 ,), (, lr6 ,)}

This set indicates that, for instance, in the first matching tuple, the degree

of match for the operation profiles lcr1 and lr1 (represented in Figure 5) with

respect to the ontology (presented in Figure 6) is exact. This is calculated as

follows: (i) the degree of match of the operation names searchRest and findRest

is exact, (ii) the average of the degree of match between theirs arguments and

types is exact, and (iii) the degree of match for that matching tuple is the average

between both degrees of match, i.e.exact. This process is performed for the com-

bination of lcr1 with all the operation profiles of R whose directions are reversed

12 http://protege.stanford.edu/ Accessed on 20 September 2010.

791Cubo J., Canal C., Pimentel E.: Context-Aware Composition ...

(binding of emissions and receptions) to the direction of lcr1 , and the matching

process determines that the best one is lr1 . Then, the process is executed for

each operation profile in CR obtaining the rest of the matching tuples. Labels

may have several correspondences in case the degree of match is equal (e.g., lcr2
matches lr2 or lr3 according to the value of the context attribute priv). When

any operation profile of the requester/provider interface does not have counter-

part (open operation profile or open port) in the provider/requester interface,

then the process is again executed with the interface(s) with open port(s) as

requester(s), but only looking for the operation profiles marked as open. This

is represented in the matching tuple sets with the symbol “ ”. For instance, the

operation profiles lr5 and lr6 , which belongs to R, are open, because they do not

match any operation profile of CR. Therefore, RestaurantR needs to discover the

best interfaces connecting those operation profiles which have no counterparts.

Now, the process takes as input R as requester interface, the rest of the com-

ponent interfaces as possible providers (RD and T) and the ontology. Firstly,

the process selects Taxi T component, since it includes the context attribute

priv of Restaurant R among their context attributes, and RestDB component

RD, whose context profile is empty. The second phase determines that only RD

matches R semantically, with the matching tuple:

MTR,RD = {(lr5 , lrd1 , exact), (lr6 , lrd2 , exact)}
Therefore, the process determines the composite component Restaurant R

and RestDB RD match semantically with Client-restaurant request CR.

The same procedure is performed to obtain the matching tuple set for the

Client-taxi request CT, which is not presented in this article for space reasons.

Protocol Compatibility. Semantic matchmaking techniques are not enough

to ensure the component compatibility, since the presence of incompatibili-

ties in component interactions may result in a deadlocking execution of any

component.Therefore, ConTexTive also checks the compatibility between proto-

cols. There exist different notions of compatibility in synchronous communica-

tion, such as opposite behaviours, unspecified reception, and deadlock-freeness

[Bordeaux et al. 2004]. We choose the deadlock-freeness notion to illustrate our

proposal, but other definitions could also be used. This compatibility definition

guarantees that all the interactions between two protocols are performed in a

satisfactory way, leading to a correct final state. To verify this protocol compat-

ibility notion, first, the synchronous product of CA-STS protocols is computed,

by obtaining a new CA-STS protocol that contains all the possible interactions

between the involved components. Although conditions are kept in this new CA-

STS protocol, they are not used to build the product because they cannot be

evaluated. Then, we check that the product is free of deadlock mismatch.

Definition 4 CA-STS Synchronous Product. The Synchronous Product of

n CA-STSs Pi = (Ai, Si, Ii, F ci, Ti), i ∈ {1, . . . , n}, w.r.t. an ontology Ont, is

792 Cubo J., Canal C., Pimentel E.: Context-Aware Composition ...

the CA-STS P1|| . . . ||Pn characterised by a tuple (A,S, I, F c, T) such that:

– A = A1× . . .×An, S = S1× . . .×Sn, I = (I1, . . . , In), Fc = Fc1× . . .×Fcn,

where the × operator stands for the cartesian product, and

– T is defined as: given (s1, . . . , sn) ∈ S, and i < j such that (si, [bi]ai, s
′
i) ∈ Ti,(

sj , [bj]aj , s
′
j

) ∈ Tj, where ai = mi!ei and aj = mj?ej , type(ei) = type(ej),

and operation matching(ai, aj , Ont), then:

((s1, . . . , sn),[bi ∧ bj](ai, aj), (s1, . . . , s
′
i, . . . , s

′
j , . . . , sn)) ∈ T

Function operation matching computes the degree of match for two oper-

ation profiles, considering operation names, arguments and return types. The

states in the product correspond to sets of states of the components. The initial

state of the product is (I1, . . . , In), since initially all components are in their

initial state. The transitions mean that, given some composite state (s1, . . . , sn)

in the product, there is some transition outgoing from this state iff there are

two components, i and j, that may perform at the same time, from states si
and sj , in their respective CA-STSs, complementary events (i.e., one sending

a message and the other one receiving it). Next, we formalise the concepts of

deadlock mismatch and protocol compatibility for CA-STS.

Definition 5 Deadlock Mismatch. A CA-STS protocol P = (A,S, I, F c, T)

presents a deadlock mismatch, if there is a state s ∈ S such that s /∈ Fc and

there are no outgoing transitions from s, i.e.(s, l, s′) /∈ T . ∀l ∈ A, s′ ∈ S. Such

state s is denoted by dead(s).

Definition 6 Deadlock-freeness Compatibility. Two CA-STS protocols P1

and P2 are deadlock-free compatible or protocol compatible, if their synchronous

product P1||P2 is free of deadlock mismatches.

Example. In our example, we have to check the compatibility of CR and the

composite component R with RD. To do so, our protocol compatibility pro-

cess generates the synchronous product for the interactions between protocols

(Figure 7) and verifies that no deadlock mismatches exist in their synchronous

product, thus protocols are deadlock-free compatible.

(cr0,r0) (cr1,r1)
(lcr1,lr1)

(cr2,r2)

(lcr2,lr2)

(cr3,(r5,rd2))

(lcr3,lr4)
(lr5,lrd1)

(r4,rd1)

(cr3,(r3,rd0))

(lcr5,lr8) (lr6,lrd2)

(lcr4,lr7)(cr4,r6)(lcr2,lr3) (lcr6,lr9) Correct
Final State

Figure 7: Deadlock-free Synchronous Product of CR with R and RD Protocols

5 Verification of the Component Model

This section presents verification techniques that check if there exist mismatch

situations and that validate a set of properties for each CA-STS protocol by

793Cubo J., Canal C., Pimentel E.: Context-Aware Composition ...

using symbolic model checking, specifically OBDD (Ordered Binary Decision

Diagrams). Verification techniques are useful in two cases: first, they may help

to identify behavioural mismatch situations that will determine whether the

components involved need adaptation or not, and second, they allow to validate

a set of properties for the CA-STS client and components discovered in Section 4.

Mismatch Detection. First of all, using the matching tuple sets, we need to

check if there exist behavioural mismatches in the interaction among client and

components. Thus, if a mismatch exists, we apply our composition and adapta-

tion process that aims at generating a CA-STS adaptor specification (Section 6).

Example. In our scenario we find mismatches such as different message names

(e.g., searchRest! in CR versus findRest? in R), or label correspondences de-

pending on the value of the context information (e.g., lcr2 can correspond with

lr2 or lr3 depending on the value of the context attribute priv). Therefore, the

components cannot be directly used together, and an adaptor component has to

be incorporated as a third-party in the interaction.

OBDD Verification Model. Before performing the composition and adap-

tation process, we need to validate each CA-STS to assure they are free of incon-

sistences. This is required because of the inclusion of context information and

conditions in our component interface model. Therefore, our OBDD verification

model validates our context-aware component model against a set of properties.

The communication between client and components is supposed to be a finite

flow of requests/responses in which context information is used to improve the

provided component. Next, we describe the validation patterns we consider:

– Determinism: in each state in which the computation can follow different

paths, conditions on those multiple requests/responses must be mutually ex-

clusive. If two conditions would be satisfiable simultaneously then the result

would be non-deterministic and the result will depend on the implementation

and not on the context value itself.

– State liveness: if in a state context values are used to select the next re-

quest/response, at least one combination of values of those contexts must

lead to a transition. It requires that at least one outbound transition is

enabled for each state (with the exception of the final state).

– Request/response liveness: if a request/response is conditioned by a certain

value of the context, that condition must be satisfiable. It guarantees that

all the specified transitions will be satisfiable for at least one combination

of context values. A condition like [priv==“VIP” && priv==“Guest”] will

never be satisfied and the corresponding transition will never be executed.

– Non-blocking states: irrespective of the values of the context variables, com-

munication should always reach a final state. The absence of non-blocking

states guarantees that independently from the values of the context, it should

be possible to continue the communication avoiding deadlocks.

794 Cubo J., Canal C., Pimentel E.: Context-Aware Composition ...

These properties are verified for the CA-STS protocols related to client and

components. Once CA-STS adaptor is generated (Section 6), we could apply

our OBDD verification model as well. However, it will not be needed, since the

verification model assures that the properties are preserved in the composition of

the CA-STSs already validated, i.e., in the CA-STS adaptor. To validate these

properties, we have designed an OBDD representation of our CA-STS protocols.

We selects OBDD because it has been shown that in many circumstances OBDDs

offer a compact way to represent and manipulate Boolean functions. Our idea

here is to show how states and labels can be represented by means of conjunctions

of Boolean variables, and transition relations can be encoded by mens of Boolean

formulae, which are manipulated using OBDDs.

As described in Section 3.2, let (A,S, I, F c, T) be a CA-STS protocol. The

number n of Boolean variables required to encode the set of states S is n =

	log2|S|
. Thus, if S contains 7 states, then 3 Boolean variables {s1, s2, s3}
are required. We represent these variables by means of a Boolean vector s =

(s1, . . . , sn) where each si ∈ s can take either the value 0 (negation of a vari-

able) or 1. For instance, the first state in S could be identified by the vector

(1, 1, 1), the second state by the vector (1, 1, 0), and so on. Correspondingly, the

first state is encoded by the Boolean formula s1 ∧ s2 ∧ s3, the second state by

s1 ∧ s2 ∧ ¬s3 (notice the last negation), and so on13. Sets of states are encoded

by Boolean formulae as well, by taking the disjunction of the Boolean formulae

encoding each state in the set. Thus, the set of states composed by the first and

the second state of S is represented by (s1 ∧ s2 ∧ s3) ∨ (s1 ∧ s2 ∧ ¬s3). Consider
a message a = (b,m, d, f) ∈ A = (B,M,D, F) encoded as a Boolean formula by

associating a Boolean variable to each expression or variable in f , and represent-

ing the condition b by means of these variables. We denote with a the Boolean

encoding of a given message a ∈ A. Having encoded states and messages, we

can encode the transition relation T by introducing a set of “primed” variables

(s′1, . . . , s′n) to encode the destination state of a transition. A transition s
a−→ t is

encoded by means of the Boolean formula s∧a∧ t, where the overlined variables

denote Boolean expressions and t is encoded in terms of the primed variables.

The whole transition relation T is encoded as a Boolean formula by taking the

disjunction of all the elements of T , i.e., T =
∨

s
a−→t∈T

(s ∧ a ∧ t).

We have implemented a set of OBDD-based algorithms [Cubo et al. 2009b]

to verify the set of properties. CASTS2OBDD is a prototype tool that implements

those algorithms by representing CA-STS protocols by means of OBDD.

Example. Our verification model determined our client and components are free

of inconsistences with respect to the validation patterns considered. This process

is not obvious at a first analysis, but the verification mechanisms we apply can

13 By slight abuse of notation, the same symbols si are used to denote Boolean variables
or their value in a vector, and atomic propositions in logical formulae.

795Cubo J., Canal C., Pimentel E.: Context-Aware Composition ...

check automatically the set of properties previously defined. For instance, if we

consider the CA-STS protocols corresponding to the Client-restaurant request

CR, Restaurant R and RestDB RD, the verification of those properties required

less than 1 second for all those CA-STSs. We employed up to 7 Boolean BDD

variables (i.e., 3 for CR, 3 for R, and 1 for RD) to encode our scenario, corre-

sponding to a model of size 27. Notice that the properties presented above could

not be checked using a standard model checker, because of the use of conditions

over transitions and because our requirements reason about these conditions

over transitions. Indeed, a standard model checkers only allows to reason about

(sequences of) states by means of temporal formulae.

6 Context-Aware Composition and Adaptor Generation

In this section, we present our context-aware composition and adaptation pro-

cess, which is performed once we have checked the CA-STS client and com-

ponents of the system are free of inconsistences. Our process defines correspon-

dences between client and component messages considering context information.

From the client, a set of components and an adaptation contract, a CA-STS

adaptor can be automatically generated. Using our transformation process we

obtain a WF adaptor from the CA-STS one, which will work as an intermediate

piece connecting the client and components to interact in a particular case.

6.1 Adaptation Contract

An adaptation contract is built as a set of correspondences among messages of

the involved components. From the matching tuple sets obtained in our discovery

process, we can automatically generate an adaptation contract when there exist

mismatches in the interaction between client and components. Moreover, apart

from solving some cases of behavioural mismatches, we want composition and

adaptation to distinguish between the available contexts when translating the

messages among components. Using a non-contextual approach, message corre-

spondences are fixed, which means that any client request is always associated to

the same target message. This prevents changes in these connections being taken

into account, and motivates the need for new capabilities that our context-aware

composition and adaptation approach provides in order to achieve message trans-

lation depending on contexts. We have to define that contract between events

in the CA-STS protocols. Here we define a notation based on vectors express-

ing correspondences among component messages, and on transition systems to

specify the evolution of every component depending on its contexts. These in-

teractions are formalised through synchronisation vectors [Arnold 1994] which

allow messages with different names and even different numbers of messages to

be synchronised. Thus, a vector does not require interactions on the same names

of events as it is the case in process algebra for instance. The interactions denote

796 Cubo J., Canal C., Pimentel E.: Context-Aware Composition ...

a communication among several components. Each event (or label) appearing in

one vector is executed by one component, and the overall result corresponds to

a synchronisation between all the involved components.

Definition 7 Synchronisation Vector. A synchronisation vector (or vector

for short) for a set of protocols Pi = (Ai, Si, Ii, F ci, Ti), i ∈ {1, .., n}, is a tuple

〈l1, . . . , ln〉 with li ∈ Ai ∪ {ε}, ε meaning that a component does not participate

in a synchronisation.

In some situations it is essential to apply a specific order between vectors to

avoid mismatches. Hence, we use as abstract notation for our composition an LTS

with vectors on transitions. This LTS is used as a guide in the application order

of interactions denoted by those vectors. Our approach gives the user assistance

to generate this LTS. We model the component composition by introducing the

notion of adaptation contract, that makes use of vectors and vector LTS .

Definition 8 Adaptation Contract. An adaptation contract for a set of com-

ponents Ci, i ∈ 1, ..., n, is defined as a couple (VCi , Vlts), where VCi is a set of

vectors for components Ci, and Vlts is a vector LTS that indicates the order of

interactions of the vectors VCi .

Reordering of messages is needed in some communication scenarios to ensure

a correct interaction when two communicating entities have messages which are

not ordered as required. In our proposal, such a reordering of messages can be

specified making it explicit in the writing of the adaptation contract.

Example. As we checked in Section 5, there exist mismatches in the component

interaction. Therefore, an adaptation contract is used to solve these problems.

The adaptation contract is specified by a set of synchronous vectors, and a vector

LTS. Synchronous vectors are automatically obtained from the matching tuple

sets (MTCR,R and MTR,RD) calculated in Section 4, which indicate the best

matching between the interfaces corresponding to the Client-restaurant and the

composite component Restaurant and RestDB. The generation of the vector LTS

is assisted according to the synchronous vectors, and it specifies the ordering of

execution of the vectors in order to generate the adaptor. As we consider value-

passing protocol and data exchanged by means of messages, we need to resolve

conflicts at this level. To do that we relate the parameters of the messages binding

parameter names when required. Considering the Client-restaurant request, we

need to bind the parameters list in CR with VIPlist and Guestlist in R. Thus, we

will have, for instance, getList?list in CR related to [priv==“VIP”]listRest?list

or [priv==“Guest”]listRest?list in R. The adaptation contract related to the

interaction between CR and the composite component R and RD is composed

by the vectors presented below (labels lcr1 , lr1 , ..., are represented in Figure 5),

and the vector LTS depicted in Figure 8.

v1 = 〈lcr1 , lr1〉, v2 = 〈lcr2 , lr2〉, v3 = 〈lcr2 , lr3〉, v4 = 〈lcr3 , lr4〉, v5 = 〈lcr4 , lr7〉,
v6 = 〈lcr5 , lr8〉, v7 = 〈lcr6 , lr9〉, v8 = 〈lr5 , lrd1〉, v9 = 〈lr6 , lrd2〉

797Cubo J., Canal C., Pimentel E.: Context-Aware Composition ...

v1

v2

v3

v4
v8 v9 v5 v6

v7

Figure 8: Vector LTS indicating the ordering of the interaction among the Client-

restaurant request and the composite component Restaurant and RestDB

For the Client-taxi request CT we can obtain the corresponding adaptation

contract following the same procedure.

Finally, we generate a correct CA-STS adaptor. We have to transform this

adaptor in a WF adaptor component to complete our process.

6.2 Adaptor Generation

We generate an adaptor specification from a set of interfaces (client and compo-

nents), and an adaptation contract. The adaptor acts as a third-party component

that is in charge of coordinating the client and all the components involved in

the system w.r.t. a set of interactions defined in the contract. Thus, at this stage,

a CA-STS adaptor can be generated by using the tool (D)Compositor described

in [Mateescu et al. 2008] (incorporated into the toolbox ITACA), and conditions

and contexts are considered. This algorithm uses CADP [Garavel et al. 2007] to

get an adaptor where all the possible deadlocks are removed.

Example. Figure 9 shows the CA-STS adaptor for the interaction between

Client-restaurant CR and the composite component Restaurant-RestDB R-RD.

0

CR:SEARCHREST?ADDRESS,PRIV

1

R:FINDREST!ADDRESS,PRIV

2

3 4

R:[PRIV==”VIP”]LISTREST?LIST

CR:GETLIST!LIST

5

CR:GETLIST!LIST

6 7

R:QUIT!

8

CR:[LIST==NULL]EXIT? CR:[LIST<>NULL]BOOKREST?REST,DATE,NBPERS

R:RESERVEREST!REST,DATE,NBPERS

9

R:CHECKAVAILABILITY?REST,DATE,NBPERS

11

RD:CHECKAVAILABILITY!REST,DATE,NBPERS

12

RD:SENDAVAILABILITY?TABLES

13

R:GETAVAILABILITY!TABLES

14

FINAL

10

16
R:[TABLES==TRUE]CONFIRM?

R:[TABLES==FALSE]CANCEL?
FINAL

CR:ACK!

CR:ABORT!

15

17

R:[PRIV==”GUEST”]LISTREST?LIST

Figure 9: Adaptor specification for the interaction between CR with R-RD

Component labels are prefixed by the component identifier, namely CR, R,

and RD to uniquely identify all the labels involved in the system. Note mes-

sage directions are reversed because all messages corresponding to the Client-

restaurant request and the Restaurant and RestDB components will go through

the adaptor, and this latter has to synchronize with these messages using com-

plementary directions. The set of properties defined in Section 5 are preserved

798 Cubo J., Canal C., Pimentel E.: Context-Aware Composition ...

in the composition, so the CA-STS adaptor is free of inconsistences. It is worth

mentioning that in case a problem occurs during this component composition,

such as exception or connection loss, our adaptation process will find for new

components that reply the client request, by generating a new adaptor on-the-fly

for the remaining interactions. In such a way, the client request can be executed

even when some interaction problems are arisen. We can generate a CA-STS

adaptor for the Client-taxi request following the previous process.

6.3 Obtaining WF Adaptor from CA-STS Adaptor

We have to generate a WF component from the CA-STS adaptor by using our

model transformation process. This WF component constitutes the WF adaptor,

which will be deployed to allow the correct connection of client and components.

Our interface model (CA-STS specification) can take into account some ad-

ditional behaviours (interleavings) that cannot be implemented into executable

languages (e.g., WF or BPEL). In order to make platform-independent adaptor

implementable wrt. a specific platform, some filters are used with the purpose

of pruning parts of the CA-STS corresponding to these interleavings and keep

only executable paths. In particular, to implement an adaptor interface model

(CA-STS adaptor) as an adaptor component (WF adaptor), we proceed in three

steps: (i) filtering the interleaving cases that cannot be implemented (e.g., sev-

eral emissions and receptions outgoing from a same state), (ii) checking that the

pruning does not affect the correct functionality, and (iii) encoding the filtered

model into the corresponding implementation language (in our case WF) using

our transformation process. Next, we give some guidelines for this encoding.

First, the initial state of the CA-TS is encoded as the initial state of the WF

workflow. Final states are encoded as Terminate activities.

The transformation process derives step by step parts of the abstract work-

flow by focusing on one state of the CA-STS after the other. We distinguish in

the following the translation of transitions corresponding to message activities

(Receive, Send), and the generation of structuring activities (Sequence, While,

IfElse, Listen). Let us start with messages:

– a transition with one reception as labels is translated into a Receive activity;

– a transition with one emission corresponds to a Send activity.

Now, we focus on the encoding of the CA-STS structuring into the workflow:

– a Sequence activity is generated for a sequence of transitions in the CA-STS

corresponding to two successive message activities, and for which no states

involve more than one outgoing transition;

– a cycle in an CA-STS is translated using a While activity. If several cycles

loop on a same state, it corresponds to a single While activity. However if

a cycle in the CA-STS contains another (local) cycle, this latter will also be

translated as a While activity nested in the outmost one.

799Cubo J., Canal C., Pimentel E.: Context-Aware Composition ...

– if the state of the CA-STS to be translated involves two or more outgoing

transitions:
• if all the outgoing transitions hold inputs, a Listen activity is derived,

• otherwise a conditional choice IfElse activity is generated.

Finally, all the needed pieces of C# code will be added by hand while refin-

ing the abstract workflow into a real WF workflow. We consider that a While

construct always has priority over IfElse and Listen. Thus, when our process

finds a pattern which can be transformed into While and Listen at the same

time, we first will apply the While pattern and secondly the Listen one. The

prototype tool that computes the transformation to implement the adaptor, is

called CASTS2WF. It considers the guideline described previously and uses a state

machine pattern based on the transformation process from CA-STS protocol

elements to WF workflow activities presented in Figure 3 and here described.

Example. Figure 10 gives the WF workflow obtained from our CA-STS adap-

tor. The same procedure is performed to transform the CA-STS adaptor of the

Client-taxi request in a new WF workflow (not presented here for space reasons).

Adaptor Client-Restaurant
Request - Restaurant - RestDBreceive_search

 Rest

listen_VIP_Guest

Sequential Workflow

code_search
Rest

send_findRest

receive_listRest_
 VIP

code_list
Rest_VIP

receive_listRest_
 Guest

code_list
Rest_Guest

send_getList

receive_exit

code_exit

receive_book
 Rest

code_book
Rest

send_quit send_reserve
Rest

terminate_exit
quit

terminate_con
firmack

receive_check Avai
 lability

code_check
Availability

send_check
sendAvailability

send_get
Availability

receive_cancel

code_cancel

receive_confirm

code_confirm

send_abort send_ack

eventDriven_VIP eventDriven_Guest

listen_exitquit_bookreserve

eventDriven_exitquit eventDriven_bookreserve
listen_cancelabort_confirmack

listen_cancelab
ort_confirmack

eventDriven_cancelabort eventDriven_confirmack

while_exitquit
_bookreserve

while_exitquit_bookreserve

Figure 10: WF workflow corresponding to the Adaptor component interface that

communicate CR with the composite component R with RD

7 Evaluation of Experimental Results and Discussion

The different steps of our composition and adaptation approach presented in this

paper, have been implemented in a set of tools that constitute a framework called

DAMASCo (Discovery, Adaptation and Monitoring of Context-Aware Services and

800 Cubo J., Canal C., Pimentel E.: Context-Aware Composition ...

Components), which is integrated in our toolbox ITACA. In order to evaluate the

benefits of our approach to find out the best component interfaces for a concrete

request and to generate an adaptation contract in terms of development effort

required and accuracy of the contract generated, DAMASCo has been validated on

several examples, such as an on-line computer material store, a travel agency, a

road info system or the case study presented here: an on-line booking system.

These scenarios have been implemented in the WF platform by us and executed

on an Intel Pentium(R)D CPU 3GHz, 3GB RAM computer. This represents an

initial stage, checking our whole framework, but the main goal of our approach

is to support industrial systems by validating directly pre-existing applications

in the real-world. Table 2 shows the experimental results (CPU load and exe-

cution time) corresponding to the example presented throughout this article, as

well as a road info system. For each problem, we have studied three different

scenarios, which are organised according to increasing size and complexity w.r.t.

the number of interfaces involved, as well as the overall size of protocols as a

total number of states and transitions.

Problem Scenario Size Parameter
(Problem Version) Interfaces States Transitions CPU(%) Time(s)

eb-v004 4 28 33 11,1 0,110
ebooking eb-v005 25 128 160 16,2 0,688

eb-v007 67 352 440 34,1 1,719
ri-v006 6 32 36 13,8 0,249

roadinfo ri-v008 44 264 302 20,7 0,954
ri-v010 103 650 780 47,6 2,437

Table 2: Evaluation results of our scenario

For example, for the on-line booking system (ebooking), we have checked the

discovery process for the Client-restaurant request with a component repository

containing (i) the three interfaces corresponding to the Restaurant, RestDB

and Taxi Components presented in Fig. 5 (eb-v004), (ii) those three interfaces

plus 21 other interfaces related to flights, hotels, cinemas, theaters, and so on

(eb-v005), and (iii) the three interfaces plus 63 more protocols including some

dummy interfaces to check the scalability of our framework (eb-v007). These two

latter tests have been performed to illustrate that the complexity of the problem

does not seriously affect the effort required and the accuracy of our process

as can be appreciated in the results shown in Table 2. In fact, the execution

times show a linear dependency related to the number of transitions. Therefore,

our approach turned out to be cost-effective, and with respect to the concepts

compared and execution time, it was more efficient than the mechanism used in

the WordNet::Similarity package14. In addition, using this package, only English

terms defined in its data base can be compared. In our approach, one can define a

specific domain ontology and use it without any restrictions comparing ontology

14 http://wn-similarity.sourceforge.net/ Accessed on 20 September 2010.

801Cubo J., Canal C., Pimentel E.: Context-Aware Composition ...

concepts by means of matching patterns.

Nevertheless, our approach has some limitations. Thus, although ontologies

represent certain advantages to discover components, and even our approach

could adopt other mechanisms different from ontologies, our process depends on

the construction of shared domain ontologies, and there is no component market

existing today which produces ontologies in an standard way. Another limitation

of our approach is to do with using the “average” for ranking the components

selected in the discovery process. On the other hand, since our proposal supports

synchronous systems with a client/server model, we adopt a synchronous and

binary model, so we can not simulate asynchronous systems with our model.

8 Related Work

We compare our approach with related works in software composition and adap-

tation, especially those which focus on reusing components and on tackling the

interoperability issues which exist at the different levels of component interac-

tion. We also present works based on model transformation, thereby relating

their approaches to existing programming languages and platforms.

Several proposals [Gaspari and Zavattaro 1999, Schmidt and Reussner 2002],

[Inverardi and Tivoli 2003, Cámara et al. 2008, Canal et al. 2006b] focus on the

signature and behavioural levels, and advocates abstract notations (e.g., mes-

sage correspondences or vector regular expressions) and algorithms to generate

adaptor protocols. Gaspari and Zavattaro [Gaspari and Zavattaro 1999] study

the operational behaviour of the CORBA Messaging Service from different per-

spectives in order to facilitate the task of implementors.

In [Schmidt and Reussner 2002] the authors present an adaptation approach

as a solution to particular synchronisation problems between concurrent compo-

nents Inverardi and Tivoli [Inverardi and Tivoli 2003] tackle the automatic syn-

thesis of connectors in COM/DCOM environments, by guaranteeing deadlock-

free interactions among components. They may also define properties that the

resulting system should verify using liveness and safety properties expressed

as specific processes. Compared to these proposals, we may match different

name messages using the correspondences of our adaptation contract, which

is very useful within context-aware systems. In addition, these approaches do

not use any mapping language for the adaptor specification, so the adaptor

is restricted to possible non-deadlocking behaviours [Inverardi and Tivoli 2003].

Nevertheless, the rich notation we have proposed allows us to deal with pos-

sibly realistic and complex adaptation scenarios and it is possible to address

behavioural adaptation. In [Canal et al. 2006b] a solution to behavioural adap-

tations is proposed using regular expressions of vectors as a mapping notation.

This work is supported by algorithms based on synchronous products and Petri

nets encodings. Our mapping notation is as expressive as regular expressions of

802 Cubo J., Canal C., Pimentel E.: Context-Aware Composition ...

vectors since we use synchronisation vectors, as well as transition systems that

can express the sequence, choice and iteration operators of regular expressions.

Besides, thanks to our automaton-based notation, we tackle the complexity of

the mapping using a divide-and-conquer approach, which makes its writing eas-

ier. In [Cámara et al. 2008] the authors present a composition and adaptation

approach based on transition systems. However, their approach only considers

the signature and behavioural levels to generate adaptors, and abstracts from

the implementation frameworks.

Context-aware computing is concerned about the design and implementa-

tion of applications which are able to modify their functionality depending on

changing conditions of the environment and the user. Many authors have studied

context-awarecomputing, andhavebuilt pervasive applications[Autili et al. 2009,

Marconi et al. 2009, Mokhtar et al. 2006, Schilit et al. 1994] to demonstrate the

usefulness of this technology. There have even been significant achievements in

the architectural support of context-aware applications, such as [Chen et al. 2003,

Salber et al. 1999]. However, at the different interoperability levels, the compo-

sition and adaptation of software entities within the pervasive systems has only

briefly been dealt with in some of these works. As an example, an interesting

proposal in this field is that of Ben Mokhtar et al. [Mokhtar et al. 2006]. They

model OWL-S processes, namely both client’s request and services, as finite state

automata considering contexts. Nevertheless, their approach does not consider

the behavioural compatibility, so deadlock-freeness cannot be checked. Related to

context-aware adaptation, Autili et al. [Autili et al. 2009] present an approach to

context-aware adaptive services. Services are implemented as adaptable compo-

nents by using the CHAMELEON framework. This approach considers context

information at design time, but the context changes at run-time are not evalu-

ated. We consider context changes not only at design-time, but also at run-time.

As regards semantic-based composition, Brogi et al. [Brogi et al. 2008] base

on the hypergraph theory to discover parts of descriptions of DAML-S/OWL-S

services capable of satisfying a query when no single service can satisfy it, though

they do not take the dynamic nature of the context information into account.

With respect to the relationship between existing programming languages and

platforms, the work presented by Brogi and Popescu [Brogi and Popescu 2006]

outlines a methodology for the automated generation of adaptors capable of solv-

ing behavioural mismatches between BPEL processes. Compared to this work,

our adaptation approach is able to reorder messages in between components

when required, since our discovery process that generates the contract allows this

facility. Finally, in [Motahari et al. 2007] the authors present techniques based

on SCA components, by providing semi-automated support for identification

and resolution of mismatches. We generate WF adaptors that consider not only

signature and protocol mismatches, but also context and semantic information.

803Cubo J., Canal C., Pimentel E.: Context-Aware Composition ...

9 Concluding Remarks

In this article, we have presented our proposal related to context-aware com-

position and adaptation of software components. It automatically generates an

adaptor when it is required, because when developing systems by reusing com-

ponents, compositional issues are raised, so most components cannot be directly

reused. To tackle these issues, we use model transformation. First, WF compo-

nents of a system are transformed into their corresponding CA-STS specifica-

tions. These specifications are defined as transition systems, since these systems

provide an expressive and graphical notation that specifies flexible adaptation

policies between the interfaces of entities to be integrated. Then, we perform ver-

ification techniques to identify mismatch situations that will determine whether

the components need adaptation or not, and to validate the components amongst

a set of properties by applying symbolic model checking. Next, if adaptation is

required, then we automatically generate a CA-STS adaptor from an adapta-

tion contract and the CA-STS specifications. Finally, a WF adaptor component,

which is deployed with the whole system, is extracted from the CA-STS adaptor.

This work aims at demonstrating that software composition and adapta-

tion can be of real interest for widely used implementation platforms such as

WF (.NET), and can help the developer when building software applications

by reusing software components. The formal foundations of the different steps

of our proposal have been implemented in a set of prototype tools constituting

the framework DAMASCo, which has been validated in several examples. Putting

the implementation into practise, we have compared criteria on the suitability

of both platforms, WF and BPEL. Thus, we have also carried out experiments

on the implementation of adaptors using BPEL and the Netbeans Enterprise.

As regards plans for future work, we intend to extend our proposal to tackle

dynamic reconfiguration of components, by handling the addition or elimination

of both components and context information. A first approach has been pub-

lished in [Cansado et al. 2009]. We also plan to design our model transformation

process as a metamodel underlying on MDA, as well as to perform formal demon-

strations to determine the correction and completeness of this process. Another

perspective is to study the use of more powerful techniques, such as Multi Cri-

teria Decision Making Methods (MCDM), to rank the components discovered,

instead of the “average” of the degrees of match. Finally, another line of future

work is to define context ontologies to be used in our proposal, with the purpose

of making explicit context information for each concept of an ontology.

Acknowledgements

This work is partially supported by the projects TIN2008-05932, and P06-TIC-02250

and P07-TIC-03131, funded by the Spanish Ministry MICINN and FEDER, and the

Andalusian local Government, respectively. The authors are grateful to the anonymous

referees who helped to improve the contents and quality of this article.

804 Cubo J., Canal C., Pimentel E.: Context-Aware Composition ...

References

[Arnold 1994] A. Arnold. Finite Transition Systems. International Series in Computer
Science. Prentice-Hall, 1994.

[Autili et al. 2009] M. Autili and P. Di Benedetto and P. Inverardi. Context-Aware
Adaptive Services: The PLASTIC Approach . In Proc. of FASE’09, volume 5503
of LNCS, pages 124–139. Springer, 2009.

[Bordeaux et al. 2004] L. Bordeaux, G. Salaün, D. Berardi, and M. Mecella. When
are Two Web Services Compatible? In Proc. of TES’04, volume 3324 of LNCS,
pages 15–28. Springer, 2004.

[Brogi et al. 2008] A. Brogi and S. Corfini and R. Popescu. Semantics-based
composition-oriented discovery of Web services. ACM Transactions on Internet
Technology, 8(4):19:1–19:39, 2008.

[Brogi and Popescu 2006] A. Brogi and R. Popescu. Automated Generation of BPEL
Adapters. In Proc. of ICSOC’06, volume 4294 of LNCS, pages 63–77. Springer,
2006.

[Bryant 1986] R. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, 35(8):677–691, 1986.

[Bukovics 2008] B. Bukovics. Pro WF: Windows Workflow in .NET 3.5. APress, 2008.
[Burton-Jones et al. 2003] A. Burton-Jones, V.C. Storey, V. Sugumaran, and

S. Purao. A Heuristic-Based Methodology for Semantic Augmentation of
User Queries on the Web. In Proc. of ER’03, volume 2813 of LNCS, pages
476–489. Springer, 2003.

[Cámara et al. 2009] J. Cámara, J.A. Mart́ın, G. Salaün, J. Cubo, M. Ouederni,
C. Canal, and E. Pimentel. ITACA: An Integrated Toolbox for the Automatic
Composition and Adaptation of Web Services. In Proc. of ICSE’09, pages 627–
630. IEEE CS, 2009.

[Cámara et al. 2008] J. Cámara and G. Salaün and C. Canal. Composition and Run-
time Adaptation of Mismatching Behavioural Interfaces. Journal of Universal
Computer Science, 14(13):2182–2211, 2008.

[Canal et al. 2006a] C. Canal, J.M. Murillo, and P. Poizat. Software Adaptation.
L’Objet, 12(1):9–31, 2006. Special Issue on Coordination and Adaptation Tech-
niques for Software Entities.

[Canal et al. 2006b] C. Canal, P. Poizat, and G. Salaün. Synchronizing Behavioural
Mismatch in Software Composition. In Proc. of FMOODS’06, volume 4037 of
LNCS, pages 63–77. Springer, 2006.

[Cansado et al. 2009] A. Cansado, C. Canal, G. Salaün, and J. Cubo. A Formal
Framework for Structural Reconfiguration of Components under Behavioural
Adaptation. In Proc. of FACS’09, volume 263 of ENTCS, pages 95–110. Else-
vier, 2010.

[Chen et al. 2003] H. Chen, T. Finin, and A. Joshi. An Intelligent Broker for Context-
Aware Systems. In Proc. of UbiComp’03, volume 2864 of LNCS, pages 183–184.
Springer, 2003.

[Cubo et al. 2009a] J. Cubo, C. Canal, E. Pimentel, and G. Salaün. A Formal Model
and Composition Language for Context-Aware Service Protocols. In Proc. of
CASTA’09, pages 17–20. ACM Digital Library, 2009.

[Cubo et al. 2007a] J. Cubo, G. Salaün, J. Cámara, C. Canal, and E. Pimentel.
Context-Based Adaptation of Component Behavioural Interfaces. In Proc. of CO-
ORDINATION’07, volume 4467 of LNCS, pages 305–323. Springer, 2007.

[Cubo et al. 2009b] J. Cubo, M. Sama, F. Raimondi, and D.S. Rosenblum. A Model
to Design and Verify Context-Aware Adaptive Service Composition. In Proc. of
SCC’09, pages 184–191. IEEE CS, 2009.

[Dey and Abowd 2000] A.K. Dey and G.D. Abowd. Towards a Better Understanding
of Context and Context-Awareness. In Proc. of Workshop on the What, Who,
Where, When and How of Context-Awareness, pages 304–307, 2000.

805Cubo J., Canal C., Pimentel E.: Context-Aware Composition ...

[Erl 2005] T. Erl. Service-Oriented Architecture (SOA): Concepts, Technology, and
Design. Prentice Hall, 2005.

[Foster et al. 2006] H. Foster, S. Uchitel, and J. Kramer. LTSA-WS: A Tool for
Model-based Verification of Web Service Compositions and Choreography. In Proc.
of ICSE’06, pages 771–774. ACM Press, 2006.

[Garavel et al. 2007] H. Garavel, R. Mateescu, F. Lang, and W. Serwe. CADP 2006:
A Toolbox for the Construction and Analysis of Distributed Processes. In Proc.
of CAV’07, volume 4590 of LNCS, pages 158–163. Springer, 2007.

[Gaspari and Zavattaro 1999] M. Gaspari and G. Zavattaro. A Process Algebraic
Specification of the New Asynchronous CORBA Messaging Service. In Proc. of
ECOOP’99, volume 1628 of LNCS, pages 495–518. Springer 1999.

[Inverardi and Tivoli 2003] P. Inverardi and M. Tivoli. Deadlock-free Software Archi-
tectures for COM /DCOM Applications. The Journal of Systems and Software,
65(3):173–183, 2003.

[Marconi et al. 2009] A. Marconi and M. Pistore and A. Sirbu and H. Eberle and F.
Leymann and T. Unger. Enabling Adaptation of Pervasive Flows: Built-in Con-
textual Adaptation. In Proc. of ICSOC-ServiceWave’09, volume 5900 of LNCS,
pages 445–454. Springer, 2009.

[Mateescu et al. 2008] R. Mateescu, P. Poizat, and G. Salaün. Adaptation of Service
Protocols using Process Algebra and On-the-Fly Reduction Techniques. In Proc.
of ICSOC’08, volume 5364 of LNCS, pages 84–99. Springer, 2008.

[Mokhtar et al. 2006] S.B. Mokhtar, D. Fournier, N. Georgantas, and V. Issarny.
Context-Aware Service Composition in Pervasive Computing Environments. In
Proc. of RISE’05, volume 3943 of LNCS, pages 129–144. Springer, 2006.

[Motahari et al. 2007] H. R. Motahari Nezhad, B. Benatallah, A. Martens,
F. Curbera, and F. Casati. Semi-Automated Adaptation of Service Interac-
tions. In Proc. of WWW’07. ACM Press, 2007.

[Paolucci et al. 2002] M. Paolucci, T. Kawamura, T.R. Payne, and K. Sycara. Seman-
tic Matching of Web Services Capabilities. In Proc. of ISWC’02, volume 2342 of
LNCS, pages 333–347. Springer, 2002.

[Patil et al. 2004] A. Patil, S. Oundhakar, A. Sheth, and K. Verma. METEOR-S Web
Service Annotation Framework. In Proc. of WWW’04, pages 553–562. ACM Press,
2004.

[Salber et al. 1999] D. Salber, A.K. Dey, and G.D. Abowd. The Context Toolkit: Aid-
ing the Development of Context-Enabled Applications. In Proc. of CHI’99, pages
434–441. ACM Press, 1999.

[Schilit et al. 1994] B. Schilit, N. Adams, and R. Want. Context-Aware Computing
Applications. In Proc. of WMCSA’94, pages 85–90. IEEE CS, 1994.

[Schmidt and Reussner 2002] H.W. Schmidt and R.H. Reussner. Generating Adapters
For Concurrent Component Protocol Synchronisation. In Proc. of FMOODS’02,
pages 213–229. Kluwer Academic Publishers, 2002.

[Mostéfaoui and Hirsbrunner 2003] S.K.. Mostéfaoui, and B. Hirsbrunner. Towards a
Context-Based Service Composition Framework. In Proc. of ICSW’03, pages 42–
45. CSREA Press, 2003.

[Szyperski 2003] C. Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming. Adisson-Wesley, 2nd edition, 2003.

[Yellin and Strom 1997] D. M. Yellin and R. E. Strom. Protocol Specifications and
Components Adaptors. ACM Transactions on Programming Languages and Sys-
tems, 19(2):292–333, 1997.

[Zapletal 2008] M. Zapletal. Deriving Business Service Interfaces in Windows Work-
flow from UMM Transactions. In Proc. of ICSOC’08, volume 5364 of LNCS, pages
498–504. Springer, 2008.

[Zapletal et al. 2009] M. Zapletal and W.M.P. van der Aalst and N. Russell and P.
Liegl and H. Werthner. An Analysis of Windows Workflow’s Control-Flow Ex-
pressiveness. In Proc. of ECOWS’09, pages 200–209. IEEE CS, 2009.

806 Cubo J., Canal C., Pimentel E.: Context-Aware Composition ...

