
Design and Generation of Web Services Choreographies

with Time Constraints1

M. Emilia Cambronero

(Dept. of Computer Science. Campus Universitario. ESII. Albacete. Spain

emicp@dsi.uclm.es)

Valent́ın Valero

(Dept. of Computer Science. Campus Universitario. ESII. Albacete. Spain

valentin@dsi.uclm.es)

Enrique Mart́ınez

(Dept. of Computer Science. Campus Universitario. I3A. Albacete. Spain

emartinez@dsi.uclm.es)

Abstract: In this paper we show how UML 2.0 sequence diagrams can be used for
the design of Web service choreographies with time constraints and how these sequence
diagrams can be extended with frames for the description of Web service choreogra-
phies. We then show how the diagrams can be translated into WS-CDL documents.
This translation is of interest, since non-XML experts can find it difficult to implement
a composite web service by WS-CDL, i.e. XML code. Graphic models, such as UML
sequence diagrams, are a popular and well-studied framework for a compact represen-
tation of interoperation among participants in a distributed system and can be used
as a starting document for the design of a composite Web service, from which the
corresponding WS-CDL document can be derived.

Key Words: UML, modeling, design, code generation, web services, WS-CDL, Real-
Time systems.

Category: D.2.2, D.2.3, D.2.10, H.4.3.

1 Introduction

There has recently been a surge of interest in Web services as more and more

intra/inter-organizational applications use this model. A Web service is an au-

tonomous, standards-based component whose public interfaces are defined and

described using XML [Kavantzas et al., 2005; Weerawarana et al., 2004]. Other

systems may interact with a Web service in a manner prescribed by its definition,

using XML-based messages conveyed by Internet protocols.

Internet and Web technologies are thus a new way of doing business more

cheaply and efficiently, as enterprises can provide new and dynamic services

1 Supported by the Spanish government (Secretaŕıa de Estado de Universidades), and
cofinanced by FEDER founds, with the project TIN2009-14312-C02-02, and the
JCCLM regional project PEII09-0232-7745.

Journal of Universal Computer Science, vol. 17, no. 13 (2011), 1800-1829
submitted: 29/4/09, accepted: 30/3/11, appeared: 1/9/11 © J.UCS

faster by means of Web Services. However,B2B e-commerce is still in the forma-

tive stage, and new software technologies are required to support their develop-

ment. There is a specific need for an effective and efficient means to abstract,

compose, analyze and evolveWeb Services in an appropriate time-frame [Hamadi

and Benatallah, 2003].

Current web services technology is based on the Web Service architecture

stack proposed by the World Wide Web Consortium, W3C [W3C, 2011], which

consists of the following components: SOAP, WSDL, Registry (UDDI), Secu-

rity layer, Reliable Messaging layer, Context, Coordination and Transaction

layer, Business Process Languages layer (WSBPEL) and Choreography layer.

The three basic layers are the SOAP, WSDL and UDDI. The SOAP layer de-

scribes the message format and delivery options, the WSDL language describes

the static interface of a Web Service, whereas the UDDI layer makes a Web

Service visible and available. The intermediate layers, security, reliable messag-

ing, context, coordination and transaction layers provide a wide range of quality

properties for the communications process. Finally, the highest and most ab-

stract layers are the Business Process Languages and the Choreography layers.

The Business Process Languages layer describes the execution logic by defining

its control flow and prescribing the rules for managing its non-observable data

and is also known as the Orchestration layer. The Choreography layer describes

the collaboration of parties by defining a global view of their common and com-

plementary observable behavior, where information exchanges occur and when

the jointly agreed ordering rules are satisfied. One of the most widely used W3C

pre-standardized protocols for this layer is the Choreography Description Lan-

guage (WS-CDL) [Kavantzas et al., 2005].

The choreography layer thus provides a global description of the commu-

nications that take place in the system by specifying the interactions among

participants, whereas orchestration (WSBPEL) is used for the modeling and im-

plementation of individual executable processes, describing their behavior and

their interactions from a local viewpoint.

The composition of Web Services entails the integration of the requirements

of each component. These requirements include the format of the messages ex-

changed among the parties, the channels used for communications, type of com-

munications (request and/or response), control flow, exception handling, but

timed aspects can also be considered. All of these requirements can be covered

by the choreography layer.

In this paper we focus on the Choreography layer, with the goal of deriving

automatic WS-CDL specifications, starting from specifications written in UML

2.0 sequence diagrams. Some interactions may have associated time restrictions,

in the sense that they can only be performed within a specified time window, so

another important goal is to include these time restrictions in the model.

1801Cambronero M.E., Valero V., Martinez E.: Design and Generation ...

Our final goal is the development of a methodology for the generation and

verification of “correct”Web services with time constraints. CorrectWeb services

are defined as those Web services that fulfill the established requirements, which

must be defined in the analysis phase as a set of properties of interest that must

be verified. Consequently, a verification phase is also needed, which is obtained

by using model checking techniques.

In previous work [Cambronero et al., 2010; Dı́az et al., 2006] we introduced

the fundamentals of this methodology, which is based on an automatic transla-

tion of Web services descriptions with time restrictions written in WS-CDL into

timed automata (supported by the WST tool [Cambronero et al., 2011]). The

timed automata thus obtained can then be used to simulate the systems as well

as to verify some of its properties by means of UPPAAL [Larsen et al., 1997].

The work presented in this paper corresponds to the design phase. We use

Unified Modeling Language UML 2.0 [OMG, 2003], which is a well known stan-

dard for the specification of software systems. This has been extended to include

time aspects in the specifications, by defining the appropriate profiles [Cam-

bronero et al., 2006; Graf et al., 2006; OMG, 2002]. Our interest focuses specif-

ically on the sequence diagram since it is useful to represent the main features

of WS Choreographies as well as the timed constraints of the interactions. A

sequence diagram depicts the sequence of actions that occur in a system. The

invocation of the methods of each object, and the order in which the invocations

occur are captured by a sequence diagram, whis is able represent the dynamic

behavior of a system in a simple way. With these sequence diagrams we can

describe how the different participants in a composite Web service operate with

one another and in what order, as they represent the interactions that take place

in the system arranged in a time sequence.

Timed restrictions are represented in sequence diagrams as constraints

placed between two or more exchanged messages. A key element in a UML 2.0

sequence diagram for dealing with time and nesting scenarios are frames [Am-

bler, 2005], which extend the classical UML 1.x sequence diagrams by adding

some new capabilities. One of these capabilities is the possibility of labeling the

elements of the sequence diagram, another is nesting, i.e. we can use nested

frames.

The paper is structured as follows. A discussion of related work is given in

Section 2. In Section 3 we describe the main features of WS-CDL. The trans-

lation of UML diagrams into WS-CDL documents is then presented in Section

4. Implementation is described in Section 5. Section 6 gives a brief description

of the verification phase. In Section 7 we apply this methodology to a particu-

lar case study, using UPPAAL to check some important properties. Finally, our

conclusions and future lines of research are presented in Section 8.

1802 Cambronero M.E., Valero V., Martinez E.: Design and Generation ...

2 Related work

Web services are now attracting a lot of attention and several studies have pro-

posed various approaches and frameworks for their specification and analysis.

Alexander Lorenz et al. [Lorenz and Six, 2006] use UML activity models for

the specification of use cases in the context of interactive systems. These ac-

tivities must be adapted and refined before they can successfully be applied to

the context of interactive systems. They tailor the activities to these needs, thus

obtaining the so-called interaction-oriented activities. They introduce a distinc-

tion between “user actions” and “system actions” by defining two stereotypes

which define the tasks performed by the user and those performed by the system.

They use UML activity diagrams to model the system instead of the sequence

diagrams we use, which show how objects interact dynamically with actors and

other objects.

Some studies focus on dependability analysis. [Zarras et al., 2004b] presents

a methodology for performing dependability analysis of composite web services,

which uses UML representation for the architecture specification of composite

web services written in WSBPEL. The UML representation is then extended by

adding properties which characterize the failure behavior of the elements that

constitute the composite web services, such as availability, reliability and safety.

This extended UML model is finally mapped in Block Diagrams, Fault Trees

and Markov models, where dependability analysis techniques can be applied.

Zhang et al. [Zhang et al., 2008] propose the use of different UML diagrams to

model WS-CDL. WS-CDL documents are firstly modeled by using UML specifi-

cations (Component, Sequence and State diagrams) and the UML specifications

obtained are then used to analyze and verify the initial WS-CDL description.

However, exception handling is not considered in this paper, and the formalism

they use is simpler than timed automata. They simply obtain data-enriched State

Machine Diagrams manually by combining UML class diagrams which capture

the WS-CDL data model and UML state machine diagrams, which capture the

abstract behavior model of each role in WS-CDL.

We based our exception modeling on [Halvorsen and Haugen, 2006], in which

Halvorsen et al. present a method of handling exceptions in UML 2.0 sequence

diagrams. This notation distinguishes the exception flow from the normal control

flow creating visual separation and providing a way of handling exceptions in

both single-threaded programs and multithreaded programs. Using this idea, we

will define a new kind of frame, the exception frame, which will be associated

with interactions (message exchanges) reflecting a fault condition, which can be

of diverse types, such as a failure in transmission, a security failure, a time-out

associated to the interaction that has expired, etc.

Finally, some tools support the formal development of Web services. Benatal-

lah et al. [Benatallah et al., 2005] present a framework, known as Self-Serv, for

1803Cambronero M.E., Valero V., Martinez E.: Design and Generation ...

the design and implementation of a system in which services are composed by a

model-driven approach, and the resulting composite services are orchestrated fol-

lowing a peer-to-peer paradigm. Composite services are specified by state-charts,

using data conversion rules and multi-attribute provider selection policies. These

specifications are interpreted by software components that interact peer-to-peer

to generate and coordinate the execution of the composite service. In [Foster et

al., 2005a,b] the authors define and implement an Eclipse plug-in (LTSA) for the

design of Web service compositions. They use Message Sequence Charts (MSCs)

to specify interactions among the participants, and then a WS-CDL description

is obtained to represent global coordination as well as a WS-BPEL description of

the services involved. In contrast, we use UML sequence diagrams as the starting

point and also take into account timed restrictions in the interactions.

3 Description of WS-CDL

A Web services choreography specification offers a precise description of the

collaboration between the parties involved in a choreography. WS-CDL speci-

fications are contracts containing “global” definitions of the common ordering

conditions and constraints under which messages are exchanged. The contract

gives a global description of the common and complementary observable behav-

ior of all the parties involved. Each party can then use the global definition

to build and test solutions that conform to it. The global specification is in

turn performed by a combination of the resulting local systems, on the basis of

appropriate infrastructure support.

Since in real-world scenarios corporate entities are often unwilling to delegate

control of their business processes to their integration partners, a choreography

offers a means by which the rules of participation can be clearly defined and

jointly agreed to. Each partner may then implement his portion of the Chore-

ography as determined by the common or global view. The aim of WS-CDL is

to make it easy to determine the conformance of each implementation to the

common view expressed in the WS-CDL.

The WS-CDL model consists of the following entities [Kavantzas et al., 2005]:

– Participant Types, Role Types and Relationship Types. A Partici-

pant Type groups together those parts of the observable behavior that must

be implemented by the same logical entity or organization. A Role Type

enumerates the observable behavior a party exhibits in order to collaborate

with other parties. A Relationship Type identifies the mutual commitments

that must be made between two parties for them to collaborate successfully.

– Information Types, Variables and Tokens. Information Types describe

the type of information used in a choreography. Variables contain information

1804 Cambronero M.E., Valero V., Martinez E.: Design and Generation ...

about commonly observable objects in a collaboration, such as the informa-

tion exchanged or the observable information of the Roles involved. Tokens

are aliases that can be used to refer to parts of a Variable. Both Variables and

Tokens have Types that define the structure of what the Variable contains

or the Token references.

– Choreographies: As mentioned above, these establish the common rules

that govern the ordering of exchanged messages and collaborative behavior.

A WS-CDL document, in general, consists of a hierarchy of choreographies,

which are executed by using the WS-CDL perform activity. However, in our

case, WS-CDL descriptions generated by translation from UML 2.0 sequence

diagrams will only consist of a single choreography (the so called root chore-

ography).

A choreography in WS-CDL consists of three parts:

• Choreography Life-line: This describes the progress of a collabora-

tion. Initially, the collaboration is established between the parties; so

that a task is performed within it and it finally completes either nor-

mally or abnormally.

• Choreography Exception Block: This specifies the additional inter-

actions that should occur when a Choreography behaves in an abnormal

way.

• Choreography Finalizer Block: This describes how to specify addi-

tional interactions that should occur to modify the effect of an earlier

successfully completed Choreography (for example, to confirm or undo

the effect).

– Channels establish a point of collaboration between parties by specifying

where and how information is exchanged.

– Activities and Ordering Structures. The collaborative behavior of the

participants in a choreography is described by means of activities. These

are the actions performed within a choreography and are divided into three

groups: basic activities, ordering structures and workunits. The basic activi-

ties are used to establish the variable values (assign), to indicate some inner

action of a specific participant (silent action), or that a participant does not

perform any action (noaction), and also to establish an exchange of mes-

sages between two participants (interaction). An interaction can be assigned

a time-out , i.e. a time for its completion. When this time-out expires if the

interaction has not been completed the timeout is activated and the inter-

action finishes abnormally, causing an exception block to be executed in the

choreography. Interactions can also fail due to other causes, which can be

1805Cambronero M.E., Valero V., Martinez E.: Design and Generation ...

declared as part of the possible message exchanges of an interaction (see the

exception frame part in Table 2, syntax of the exchange part of the involved

interaction). The additional causes of failure of an interaction can include

a failure in the transmission of a message, a security failure (e.g. an unsuc-

cessful user authentication), application failures (e.g., the goods ordered are

out of stock), etc.

The ordering structures are used to combine activities with other order-

ing structures in a nested structure to express the ordering conditions under

which information within the choreography is exchanged. The ordering struc-

tures are sequence, choice and parallel, with the usual interpretation. Finally,

workunits are used to allow the execution of certain activities when a cer-

tain condition holds. Thus, a workunit encapsulates one activity, which can

only be executed if the corresponding guard is evaluated as true. There is a

further guard in the workunits in order to allow the iteration of the enclosed

activity.

Therefore, considering the ways in which time information can be used in

WS-CDL we see that me can have time-outs in the interactions, but we can also

use date/time variables (and expressions) in a WS-CDL document, by using

XPath 2.0. XPath actually provides a number of functions to manage these

datatype values, for instance, to delay the execution for a certain time, or to

establish the times at which actions can or must be executed. We can then use

these date/time variables in the workunits guards in order to establish the time

at which the activities inside the workunits can or must be executed.

4 Translation of UML sequence diagram into WS-CDL

In this section we describe the translation of UML 2.0 sequence diagrams into the

XML documents written in WS-CDL language. Our starting point is a UML 2.0

sequence diagram extended with frames [Ambler, 2005]. A frame is defined as a

unit of behavior and contains, among others, related objects, and the sequence of

messages between these objects. A frame is depicted by a solid-outline rectangle

with a pentagon in the upper left corner name-label, which makes it easier to

refer to, e.g. as a subdiagram.

We will consider the following specific frames in our translation (Figure 1):

– Alt-labeled frames: These allow us to specify an if-then-else control structure,

depending on a condition that follows the alt label.

– Opt-labeled frames: These allow us to specify an if-then control structure,

depending on the condition that follows the opt label.

1806 Cambronero M.E., Valero V., Martinez E.: Design and Generation ...

Alt Frame

Opt Frame

Loop Frame

Par Frame

Interaction
Exception Frame

Alt [guard]

Opt [guard]

Loop [guard]

 ...

Par

IException name [tim eout value]
 [ExceptionNam e]

Figure 1: UML 2.0 frames considered in the model.

– Loop-labeled frames: These allow us to describe a repetitive behavior, de-

pending on the condition that follows the loop label.

– Par-labeled frames: These describe parallel message exchange activities.

– Interaction exception frames: These are associated with interactions and ex-

press fault conditions. They are pictured as separated frames, linked by an

arrow to the interaction they are associated with. As an interaction can fail

for many different reasons, there may be several interaction exception frames

linked to it. It should be noted that an interaction may have an associated

1807Cambronero M.E., Valero V., Martinez E.: Design and Generation ...

 …

Exception name[tim eout value]
 [ExceptionName]

Exception name[tim eout value]
 [ExceptionName]

Exception name[tim eout value]
 [ExceptionName]

Figure 2: Structure of an exception sequence diagram.

time-out, so we consider a specific type of interaction exception frame for

this case (see Figure 1).

Together with the sequence diagram capturing the main control flow, we have

the so-called exception sequence diagram, which consists of a set of Exception

frames (see Figure 2), one for each interaction fault condition. Each Exception

frame is labeled with the corresponding interaction fault condition and only

comes into play when this specific error has occurred.

Frames are therefore a powerful tool to describe the control structure of

a composite Web service, as well as the exception situations that may arise

when two parties interact. Furthermore, we can use frame conditions to specify

constraints that can include a wide range of information, such as expressions

(using variables), clocks, etc. Frame-extended UML 2.0 therefore allows us to

describe composite Web services with time restrictions.

Once we have introduced the UML sequence diagrams with the appropriate

frame extension, we can describe the translation, which is made on a structural

1808 Cambronero M.E., Valero V., Martinez E.: Design and Generation ...

UM L Diagram s
Com ponents

W S-CDL
Com ponents

Syntax of the W S-CDL Com ponents

Role

<roleType name="name">
 <behavior name = "name" interface="iname" />
</roleType>

O bject

Participant Type

<participantType name="ncname">
 <role type="name" />
</participantType>

Relationship Type

<relationshipType name="name">
 <role type="qname" behavior="list of name" />
 <role type="qname" behavior="list of name" />
</relationshipType>

Channels Types

<channelType name="ncname" >
</channelType>

M essages

Interaction <interaction name="iname"
 operation="iname"
 channelVariable="ncname">
 <participate relationshipType="QName"
 fromRoleTypeRef="QName"
 toRoleTypeRef="QName" />
 <exchange name="NCname" action="request">
 <send variable="XPath-expression" />
 <receive variable="XPath-expression" />
 </exchange>
 <exchange name="NCname" action="respond">
 <send variable="ACKVariable" />
 <receive variable=" ACKVariable " />
 </exchange>
</interaction>

Tim eout - The time-out line is added to the associated interaction:

<interaction name="iname"
 <exchange name="NCname" …
 </exchange>
 <tim eout tim e-to-com plete="XPath-expression"
</interaction>

- And a new workunit in the exceptionBlock:

<exceptionBlock name="handleException">
 …
 <workunit nam e="tim eout_nam e"
 guard="cdl:hasExceptionO ccurred(xsd:tim eout) ">
 Activity
 </workunit>
 …
</exceptionBlock>

Labels and Tim e
Constrains

Time Variables <variableDefinitions>
 <variable name="ncname"
 informationType="qname"
 roleTypes="RoleTypename" />
</variableDefinitions>

Table 1: Translation of UML 2.0 sequence diagrams elements into WS-CDL.

basis, i.e. we provide the translation for each element in the frame-extended

1809Cambronero M.E., Valero V., Martinez E.: Design and Generation ...

UML 2.0 sequence diagrams (Tables 1 and 2):

– Objects: The objects in the UML 2.0 sequence diagrams correspond to the

WS-CDL role types, which are used to describe the behavior of each class

of party involved in the choreography. Each object is then translated into

a different WS-CDL role type. We also consider a participant type for the

object with its associated role type.

– Messages: Each message in the UML sequence diagram is translated as a

WS-CDL interaction with a Request exchange element followed by a Respond

exchange element. For this, we also need to declare a new channel type, as

well as a new relationship type. The channel type declares the channel used

for the communication and the relationship type specifies the two role types

(objects) involved in this interaction, which has a Request-exchange element,

corresponding to the sending of the message specified in the UML sequence

diagram, as well as a Respond-exchange element capturing the message ack

in the case of successful transmission.

Furthermore, as we will see below, if this transmission has an associated

time-out or any other interaction exception frame, these fault conditions

will enrich the interaction syntax by adding elements to it.

– Variables, expressions and time constraints: These are translated by WS-

CDL information types, variables and expressions in XPath. From the UML

sequence diagram we obtain the corresponding Information types for the

WS-CDL translation. These are the same types of variables as used in the

UML sequence diagram. Each variable is then translated into a WS-CDL

variable (with the same name), using the corresponding information type.

Time constraints are translated into XPath expressions by the appropri-

ate XPath operators, like op:getCurrentDateTime, op:hasDurationPassed

or op:hasDeadlinePassed.

– Par - labeled frames are translated as parallel ordering structures, indicating

activities running in parallel.

– Loop - labeled frames are translated by WS-CDL workunits, indicating iter-

ative computations. The loop condition (expressed in XPath) is thus used

both for the workunit guard and for its repetitive behavior.

– Opt - labeled frames are also translated as workunits. In this case, the Boolean

expression following the keyword opt is used as the guard for the workunit.

– Alt - labeled frames are translated using a choice and two guarded workunits

as alternatives. The Boolean expression following the keyword alt is now used

as guard for the first workunit, whose actions are taken from the activities

1810 Cambronero M.E., Valero V., Martinez E.: Design and Generation ...

UM L Diagram s
Com ponents

Label Syntax of the W S-CDL Com ponents

"alt" label <choice>
 <workunit name="ncname" (if part)
 guard="xsd:boolean Xpath-expression"
 Activity1
 </workunit>
 <workunit name="ncname" (else part)
 guard="xsd:boolean Xpath-expression"
 Activity2
 </workunit>
</choice>

"opt" label <workunit name="ncname"
 guard="xsd:boolean Xpath-expression"
 Activity
</workunit>

"loop" label <workunit name="ncname"
 guard="xsd:boolean Xpath-expression"
 repeat="xsd:boolean Xpath-expression">
 Activity
</workunit>

"par" label <parallel>
 Activity
</parallel>

Frames.

"IException" label Two new exchanges are added to the corresponding interaction:

 <exchange name="NCname" action="respond"
 faultName="ExceptionName">
 <send variable="ExceptionName"
 causeException="ExceptionName" />
 <receive variable="ExceptionName"
 causeException="ExceptionName" />
 </exchange>

And a new workunit in the exceptionBlock:

<exceptionBlock name="handleException">
 …
 <workunit nam e="ncnam e"
 guard="cdl:hasExceptionO ccurred(xsd:ExceptionNam e) ">
 Activity
 </workunit>
 …
</exceptionBlock>

Table 2: Translation of UML Frames into WS-CDL.

inside the then-part of the frame, whereas the guard of the second workunit

is the negation of that condition. According to WS-CDL semantics, only the

workunit for which the guard is evaluated as true will thus be performed.

– Interaction exception frames: These are translated by adding new elements

to the interaction they are associated with. We must distinguish between

two cases:

• Time-out: When the transmission of a message has an associated time-

1811Cambronero M.E., Valero V., Martinez E.: Design and Generation ...

out, we include a time-out element in the associated interaction (see

Time-out translation in Table 1).

• Others: For any other interaction exception frame we consider a new

Respond-exchange element within the associated interaction, with the

faultName attribute, which is used to indicate that this exchange corre-

sponds to a failure, and also the causeException attribute must be in-

cluded in both the send and the receive parts of the exchange, indicating

the thrown exception.

– Exception frames: The exception frames within the Exception sequence di-

agram are translated into WS-CDL using the choreography exception block,

in which there are as many exception workunits as exception types. An ex-

ception workunit is a guarded workunit, in which the hasExceptionOccurred

WS-CDL function is used to check the exception that has been thrown. Thus,

only the corresponding exception workunit is performed.

5 Implementation

This section describes the Web Services Translation tool (WST), which we are

at present developing for translating UML 2.0 sequence diagrams into WS-CDL

specification documents and the obtained WS-CDL specifications into Timed

Automata, which are then used to simulate and verify the system behavior. This

tool and its documentation is available at http://www.dsi.uclm.es/retics/WST/.

There is also a folder with the XSL files, which contain the transformation rules

that capture the translation described in the previous section.

WST implements a part of a top-down methodology for the development of

composite Web services. This methodology consists of the following phases:

1. Analysis phase: In this phase we perform the so-called requirement engineer-

ing, in which a goal model technology is used to define the main requirements

of the system. The specific methodology used is KAOS [Dardenne et al.,

1993], and the result is the set of requirements that the system must fulfill.

2. Design phase: In this phase we use UML 2.0 sequence diagrams extended

with frames to model the system by producing a system sequence diagram.

3. Choreography generation phase: A WS-CDL choreography is automatically

generated.

4. Validation phase: The generated WS-CDL documents are translated into

Timed Automata, which can be used in UPPAAL to simulate the system,

by running it and checking that it works properly under normal conditions.

Some mistakes may appear, in which case we return to the design phase to

correct them.

1812 Cambronero M.E., Valero V., Martinez E.: Design and Generation ...

5. Verification phase: Timed Automata are a powerful formalism, which allows

us not only to carry out simulations, but also to analyze whether the proper-

ties identified in the analysis phase are fulfilled or not. We use the UPPAAL

model checker to verify the properties of interest, which have been identified

in the first phase. Again, if failures are detected here, we must return to the

design phase.

The requirements defined in the analysis phase are then used in the verifi-

cation process as the set of properties that must be satisfied. As they are

also used to identify the entities and the functionalities of the system, they

are also taken into account in the design phase. In the UPPAAL verification

process, when a property does not hold, we obtain an execution trace that

leads to the point where the property is not satisfied.

This information can be used to recreate the trace on the sequence diagram

in order to identify the design mistake.

WST basically works by applying a number of XSL style sheets [Clark, 1998]

to the initial XMI document (representing the UML sequence diagram) in order

to obtain the corresponding WS-CDL XML document. Figure 3 shows the XSL

transformation rule for the opt frame, whereas figures 4 and 5 show in two parts

the XSL rule for messages.

6 Verification

WST also translates the obtained WS-CDL specification into a network of timed

automata (NTA). The NTA system obtained allows us to validate and verify the

expected requirements of the system. The steps followed by WST to translate

a WS-CDL document into a timed automata system are described in detail

in [Cambronero et al., 2009]; here we only give a brief description of how the

translation works.

In the timed automata model that we consider we have non-negative integer

variables and urgent edges. The variables can be assigned a value when executing

an edge, and their values can be checked in the guards and invariants. Urgent

edges inhibit time elapsing when they are enabled.

A function ϕ is first defined which associates an NTA to every WS-CDL

activity, where ϕ : Activities × PF(C) ×N −→ NTA× PF(C). The main argu-

ment of this function is the activity for which the translation is made, but it has

two additional arguments: one set of clocks (PF (C)) and one location (N). The

set of clocks must be reset just before finishing the execution of the generated

timed automata (for compositional purposes).

The location is used to transfer the control flow there in the event of a failure.

We use this location as an argument in order to link the normal activity flow

with the exception part, as we will see below.

1813Cambronero M.E., Valero V., Martinez E.: Design and Generation ...

 <?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:UML="omg.org/UML1.3">

 …

 <xsl:if test="name()='frames'">

 <xsl:if test="starts-with(@name,'opt')">
 <workunit>
 <xsl:attribute name="name">
 <xsl:value-of select="@name" />
 </xsl:attribute>
 <xsl:attribute name="guard">
 <xsl:value-of select="@guard" />
 </xsl:attribute>
 <xsl:attribute name="block">
 <xsl:value-of select="'true'" />
 </xsl:attribute>

 <sequence>
 <xsl:call-template name="frame_content">
 <xsl:with-param name="identifier" select="@idframe" />
 <xsl:with-param name="type" select="@name" />
 </xsl:call-template>
 </sequence>
 </workunit>
 </xsl:if>

…

 </xsl:if>

Figure 3: XSL rule for “opt” frame.

We will denote the first projection of ϕ by ϕ1(A,C, l), i.e. the obtained NTA,

and its second projection by ϕ2(A,C, l), i.e. the set of clocks that should be reset

when using this NTA compositionally.

A choreography is now defined as a pair (A1, {A2i}i∈I), where A1 is the activ-

ity of the choreography life-line , and {A2i}i∈I is the set of exception workunits

of its exception block, which can be empty (denoted by ∅), because the exception
block is optional.

Thus, given a choreography C = (A1, {A2i}i∈I), we define its associated NTA

as follows (Figure 8):

– We first create a location ‘de’, which we call the “double exception location”,

which is used as the location to which the control flow is transferred in

the event of a failure within an exception activity A2i . We then generate

ϕ(A2i , ∅, de), for i ∈ I.

– We now create the exception location ‘e’, to which the control flow is trans-

ferred in the event of failure in A1, and then we generate ϕ(A1, ∅, e).
– We connect the exception location ‘e’ with the initial locations of the NTAs

1814 Cambronero M.E., Valero V., Martinez E.: Design and Generation ...

corresponding to the exception workunits, according to the exception thrown,

by means of an urgent edge, which must reset all the clocks in ϕ2(A2i , ∅, de),
with i ∈ I. As can be seen in Figure 8, urgent edges are graphically distin-

guished by a white arrowhead and are given top priority when enabled.

Figures 6 and 7 show how the function ϕ is defined for the different activities.

It can be seen, that all the obtained automata have both one initial and one final

location, this property being preserved by all the constructions. It should be

noted that according to our description, the current translation for interactions

only considers the failures due to time-outs and unassigned source variables.

Furthermore, in the event of a failure, all of these constructions transfer the

control flow to the location indicated as parameter in the function ϕ, and reset

the clocks indicated as parameters in all the edges reaching the final location.

As a result of this translation, we obtain an NTA representing the behavior

 <xsl:if test="name()='interaction'">
<interaction>
 <xsl:attribute name="name">
 <xsl:value-of select="@name" />
 <xsl:text>_interaction</xsl:text>

 </xsl:attribute>
 <xsl:attribute name="operation">
 <xsl:value-of select="@operation" />

 </xsl:attribute>
 <xsl:variable name="var1" select="participate/@fromRole" />
 <xsl:variable name="var2" select="participate/@toRole" />
<xsl:for-each select="//package/relation">
 <xsl:for-each select="child::*">
 <xsl:variable name="rol2" select="role2" />
 <xsl:variable name="rol1" select="role1" />

 <xsl:if test="not(repe='si')">
 <xsl:if test="$rol1!=$rol2">
 <xsl:if test="not(canalrep)">
 <xsl:variable name="canal1" select="substring-
 before(role1,'RoleType')" />

...
 <xsl:if test="((($var1=role1) or (role2=$var1)) and (($var2=role1)
 or (role2=$var2)))">
 <xsl:attribute name="channelVariable">
 <xsl:value-of select="$canal1" />
 <xsl:value-of select="$canal2" />
 <xsl:text>Channel</xsl:text>

 </xsl:attribute>
 </xsl:if>

 </xsl:if>
 </xsl:if>
 </xsl:if>
 </xsl:for-each>
</xsl:for-each>

Figure 4: XSL rule translating a UML message into a WS-CDL interaction (I).

1815Cambronero M.E., Valero V., Martinez E.: Design and Generation ...

 …
<participate>
 <xsl:attribute name="relationshipType">... </xsl:attribute>
 <xsl:attribute name="fromRole"> ... </xsl:attribute>
 <xsl:attribute name="toRole"> ... </xsl:attribute>
 </participate>

<exchange>
 <xsl:attribute name="name">
 <xsl:value-of select="exchange/@name" />
 </xsl:attribute>
 <xsl:attribute name="action">
 <xsl:value-of select="exchange/@action" />
 </xsl:attribute>
 <xsl:if test="exchange/send">

 <send>
 <xsl:attribute name="variable">
 <xsl:value-of select="exchange/send/@variable" />
 </xsl:attribute>
 </send>
 </xsl:if>

 <xsl:if test="exchange/receive">
 <receive>
 <xsl:attribute name="variable">
 <xsl:value-of select="exchange/receive/@variable" />
 </xsl:attribute>
 </receive>
 </xsl:if>
 </exchange>
<xsl:if test="timeout">
 <timeout>
 <xsl:attribute name="time-to-complete">
 <xsl:value-of select="timeout" />
 </xsl:attribute>
 </timeout>
 </xsl:if>
 ...
 </interaction>

Figure 5: XSL rule translating a UML message into a WS-CDL interaction (II).

of the composite Web service. This NTA representation can be directly used in

the UPPAAL tool, to carry out simulations and also to verify the properties that

were identified in the analysis phase. The following case study is an illustration

of the above explanation.

7 Case Study: Purchase Process

Let us consider a typical purchase process in an Internet business context. There

are three participants involved in this example: a client, a supplier and a deliv-

erer. The Internet purchase works as follows: “A client wants to buy a product

using the Internet. There are several suppliers that offer different products on

1816 Cambronero M.E., Valero V., Martinez E.: Design and Generation ...

Internet Servers based on Web-pages. The client contacts a supplier in order to

buy the desired product. The supplier confirms the order and contacts a deliverer,

who transports the product to the client”.

ε

<timeout time−to−complete="t" />

≤ ∅(x t, ExceptionName,)

212

(True,noaction(r),C)

end noactinit noact

∅
<noAction roleType=r />

noaction(r)

</exceptionBlock>

...

<exceptionBlock ...

init fail

end fail

l

WS−CDL Term

∅

fail

(True,fail,)∅

init assign
end assign

v:=n

(True,assign(r,v,n),C)
∅

assign(r,v,n)

<assign roleType="r">

<copy name=" " >

<source variable="n"/>

<target variable="v" />

</copy>

</assign>

l

1

...

1 εv∧ ≠

(x t+1)£

1

inter(r ,r ,v ,v ,t)

</interaction>

{x}

 <participate relationshipType="..."

fromRoleTypeRef="r1"

toRoleTypeRef="r2" />

 <exchange ...

<send variable="v1" />

<receive variable="v2" />

</exchange>

<interaction ...

end inter

(v = , fail,)

≤init inter (x t , inter(r ,r , v , v , t), C)

v := v
(x=t+1,fail,)

12

∅

∅

1 2 1 2

ϕ C,l)(Α,1 ϕ C,l)(Α,2

Figure 6: From WS-CDL to NTA (I).

1817Cambronero M.E., Valero V., Martinez E.: Design and Generation ...

=1), and replace every invariant I by =1e Add the assignment v∧
∅

Term A

ϕ
2 (A ,C,l)2

init A1 A2
initend A1=

ϕ
1(Α 1,∅,)l

<choice>

</choice>

A ; A1 2

A1

A2

ϕ
1 2,C,)(Α l

end A2

ϕ (Α ,∅,)
2 1 l

Add
the edges reaching the location

to the set of clocks to be reset in all

end A1
.

A || A1 2
init

A || A1 2

A1

A2

init A1

end A1

end A2

I ∨ (∨e

∅
.

init
A’2

(True,c?, l))ϕ2 (Α 2

(True,c?,)

end

(True,c!,C)

ve :=0

(True,c!, l))

∅
<parallel>

A || A1 2

</parallel>

ϕ2 (Α

∅

1 ,∅,

,∅,

init A2

ϕ
1(Α 1,∅,)l

ϕ
1(Α 2,∅,)l

Add a variable v , and replace the guard g of every edge of
by g (v

in every fail edge of

e and

and .ϕ
1 2(A , , l)ϕ

1(A , , l)1

ϕ
1(A , ,l)1 ϕ

1 2(A , ,l)∅ ∅

e = 0)

C,l)(Α,1ϕ C,l)(Α,2ϕ

Figure 7: From WS-CDL to NTA (II).

The behavior of each participant is the following:

– Client: He contacts the supplier to buy a product. He must send the supplier

the appropriate information on the product and payment data. After the

payment has been correctly processed, he expects to receive the product

from the deliverer within the agreed time (48 hours). If he does not receive

the product in the agreed time, the payment is refunded.

– Supplier: He receives the order and payment information. The supplier sends

an acknowledgment to the client, unless the product is out of stock, and con-

tacts a deliverer to transport the product if the payment has been correctly

processed.

– Deliverer: He picks up the order with the client information and delivers it

to the client.

1818 Cambronero M.E., Valero V., Martinez E.: Design and Generation ...

end A2

init
A2

de

1ϕ (Α de)2 ,∅,

end A2

init
A2

de

1ϕ (Α de),∅,3

end A2

init
A2

de

1ϕ (Α de),∅,Ν

Ainit
1

e

end A 1

1ϕ (Α e)1 ,∅,

τ ϕΝ(ΑΝ,∅,Ν(ExceptionVble , , de))

(ExceptionVble , , de))τ ϕ (Α ,∅,221

(ExceptionVble , , de))τ ϕ (Α ,∅,32 3

Α =

...

Figure 8: From WS-CDL to NTA (III).

7.1 Analysis phase

We have identified two different kinds of requirement for this system. One refers

to the correct behavior of the system, while the other refers to the quality of the

service offered. In the first requirement there is a timing constraint, which is the

maximum delivery time. Payment information must also be checked for process-

ing and security issues. The second class, related to performance issues, also has

two requirements: the speed of the service and efficient request processing.

Figure 9 depicts the KAOS goal-model that we developed for this case study.

The root goal “CorrectInternetPurchaseProcess” consists of two subgoals joined

by an And-refinement, which means that both subgoals must be fulfilled to

achieve the root goal:

– The first goal-model, “BehavesProperly”, which is of the “maintain” type, is

refined by another And-refinement, with two leaf goals: “PickupOnTime”, of

“Unbound Respond” type, which requires the deliverer to pick up the order

on time, otherwise the payment will be refunded, and “CorrectPaymentPro-

cess”, of “maintain” type, which specifies that the delivery process will not

occur if the payment information is not valid.

1819Cambronero M.E., Valero V., Martinez E.: Design and Generation ...

Figure 9: The goal-model for the Internet Purchase Process.

– The second “SatisfiedClient”, of “PossibleAlways” type, consists of three leaf

goals that refine the parent goal by an And-refinement:

• “RapidService”, of “Achieve” type, determines that the client will receive

the product on time, i.e., within 48 hours after payment.

• “CorrectRequestService”, of “Unbound Respond” type, indicates that

the product request will only be initiated if the product is not out of

stock.

• “TryAgain”, of “Unbound Respond” type , specifies that the client must

be able to repeat the purchase process if the payment is not correct.

7.2 Design phase

Figure 10 depicts the UML sequence diagram corresponding to the purchase

process, created with WST. In this snapshot we can see the three actors in-

volved in this system with two alt-frames below. The first alt-frame captures the

possibility of sending correct or incorrect payment information. The second alt-

frame uses a Boolean variable called “ValidPayment”. Thus, when the payment

information is valid, the Supplier contacts with the Deliverer, who must send

the product within the stipulated time (otherwise an exception is thrown).

We can also see two exception-frames at the end of the diagram. The first

one sends a notification to the Client when the Supplier is out of stock. The

other exception frame states the refund if the product has not been delivered in

the stipulated time.

1820 Cambronero M.E., Valero V., Martinez E.: Design and Generation ...

Figure 10: UML sequence diagram for the Internet Purchase Process.

From this UML sequence diagramwe obtain the correspondingWS-CDL code

by applying the translation introduced in Section 4. A piece of the generatedWS-

CDL code is shown in Figure 11, and a snapshot of WST producing this code

in Figure 12.

7.3 Validation and Verification phase

The WS-CDL code can now be translated into an NTA, by using another tab of

the WST interface (Figure 13), which implements the translation described in

Section 6. This NTA (Figure 14) can then be used to accomplish the validation

and verification phase.

1821Cambronero M.E., Valero V., Martinez E.: Design and Generation ...

<?xml version="1.0" encoding="UTF-8" ?>
<package author="SCTR Group" name="" version="1.0">

…
<choice>

<sequence>
 <interaction name="RequestInfo_interaction" operation="RequestInfo" channelVariable="Client2SupplierChannel">
 <participate relationshipType="ClientSupplier" fromRole="ClientRoleType" toRole="SupplierRoleType" />
 <exchange name="RequestInfoExchange" action="request" />
 <exchange name="RequestInfoExchangeACK" action="respond">
 <send variable="ACKVariable" />
 <receive variable="ACKVariable" />

 </exchange>
 <exchange name="ExchangeExceptionStock" faultName="ExchangeExceptionStock" action="respond">
 <send variable="Stock" causeException="tns:Stock" />
 <receive variable="Stock" causeException="tns:Stock" />

 </exchange>
 </interaction>

 <interaction name="SendInfo_interaction" operation="SendInfo" channelVariable="Client2SupplierChannel">
 <participate relationshipType="SupplierClient" fromRole="SupplierRoleType" toRole="ClientRoleType" />
 …
</interaction>

 <choice>
 <sequence>
 <interaction name="CorrectPayment_interaction"
 operation="CorrectPayment" channelVariable="Client2SupplierChannel">
 <participate relationshipType="ClientSupplier" fromRole="ClientRoleType" toRole="SupplierRoleType" />

 …
 </interaction>
 </sequence>

 <sequence>
 <interaction name="IncorrectPayment_interaction"

 …
 </interaction>
 </sequence>

 </choice>
…

 <choice>
 <workunit name="alt_else1_if" guard="ValidPayment==true" block="false">
 <sequence>

 <interaction name="SendProduct_interaction" operation="SendProduct"
 channelVariable="Deliverer2ClientChannel">
 <participate relationshipType="DelivererClient" fromRole="DelivererRoleType" toRole="ClientRoleType" />
 <exchange name="SendProductExchange" action="request" />
 <exchange name="SendProductExchangeACK" action="respond">
 <send variable="ACKVariable" />
 <receive variable="ACKVariable" />

 </exchange>
 <timeout time-to-complete="Hour <= 48" />
 </interaction>
 </sequence>
 </workunit>
 <workunit name="alt_else1_else" guard="ValidPayment!=true" block="false">
 …
 </workunit>

 </choice>
 </sequence>

 …
 <exceptionBlock name="handleException">
 <workunit name="exception1" guard="hasExceptionOccurred(Stock)">
 <sequence>
 <interaction name="OutOfStock_interaction" operation="OutOfStock"
 channelVariable="Client2SupplierChannel">
 <participate relationshipType="SupplierClient" fromRole="SupplierRoleType" toRole="ClientRoleType" />
 <exchange name="OutOfStockExchange" action="request" />
 <exchange name="OutOfStockExchangeACK" action="respond">
 <send variable="ACKVariable" />
 <receive variable="ACKVariable" />
 </exchange>
 </interaction>
 </sequence>
 </workunit>
 <workunit name="exception2" guard="hasExceptionOccurred(Hour<=48)"> … </workunit>
 </exceptionBlock>
</choreography>
</package>

RequestInfo M essage with Exception

Fram e labelled with alt

Fram e labelled with alt[ValidPaym ent==true]

Exception Block for O ut of Stock Exception

Figure 11: A piece of the Internet purchase process WS-CDL code.

1822 Cambronero M.E., Valero V., Martinez E.: Design and Generation ...

Figure 12: From XMI-UML representation to WS-CDL with WST.

Validation is by means of simulation, where we check that the system behaves

as expected in normal conditions. For this we use the UPPAAL simulator, which

can be used in three different ways:

– The system can be run manually, selecting the transitions to be executed at

each step.

– The system can run on its own and the transitions to be performed are

therefore selected randomly.

– The user can run a trace extracted from the verifier. This is usually done in

the event of a failure when testing a property, in order to analyze the trace

that the verifier provides us, which leads to the state at which the property

does not hold.

Figure 15 depicts a snapshot of the UPPAAL simulator in which we can see

the simulation of the Internet Purchase Process.

After validation, verification starts, in which we check the properties identi-

fied in the analysis phase (leaf goals of the KAOS goal-model).

– The first leaf goal, “PickupOnTime”, specifies that the deliverer must pick up

the order on time, i.e., it cannot take more than 48 hours after receiving the

1823Cambronero M.E., Valero V., Martinez E.: Design and Generation ...

Figure 13: Translating WS-CDL code to NTA with WST.

request, or an exception will be thrown and the payment will be refunded.

This property can be written as follows:

(System.Init Interaction6 SendProduct interaction ∧Hour > 48)−− >
System.Init Interaction9 RefundPayment interaction

We obtain that this formula is satisfied.

– The second leaf goal, “CorrectPaymentProcess”, specifies that the product

will not be delivered if the payment information is not valid. This property

is written as follows:

A[] V alidPayment == false imply
not System.Init Interaction5 RequestProduct interaction

We obtain that this formula is satisfied.

– The third leaf goal, “RapidService”, establishes that the client will receive

the product on time. This property is written as follows:

E <> (System.End Interaction6 SendProduct interaction ∧Hour < 48)

We obtain that this formula is satisfied.

1824 Cambronero M.E., Valero V., Martinez E.: Design and Generation ...

Exception

Init_Interaction0_RequestInfo_interaction

Init_Interaction1_SendInfo_interaction

Init_Choice0

End_Interaction2_CorrectPayment_interaction

End_Interaction3_IncorrectPayment_interaction

Init_Choice1

Init_Interaction4_PaymentOk_interaction

Init_Interaction5_RequestProduct_interaction

Init_Interaction6_SendProduct_interaction

(Hour <= 49)End_Interaction6_SendProduct_interaction

End_Workunit0

Init_Interaction7_PaymentNoOk_interactionEnd_Interaction7_PaymentNoOk_interactionEnd_Workunit1End_Choice1

Init_Interaction8_OutOfStock_interaction End_Interaction8_OutOfStock_interaction

Init_Interaction9_RefundPayment_interaction End_Interaction9_RefundPayment_interactionexception_0=true

ValidPayment=true urgent_chan!

ValidPayment=false urgent_chan!

(ValidPayment==true)

Hour=0

(Hour == 49)

exception_1=true

(Hour <= 48)

urgent_chan!

(ValidPayment!=true)

urgent_chan!

(exception_0==true)

urgent_chan!

exception_0=false

(exception_1==true)

urgent_chan!

exception_1=false

Figure 14: NTA obtained for the Internet Purchase Process.

Figure 15: Simulation of the Internet Purchase Process.

1825Cambronero M.E., Valero V., Martinez E.: Design and Generation ...

– The fourth leaf goal, “CorrectRequestService”, specifies that the purchase

process will only be initiated if the product is not out of stock. This property

is specified as follows:

System.End Interaction8 OutOfStock interaction−− >
not System.Init Interaction1 SendInfo interaction

We obtain that this formula is also satisfied.

– The last leaf goal, “TryAgain”, specifies that the client must be able to repeat

the purchase process if the payment is not correct. This property is written

as follows:

System.End Interaction7 PaymentNoOk interaction−− >
System.Init Interaction1 SendInfo interaction

We now obtain that this formula is not satisfied.

At this point we have found an error in our design, so we have to go back

to the sequence diagram and fix the problem. In this example the error can be

easily solved by adding a “loop” type frame wrapping all the payment process.

Thus, the payment process can be repeated until it finishes correctly. After this

modification, we must again perform the translation into WS-CDL and timed

automata, and repeat the validation and verification phase.

8 Conclusions and Future Work

In this paper we have presented a general methodology for the correct develop-

ment of Web services based on UML 2.0 sequence diagrams as the starting spec-

ifications of composite Web services. These diagrams are then translated into

WS-CDL descriptions, which, in turn, are translated into a network of timed

automata.

We used UML sequence diagrams extended with frames, in order to include

the required control structures. They provide a precise description of the col-

laboration and message flow between the parties involved in a composite Web

service and also a choreographic viewpoint of the system by using the sequence

diagrams with frames. Furthermore, we introduced a new type of frame (inter-

action exception frames and the associated exception frames in the exception

sequence diagram) to capture the fault conditions that can be associated with

interactions, including the possible associated time-outs.

The translations presented are therefore a powerful tool for the development

of correct Web services, since the final product obtained, the timed automata

representation, can be used to accomplish the validation and verification of the

system.

1826 Cambronero M.E., Valero V., Martinez E.: Design and Generation ...

In future work we will address the issue of completing these translations

by including additional features, such as a hierarchy of choreographies, finalizer

blocks, and more rigorous treatment of variables (alignments).

References

[Alor-Hernández et al., 2009] G. Alor-Hernández et al. Mapping UML Dia-

grams for Generating WS-CDL Code. In ICDS ’09:The Third International

Conference on Digital Society, pages 229-234, Cancun, Mexico, 2009. IEEE

Computer Society.

[Ambler, 2005] S. W. Ambler. The Elements of UML(TM) 2.0 Style. Cambridge

University Press, New York, NY, USA, 2005.

[Arkin et al., 2004] A. Arkin et al. Web Services Business Process Execution

Language 2.0, December 2004. http://www.oasis-open.org/committees/

download.php/10347/wsbpel-specification-draft-120204.htm.

[Benatallah et al., 2005] B. Benatallah, M. Dumas and Q. Z. Sheng. Facilitat-

ing the Rapid Development and Scalable Orchestration of Composite Web

Services. Volume 17, number 1 of Distrib. Parallel Databases, pages 5–37,

2005.

[Cambronero et al., 2011] M. E. Cambronero, G. Dı́az, E. Mart́ınez and V.

Valero. WST: A Tool Supporting Timed Composite Web Services Model

Transformation. In Simulation: Transactions of the Society for Modeling and

Simulation International journal, to appear in 2011.

[Cambronero et al., 2006] M. E. Cambronero, G. Dı́az, J. J. Pardo, V. Valero and

F. Pelayo. RT-UML forModeling Real-TimeWeb Services. In In proceedings of

Modeling, Design, and Analysis for Service Oriented Architecture Workshop,

mda4soa, SCC 2006, pages 131–139, Chicago, USA, 2006. IEEE Computer

Society.

[Cambronero et al., 2009] M. E. Cambronero, V. Valero, G. Dı́az and E.

Mart́ınez. Web Services Choreographies Verification. Technical Report DIAB-

09-04-1. University of Castilla-La Mancha, 2009.

[Cambronero et al., 2010] M. E. Cambronero, V. Valero and G. Dı́az. Verification

of Real-Time Systems Design. Volume 17 of Software Testing, Verification and

Reliability Journal, pages 3–37, 2010.

[Clark, 1998] J. Clark. XSL Transformations (XSLT) Version 1.0. Technical

Report REC-xml-19980210, W3C, 1998. http://www.w3.org/TR/xslt.

[Dardenne et al., 1993] A. Dardenne, A.van Lamsweerde and S. Fickas.

Goal-directed Requirements Acquisition, 1993, volume 20, pages 3–50.

http://www.w3.org/TR/2004/WD-wsdl20.

[Dı́az et al., 2006] G. Dı́az and M. E. Cambronero, J. J. Pardo, V. Valero and

F. Cuartero. Automatic Generation of Correct Web Services Choreographies

1827Cambronero M.E., Valero V., Martinez E.: Design and Generation ...

and Orchestrations with Model Checking Techniques. In Proceedings of In-

ternational Conference on Internet and Web Applications and Services ICIW,

vol. 1257, pages 33-40, 2006. IEEE Computer Society Press.

[Foster et al., 2005a] H. Foster, S. Uchitel, J. Magee and J. Kramer. Leveraging

eclipse for integrated model-based engineering of web service compositions.

In eclipse: Proceedings of the OOPSLA workshop on Eclipse technology eX-

change, pages 95–99, New York, NY, USA, 2005. ACM.

[Foster et al., 2005b] H. Foster, S. Uchitel, J. Magee and J. Kramer. Tool support

for model-based engineering of web service compositions. In ICWS: Proceed-

ings of the IEEE International Conference on Web Services, pages 95–102,

Washington, DC, USA, 2005. IEEE Computer Society.

[Graf et al., 2006] S. Graf, I. Ober and I. Ober. Timed annotations with UML.

Volume 8, number 2 of International Journal on Software Tools for Technology

Transfer, pages 113–127, 2006.

[Halvorsen and Haugen, 2006] O. Halvorsen and O. Haugen. Proposed Notation

for Exception Handling in UML 2 Sequence Diagrams. In ICWS: Proceedings

of the IEEE International Software Engineering Conference, Australian, p ages

29-40, WLos Alamitos, CA, USA, 2006. IEEE Computer Society.

[Hamadi and Benatallah, 2003] R. Hamadi and B. Benatallah. A Petri Net-

based Model for Web Service Composition. In ADC ’03: Proceedings of the

14th Australasian database conference, 2003.

[Kavantzas et al., 2005] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher,

Y. Lafon and C. Barreto. Web Service Choreography Description Language

(WSCDL) 1.0. http://www.w3.org/TR/ws-cdl-10/.

[Larsen et al., 1997] K. G. Larsen, P. Pettersson and W. Yi. Uppaal in a nut-

shell. Volume 1, numbers 1-2 of International Journal on Software Tools for

Technology Transfer (STTT), pages 134–152, December 1997.

[OMG, 2002] OMG. Response to theOMG RFP for Schedulability, Performance

and Time, v. 2.0. OMG document ad/2002-03-04, March 2002.

[Lorenz and Six, 2006] A. Lorenz and H.-W. Six. Tailoring uml activities to

use case modeling for web application development. In CASCON: Proceedings

of the 2006 conference of the Center for Advanced Studies on Collaborative

research, pages 333–338, New York, NY, USA, 2006. ACM.

[OMG, 2003] OMG UML 2.0 Superstructure proposal v.2.0. In OMG document

ad/03-01-02, January, 2003.

[Piotrowski and Krawczyk, 2008] M. Piotrowski and H. Krawczyk. Using

UML/WS-CDL for Modeling Negotiation Scenarios. In IFIP International

Federation for Information Processing, pages 119-126, Volume 283, 2008.

Springer Boston.

[Weerawarana et al., 2004] S. Weerawarana et al. Web services de-

1828 Cambronero M.E., Valero V., Martinez E.: Design and Generation ...

scription language (wsdl) version 2.0 part 1: Core language, 2004.

http://www.w3.org/TR/2004/WD-wsdl20.

[W3C, 2011] World Wide Web Consortium (W3C). http://www.w3.org/.

[Zarras et al., 2004a] A. Zarras, P. Vassiliadis and V. Issarny. UML Profile

for Schedulability, Performance, and Time Specification, Version 1.1. OMG,

December 2004 http://www.omg.org/docs/smsc/04-12-05.pdf.

[Zarras et al., 2004b] A. Zarras, P. Vassiliadis and V. Issarny. Model-driven

dependability analysis of webservices. In Robert Meersman and Zahir Tari,

editors, CoopIS/DOA/ODBASE (2), volume 3291 of Lecture Notes in Com-

puter Science, pages 1608–1625. Springer, 2004.

[Zhang et al., 2008] P. Zhang, B. Li, H. Muccini, Y. Zhou and M. Sun. Data-

Enriched Modeling and Verification of WS-CDL Based on UML Models. In

ICWS ’08: Proceedings of the 2008 IEEE International Conference on Web

Services, pages 752–753, Washington, DC, USA, 2008. IEEE Computer Soci-

ety.

1829Cambronero M.E., Valero V., Martinez E.: Design and Generation ...

