Journal of Universal Computer Science, vol. 17, no. 11 (2011), 1572-1604
submitted: 11/01/11, accepted: 24/6/11, appeared: 1/7/11 © J.UCS

Time is not Enough: Dealing with Behavior in Real-Time
Systems

Leo Ordinez
(Universidad Nacional del Sur - CONICET
Bahia Blanca, Argentina
lordinez@uns.edu.ar)

David Donari
(Universidad Nacional del Sur - CONICET
Bahia Blanca, Argentina
ddonari@uns.edu.ar)

Rodrigo Santos
(Universidad Nacional del Sur - CONICET
Bahia Blanca, Argentina
ierms@criba.edu.ar)

Javier Orozco
(Universidad Nacional del Sur - CONICET
Bahia Blanca, Argentina
ieorozco@criba.edu.ar)

Abstract: In this paper, the Behavioral Importance Priority Server (BIPS) algorithm
is proposed to schedule sets of hard/soft real-time tasks. The mechanism postpones or
advances the execution of the next instance of a task according to the value obtained
from a function properly associated to the behavior of the task; as a consequence, there
is a flexible adaptation of the bandwidth required by each server. A synchronization
method is introduced to prevent deadlocks and priority inversions in the case of sets
of tasks sharing resources along with the necessary and sufficient conditions for the
schedulability analysis. A software framework proposing an abstract architecture of
a system based on BIPS is also presented. The BIPS software framework intends to
bridge the gap between theoretical scheduling aspects and the actual implementation
of them. Since BIPS is capable of managing very different sets of tasks, it covers a wide
variety of applications found in the real world.

Key Words: Real-Time, Scheduling, Behavior, System Development

Category: C.3, D.1.5, D.4.1

1 Introduction

In the last years embedded systems (ES) have emerged as one of the more
dynamic research and develop areas. The number of microprocessors built for
this kind of systems and the amount of people working as embedded computing

Ordinez L., Donari D., Santos R., Orozco J.: Timeisnot Enough ... 1573

programmers have been growing continuously in the last decade [Wolf(2006),
Wolf(2007)]. ES are present in everyday life. From industrial plants to home
appliances. Although they may seem different, they share a common structure
which is the collection of data from sensors, its processing and the command
of actuators or network interfaces. Most of them are implemented with system-
on-a-chip technology (SoC) that integrates the input/output interfaces, memory
and CPU in one chip. They usually interact with the environment measuring
certain variables and controlling others. This special characteristic imposes non-
functional requirements over the functional ones and represents an important
challenge for the designer. Thus, ES have real-time constraints expressed in terms
of relative and absolute deadlines (RTES). These actions should be performed
in a timely manner to be correct.

Real-time systems are those in which at least one of the tasks has to produce
the correct result before a certain instant called deadline. Deadlines may be soft
or hard depending on the consequences that not complying with them may have
for the system. Thus, the quality of service (QoS) that a real-time system may
provide is hard when the system guarantees that all deadlines are verified and
soft if some deadlines are ocassionally missed. The percentage of missed deadlines
is a metric of the QoS. The scheduling policy is then at the heart of the system
and it probably is one of the most important components. Traditionally, critical
systems were scheduled with a cycle-executive even if this strategy is not work
conserving because if the task assigned to use the time slot is not ready, the time
slot is not used by any other task that may be ready and the processor remains
idle. In [Liu and Layland(1973)], the authors have introduced the necessary and
sufficient conditions for more flexible, efficient and work conserving scheduling
policies: Rate Monotonic (RM) and Earliest Deadline First (EDF). Many years
later the USA DoD has adopted RM for their systems making it a de facto
standard. Recently, EDF has gained space among non critical applications like
multimedia streaming, video games, communications, wireless sensor networks,
etc. In the next years the use of dynamic priorities based on EDF scheduling
will probably gain acceptance also in critical applications.

The Resource Reservation Framework (RRF) was introduced by Rajkumar
[Rajkumar et al.(1998)] in 1998. It introduces a hierarchical scheduling architec-
ture in which each task is associated to a reservation of the processor character-
ized by a budget) and a period P. A reservation behaves like a virtual processor
with speed @)/ P times the real speed of the processor. The kernel schedules the
reservations and the reservations the tasks associated to them. When the set, of
reservations is schedulable, the ability of a task, scheduled by a reservation, to
meet its timing constraints depends only on its reservation parameters and is not
affected by the presence of other tasks in the system. This important property is
known as temporal isolation. Reservations can be implemented by software enti-

1574 Ordinez L., Donari D., Santos R., Orozco J.: Timeis not Enough ...

ties named servers. In the last years different kind of servers have been proposed
in the literature. All of them have the basic parameters, budget and period, but
differ in the way in which they consume and recharge the budget.

The use of servers in RTES has been introduced for different purposes: multi-
media [Abeni and Buttazzo(1998)], control [Cervin and Eker(2003)], communi-
cations [Nolte et al.(2005)] and other general applications [Marzario et al.(2004)].
Servers have been proposed in the past also to provide service to aperiodic non-
real time tasks [Sprunt et al.(1989)]. In all the previous cases, the tasks are
described with an invariant set of parameters. However in actual systems, dif-
ferent configurations may be possible based on the system’s state. In fact, the
dynamics associated to certain cases may lead to variations in the computa-
tional load understood as a variation in the execution time of a task or the
period with which it is executed. An important effort has been put in providing
mechanisms to achieve adaptive reservations based on the state of the system
[Abeni et al.(2005)]. However, in all these cases, the accent is on the execution
time of the task associated to the reservation and not on its execution frequency.
In this paper, the Behavioral Importance Priority Server (BIPS) is proposed. In
it, each task associated to a server has a function that computes the importance
of the task based on the outcome provided by its execution behavior. The idea
is to determine if the next instance of the task has to be activated in the next
period or can wait for a longer time without jeopardizing the correct behavior
of the system. To do this, the function may use past results weighted in some
convenient way, have a prediction algorithm or some sort of combination of these
methodologies.

Due to the growing complexity of RTES and the short time-to-market it is
important to have a general method to produce them with high standards of qual-
ity [Kopetz(2000)]. Software modeling is becoming a very important discipline
as it offers designers a good way to test, visualize and evaluate different alter-
natives before implementing the actual system [Cernosek and Naiburg(2004)].
A software framework is the abstract design and implementation of an applica-
tion in a given problem domain [Fayad and Schmidt(1997)]; it provides a useful
mechanism to fulfill the previous requirements. In this paper, the software frame-
work to construct an RTES based on BIPS is provided so the system developer
counts with an integral tool that covers from the scheduling level analysis up
to advanced design details. In order to specify the BIPS Software Framework
(BIPS-SF), the Unified Modeling Language (UML) [uml(2009)] and its asso-
ciated profile for Modeling and Analysis of Real-time and Embedded systems
(MARTE) [mar(2009)] were used. The decision of choosing UML and MARTE
was based on the wide adoption of these standards, which turn UML into a
de facto standard for modeling systems [Valiente et al.(2005)]. In addition, the
MARTE profile was developed with the objective of not restricting the actual

Ordinez L., Donari D., Santos R., Orozco J.: Timeisnot Enough ... 1575

implementation to a particular programming paradigm, which gives to the BIPS-
SF the possibility of being implemented accordingly to the technology chosen by
the developer.

1.1 Motivation

There are many examples in which a system may relax its timing requirements,
specially when it is dedicated to control or monitor physical variables related
to systems whose parameters vary slowly in time with respect to the sampling
period used by the controller. For example, in early detection of forest fires, usu-
ally a sensor network is deployed in the environment and different variables are
sensed for a fire weather index (FWT) construction [Hefeeda and Bagheri(2007)];
the higher the index, the higher the probability that a fire can be developed at
the site. Therefore, increments in the index of a certain area may lead to raise
the priority of those sensors, while a decrement may reduce it. A different case is
the storm forecasting, in which a steepest reduction in the barometric pressure is
a clear indication of a developing wind storm. In this case, the derivative of the
pressure is important so the last measured values are used to compute the slope
of the changing pressure. Thus, an important rate may require an increment in
the sampling frequency of variables when this is detected and a reduction of it
is possible when the variables are constant or varying slowly. A case where the
actual state of the system is related to the actual actions being performed and
the surrounding environment is the collision warning systems (CWS) present in
modern cars [USD(2007), Luckscheiter(2003)]. In this case, the speed of the car
and the direction of the movement are as important as the detection of the ob-
stacles in its path. The CWS should then modify tasks’ frequencies based on past
values and predicted ones. Finally another example in which the frequency of the
tasks are modified based on the last result exclusively is presented in surveillance
systems based on video cameras. As the video cameras register continuously the
surveilled area, the frame per seconds is really low so they can record as much
hours as possible. However, if an intrusion to the area is detected, the amount of
frame per seconds is increased in order to have an acceptable quality of service.

1.2 Contributions

In this paper, a new scheduling paradigm based on the behavior of the tasks in
the system is presented. Each one has an importance function that is computed
from the results produced by the task and determines the importance of the
next instance. The way in which the importance can be computed is presented
and also a way to handle shared resources and synchronization among tasks is
described. The necessary and sufficient condition for the system’s schedulability
is presented and proved and the main properties of the scheduling algorithm

1576 Ordinez L., Donari D., Santos R., Orozco J.: Timeis not Enough ...

are shown. Finally, a generic framework of the entities involved in the system
is proposed. There, the entities and mechanisms to implement applications and
their relations and interactions are presented. In addition to these functional
aspects, the proposed framework natively takes into account the non-functional
aspects of the RTES. With this, the implementation of BIPS in a practical
application is made easier. Class models and statecharts are provided to show
the way in which BIPS operates.

1.3 Organization

The rest of the paper is organized as follows: Section 2 introduces the system
model. Then, in Section 3 the BIPS algorithm is described carefully in all its
aspects; Section 4 outlines concepts about energy management based on the
functioning of BIPS; in Section 5 the BIPS-SF is detailed. Finally, in Section 6
previous works are analyzed and in Section 7 conclusions are drawn.

2 System Model

In this section tasks, servers, resources and scheduler are described. Each element
of the system is presented in its functional and mathematical model. A careful
description of the task’s behavior function and the server’s postergation function
are presented. In particular, two different approaches for the first one are shown.

2.1 Tasks

The system is modeled as a set of periodic and preemptive tasks, I' = {r1,..., 7}
Tasks are hard or soft real-time. Both kinds of tasks are characterized by an ex-
ecution time Cj;, a period T;, an activation time a; and a relative deadline D,
which is used to compute the absolute deadline d; = a; + D;. Since tasks are
periodic, they can be seen as a stream of jobs or instances J;;, where the first
subindex refers to the task and the second one to the instance or job.

Tasks have an additional function ¢;, that reflects the behavior of them.
This function can be computed in two different ways. In the first approach, the
function is built from a numerical value that indicates the result of the instance
of the task, F(J;;). As there is a numerical value, this can be used to compute
the function § using some mathematical algorithm that combines present and
pasts results of the importance function and the tasks results to determine the
next instance importance. In the practice, d;; is chosen by the designer of the
system according to the particularities of the application domain. In general
this approach can be expressed by a difference equation in which each element
is weighted by a constant, vy, and 3, conveniently selected by the designer:

Ordinez L., Donari D., Santos R., Orozco J.: Timeisnot Enough ... 1577

J J
5= > wF(Ji)+ Y Bebig
k=j—h g=3j—1
where h and [are used to pick up past samples of the F' function. In this way
the history of the evolution of the function is evaluated.

For example, in the case of the video camera surveillance system, the dif-
ference between the Discrete Cosine Transform of two successive frames can be
used. In this case, then F'(J;;) = DCTeamera, (frame;). For the case of early
detection of forest fires, the increment in the FWI index provides a clear hint on
the possible development of a fire in the place. The associated function is then
F(Jij) = FWlregion, (sample;). The wind storm case, is first detected with a
decreasing barometric pressure. In that case, F(J;;) = timeiii;eff; ;;lples,
BP stands for Barometric Pressure.

In the second approach, the computation of the function is made from the

where

execution path of the task. Each task has associated an ezecution graph similar
to the ones presented in [Baruah(1998)] and [Anand et al.(2008)] but in this
case they are used to weight the behavior of the task instead of measuring the
execution time. The task is then represented by a set of nodes and edges, where
each node represents a basic activity. That means that each possible branch
in the task has associated a weight factor that determines the wvalue of going
through that path.

Task behavior is used later in this paper to modulate the activation period of
the task. As has been said in section 1, there are many applications in which tasks
periods may vary based on the results produced incrementing or decrementing
the importance of the tasks and in some cases the priority by changing the
periods.

Definition 1 (Basic Activity) It is the set of atomic computations that pro-
vides a partial value of the behavior of the task.

Based on this definition, each task has associated a directed graph, with nodes
representing basic activities and edges indicating in their labels the weight of the
starting node. The graphs have two special kind of vertices: a) the initial node
is the first node that the task executes when it is dispatched; b) the end nodes
where the task finishes its execution.

Definition 2 (Execution Graph) (2; is a directed graph of task t;, repre-
sented by the tuple (V,v°, V¥ E, p), where:

— V is the set of vertices or nodes.

— v° is the initial node.

1578 Ordinez L., Donari D., Santos R., Orozco J.: Timeis not Enough ...

— VF C 'V is the set of end nodes.
— E CV XV is the set of edges or arcs.

— p: E — Z is a weighted function that associates to each edge an integer
value *.

Informally, the execution semantics of a task is as follows: it starts at v° € (2
after it is dispatched. After the first basic activity, the task continues its execution
in a non deterministic adjacent node, (v°,v,) € E. This process continues until
the execution reaches a node v, € V. A task may contain in its execution path
loop cycles. Nevertheless, this situation should be considered by the developers,
in order to avoid infinite loops, which cannot always be syntactically detected.

Definition 3 (Execution Path) w, = (V',v°, v, E', p) is a subgraph of £2; =
(V,v°, VI E, p) such that V' CV, vy € VI, o/ C p and
E = <(Uovv;n)7 (v;navarl)a RN (U;DJrlavf» g VixV’ g E.

Definition 4 (Partial Weighted Behavior) A task’s ni(7;) is the sum of the
edge’s weights that form an execution path wy,. Formally, ni.(1;) = Y05 p((vp,vg)),
where (vp,vq) € E/

Definition 5 (Behavior Function) The behavior function of a task 7;, whose
execution graph is (2; = {wi,wa,...,wy} s the set 6; = {n1,m2,...,nx} of all
possible partial weighted behaviors of task T;.

The importance computation with this approach can be better explained
with the example of the CWS. In Figure 1 a simplification of the task is shown.
Basically the task determines if the car is still or moving in either direction
(Reverse or Forward). If the car is still then the CWS is deactivated while if
it is moving backwards, usually the driver vision is limited but the speed is
usually less than moving forward. Then the speed is considered incrementing
the importance with the speed. At this point the sensors are evaluated for the
presence of obstacles. Again the distance to the obstacle determines the outcome
of the basic activity.

2.2 Servers

The BIPS S, is characterized by a budget Qs, a period Ps, a relative deadline
Dg, an absolute deadline ds and a function «, that dynamically modifies the
period of the server. The reactivation time of the server is denoted by r,. Each
task in the system is associated to a BIPS and each server holds only one task.

! Actually, any value assignment is possible if the computer can handle it. Integer
arithmetic is straightforward.

Ordinez L., Donari D., Santos R., Orozco J.: Timeisnot Enough ... 1579

Motion of the car,

Still Reverse

Compute Speed

5 to 100 km/h 100 to 110 km

Figure 1: Graph representation of CWS task

The budget of the server is chosen in such a way that it is related to the most
expected execution time of the task, for example its average value or statistical
mode if it is a soft one or the worst case execution time (WCET) if it is a hard one.
While executing, the actual budget of the server is kept in variable 0 < ¢s; < Q5.
The period of the server is modified by means of function as, = f(d;;) that
provides the postponement factor for the next task’s instance, that is J;j41. By
definition a(d;;) > 1. Each BIPS may have a different function definition based
on the characteristics of the encapsulated task. The bandwidth of the server is
defined as the relation between its budget Qs and its reactivation period Ps,
(%) As the sever may dynamically modify the period based on the results of
the as function, the bandwidth requirement is not constant in time but it is
upper bounded.

2.3 Postponement function and eligibility of the task

The postponement function acts like a frequency modulator. Even hard tasks,
usually associated to a critical part of the system may have variations in their
periods. For example, in the early detection of forest fires, there is always a
minimum sampling frequency of the field variables that has to be respected. If

1580 Ordinez L., Donari D., Santos R., Orozco J.: Timeis not Enough ...

the result of previous measurements makes a particular spot more dangerous
than other, the sampling frequency in that area should be incremented. In the
same way, the CWS may increment its frequency with the presence of obstacles
or the speed of the vehicle. In the limit, when the task turns critical, its frequency
should be the maximum possible and this means «y = 1. Soft tasks, although
they have a deadline to comply with, are usually related to non-critical parts
of the system. Thus, they may tolerate a careful variation in their execution
frequency too. Upon this fact the utilization of BIPS becomes attractive. It is a
very simple mechanism that allows to control the tasks’ execution frequency.

The a; function can be further seen as an eligibility switch. The postpone-
ment factor introduced by a; acts then as an eligibility condition for the subse-
quent jobs of the task. By increasing the period of the server, its associated task
looses importance in the system or what is the same becomes non eligible for an
interval in which it eventually can be ignored since the results it produces are
not relevant. Examples of this are systems in which there is a high inertia and
the sampling frequency can be reduced without jeopardizing the control quality.
Nevertheless, there is a minimum frequency that should be respected whether
the task is hard or soft.

2.4 Shared Resources

Both hard and soft tasks can share a set R = {R; | i« = 1,2,...,m} of non-
preemptive, serially-accessed resources, which can be physical or logical. When
a task performs an operation on a shared resource, access must be in a mutually
exclusive way in order to maintain consistency. That section is then called critical
and its access is controlled by the use of mutual exclusion semaphores (mutex)
with classical wait() and signal() operations, denoted P(Ry) and V (Ry) respec-
tively. Successive accesses to critical sections may be properly nested, mean-
ing that it is only possible to have sequences of the type P(R,),...,P(Rs),
V(Rp),...,V(Rgs). The times of use of a critical section may be different for
different tasks. They are symbolized &x(7;) for each critical section k of task
Ti3 Emax(7i) denotes the maximum of all the critical sections accessed by 7;. A
special case of critical section is the external (or outermost) non-trivial critical
section which is a critical section not nested in any other one. Hard or soft tasks
are supposed to declare off-line the amount of resources used.

2.5 Scheduling policy

BIPS establishes a two-level scheduling policy. The scheduler dispatches the
server with the earliest deadline, EDF, and that server dispatches its encapsu-
lated task. Only in the case that a task is holding a resource needed by the

Ordinez L., Donari D., Santos R., Orozco J.: Timeisnot Enough ... 1581

recently released task the processor is granted to the blocking server till com-
pletion of the critical section. This synchronization is made by means of an
extension of the Stack Resource Policy (SRP). More details of the scheduler and
the synchronization mechanisms are presented in the next section.

3 BIPS description

In this section, the BIPS algorithm will be formally presented, along with a series
of properties that will be stated and proved. The idea is to vary dynamically the
period of the tasks based on a quantifiable outcome of its execution behavior,
reducing the execution frequency of those that are less relevant.

3.1 Definition and Functioning

For the sake of simplicity, the general algorithm will first be introduced for the
case of independent tasks. Later in this section the synchronizing mechanism
for the case of related tasks will be described and the final algorithm will be
presented.

At each instant a BIPS can be in one of three states as shown in Figure 2.
When in ACTIVE state there is at least one job ready to be executed and the
budget is greater than zero. If the execution budget was exhausted and there is
at least one job pending execution, the server is in WAITING state. It remains
there for a time computed by the «a; function. Finally, the server goes into the
IDLE state when there is no pending jobs to be executed.

Figure 2: Server states under the BIPS model.

BIPS is based on a simple set of rules, which are described following this
convention: A is for Active; W is for Wait; I is for Idle and D is for Decrement

1582 Ordinez L., Donari D., Santos R., Orozco J.: Timeis not Enough ...

budget. In this sense, the rules are also numbered to distinguish the situation in
which they are applied. Since in what follows everything is referred to task 7;, the
notation can be simplified by eliminating the subscripts. The j-th instantiation
of 7; will therefore be denoted J;. Variable num is introduced to indicate the
number of pending jobs. Consequently, the BIPS will be in a waiting state if
num is greater than zero.

A: BIPS has enough budget to execute jobs. A transition to ACTIVE state is
performed under the following conditions:

A.1: If a job J; arrives at ¢t = a; and the BIPS is IDLE and (¢t > d; quaS%),
then qs < Qg, ds <t + aePs and ry <t 2

A.2 If a job J; arrives at ¢ = a; and the BIPS is IDLE and (¢t < ds — qsasﬁ)
and ds > t and g5 # 0, then the job is served with the current budget
and deadline and 7 <t

A.3: If (num > 0) and (¢t >), then num < num—1, ¢s + Qs, ds < t+asPs
and rg <t

W: When the BIPS’ budget is exhausted and there are pending jobs it waits
for a times its period for replenishment. A transition to WAITING state is
performed. Special cases:

W.1: If a job J; arrives in ¢ = a; and the BIPS is IDLE and (¢ < ds — qsasg)
and ds < t and g5 = 0, then num <+ num + 1 and r5 + ds + asPs

W.2: If BIPS S, is executing J; and ¢; = 0, then num < num + 1, ry +
ds + asPs

D: When a BIPS executes a job for one time unit, it decrements its budget
accordingly, gs < g5 — 1

I: When a job finishes and num = 0, the BIPS goes to IDLE state. Otherwise,
it remains ACTIVE.

3.2 Properties

The BIPS schedulability properties are presented in this section. They state the
conditions under which the system is schedulable.

Theorem 1 (Isolation Theorem). A BIPS S; = (Qs, Ps,a5) uses a band-

width Us of at most %9

2 The formula expresses the relationship between the currently needed capacity of the
server and its deadline. In this case, if the inequality is true, it means that what the
server needs to execute, starting now (at time t), will eventually lead to a deadline

miss. This is because executing gsas % units from ¢, will finish after ds.

Ordinez L., Donari D., Santos R., Orozco J.: Timeisnot Enough ... 1583

Proof. BIPS rules indicate clearly (W.1 and W.2) that the recharging instants
are separated by asPs, and by rules A.1 to A.3 and D, in each interval between
recharges only can execute for @)s; units of time. As stated in section 2, the
bandwidth of a server is upper bounded by ?3 since in the worst case, a, will
take the minimum value, that is 1, and the server may execute at most Qs units
of time out of P;. If oy > 1 for every job, then by rules W.1 and W.2 there will
be a longer replenishment interval (i.e. 7y = ds + asPs) and the bandwidth is

bounded by an . In the general case there will be a variety of jobs with different

s

values for ay served by the BIPS, thus applying the superposition property, the

overall bandwidth will be bounded by % |

Theorem 2 (Schedulability Property). Given a set of tasks not encapsu-
lated within any BIPS and with total utilization factor Ur and a set of BIPS
servers with total utilization factor Ugrps, all of them scheduled by FEarliest
Deadline First (EDF), then neither the servers nor the independent tasks will
miss a deadline iff Ur + Uprps < 1.

Proof. Each BIPS can be seen as a special task with an utilization factor equal
to the relation between its budget and period, the whole system boils down
to the well known Liu and Layland necessary and sufficient condition for EDF
[Liu and Layland(1973)], and neither the independent tasks nor the servers will
miss deadlines.[]

Theorem 3 (Hard Schedulability Property). Given a hard real-time task
7; with parameters C; (equal to the WCET), d; and T;, contained in a BIPS
with parameters Qs and Ps, such that C; < Qs, Ps = T; and as = 1 for every
job, then it will be schedulable iff it is schedulable by EDF.

Proof. Since task 7; is hard, the interval between its job’s activations is given
by its period (or minimum interarrival time), which is, by designed, equal to the
period of the BIPS. The condition C; < Q4 gives the server enough budget to
complete the execution of every job without postponing its deadline. Being a
hard task, the value of the oy function will be constant and equal to 1. Thus,
the deadline generated by the BIPS algorithm is the same deadline of the task.
By Theorem 2 neither the server will miss any deadlines, nor the task contained
in it will do. The reciprocal is trivial.(

3.3 Extending the Stack Resource Policy to BIPS (ESRP)

In this section, a new vision on the traditional Stack Resource Policy proposed
in [Baker(1990)] is presented to deal with shared resources and critical section
synchronization under BIPS. It is important to notice that the use of shared
resources under the RRF introduces some problems that should be considered

1584 Ordinez L., Donari D., Santos R., Orozco J.: Timeis not Enough ...

carefully. In particular, as the tasks execute within a server, the access to the
shared resources involves two scheduling levels and this can lead to serious prior-
ity inversion problems, starvation and deadlocks. In the first place it is necessary
to verify that tasks are properly encapsulated by a dedicated BIPS. By this, it
is understood that the budget and period are enough to satisfy the demand of
the task and that the critical section or the access to the shared resource will
be completed in one instance of the server containing the task. The following
definitions set the basis for the description of the synchronization mechanism.

Definition 6 (Blocking) A task 7; is blocked in a resource R if there is a lower
priority task 7; that holds R preventing 7; from using it.

Definition 7 (Resource task set) The set of resources used by a task. R, =
{R; | 7i uses R;}

Definition 8 (Blocking relation) Two tasks have a blocking relation () if they
share directly or indirectly a resource. This is an equivalence relation since it has
the following properties:

1. Ti Q T

2. If’l’z Q Tj then, T QTi'

3. If 7,) 7j and 7 () 7% then, T; () Tx.

Definition 9 (Blocking tasks set) It is an equivalence class obtained by the
blocking relation (), symbolized T = [r;] ={m; € I' | 7 { 7 }.

Therefore, given I'/ (= {11,72,...,Ta}t | v N = 0, VT € I'/ (), then
Ti NQ Tj,VTiTj | neYl, A Tj € Tw

Definition 10 (Blocking resource set) It is defined as the set of resources
used by the tasks in a blocking task set. It is notated P = {JR+ | 7i € T}

By Definitions 7 and 8, if 7; (7;: Ry,NR7, # 0 or {1k, , Thys - - - Ty, H(RA MRy, #
NARLNR, DA . AR, —1NR,, #0) A (R, "R # () = TRUE. Then
if [1;] = [1j] = Yw; Rry URr, € Py, where Dy, is the class invariant under (.

Definition 11 (Active task set) A task set T is active when at least one task
in Y is in ACTIVE state.

Definition 12 (Priority inversion) There is a priority inversion when a lower
priority task executes instead of a higher priority one.

Ordinez L., Donari D., Santos R., Orozco J.: Timeisnot Enough ... 1585

Each task, 7;, in the system has associated a preemption level and a priority,
denoted 7 (7;) and p(7;), respectively. The priority is proportional to the inverse
of the remaining time to the absolute deadline while the preemption level is
dynamically adjusted based on the result of the last instance of the task. Thus,
the preemption level of a task is fixed as long as the task is not postponed.
The preemption levels, are related to some specific property of the tasks. In
[Caccamo and Sha(2001)], a modification to the SRP is proposed to manage
shared resources with CBS [Abeni and Buttazzo(1998)] servers. In this case,
the preemption levels are dynamic. As in that paper, the ESRP, uses dynamic
preemption levels too. Based on these levels, the protocol is capable of providing
a deadlock free and bounded priority inversion execution for the tasks. For a job
J; of any task 7; encapsulated in BIPS server S,:

Viij w(n) =gy s =) S s g =m0 (1)

The superindex d was used to remark the dynamic aspect of the preemption
level. In what follows, when there is a mention to 7 it will be assumed to be
done about 7¢.

Following the system model definitions found in [Baker(1990)], a task allo-
cates a non-preemptable resource R by executing a request. Then, it waits until
the allocation is granted. While a task is waiting for R to be freed the task is said
to be blocked and while the task holds R the allocation is said to be outstanding.
After the outstanding allocation is finished, the task executes an instruction that
releases R.

Definition 13 (Resource ceiling) FEach resource R has an associated ceiling
[R] that is an integer-valued function of the outstanding allocation of R.

Definition 14 (Set ceiling) Fach blocking task set 1, has an associated set
ceiling T, , which is the mazimum [R;] of all the resources in @. Formally,
e, = max{ IVRJ |R1 € @v}

Deadlocks and multiple priority inversions are two of the main problems
present when sharing resources. To prevent them, it is necessary to enforce some
conditions at the start of the execution of the tasks.

Condition 1 (Preventing deadlocks) A task should not be allowed to start
until all the necessary resources for its execution are available.

Condition 2 (Multiple priority inversions) A task should not be allowed to
start until all the necessary resources for its execution are available to satisfy the
requirements of every job that may preempt it.

The following condition states the relation between resource ceilings and
preemption levels of tasks.

1586 Ordinez L., Donari D., Santos R., Orozco J.: Timeis not Enough ...

Condition 3 If task 7;, currently executing or allowed to preempt the currently
executing task, when requesting R; may be blocked by a task with higher preemp-
tion level, then 7(7;) < [R;].

Lemmad4. Condition 1 guarantees that a task cannot be blocked after it starts.

Proof. Suppose Lemma 4 is false. In that case, given Condition 1 a task 7; can
be blocked after it starts. The proposed resource model (i.e., simple resources
protected by mutexes) makes that, by Condition 1, once 7; is allowed to start all
the resources needed for its execution are available. Supposing 7; is preempted
by 7/, and p(7;) < p(7’), then the following cases can be given:

1. If 7; did not take any resource before the preemption.

(a) Supposing [7'] = [r;]- Then, p(7;) < p(7’) and if it takes any resource it
is not considered a blocking. Thus, like the scheduling is EDF, 7; cannot
preempt 7’ during the current execution instance. As a consequence,
there is no blocking.

(b) Supposing [7'] # [r;]. Since 7" and 7; do not share resources, there is no
blocking.

2. If 7; took a resource before the preemption.

(a) Suppose that [7']= [r;]. By Condition 1, 7/ could not have started if
their necessary resources were not available. To prove that 7; cannot be
indirectly blocked, consider three tasks 7/ (7/ (7, and p(7") > p(7') >
p(7;). In this case, 7; was preempted by 7/ and even being in the same
7', they do not share any resource. Then, 7/ which has greater priority
than the other two tasks and shares resources with both of them arrives.
7" can not preempt 7’ because by Condition 1 it could not have started
because all the necessary resources were not available.

(b) Suppose that [7'] # [r;]. It is analogous to 1.(b).

O
Theorem 5. Condition 1 is sufficient for preventing deadlocks.

Proof. A way to prevent deadlocks is by avoiding circular wait [Nutt(1992)]. By
Lemma 4, a task cannot be blocked after it starts. With this, there cannot be
two or more executing tasks waiting for resources already held by another task.
Thus, a circular wait cannot be given.[J

Theorem 6. Assuming Condition 1 is enforced, Condition 2 is sufficient to pre-
vent multiple priority inversions.

Ordinez L., Donari D., Santos R., Orozco J.: Timeisnot Enough ... 1587

Proof. Suppose there is a multiple priority inversion. A task 7/ can be subjected
to such multiple priority inversion if two or more lower priority tasks 7 and 7"
are blocking it. By Condition 1, 7 and 7" have to be arrived before 7 started its
execution and they have to be preempted by each other. Without loss of gener-
ality, it can be assumed that 7 preempted 7”. Then, Condition 2 was violated
when allowing 7 to start executing. It is important to remark, that all tasks, 7,
7/ and 7", should belong to the same 7" in order to have a blocking relation.[]

Lemma 7. Suppose 7 is not executing, R is a resource and p(T) = pmax, where
Pmax 18 the mazimum priority in the system: a) If [R] < w(7) then T can execute
without having to wait for R to be freed; b) If [R] < w(7) then every task that
may preempt T can lock the resource.

Proof. a) Suppose [R| < 7(7), but 7 has to wait for R to be freed in order to
execute. Then, by Condition 3 7(7) < [R;], a contradiction. b) Suppose [R] <
(), but for some 7y that can preempt 7, 7y cannot take R. By Condition 3
(1) < [R;], but for 75 to preempt 7 (and by Lemma 4 and part (a) of Lemma
7) it has to be w(7) < [R] < w(7g). This is equivalent to n(7) < w(7z) and
contradicts that if [R] < 7(7), 7y cannot take R.OJ

Theorem 8. Let one single T and R; € ©; if no task 7 € 1 is permitted to start
until [R;] < w(7) for every resource R; € $ then: a) No task can be blocked after
it starts by any other task in T; b) There can be no deadlock; and c) No task
can be blocked for longer than the duration of one outermost non-trivial critical
section of a lower priority task in 1 (i.e., the only way that this can happen is
by an early blocking before the task starts).

Proof. Part (a) follows from part (a) of Lemma 7 and Lemma 4. Part (b) follows
from part (b) of Lemma 7 and Theorem 5. And part (c) follows from part (b) of
Lemma 7 and Theorem 6.0J

Theorem 9. If no task 7; € ¥y is allowed to start until w(7;) > g, for every
active task set 1y, then: a) After it starts, no task can be blocked by any other
task; b) There can be no deadlock; and ¢) No task can be blocked for longer than
the duration of one outermost non-trivial critical section of a lower priority task
(i.e., the only way that this can happen is by an early blocking before the task
starts)

Proof. To prove this theorem consider the definition of set ceiling (Definition
14). In particular, part (a) follows from part (a) of Theorem 8, part (b) follows
from part (b) of Theorem 8 and part (c) follows from part (c) of Theorem 8.7

Corollary 9.1 A task 7; € 1 can be preempted by a higher priority 7; € Ty if
Te, < m(Tj).

1588 Ordinez L., Donari D., Santos R., Orozco J.: Timeis not Enough ...

Proof. From Theorem 9 7; has to arrive after 7; has started its execution. Thus,
7; was not taken into account when considering the starting of 7;. Since 7; ¢ 15,
and T, is the maximum current set ceiling of all the active tasks, 7;, having
higher priority and preemption level, can execute. Thus, it can preempt 7;.[]

Based on Theorem 9 the SRP is extended to handle this new concept of
blocking tasks sets. Tasks are blocked before starting their execution until they
are the oldest highest priority pending requests in 75, and if 7; should preempt
an executing task:

[R] < (7)), VR;€ Py|Ty is ACTIVE

In this way, a task that starts its execution, receives immediately all its
resources and is not blocked by any other executing task. This is possible because
the task must have a higher preemption level than its current set ceiling and than
all the current set ceilings of every active task set. The current system ceiling
can be defined as

T = max{7g, |1y is ACTIVE}

And the preemption test can finally be stated as:

T < m(7g)

With this algorithm, when a task 75 starts its execution, it inherits the
maximum preemption level of the tasks in its blocking task set, or what is the
same its set ceiling, and becomes the one with the highest priority among them.

It is worth pointing out, that a task may eventually be preempted by a higher
priority and higher set ceiling one. As the system ceiling is computed from the
active blocking task sets the calculus is simplified and the properties of the SRP
are kept. With the new formulation, priority inversion and blocking time are still
bounded to the longest outermost critical section in the system.

The schedulability condition for the BIPS under EDF with ESRP semaphore
locking, EDF-ESRP, is given by the following theorem and is similar to the one
proposed in [Baker(1990)] for the EDF-SRP case.

Theorem 10 Schedulability. A set of n BIPS is schedulable by EDF-ESRP
if:

i B . .
Vi | k=1,...,n (Zk @ + =k < 1 where By, is equal to the duration of

=1 p P,
7 k
the longer outermost critical section, &;, of any task 7; that may block task Ty.

Proof. The proof is similar to the one proposed in [Baker(1990)].00

Ordinez L., Donari D., Santos R., Orozco J.: Timeis not Enough ...

1589

Algorithm 1 Algorithm BIPS with Resource Sharing

When Jj arrives in t = a; AND BIPS_state = IDLE do
Enqueue it
if (t>ds — anS&) then
BIPS_state <— ACTIVE
rs <t
update_BIPS()
else if (t < d, — anS%) AND ds >t AND g5 # O then
BIPS_state < ACTIVE
rs <t
The job is served with the current budget and deadline
else
BIPS_state <— WAITING
postpone_BIPS()
end if
end When

When Jj arrives in t AND (BIPS_state = ACTIVE OR BIPS_state = WAITING) do

Enqueue it

end When

When J; served by BIPS S, executes for 1 unit of time do
qs < qs — 1

end When

When BIPS S, is executing J; AND gs = 0 do
BIPS_state <— WAITING
postpone_BIPS()
end When
When J; served by BIPS S, makes P(R;) do
if g5 < &max(J;) then
BIPS_state <— ACTIVE
update_BIPS()
else
Access is granted
end if
end When
When (there are pending jobs) AND (¢t > rg) do
aj <— t
update_BIPS()
end When
When J; makes V(R;) do
The resource is automatically freed
end When
When J; finishes do
if (There is at least one pending job) AND (gs > 0) then
BIPS_state < ACTIVE
else
BIPS_state < IDLE
end if
end When

3.4 The Behavioral Scheduling Algorithm

In this section, the BIPS scheduling algorithm is presented (see Algorithm 1).
It is worth mentioning, that in the algorithm are pointed out the different state
transitions which traverse a server through its life (recall Figure 2 on page 10).

The synchronization mechanism is made at the kernel level, that is at the
EDF general scheduler level. This is because it is necessary to have information
about the system ceiling, about the actual blocking tasks sets that are active, etc.
In the previous algorithm, only the budget capacity is compared to the longest

outermost critical section duration before granting access to it.

1590 Ordinez L., Donari D., Santos R., Orozco J.: Timeis not Enough ...

update_BIPS () { postpone_BIPS(){
Qs — Qs Ts < ds + a(éj)Ps}
ds « aj + Oés((Sj)Ps
m(J5) = (ds —ay) "
k< k+1}

Table 1: Auxiliary functions used in Algorithm 1

4 BIPS and the energy management

In this section BIPS is analyzed from the energy consumption point of view.
As it is well known, many RTES are powered by batteries and the life of them
depends on the management that the system can do with the energy. The power
demand of CMOS chips can be expressed as P o« V f2, where V is the voltage
and f the operating frequency. As f o« V, a careful selection of the pair (V, f)
can produce a quadratic reduction in the energy consumed. However, in RTES,
the operating frequency of the microprocessor determines the execution time of
the tasks, so a feasible system may end up being unfeasible if the frequency is
reduced.

In a periodic signal, the amount of energy transferred is related to its duty-
cycle (DC). The duty-cycle is the fraction of time that the signal is active. It
is measured as the percentage of time related to the period, DC = t4¢/P.
The Pulse Width Modulation (PWM) technique is the variation of the DC to
either convey information over a communication channel or control the amount
of power sent to a load. The utilization factor of a task can be considered an
indicator of the power demand of the task. The parameters of the task (C,T) can
be seen as those of a square wave signal, in which the active part has a duration
of C units of time. In this sense, the DC represents the utilization factor of that
task.

The BIPS algorithm can be seen as a variation of PWM, instead of varying
the amount of time that the signal is active, the period is varied. However, in
the end, a modulation of the DC is performed and with it the energy demand by
the system can be modified. Although the main objective of BIPS is not related
to the reduction of power demand, its implementation has a direct impact on
this important aspect. By enlarging the activation period of tasks with less
important results in certain intervals of time, the energy consumption can be
reduced in two ways. The first approach consists in reducing the pair (V, f) so
that the utilization factor of the system is taken close to 1. In this way, a dynamic
control of the frequency and voltage is necessary. In the second approach, by
enlarging the periods, the processor will become idle for longer periods of time.
In ([Pouwelse et al.(2001)]), the authors showed that within a StrongARM SA-
1100, an idle mode stalls the CPU clock, but other services of the embedded

Ordinez L., Donari D., Santos R., Orozco J.: Timeisnot Enough ... 1591

processor such as the memory controller and OS-timer are still functional, and
has a power demand that is in average a 15% of the nominal one (see Figure 4
in [Pouwelse et al.(2001)]). In this case, no dynamic control of the pair (V f) is
needed. The amount of energy saved in this way, increments with the original
DC. That is a task with an utilization factor of 50% produces more savings when
its period is doubled than a task with a 10% utilization factor. Table 2 shows
the percentage saved at doubling the period for different utilization factors in
the case of the StrongARM used in ([Pouwelse et al.(2001)]) for a single task.

DC | 10 | 20 |50{70
Saved|18.1(26.6|37|40

Table 2: Energy Savings for different DC

It is important to note, that the previous savings are achieved without mod-
ifying the pair (V, f) of the processor. In fact, many simple devices used for
embedded systems do not count with the possibility of varying its operating fre-
quency or source voltage but can go for example into an Idle mode. This greatly
reduces the energy consumption as the processor is virtually shut down.

5 The BIPS Software Framework

The design of software for RTES still has several traditional software engineering
problems, including software architecture and maintainability [Wolf(2007)]. The
conception of an architecture capable of expressing both functional and non-
functional aspects of a system is then of major importance. This architecture
should provide a standard and customizable way of describing software for RTES.
An advantage of having such a generic architecture is the possibility of applying
real-time scheduling theory [Sha et al.(2004)] to a software design in order to
determine its feasible scheduling. An alternative to present that software design
is by means of a software framework. This is a reusable design constituted by
an architecture of abstract classes, specially developed for a particular problem
domain [Pasetti(2002)]. Since software frameworks need to be described in a
standard way, the Unified Modeling Language (UML) [uml(2009)] is an excellent
option. UML has been proven to be the most widely used notation for describing
complex systems. However, it is not specific enough to tackle the particularities
of real-time systems. In this sense, the Object Management Group issued a
profile for Modeling and Analysis of Real-time and Embedded systems (MARTE)
[mar(2009)]. With all, in this section, the BIPS Software Framework (BIPS-SF)

1592 Ordinez L., Donari D., Santos R., Orozco J.: Timeis not Enough ...

is proposed to provide a generic and reusable design to ease the application of
BIPS’ scheduling concepts in a concrete manner. The BIPS-SF is completely
based on the MARTE profile, which allows its implementation through several
programming paradigms.

5.1 BIPS-SF Contract Model

In order to introduce the general functioning of BIPS-SF, a model of it, based on
the framework proposed in [Selic(2000)], is depicted in Figure 3. In the figure, it
can be seen that there is one processor and a set of resources, which are managed
by a scheduler (EDF+ESRP scheduler). BIPS’, soft tasks and hard ones require
the processor and establish a QoS contract to use it. These contracts establish
non-functional requirements of the different entities when competing for the
processor. In the next section, this situation will be clarified with the usage
of the MARTE profile. The resources are requested by soft and hard tasks.
The scheduler provides the mechanisms for controlling the access to them by
synchronizing both servers and hard tasks following the ESRP policy. Unlike
the scheme proposed in [Selic(2000)], the resource manager and the resource
broker are the same entity: the scheduler. On the other hand, the scheduler
allocates the processor to hard task and BIPS’ according to a Scheduling Policy;
and administers resources by means of a Contention Policy. These two policies
are subsumed into a single one through the use of EDF plus ESRP policies.
The scheduler allocates the processor to hard tasks and BIPS’ according to their
QoS contract. Concerning soft tasks, the scheme is similar to the previous one,
except that the manager is the BIPS’ which encapsulates the task. Here is were
the hierarchical scheduling scheme can be seen.

5.2 BIPS-SF Structural Modeling

The architectural structure of BIPS-SF is depicted in Figure 4. There it can be
seen that classes HardTask and SoftTask inherit from class Task the abstract
definitions of generic tasks’ methods and attributes. SoftTask class is managed
by BIPS class. This is symbolized by the use of a composition relation, since
both classes have coincident lifetimes. Classes HardTask and BIPS share the
same ready list in the EDFScheduler class.

As previously mentioned, the usage of the MARTE profile allows a pre-
cise definition of each of the classes involved in the BIPS-SF. The stereotype
< SwSchedulableResource>> is used to annotate classes HardTask, SoftTask
and BIPS. It indicates that those entities are competing for the processor and
must be linked to a scheduler. This is shown by the composition relation of
classes HardTask and BIPS with the EDFScheduler class; and between classes

Ordinez L., Donari D., Santos R., Orozco J.: Timeisnot Enough ... 1593

Requests 0..* 0.* Requests
g Resource d
0.*
______ Contention Policy
,_ 1
Manages 1 S 1 Manages
cheduler
||

1

QoS Contract
. + — 1 Scheduling Policy

0.* X

1

| 1
] | |1 1
BIPS 1 SoftTask I_'_| uProcessor I_'_| HardTask I_
0.% 1 1,07 0..*
I I

Encapsulates 0..*

| QoS Contract | | QoS Contract |

Figure 3: BIPS-SF Contract Model

SoftTask and BIPS, in this case annotated, <SecondaryScheduler>> in ad-
dition to <SwSchedulableResource>>. Note that here is were the hierarchical
scheduling can be clearly seen since BIPS is a schedulable entity for EDFScheduler
and a secondary scheduler for SoftTask.

Up to now, nothing is said about sharing resources. In fact, both HardTask
and SoftTask request resources (class SharedResource) that can be shared
among them. Those resources have a particular Mutex associated to protect
them. The Mutex are handled by the concurrent access protocol ESRP. This
protocol is implemented by class EDFScheduler through ESRP mutual exclusion
policy between classes BIPS and HardTask, since this primary scheduler has no
direct influence on soft tasks but through a BIPS. Note that, in order to apply
the ESRP protocol, the main scheduler has a class ResourceTaskSet associated
to it, that contains the identifiers of the entities in a particular set.

5.3 BIPS-SF Dynamic Modeling

In what follows, the dynamic models of classes BIPS (for the case of allocating
a soft real-time task) and EDFScheduler related to the new concepts, presented
previously, are described by means of UML statecharts. They are schematic and
intend to show the behavioral aspect of the entities in runtime. Note that some
transitions are trigger-less, this was done in order to keep the figures simple and
readable. In addition, a statechart of a soft task is also included to clarify the
general description of the system. The statechart of a hard task is not included
since it is analogous to that of a soft one.

The statechart corresponding to the EDFScheduler class is shown in Figure
5. After system initialization, the scheduler creates the different tasks sets (state

1594 Ordinez L., Donari D., Santos R., Orozco J.: Timeis not Enough ...

<<SecondaryScheduler>> <<SwMutualExclusionResource>>
<<SwSchedulableResource>>

isPreemptible = true StaticSoneduinaFasturs - false mechanism = mutex

lschedPolicy = BIPS 9

processingUnit = [BIPS-SF: uProcessor] f;’:;\rgs‘biz;’;;:“ aPs
host = EDFScheduler e isStaticScheduingFeature = false

ptible = true
= BIPS-SF: EDFScheduler
deadineElements = HardTask:deadline

type = periodic

| Mutex
I

i

1

=ESRP

schedulableResources = [BIPS-SF:: SoftTask]

type = periodic
T

T
j
I
|
<<SwSchedulableResource>> '
isStaticSchedulingFeature = false
isPreemptible = true
lschedulers = BIPS-SF:: EDFScheduler
deadiineElements = BIPS:deadline
ltype = periodic

|<<swSchedulableResource>>
HardTask

0.*

SoftTask ‘
! <<saSharedResource>> | 1
<<secondaryScheduler>> | 1 1 1.8
|<<swSchedulableResource>> o
BIPS capacity = 1
0.* ‘ 1 ‘ 4 <<Scheduler>> isPreemp = false
isPreemptible = true isConsum = false
<<timerResource>> | . | e schedPolicy = EarliestDeadlineFirst
. <<scheduler>> ingUnit = [BIPS-SF:: uProcessor]
SystemTimer [, 1 |<<mutvalExclusionResource>> host = BIPS-SF:: uProcessor
' EDFScheduler schedulableResources = [BIPS-SF:: HardTask,
I BIPS-SF:: BIPS]

<<Ti
duration = timeSlot
isPeriodic = true
nature = discrete
isLogical = false
unitType = us

T
1.
rotectKind = ExtendedSRP
<<computingResource>> ResourceTaskSet se”mg Kind =
uProcessor -
scheduler = EDFScheduler
i
i
.
<<ComputingResource>>
scheduler = BIDS-SF:: EDFScheduler

Figure 4: BIPS-SF Structural Model

CRTSETS) according to the previously mentioned blocking relation. Then the
scheduler enters a state in which internal control actions are performed, the
HOUSEKEEPING state. In it, deadlines of the two entities (i.e., BIPS and hard
tasks) managed by the scheduler are checked. This internal substate is in charge
of sending the signal DEADLINEMISSED to those entities that actually missed a
deadline. Next, there is a control activity over the budgets of the different BIPS
servers. In this substate, signals corresponding to budget exhaustion and replen-
ishment (i.e., BUDGETEXHAUSTED and BUDGETREPLENISHED, respectively) are
sent to BIPS servers. The control over the BIPS and hard tasks reactivations
are carried out in the CHKREACT substate, where the corresponding preemp-
tion levels are calculated. There, deferred signals ISREACTIVATED from BIPS
and hard tasks are caught and the ready task list is updated. The last substate
(CHKCEIL) has to do with checking the ceiling of those entities in the ready
task list according to the ESRP policy. In addition, in this substate the signal
GOBLOCKED is sent to those entities that did not pass the ESRP test. After
this checking, the ready tasks list contains those entities eligible for execution.
Once the internal controls are done and the ready tasks list is built, the
scheduler actually performs the scheduling action (SCHED state). This involves
checking the ready tasks lists in order to find the entity with the smaller absolute
deadline and dispatching that entity. The dispatching action (DISPATCH state)
is shown by the sending of the GOEXEC signal to the corresponding entity. After

Ordinez L., Donari D., Santos R., Orozco J.: Timeisnot Enough ... 1595

4 HOUSEKEEPING N

CRTSETS

CHKREACT
—

,
O

after(t_slot)

after(t_slot)
/ send IsPreempt

NeedsBudgetReload

[priorinv]
/ send IsPreempt

EXEC EndCS
/send GoExec

BeginCS L

ADJUSTCEIL

Figure 5: EDF+ESRP Scheduler Behavioral Model

this, the scheduler goes to the EXEC state indicating that a task is executing.
Once in this state, the scheduler may go to the ADJUSTCEIL state where
the maximum ceil of the task’s blocking task set is inherited. This happens
when the task gets into a critical section and sends the signal BEGINCS. In the
same way, whenever a task exits the critical section, its ceil should return to
the original value restoring both the preemption level and priority of the task
and with that stopping any priority inversion that may have been taking place.
In this case, the scheduler goes to the state RESTCEIL. The guard condition
priorInv indicates if there has been a priority inversion or not. In case there
is no entity to dispatch, the scheduler executes the dummy task. Finally, one
key feature of the scheduler statechart is the after event used as trigger of some
transitions. This clause is the one which states a time base to the system and
performs an interrupt every time slot. Then, the scheduler preempts the running
task (by sending the signal ISPREEMPT) and decides which is the next task to
be executed, previously doing some checking as explained above. When a task
finishes its execution it produces the signal DONE taking the scheduler back to
the HOUSEKEEPING state. In the case that the BIPS holding the task does not
have enough budget to guarantee the execution of the allocated task’s critical
section, it produces the signal NEEDSBUDGETRELOAD and the scheduler goes
back to the HOUSEKEEPING state too.

1596 Ordinez L., Donari D., Santos R., Orozco J.: Timeis not Enough ...

In Figure 6, the behavioral model of class BIPS is depicted. The BIPS ap-
proach, presented in this paper, proposes a hierarchical scheduling scheme. As
a consequence, it has a similar behavior to that of the main scheduler. In fact,
it is a secondary scheduler that encapsulates and manages soft tasks. Therefore,
it has to check deadlines (substate CHKDL), control reactivations (substate
CHKREAC), and send that task to execute (substate EXEC). Like the main
scheduler, in this case, when a soft task tries to access a critical section, the
ceil should be handled properly. After checking that the remaining budget is
enough to execute the critical section, the main scheduler is notified that the
task is entering the critical section so it can adjust the server’s ceil. In the same
way, when the task exits the critical section, the ceil parameters are updated.
Note that when a soft task ends (signal DONESOFT) the BIPS calculates its next
reactivation time based on 4.

GoExec BLOCKED) _ GoBlocked/ send GoBlockedSoft

GoExec

after(t)
\’/ / send IsReact
d RUNNING A
MissedDeadline
(% / send Done / send MissedDeadlineSoft
CHKDL CHKREAC
LJ GoExec

PREEMP)
IsPreempt / send IsPreemptSoft
[taskReady] / send GoExecSoft

E\’X/EC BeginCSSoft CHKBDG [~enoughBudg]
/ d NeedsBudgetReload BudgetExhausted
] [enoughBudg] / send BeginCS jw sBudgptReloa

BudgetReloaded

EndCSSoft
/ send EndCS

DoneSoft [ADJPARMS
_ 1 SoftTask.getDelta() O

)

Figure 6: BIPS Behavioral Model

From the point of view of the primary scheduler, BIPS is an ordinary entity.
When it is reactivated it sends the signal ISREACTIVATED to the main scheduler
and according to the ESRP test it goes to a BLOCKED state or a RUNNING
one, where it performs the actions previously described. When it has no soft
task to execute it tells the primary scheduler about that by means of the signal
DoONE and stays idle until its next reactivation. In case it is preempted, the
BIPS goes to a PREEMP state and sends the signal ISPREEMPTEDSOFT to
the running soft task. Budget exhaustion and replenishment are handled by the

Ordinez L., Donari D., Santos R., Orozco J.: Timeisnot Enough ... 1597

primary scheduler while the BIPS is in the PREEMP state, without the soft
task knowing it. Note that the postponement involved in a budget exhaustion
situation is managed by modifying the time at which the primary scheduler
sends the BUDGETREPLENISHED signal. Until that time the BIPS remains in
the WAITING state.

A soft real-time task state diagram is shown in Figure 7. Initially, it is in
the IDLE state where it remains until it is activated or reactivated. The clause
AFTER symbolizes this waiting period. When the task is reactivated, a signal
ISREACTSOFT is sent to the scheduler, in the case of a soft task, the signal is
sent to the BIPS holding it. Once the task leaves the IDLE state it may go to
the BLOQ if the requirements of the ESRP policy are not satisfied; or may go
to the RUNNING superstate to start its execution. Once the task is actually
executing, it remains in a DOING ACTIVITY superstate. There is where the
code is actually executed. Within the DOING ACTIVITY there are two more
substates that are related to the execution of critical sections. At any moment,
the task may be preempted by the main scheduler. This situation is reflected in
the transition to the PREEMP state. The pseudo-state history is used to preserve
the task, server and processor context at the moment of the preemption, thus
the task continues its execution from the point it was interrupted. Instead, when
a task ends its execution, it sends the proper signal to the scheduler, goes to
the COMPDELTA state where it computes the behavior and defines the next
activation time and returns to the IDLE state where it waits till the moment it
is reactivated. If the task has missed its deadline, an error should be signaled
and has to be properly handled to minimize its consequences.

GoExecSoft /BLOCKED\\ GoBlockedSoft

GoExecSoft

RUNNING IDLE
(DoingActivity \
BeginCs() Mexee) EndCs()

/ send BeginCSSoft / send EndCSSoft

after(t)
/send IsReactSoft

/ send DoneSoft

_J
GoExecSoft

COMPDELTA ® PREEMP
IsPreemptSoft

Figure 7: Soft real-time task state diagram

EndSoft()
MissedDeadlineSoft
/ handleError()

1598 Ordinez L., Donari D., Santos R., Orozco J.: Timeis not Enough ...

6 Previous Work

In this section previous work is discussed. In the first place, the most relevant
papers related to the scheduling model synchronization protocol and real-time
theory are presented. In the second part, papers related to the software frame-
work are reviewed.

The RRF has been introduced in [Rajkumar et al.(1998)] together with the
concept, of hierarchical scheduling. Before that, several server algorithms have
been proposed for scheduling non real-time tasks in order to improve their re-
sponse time using an aperiodic server. The more important ones are the Polling
Server [Strosnider et al.(1995)], the Deferrable Server [Strosnider et al.(1995)]
and the Sporadic Server [Sprunt et al.(1989)]. All these are used under RM
scheduling and can be used in a RRF. Although not explicitly designed for a hier-
archical scheduling, the aperiodic server’s approach is the first implementation of
this kind of scheduling. Under EDF, the idea of using servers has been proposed
in the literature for different kind of applications with diverse orientations: multi-
media [Abeni and Buttazzo(1998)], control [Cervin and Eker(2003)], communi-
cations [Nolte et al.(2005)] and other general applications [Marzario et al.(2004)].
In particular, the Constant Bandwidth Server (CBS) has two different alterna-
tives [Abeni and Buttazzo(1998)]. The first one is a greedy algorithm that al-
ternate intervals of time in which consumes bandwidth and others in which can
eventually starve the allocated tasks. In the other version, the server is forced to
execute periodically eliminating its greedy behavior [Marzario et al.(2004)]. The
CBS algorithm has been proposed to work in a RRF in some EU projects like
OCERA [OCERA(2006)] and FRESCOR [FRESCOR(2010)].

BIPS introduces two new aspects that have to be considered while comparing
with other adaptive reservations techniques proposed in the literature. The first
one is that instead of working on the capacity or budget of the server it does
the adaptation varying the period and with this the server changes dynamically
its priority. The second is that the criteria for changing the period or adapting
the reservation is related to the task behavior. Both these two aspects are not
present in any other previous work. In what follows a short summary of the
related work to one or other aspect is presented.

In the literature there are some papers dealing with variable priority tasks.
For example, in [Aydin et al.(2001)], the concept of a mandatory part executing
at the priority of the task and an optional part executing with a lower one or
even in background is presented. The idea is that the optional part improves the
results obtained by the mandatory part or even provides a better quality of ap-
plication. It is the case of hierarchical JPEG compression. This idea is completely
different to the one proposed here because, in BIPS it is the actual behavior of
the task or what is the same the execution path followed that determines the
importance and so the priority or urgency for the next activation.

Ordinez L., Donari D., Santos R., Orozco J.: Timeisnot Enough ... 1599

In [Kosugi et al.(1996)] an algorithm to deal with variable tasks sets is in-
troduced. Basically each task is assigned a parameter that is related to its im-
portance. Each task has a unique importance level. When new tasks arrive and
are incorporated to the system, the system is scaled to cope with the new con-
figuration. The scaling is made based on the importance levels of the tasks. The
system works in this case under RM and the periods of the tasks are not mod-
ified. Again this approach has some similarities with BIPS but periods are not
changed and the importance levels are set off- line at start up.

In [Kalogeraki et al.(2000)] the authors introduce an importance parameter
for each task. In this case the model is applied in an object oriented distributed
soft real-time system. The importance is related to the criticality of the task in
the system which is defined by the designer. This is an invariant parameter. The
scheduling is performed based on the importance of the objects in each node of
the distributed system. Although the authors use the importance this is related
to the criticality of the task and not to its behavior like in BIPS. Besides the
scheduling policy is also different.

Finally, in [Jin et al.(2005)] the authors introduce a system with two kinds of
applications: multimedia and non real-time. Both of them involve many tasks and
each one of them has an importance level that is related to the different aspects
that this kind of applications may present. For example, if it is an interactive
task or if it is critical for the correct evolution of the system. The scheduler
named IMAC selects the next task to dispatch based on the importance of the
application class (multimedia, non real-time) that is computed from the amount
of important tasks in each class. The proposal is interesting but difficult to
implement in other scenarios and can lead to starvation of certain tasks that do
not have enough importance. It is different to BIPS in that the importance level
is not dynamic and the periods of the tasks remain invariant.

In [Butazzo et al.(1998)] the elastic scheduling is introduced and has been
later extended by [Caccamo et al.(2000)] and [Buttazzo et al.(2002)], the con-
cept of elastic task is introduced. The period of the task is replaced by three
parameters, minimum and maximum period and an elasticity coefficient similar
to the spring one. Basically each task may change its period using the elasticity
constant as in the case of the spring changing its compression. Thus, the sys-
tem may "compress" or "decompress" the tasks in order to make the system
schedulable. The elasticity coefficient is set by the designers and the authors of
the papers imposed no conditions on it. Although, in few words what the elastic
task model introduced is a frequency modulation of the tasks similar to the one
proposed in BIPS, the difference is that in the case of the elastic model, this
modulation is introduced to allow new tasks to be served by the system and the
behavior of them is not contemplated at the moment of the "compression" or
"decompression". In BIPS the modulation is done based on the behavior of the

1600 Ordinez L., Donari D., Santos R., Orozco J.: Timeis not Enough ...

task. Another important difference is that in the elastic model, the whole system
is analyzed and if necessary scaled while in BIPS this is a per task thing.

Related to the software framework, some of the most relevant papers are
discussed. In [Gomaa(2001)], the author describes some of the key aspects of
the COMET method for designing real-time and embedded systems, which inte-
grates object-oriented and concurrent processing concepts and uses the UML
notation. Later, in [Gomaa(2008)], the author describes a model-based soft-
ware design method for designing real-time embedded systems, which integrates
object-oriented and concurrent processing concepts and uses the UML notation.
In [Idoudi et al.(2009)] a framework for real-time database design is presented
and its fundamental operations described. In [Goncalves et al.(2005)] a design
pattern of an adaptive scheduling based on the management of the tasks execu-
tion time is presented. The structure of classes is used to facilitate the develop-
ment of tasks and also allowing the independence of the application code from
the code responsible for the adaptive control. In all these cases, the common de-
nominator is the use of UML as the modeling language. This particular aspect
is important as UML and its extension MARTE is used in this paper to present
the implementation of BIPS.

BIPS scheduling algorithm and shared resources handling has been first pre-
sented in [Ordinez et al.(2008)] and [Ordinez et al.(2009)], respectively. In this
paper however, many new aspects are introduced that has been left out in the
conference versions. The computational model for the postergation function is
carefully described and explained, the use of shared resources is explained from
the equivalence class theory, new aspects not explained before are developed
like the energy consumption improvement, eligibility and applications quality of
service. What is more important, the last section introduces a whole framework
for developing the scheduler and the tasks under the UML-MARTE profile. This
last part, is important as gives to the reader and integrated vision of the prob-
lem, the theory to solve it and finally the implementation or "how to" so many
times not explained in research papers.

7 Conclusions

In this paper, the Behavioral Importance Priority Server scheduling algorithm
has been presented. First, the algorithm has been formally introduced and its
feasibility conditions proved. It is based on the RRF and is capable of handling
different kind of tasks: hard or soft real-time, dependent or independent, periodic
or sporadic. The concepts of blocking relation and blocking task set have been
explained and based on them, the SRP has been adapted to work under the
RRF'. This is an important contribution because up to now there was no clear
solution to the problem of synchronizing soft and hard tasks sharing resources

Ordinez L., Donari D., Santos R., Orozco J.: Timeisnot Enough ... 1601

under the RRF. Finally, the utilization of BIPS generates new slack time in the
system that can be conveniently used for reducing the power demand of the
system.

In the second part, the algorithm was carefully modeled following the profile
MARTE for UML. Obviously, there are many benefits in providing a software
framework for developing applications and, in this sense, any scheduling algo-
rithm for real-time systems needs to have an associated software framework that
aids its implementation. In particular, the software framework, named BIPS-
SF, which provides a generic architecture to implement BIPS, was presented. In
addition, a generic framework for abstract resources was adapted to this partic-
ular application domain and the entities involved in the system were static and
dynamically modeled.

The study and analysis of the literature and the developments made so far
in the area of real-time systems, show some open topics to be addressed in order
to strengthen this discipline and to take advantage of the theoretical concepts
in practice. Research in these systems has been a significant progress in recent
years, which is not reflected in the commercial and industrial implementations.
A survey on the state of the art leads to distinguish, among others, three factors
as the causes of this problem. First, this development has been mainly in the
scheduling area of these systems, with an enormous amount of policies devel-
oped. However, in most cases, these policies focus on non-functional aspects of
the system to make decisions, ignoring functional issues such as the result of the
computation of a task, the function performed or contribution given in benefit of
the system. Second, the critical nature of real-time systems generates the need
to take extra precautions to protect the entities of malfunctions. For this, the
use of resource reservation mechanisms based on servers and methods for sharing
resources in a safe and simple manner, becomes a key point of any approach.
In particular, for the treatment of shared resources, since it is a very sensitive
issue for scheduling, it is also necessary that the method chosen to assist the
developer in the whole development process, avoids unwanted situations as early
as possible. Finally, in the third place, it is essential to have tools that facilitate
the implementation of theoretical concepts into actual design and development.
Thus, when applying a particular scheduling policy or a set of theoretical meth-
ods, there is a basic software framework before starting to work. The software
framework is beneficial for the developer as it serves as a guide throughout the
development process and as a bridge between theoretical concepts and the par-
ticular limitations of the practice.

In particular, in this article the Behavioral Scheduling Policy, which uses a
weight based on the semantic behavior of the tasks to determine their reactiva-
tion times, was presented. For this, a new model of real-time tasks was developed.
Also, a server model (BIPS server) that takes into account the behavior of the

1602 Ordinez L., Donari D., Santos R., Orozco J.: Timeis not Enough ...

task and is capable of varying its frequency accordingly was built and formally
proved. Finally, a new policy that governs the life cycle of the tasks and servers
at runtime was extensibly presented.

On the other hand, an extension to a classic policy to manage shared re-
sources was proposed. This extension is called ESRP and consists primarily of
the inclusion of the concepts of set of tasks and set of resources by defining block-
ing relations. In addition to formal proofs, implementation concerns to take into
account when applying ESRP were showed.

The last contribution of this paper had to do with the application of two
formally proved scheduling policies(Behavioral Scheduling Policy and ESRP)
to a generic practical development. The presented software framework, called
BIPS-SF, benefits the developer by providing different points of view to design
a particular system. This reinforces the concepts of software engineering and en-
hances the tools to build a predictable system. The proposed software framework
consists of a contract-based model, which gives an overview of the interactions
between the different entities involved in the system; a structural model, which
provides static configuration of the entities in terms of class diagrams annotated
with the MARTE profile; and a dynamic model that describes, by means of
state diagrams, the basic behavior of each of the entities of the system and their
interaction at runtime.

Finally, the contributions made in this article serve as a basis for future re-
search in the areas of work that are naturally set forth herein. These are: expand-
ing the definition of the behavior function ¢, to take account of greater variability
of basic activities; extending the concepts BIPS servers to encapsulate various
tasks, with different functions § on the same server; including mechanisms to
reclaim available bandwidth where BIPS servers suffered a delay; and extending
the software framework BIPS-SF, to be able to model hardware resources.

References

[Abeni and Buttazzo(1998)] Abeni, L., Buttazzo, G.: “Integrating multimedia appli-
cations in hard real-time systems”; Proceedings of the 19th IEEE RTSS; IEEE
Computer Society, Madrid, Spain, 1998.

[Abeni et al.(2005)] Abeni, L., Cucinotta, T., Lipari, G., Marzario, L., Palopoli, L.:
“Qos management through adaptive reservations”; Real-Time Syst.; 29 (2005), 2-3,
131-155.

[Anand et al.(2008)] Anand, M., Easwaran, A., Fischmeister, S., Lee, I.: “Composi-
tional feasibility analysis of conditional real-time task models”; Object Oriented
Real-Time Distributed Computing (ISORC), 2008 11th IEEE International Sym-
posium on; 391-398; 2008.

[Aydin et al.(2001)] Aydin, H., Melhem, R., Mosseé, D., Mejia-Alvarez, P.: “Optimal
reward-based scheduling for periodic real-time tasks”; IEEE Trans. Comput.; 50
(2001), 2, 111-130.

[Baker(1990)] Baker, T.: “A stack-based resource allocation policy for realtime pro-
cesses”; Real-Time Systems Symposium, 1990. Proceedings., 11th; (1990), 191-200.

Ordinez L., Donari D., Santos R., Orozco J.: Timeisnot Enough ... 1603

[Baruah(1998)] Baruah, S. K.: “A general model for recurring real-time tasks”; RTSS
’98: Proceedings of the IEEE Real-Time Systems Symposium; 114; IEEE Computer
Society, Washington, DC, USA, 1998.

[Butazzo et al.(1998)] Butazzo, G. C., Lipari, G., Abeni, L.: “Elastic task model for
adaptive rate control”; RTSS ’98: Proceedings of the IEEE Real-Time Systems
Symposium; 286; IEEE Computer Society, Washington, DC, USA, 1998.

[Buttazzo et al.(2002)] Buttazzo, G., Lipari, G., Caccamo, M., Abeni, L.: “Elastic
Scheduling for Flexible Workload Management”; IEEE Transactions on Computers;
51 (2002), 3, 289-302.

[Caccamo et al.(2000)] Caccamo, M., Buttazzo, G., Sha, L.: “Elastic feedback control”;
ECRTS '00: Proceedings of the Euromicro Conference on Real-Time Systems; 121;
IEEE Computer Society, Los Alamitos, CA, USA, 2000.

[Caccamo and Sha(2001)] Caccamo, M., Sha, L.: “Aperiodic servers with resource con-
straints”; RTSS ’01: Proceedings of the 22nd IEEE Real-Time Systems Symposium
(RTSS’01); 161; IEEE Computer Society, Washington, DC, USA, 2001.

[Cernosek and Naiburg(2004)] Cernosek, G., Naiburg, E.: “The value of modeling”;
Electronically (2004).

[Cervin and Eker(2003)] Cervin, A., Eker, J.: “The control server: A computational
model for real-time control tasks”; Proceedings of the 15th Euromicro Conference
on Real-Time Systems (ECRTS’03); 113; IEEE Computer Society, Los Alamitos,
CA, USA, 2003.

[Fayad and Schmidt(1997)] Fayad, M., Schmidt, D. C.: “Special issue on object-
oriented application frameworks”; Communications of the ACM; 40 (1997), 10.

[FRESCOR(2010)] FRESCOR: http://www.frescor.org (2010).

[Gomaa(2001)] Gomaa, H.: “Designing real-time and embedded systems with the
comet/uml method”; Dedicated Systems Magazine; (2001).

[Gomaa(2008)] Gomaa, H.: “Model-based software design of real-time embedded sys-
tems”; International Journal of Software Engineering; 1 (2008), 1.

[Goncalves et al.(2005)] Goncalves, R., Islam, R., Montez, C.: “Design pattern for the
adaptive scheduling of real-time tasks with multiple versions in rtsj”; SCCC ’05:
Proceedings of the XXV International Conference on The Chilean Computer Sci-
ence Society; 65; IEEE Computer Society, Washington, DC, USA, 2005.

[Hefeeda and Bagheri(2007)] Hefeeda, M., Bagheri, M.: “Wireless sensor networks for
early detection of forest fires”; Proceedings of the 4th IEEE International Confer-
ence on Mobile Adhoc and Sensor Systems; Pisa, Italy, 2007.

[Idoudi et al.(2009)] Idoudi, N., Louati, N., Duvallet, C., Bouaziz, R., Sadeg, B., Gar-
gouri, F.: “A framework to model real-time databases”; International Journal of
Computing and Information Sciences; 7 (2009), 1.

[Jin et al.(2005)] Jin, H., Hu, Q., Liao, X., Chen, H., Deng, D.: “Imac: an importance-
level based adaptive cpu scheduling scheme for multimedia and non-real time ap-
plications”; Proceedings of the 2005 ACS / IEEE International Conference on Com-
puter Systems and Applications (AICCSA 2005); IEEE Computer Society, 2005.

[Kalogeraki et al.(2000)] Kalogeraki, V., Melliar-Smith, P. M., Moser, L. E.: “Dynamic
scheduling for soft real-time distributed object systems”; ISORC ’00: Proceedings
of the Third IEEE International Symposium on Object-Oriented Real-Time Dis-
tributed Computing; 114; IEEE Computer Society, Washington, DC, USA, 2000.

[Kopetz(2000)] Kopetz, H.: “Software engineering for real-time: a roadmap”; Proceed-
ings of the Conference on The Future of Software Engineering; ACM, New York,
NY, USA, 2000.

[Kosugi et al.(1996)] Kosugi, N., Mitsuzawa, A., Tokoro, M.: “Importance-based
scheduling for predictable real-time systems using mart”; WPDRTS ’96: Proceed-
ings of the 4th International Workshop on Parallel and Distributed Real-Time
Systems; 95; IEEE Computer Society, Washington, DC, USA, 1996.

[Liu and Layland(1973)] Liu, G. L., Layland, J. W.: “Scheduling algorithms for mul-
tiprogramming in hard real time environment”; Journal of the ACM; 20 (1973),

1604 Ordinez L., Donari D., Santos R., Orozco J.: Timeis not Enough ...

46-61.

[Luckscheiter(2003)] Luckscheiter, K.: “Develop performance specifications for a rear
impact collision warning system for transit buses”; Technical report; Federal Transit
Administration; Washington, DC (2003).

[mar(2009)] “Modeling and analysis of real-time and embedded systems”; (2009); http:
//wuw .omgmarte.org.

[Marzario et al.(2004)] Marzario, L., Lipari, G., Balbastre, P., Crespo, A.: “Iris: A new
reclaiming algorithm for server-based real-time systems”; Proceedings of the 10th
IEEE RTAS; IEEE Computer Society, Toronto, Canada, 2004.

[Nolte et al.(2005)] Nolte, T., Nolin, M., Hansson, H.: “Real-time server-based com-
munication with can”; IEEE Transactions on Industrial Informatics; 1 (2005), 3,
192-201.

[Nutt(1992)] Nutt, G. J.: Centralized and Distributed Operating Systems; Prentice-
Hall International Editions, 1992.

[OCERA(2006)] OCERA: http://www.ocera.org/ (2006).

[Ordinez et al.(2008)] Ordinez, L., Donari, D., Santos, R., Orozco, J.: “A behavior
priority driven approach for resource reservation scheduling”; Proc. 2008 ACM
Symposium on Applied Computing; ACM, Fortaleza, Ceara, Brazil, 2008.

[Ordinez et al.(2009)] Ordinez, L., Donari, D., Santos, R., Orozco, J.: “Resource shar-
ing in behavioral based scheduling”; Proc. 2009 ACM Symposium on Applied Com-
puting; ACM, Honululu, Hawaii, USA, 2009.

[Pasetti(2002)] Pasetti, A.: Software Frameworks and Embedded Control Systems; vol-
ume 2231/2002 of Lecture Notes in Computer Science; Springer Berlin / Heidel-
berg, 2002.

[Pouwelse et al.(2001)] Pouwelse, J., Langendoen, K., Sips, H.: “Dynamic voltage scal-
ing on a low-power microprocessor”; MobiCom ’01: Proceedings of the 7th annual
international conference on Mobile computing and networking; 251-259; ACM,
New York, NY, USA, 2001.

[Rajkumar et al.(1998)] Rajkumar, R., Juvva, K., Molano, A., Oikawa, S.: “Resource
kernels: A resource-centric approach to real-time and multimedia systems”; Pro-
ceedings of the SPIE/ACM Conference on Multimedia Computing and Networking;
1998.

[Selic(2000)] Selic, B.: “A generic framework for modeling resources with uml”; IEEE
Computer; 33 (2000), 6.

[Sha et al.(2004)] Sha, L., Abdelzaher, T., Arzén, K.-E., Cervin, A., Baker, T., Burns,
A.) Buttazzo, G., Caccamo, M., Lehoczky, J., Mok, A. K.: “Real time scheduling
theory: A historical perspective”; Real-Time Syst.; 28 (2004), 2-3, 101-155.

[Sprunt et al.(1989)] Sprunt, B., Sha, L., Lehoczky, J. P.: “Aperiodic Scheduling for
Hard Real-Time System”; Real-Time Systems; 1 (1989), 27-60.

[Strosnider et al.(1995)] Strosnider, J. K., Lehoczky, J. P., Sha, L.: “The Deferrable
Server Algorithm for Enhanced Aperiodic Responsiveness in Hard Real-Time En-
vironments”; IEEE Trans. on Computers; 44 (1995), 1.

[uml(2009)] “Unified modeling language”; Website (2009).

[USD(2007)] “Crash warning system interfaces: Human factors insights and lessons
learned”; Technical report; United States Department of Transport (2007).

[Valiente et al.(2005)] Valiente, M., Genova, G., Carretero, J.: “Uml 2.0 notation for
modeling real-time task scheduling”; Journal of Object Technology; 5 (2005), 4,
91-105.

[Wolf(2006)] Wolf, W.: “A half-million strong at least”; Computer; 39 (2006), 9, 109—
110.

[Wolf(2007)] Wolf, W.: “Guest editor’s introduction: The embedded systems land-
scape”; Computer; 40 (2007), 10, 29-31.

