
Knowledge Authoring with ORE: Testing, Debugging and

Validating Knowledge Rules in a Semantic Web

Framework

Andrés Muñoz Ortega

(Dpto. de Ingenieŕıa de la Información y las Comunicaciones

Computer Science Faculty, University of Murcia

30100 Murcia, Spain

amunoz@um.es)

Jose M. Alcaraz Calero

(Automated Infrastructure Lab

Hewlett Packard Laboratories

BS34 8QZ Bristol, UK

jmalcaraz@hp.com)

Juan A. Bot́ıa Blaya

(Dpto. de Ingenieŕıa de la Información y las Comunicaciones

Computer Science Faculty, University of Murcia

30100 Murcia, Spain

juanbot@um.es)

Gregorio Mart́ınez Pérez

(Dpto. de Ingenieŕıa de la Información y las Comunicaciones

Computer Science Faculty, University of Murcia

30100 Murcia, Spain

gregorio@um.es)

Félix J. Garćıa Clemente

(Dpto. de Ingenieŕıa y Tecnoloǵıa de Computadores

Computer Science Faculty, University of Murcia

30100 Murcia, Spain

fgarcia@um.es)

Abstract: Ontology rule editing, testing, debugging and validation are still hand-
crafted and painful tasks. Nowadays, there is a lack of tools that take these tasks into
consideration in order to ease the work of the developer. This paper is devoted to
explain how we have come to a new tool, ORE (Ontology Rule Editor), which signifi-
cantly eases these tasks. It rests on a Semantic Web framework together with reasoning
engines, which operate with semantic representations. Its design maintains a loosely
coupling from the framework and from rule engines. Collaborative functionalities have
been tackled in order to enable a real integration of the rule authoring across different
tools and/or users. A practical validation of the approach by instantiating our tool with

Journal of Universal Computer Science, vol. 16, no. 9 (2010), 1234-1266
submitted: 11/11/09, accepted: 4/4/10, appeared: 1/5/10 © J.UCS

Jena and Pellet reasoning engines is presented here. In order to demonstrate its use,
the tool is applied to the task of rule-based management in a ubiquitous computing
scenario.

Key Words: Knowledge authoring, Semantic Web, Ontology rule editor, Reasoning
engines, Conflict management.

Category: D.2.2, I.2.1, I.2.4, M.1

1 Introduction

Knowledge authoring has become a fundamental process in the current knowl-

edge society, since it allows organizations and entities to obtain and manage valu-

able information when taking decisions. This process usually consists of three

stages [Suraweera et al. 2004], involving domain experts and knowledge system

administrators. In the first stage we find elicitation and acquisition of knowledge

over a particular domain. The result of this stage is the creation of a model

representing such a domain, known as domain model. In the second stage differ-

ent reasoning tasks are applied to this model in order to infer new knowledge

from the initial acquired data. Finally, in the third stage the expert validates the

domain model and the inferred knowledge. This paper is particularly focused on

the management of knowledge rules employed in this authoring cycle, i.e. how to

edit, test, debug and validate rules which are directed to entail new knowledge

from an initial domain model.

The knowledge authoring processes studied in this paper are based on the use

of Semantic Web technologies [Berners-Lee et al. 2001]. The adoption of the Se-

mantic Web overcomes the search and integration limitations of knowledge man-

agement systems [Joo and Lee 2009, Hefke 2004]. More specifically, we refer to

the adoption of ontologies based on Description Logic (DL) [Baader et al. 2003]

as the representation of the domain model in such authoring processes. One

consequence of this adoption is the possibility of defining knowledge rules by us-

ing elements from these ontologies. These rules are then employed to infer new

knowledge when their conditions are fulfilled, as explained later. Normally, the

management of knowledge rules amounts to a considerable work load for domain

experts and knowledge system administrators. A solution to this problem resides

in computerizing and automatizing the tasks involved in this process (i.e., the

edition, execution and validation of such rules). Thus, a software application

could guide the administrator or expert in the performance of knowledge rules

authoring tasks with the aim of saving time and reducing complexity. The next

paragraphs give a brief introduction about how knowledge rules can be defined

by using DL ontologies and how Semantic Web technologies can support the

implementation of the proposed solution.

Knowledge models based on DL ontologies are usually divided into TBox

1235Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

(terminological) and ABox (assertional) components (see figure 1)1. The TBox

contains the vocabulary and schema that define domain concepts, their proper-

ties, and the relationships (called roles in DL) among them. Hence, a concept

represents a set of elements with similar characteristics (e.g., people, devices,

parts of a building such as room, floors, etc.), whereas roles symbolize binary

relationships among elements (e.g., a device is located in a specific room; a room

is subsumed in a particular floor). Apart from these two atomic components, the

DL language offers some axioms and restrictions over them to represent more

complex domains (e.g., a computer is a specialization of the device concept; a

room must have at least one door).

Description
Logic

ABox (instances)

individuals

TBox (schema)

Ontology
Rules

Reasoning Engines

Rule
Reasoner

Knowledge Model

concepts
roles

axioms
 restrictions

Ontology
Reasoner

Figure 1: Knowledge models can be represented by means of DL ontologies with

ontology rules. Reasoning engines perform several types of inferences on the

knowledge models.

On the other hand, the ABox is populated with instances of these con-

cepts and roles, representing a specific situation in the domain according to that

schema. These instances are called individuals and they are defined by means of

two types of assertional statements. Hence, a concept assertion C(a) states that

an individual a belongs to the concept C, while a role assertion R(a, b) states

that an individual a is related to an individual b by the role R.

As mentioned above, the knowledge represented by means of Semantic Web

ontologies can be used to produce knowledge rules, which in turn derive new facts

in the domain through a deductive inference process. Knowledge rules (also called

here ontology rules, as they are formed by elements from ontologies) are of the

1 Figure 1 has been extended from the one found in[Baader et al. 2003], page 46

1236 Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

form of an implication between a conjunction of antecedents and a conjunction

of consequents. Both conjunctions consist of the aforementioned assertions C(x)

and R(x, y), where x, y are either individuals in the ABox, variables or data

values (e.g., integer, boolean, etc.). Predefined or user-defined functions can also

be part of these rules (e.g., mathematical operations, user code, etc.). Knowledge

rules can be thought of as “if-then” statements: All elements in the antecedent

must be true in order to the elements in the consequent become true. Therefore,

these rules are a natural and straightforward alternative to entail new knowledge

based on the conditional existence of information. Let us see a simple example

of an ontology rule.

Suppose a system which controls automatically a set of devices within a build-

ing. The domain model in this system is represented by an ontology whereDevice

and Room are concepts, and is located is a role that relates devices to their place-

ment in a specific room. Moreover, Device has the property power which indi-

cates whether the device must automatically be switched on or off. Suppose also

that the ABox of the ontology contains the assertions Device(ACME Com),

Room(Lab 6) and is located(ACME Com,Lab 6). Now, suppose that a system

administrator wants to express that all devices located in Lab 6 must be switched

off. This conditional statement can be defined through the knowledge rule R Lab

by using the previous ontology elements as follows:

RLab : Device(?x) ∧Room(Lab 6) ∧ is located(?x, Lab 6) ⇒ power(?x, “off”)

The variable ?x will take values from all existing individuals in the ABox that

are known to be devices and to be located in Lab 6 (ACME Com in this case).

Apart from being employed as a language for representing knowledge models,

DL ontologies empower computers to automatically perform different reasoning

processes on such models. Ontology reasoning is one of the available processes for

making inference (see figure 1, inside the reasoning engines box). Some opera-

tions of this type of reasoning allows extracting new knowledge that was implicit

in the ontology, as for example classification (i.e., to compute the subsumption

relationships between concepts so as to obtain a complete domain hierarchy) and

realization (i.e., to find all concepts from the hierarchy to which an individual

belongs). Another interesting operation of ontology reasoning is the consistency

checking of an ontology, which validates the domain model and the specific sit-

uation represented in it. In other words, this operation checks that the schema

defined by concepts and roles is consistent and the assertions stated in the on-

tology do not violate any axiom or restriction in such a schema. On the other

hand, rule-based reasoning introduces an inference process which generates new

knowledge by employing ontology rules and a rule reasoner (see bottom right

part of figure 1). Note that all these reasoning processes are particularly useful

when dealing with the tasks of executing and validating knowledge rules during

the knowledge authoring cycle.

1237Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

While there exist several tools for editing ontologies and an increasing number

of reasoners that allow for the reasoning processes listed above, we have detected

a lack of tools to manage the knowledge rules authoring cycle in a supervised

manner. The main aim of this kind of tools should be directed to edit, test,

debug and validate knowledge rules in an easy and intuitive manner. Specially

interesting tools would be those that abstract the rule edition task from the

underlying logic, i.e. the only ability requested from the user to define rules is an

acceptable level of familiarity with the domain and how it is represented, but no

specific DL expertise is needed. A clear explanation of the results produced when

testing rules should be given, so as to detect and correct undesired effects derived

from the execution of such rules. Moreover, a practical characteristic of this type

of tools would be the simple integration of whichever existing reasoning engine

into it for testing rules, together with the possibility of adding new reasoners.

Eventually, inconsistency management between rules should be another desirable

feature. This problem often arises as a result of contradictions among different

well-founded rules. For example, a rule could derive the fact of switching off

a particular device because of maintaining operations, while another rule may

claim to the contrary, i.e. to switch the same device on due to it having to perform

a critical task. In this case, detecting the conflict and offering the opportunity

of disabling one of these rules could be deemed as an immediate solution.

The main contribution of this paper is the development of a generic rule

authoring system in a Semantic Web framework which includes the charac-

teristics listed in the above paragraph. To this end, we have made an appre-

ciable improvement and extension of a tool, the Ontology Rule Editor (ORE)

[Muñoz et al. 2006], whose first version consisted in a GUI that guided the user

through three simple steps when editing rules. Here two augmented versions of

the tool equipped with the aforementioned characteristics are presented: ORE-

API and ORE-GUI. Both proposals enable a comfortable rule editing, testing,

debugging and validation. ORE-API is a set of methods to be called from any

application code to edit ontology rules, select different combinations of reasoning

engines and infer knowledge as a result of applying ontology and rule reasoning.

Optionally, the application may ask ORE-API for the derivation trace of the

inferred knowledge. On the other hand, ORE-GUI consists in a graphical front-

end which guides the user in the management of the functionalities offered in

the ORE-API. Therefore, the ORE-API is intended to be used from any appli-

cation that needs to work with ontology rules and reasoning processes, whereas

ORE-GUI is a stand-alone application aimed to graphically edit, test, debug and

validate ontology rules in any domain.

The ORE project is currently being utilized in European projects such as

1238 Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

Ecospace2 and in national ones such as I3Media3, among others. In this work we

use a ubiquitous computing scenario where there is a high necessity of modeling

and monitoring knowledge rules to illustrate the ORE-API and ORE-GUI func-

tionalities. Particularly, this scenario is based on the management of information

directed to control devices in an intelligent building.

The rest of the paper is structured as follows. The next section introduces

the underlying elements on which ORE is based, and then gives an abstract

architecture of the rule authoring system. Section 3 provides a description of the

ORE architecture implementation, focusing on technical aspects of the authoring

process. A scenario in which ORE is used to generate knowledge rules to control

an intelligent building is exposed in section 4. Section 5 discusses several tools

for managing ontologies and rules, comparing them with ORE. Finally, section

6 summarizes our contribution and points out the future work.

2 Software Architecture for a Generic Rule Authoring
System in a Semantic Web Framework

2.1 Motivation. An intelligent building scenario.

As previously introduced, this work is aimed to build a generic rule authoring

system such that it may be applied to a number of different domains integrated

into a Semantic Web framework. This system, called ORE, is presented as an API

and GUI version. In order to illustrate how ORE manages the authoring cycle

of knowledge rules, it has been integrated into a ubiquitous computing scenario

developed in our research group. The scenario corresponds to the management

of an intelligent building. This building is equipped with a pervasive system

[Weiser 1991, Hansmann et al. 2003] that offers several intelligent services for

workers and visitors, as for example to adapt the operation mode of some devices

in the building to the worker’s or visitor’s context and preferences. Normally,

pervasive systems consist of software agents that share a common description

model about any domain. However, no individual agent has a complete vision on

the entire domain. Instead, they have a partial –and possibly overlapped– point

of view about the current state of affairs, because such agents hold different sets

of facts and rules about the same domain. As a result, these systems need to

manage the edition and monitoring of rules, presenting an excellent field to test

the authoring tool developed here.

In particular, the scenario focuses on the management of air-conditioner (AC)

devices allocated throughout the building. The functionality of these devices is

offered as services by different agents. There are two types of agents: personal

2 http://www.ami-communities.eu/wiki/ECOSPACE
3 https://i3media.barcelonamedia.org/

1239Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

agents, which manage the available services to a specific user, and floor con-

trollers, which are responsible for the general operations of all the devices in

each floor of the building. Suppose that Bob is a worker who has assigned an

office with an AC device. He usually selects a particular set of configurations for

the services in his office, including the air-conditioning one, through the personal

agent installed in his laptop or PDA. This agent has previously been programmed

to represent the possible configurations of such services by means of knowledge

rules, which are defined with ORE by a system administrator (such rules are

hidden to Bob, the personal agent in his PDA only shows him a graphic descrip-

tion of each configuration). For example, one of the configurations for the AC

device in Bob’s office states that when Bob is in whichever part of the building,

the AC device in his room must automatically be switched on. This configuration

will be represented as a knowledge rule, denoted by BobRule henceforth (see

section 4.1). According to this, the use of rules to infer new property values over

elements in the domain is a desirable feature of these systems. Thus, the gener-

ation of new knowledge through rules should be permitted in a simple manner.

It is one of the characteristics that can be found in ORE, as shown in section 4.

Being more ambitious, we propose the use of these rules for enabling ORE

users to define complex behaviors, which specify how the pervasive system will

act when some situations of interest happen. For instance, when a person is

detected in different parts of the building, some privileges (to open doors, to

make use of some devices, etc.) may be granted or denied to her depending on

her profile and/or the current context. Back to the particular scenario, the floor

controllers are programmed to control AC devices with the aim of saving energy.

This configuration is specified by the following rule: for every person whose office

has installed an AC device, if he/she is located in a floor A, the office is in floor

B, and A �= B, then the AC device must be switched off. It will be referred as

PowerSaveRule henceforth.

Now suppose that there are three different types of RFID presence sensors in

the building, which offer location information depending on the accuracy level

needed for the agents. Thus, the sensors can detect the presence of a person

in the building, in a particular floor or in a specific room, respectively, due to

an RFID tag attached to the hand-held device. The information provided by

the sensors is accessible for all agents in the pervasive system. Suppose that at

a specific moment Bob is in the building, but he is located in a different floor

from his office. Besides, he has selected the configuration which corresponds

to BobRule for his AC device. Therefore, it is possible to reach a situation in

which Bob’s agent finds reasons to turn the AC device on (Bob is currently in

the building), while the floor controller is requested to turn it off (Bob is in

a different floor from his office). Now, the pervasive system should be able to

detect and manage the conflict generated due to these two rules. As shown in

1240 Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

section 4.2, ORE could be used to assist the system and administrators in these

tasks. The complete scenario will be developed in detail in section 4.

To operate with rules such as the previous ones in a Semantic Web framework

is not a trivial task. If the programmer or administrator is not familiar with rule

programming and its syntax, it becomes hardly feasible. Moreover, it is essential

to supervise the cycle of testing, debugging and validating rules, giving a clear

interpretation of the facts inferred and conflicts detected during the reasoning

process. The system described in this paper tries to manage these rules in an

efficient and intuitive manner, either from any application code using ORE-API

or graphically by means of ORE-GUI, supposing that the users of this tool are

familiarized with the domain and its representation by means of ontologies.

The underlying elements on which ORE is based are described in the rest

of the section using the intelligent building scenario as example. Firstly, the

languages used here to represent knowledge and rules. Secondly, the abstract

architecture of the generic rule authoring system is explained in detail, together

with the reasoning engines which execute the ontology and rule-based reasoning.

2.2 Ontology and rule languages

Two types of languages are necessary to define rules in a domain modeled within

the Semantic Web framework: (1) Ontology languages, which model the knowl-

edge contained in such rules; and (2) rule languages, which model their syntax

and semantics. Let us start with ontology languages.

RDF (Resource Description Framework) [Klyne and Carroll 2004] is a basic

ontology language to model data and state assertions (i.e., facts that are true in

the domain) in the form of triples. These are represented as (s, p, o), meaning

that the subject s is related to object o by the predicate p. Usually, the subject

denotes the individual on which the assertion is made, the predicate denotes

a property or relationship of that subject, and the object is the value of that

property.

However, RDF does not allow for a high level of expressiveness (e.g, disjoint-

ness of concepts, cardinality restrictions of properties, special characteristics of

properties such as transitivity, etc.). Consequently, the kind of domains that

can be modeled with this language is limited [Horrocks et al. 2003]. As a re-

sult of the efforts aimed to solve this problem, OWL (Web Ontology Language)

[Dean et al. 2004] has been designed as a new standard ontology language based

on RDF, but offering more expressiveness than this latter language provides.

OWL has three increasingly-expressive languages: OWL Lite, OWL-DL, and

OWL Full. The particular OWL version we have centered on in this paper is

OWL-DL4, due to the features offered by the restricted subset of Description

4 http://www.w3.org/TR/owl-guide/

1241Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

Logic used in this language (DL in OWL-DL stands for Description Logic). Let

us now see some of these OWL-DL features.

The restrictions imposed to OWL-DL place it between Propositional and

First-Order Logics. These restrictions are necessary to ensure that the operations

included in the ontology reasoning process (classification, realization, consistency

checking, etc.) are decidable, i.e. it is guaranteed that all inference operations

included in this type of reasoning are computable in a finite time. In spite of

such restrictions, OWL-DL still fulfills the modeling of domains which require

a high level of expressiveness. Hence, the benefits of this ontology language are

twofold: it gives a formal and expressive representation of a domain as a set of

concepts and relationships among them, and moreover it enables an efficient and

computable reasoning support.

As described in the introduction, OWL-DL ontologies are usually divided into

the sets of statements known as TBox and ABox (see figure 1) to represent the

schema and specific situations of a domain, respectively. To illustrate this, the

intelligent building scenario has been represented with an ontology of this type

(see figure 2). Elements such as building, floor, room, device, etc. are represented

as concepts in the TBox. Hierarchical structures are constituted here through

the subclass axiom � (e.g., the concept TemperatureDevice is a subclass of

PhysicalDevice). Moreover, the cardinality restriction on the property power

indicates that it can only have one value for the same temperature device, i.e.

“on” or “off”. Therefore, a semantic inconsistency occurs when this property

takes more than one different value at the same time. As shown in section 4,

ORE provides mechanisms to discover and handle this kind of inconsistencies

appropriately. Observe that OWL ontologies can reuse concepts from other OWL

ontologies. Hence, Identity is equivalent to the concept Person defined in the

FOAF ontology5.

The following relationships between the domain concepts are captured: an

identity has assigned one or more rooms through the AssignedOffice relation;

a room has allocated a device into it by means of AllocatedService; a part of the

building is subsumed by another according to the Subsumption relation; and any

person in the building is located in a specific zone by IdentityLocation. Notice

that these relationships are not modeled here as simple properties (e.g., power for

temperature devices), but as concepts. The fundamental for this decision resides

in that the types of such relationships could be used to classify them in different

categories. Thus, AssignedOffice is a special type of control association that

an identity has over a room, whereas Subsumption is an aggregation associa-

tion between locations, or AllocatedService is a service association defined in

a location. Eventually, observe that the domain and the range of these associa-

tions are described through roles. For example, the role ∃assignedTo.Identity
5 http://xmlns.com/foaf/spec/

1242 Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

Figure 2: The intelligent building scenario expressed in an OWL-DL ontology.

The TBox contains the vocabulary and schema of the domain. A possible current

state of affairs of such a domain is partially given in the ABox.

in AssignedOffice means that the subject of this relationship is any instance

of the Identity concept, while ∃officeAssigned.Room indicates that the object

of the relationship takes its value as instances of Room.

On the other hand, the ABox in figure 2 reflects the current state of affairs

in the scenario by means of concept (C(x)) and role (R(x, y)) assertions. In this

case, Bob is an identity that has assigned the room Lab1 through the association

AO Bob Room. Likewise, Lab1 has allocated the temperature device AcmeAC

according to AS Room AC. Note that Bob was detected in two different levels

of location by RFID sensors, giving as a result the individuals IL1 and IL2,

which place him inside the building and in the floor 4, respectively. Finally, the

assertions that specify the subsumption relations among the parts of the building

(i.e., BuildingTower containing Floor4 and Floor16, and Floor4 containing

Lab1) have been omitted for simplicity. A complete description of the scenario

will be given in section 4.

Now let us see how the knowledge modeled by OWL-DL ontologies can be

included in conditional rules. These rules are of the form of:

IFA1 and A2 and . . . and An THEN B1 and B2 and . . . and Bm,

i.e. an implication between a set of antecedents (body) and a set of consequents

(head). Each atom Ai/Bj in the body/head is an assertion of a concept C(x)

or role R(x, y) from the DL language, where x, y are variables, individuals from

the ABox or data values. Furthermore, a special type of atoms, called built-

ins, can be included in the body and head of the rules. These built-ins are

functions that offer different operations on variables, individuals or data values

(e.g., comparison operations among these elements: equality, difference, etc.).

1243Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

The semantic of these rules states that whenever all the atoms specified in the

body are true in a domain, the atoms in the head must also be true in such a

domain.

As stated at the beginning of this section, it is needed a rule language to

model the syntax and semantic of this kind of rules. One proposal that main-

tains maximum compatibility with OWL is the Semantic Web Rule Language

(SWRL)[Horrocks et al. 2004]. This rule language adds a new kind of axiom to

OWL, namely Horn clause rules, which extends OWL’s syntax and semantics to

model rules as the one given above. Analogously to the restrictions imposed to

OWL-DL in order to keep the bounds of decidability of such a language, SWRL

is also restricted so as to maintain the decidability of the combination OWL-

DL + SWRL. The expressiveness of the resulting language is still acceptable

to define rules such as the ones employed in this scenario. Details about the

restrictions on SWRL rules, so-called SWRL-DL safe rules, are shown elsewhere

[Motik et al. 2005]. In particular, the rules used in this paper are SWRL-DL

safe.

The floor controller’s PowerSaveRule (see section 2.1) serves here as an

example of SWRL rule. It is written below in a SWRL abstract form, where

variables are preceded by the ’?’ mark. Lines 1 and 2 determine the floor ?fx

where an identity ?i is currently located through the location association ?il.

Line 3 finds the room ?r assigned to that identity ?i. Line 4 retrieves the floor

?fy where the room ?r is subsumed. Note that the floor ?fy could be the same

floor ?fx where ?i is located or not. This condition is checked in line 5 by means

of the built-in notEqual. This comparison function returns true if the two floors

are not the same. Line 6 finds the temperature device ?ac allocated in room

?r, if any exists. Finally, the rule consequent in line 8 states that ?ac must be

powered off.

PowerSaveRule : Identity(?i) ∧ Floor(?fx) ∧ IdentityLocation(?il) ∧ (1)

location(?il, ?fx) ∧ identityLocated(?il, ?i) ∧ (2)

AssignedOffice(?ao) ∧ assignedTo(?ao, ?i) ∧ officeAssigned(?ao, ?r) ∧ Room(?r)∧ (3)

Floor(?fy) ∧ Subsumption(?ss) ∧ collection(?ss, ?fy) ∧member(?ss, ?r) ∧ (4)

notEqual(?fx, ?fy) ∧ (5)

AllocatedService(?as) ∧ allocatedIn(?as, ?r) ∧ service(?as, ?ac) ∧ TempDevice(?ac)(6)

⇒ (7)

power(?ac, “off”) (8)

To define SWRL rules in a friendly manner is not a trivial task. It is necessary

to hide its XML-based syntax, since writing the previous rule by hand may take

around 220 lines of SWRL XML code, for example. With the aim of managing

rules in a simple and uniform manner, the rule structure in ORE follows the

1244 Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

SWRL proposal, where each concept assertion C(x) and role assertion R(x, y)

in SWRL rules is represented in ORE by means of its equivalent triple (x, rdf :

type, C) and (x,R, y), respectively. The special predicate rdf : type indicates that

the subject of that triple belongs to the concept in the object, as for example

(Bob, rdf : type, Identity) ≡ Identity(Bob). Observe that this transformation

between assertions and triples only consists in a change of syntax, while the

level of expressiveness and semantics of both types of statements are the same.

Thus, ORE offers a guided process to define each rule antecedent and consequent

in three steps according to the triple structure, as it will be explained in section

3.3. Moreover, ORE rules also support built-ins, and the tool offers a set of

guided steps to use them.

2.3 Generic rule authoring system architecture

ORE-GUI
(front-end)

ORE-API

Pellet FaCT

...

Knowledge Base
(OWL ontologies)

IF...THEN...

Ontology Rules
(SWRL rules)

Third-party
Software

Administrator / AnalystORE

1

2

3

4

Local/Remote
 Knowledge

Pellet Jena

...

Ontology Reasoning Engines

JessEuler

Rule-based Reasoning Engines

Jena Ontology
Framework

Publisher/Subscriber
Module

Figure 3: An abstract architecture view of ORE connected with its external

resources.

Once the knowledge and rule models have been introduced, the next step in

developing the generic rule authoring system resides in establishing the architec-

ture to deal with both of them. Figure 3 depicts the abstract architecture of the

rule authoring system ORE. The core system (1) is formed by the ORE-API,

which encloses the methods for managing ontology rules (i.e., edition, infer-

ence, validation, etc.); ORE-GUI, a graphical interface of these tasks; the Jena

1245Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

framework [Carrol et al. 2004], which manages the ontologies representing the

knowledge model; and a publisher/subscriber module that enables ORE to ob-

tain and distribute knowledge from/to a remote server. Details about the specific

design of ORE-API and ORE-GUI are given in section 3.2 and 3.3, respectively.

The publisher/subscriber module is also explained in section 3.2. As for the Jena

framework, it provides a set of methods for loading and managing OWL ontolo-

gies, together with a group of reasoning engines with different capabilities. Notice

that Jena is employed in the core of the system to obtain a working model from

the domain ontology, not as a reasoning engine. Hence, the working model can

be accessed by ORE according to the rule authoring tasks to be performed. For

example, ORE builds a domain concept hierarchy in a tree form, to be displayed

when editing rules in the GUI, through the ontology working model given by

Jena.

ORE receives OWL ontologies and SWRL rules as input (2). The tool ob-

tains this knowledge set either locally through files or remotely by means of the

publisher/subscriber module. As stated in the above paragraph, OWL ontolo-

gies are managed thanks to the Jena framework integrated in the core system,

whereas the ORE-API is in charge of SWRL rules, which can also be graphically

edited, tested, debugged and validated in the ORE-GUI.

Inference processes in ORE are accomplished by the combination of differ-

ent reasoning engines (3). These engines can be distinguished according to the

two types of inference that have been explained in the introduction (see figure

1, the reasoning engines box), namely ontology and rule-based reasoning. Re-

garding ontology reasoning engines, there exist several proposals such as Pellet

[Sirin et al. 2007], Jena , Euler [Roo 2007], Fact++ [Tsarkov and Horrocks 2006]

and Hoolet. Likewise, there are several implementations available in the field of

rule-based engines, such as SweetRules, JEOPS, JLisa, Prova, OpenRules, Jess,

RDFExpert, Pellet and Jena. Notice that some reasoners could be applied to

perform both ontology and rule-based reasoning. Furthermore, different com-

binations of ontology and rule-based reasoners could be convenient in order to

complement the advantages and drawbacks of each one, obtaining a trade-off be-

tween reasoning capabilities and computing resources. This feature is intended

for an advanced usage of ORE, enabling several reasoner combinations accord-

ing to the users’ necessities and/or capabilities. In this context, one of the main

advantages of ORE is its ease of integrating any reasoning engine in the API.

Details on such combinations are given in section 3.1.

Finally, third-party software and administrators or analysts represent the

ORE clients (4). Software applications can make use of the ORE-API to work

with ontologies, rules and inference processes directly. Some examples of this

type of applications are the software agents involved in the intelligent building

scenario. Besides, ORE-GUI is a helpful tool for users that look for a visual

1246 Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

presentation when editing, testing, debugging and validating ontology rules. By

following the intuitive steps of the wizard integrated in the front-end, the tedious

task of generating rules is significantly reduced.

3 Practical Implementation of the Architecture

The architecture previously presented in figure 3 has been implemented as frame-

work for authoring of ontology rules. Thus, ORE 6 framework has been published

to the community as a free and open source project. The following subsections

present a description of all ORE framework components. Subsection 3.1 provides

details in the integration of the reasoning engines employed in the tool. Like-

wise, details of ORE-API and ORE-GUI are exposed in subsections 3.2 and 3.3,

respectively.

3.1 Details on implementation of the generic rule authoring system

Testing and debugging tasks in the rule authoring process demand that the

developers get the full control in the execution of the rules, step by step, during

the whole authoring session. Moreover, developers need to track the reasons

for which rules have been fired in order to discover errors in the design of the

rules. At the same time, both ontology and rule-based reasoning processes have

to be taken into account in ORE to test and validate the edited rules. Notice

that OWL and SWRL requires different reasoning processes and both should be

covered in order to get a full reasoning platform.

ORE architecture has been designed in order to enable the combination

of whichever combinations of ontology and rule reasoners being able to man-

age OWL and SWRL language, respectively. In fact, all the different engines

cited in section 2.3 could be added to ORE. There are several criteria for

selecting those engines to be included in ORE. Regarding ontology reason-

ers, for example, Pellet provides a high level of expressiveness, namely SHOIQ

[Horrocks and Sattler 2007], which in turn is a key feature for the ORE frame-

work in order to offer a complete ontology reasoning process. For this reason,

Pellet is included by default in ORE. Moreover, due to the easy integration be-

tween the underlying Jena ontology model and the reasoners provided in the

Jena framework, the Jena reasoning engines have also been included in ORE

framework. Almost all the other engines exposed in section 2.3 do not have a

direct support for OWL and they have not been included in ORE yet.

Analogously, the ORE framework enables the incorporation of rule-based

reasoners such as those exposed in section 2.3. However, there are some key

features to decide which of those rule reasoners will be included in ORE based

6 ORE is available at http://sourceforge.net/projects/ore, version 3.0

1247Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

on their usefulness in the testing and debugging tasks. On the one hand, the

selected rule reasoners should provide the knowledge inferred by the rules iso-

lated from the rest of the knowledge inferred by other reasoning processes. This

feature is required during the debugging processes in order to get the control

of all the knowledge produced by the rules solely. For example, the Jena rule

reasoner does this distinction whereas the Pellet rule reasoner does not, and for

this reason Pellet is mixing the ontology and rule reasoning results together. On

the other hand, the rule reasoner should provide derivation traces, as it is an

essential feature for rule testing, debugging and validation. They constitute the

explanation proofs which demonstrate why inferred facts should be hold. Such

explanations are the foundations in knowledge authoring for rule behaviors anal-

ysis. The rule-based reasoners in Jena and Pellet provides derivation traces. Both

of them have been added to the ORE framework presented here, whereas the

rest of rule-based engines enumerated in section 2.3 could be also added to ORE

in the future. Jena is a suitable rule engine for the ORE framework since it has

the ability to split the inferred knowledge from the base knowledge, being this

feature essential for debugging purposes.

The selected engine combination of the current ORE version for testing and

debugging purposes consists of Pellet as the ontology reasoner and Jena as the

rule reasoner. This combination is supposed to be a one-time decision, only

to be changed when an improved engine is released or more functionality is

needed (e.g. to include a fuzzy reasoner or to deal with uncertainty). These

new releases are directly related to the current state of the art in reasoning

engines. Hence, if the user decides to insert a new engine combination, the ORE

framework offers an easy method to achieve it. Figure 4 depicts the class diagram

of the ORE reasoning architecture. A RuleReasoner is in charge of providing

a debugger component in ORE-API. A Debugger is a composition of one or

more reasoner implementations. Each Reasoner implementation inherits from

an abstract class Reasoner which provides basic features related to rule and

ontology managements.

Essentially, in case a user decides to extend the rule reasoner support, he

has to create a new class implementing the interface Reasoner. This interface

only has one abstract method for carrying out the inference process. Then, the

user can retrieve all the needed information from OntologyManager and Rule-

Manager utility classes using the methods provided by the Reasoner classes.

This information is then combined with the API of the new reasoner and the

results obtained from the reasoning process are published using the analogous

methods.

1248 Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

Figure 4: Class diagram of the ORE reasoning architecture.

3.2 ORE-API. Authoring tool for software applications

ORE-API is a helpful tool for third-party software applications which need

knowledge rule authoring services. These services are directly implemented in

the ORE-API as a set of methods to create ontology rules, perform ontology in-

ference processes, test and debug ontology rules, retrieve the inferred knowledge

generated by ontology and rule reasoning processes, obtain the explanations for

such inferred facts, and activate/deactivate rules during the authoring process

ORE-API also offers methods for managing OWL ontologies on which the

rules are defined and executed. The ontology administration is accomplished

through Jena services, including the ontology load and import mechanisms. The

knowledge base managed in ORE can be loaded either locally or remotely. The

former uses OWL and SWRL local files to this end, whereas in the latter retrieves

the domain model and rules by means of a publication/subscription mechanism

based on Web Services. Hence, ORE is able to get a knowledge base from a

server and update it with new rules or information so as to other ORE users can

use this augmented knowledge base later. To this end, ORE-API communicates

with the publisher/subscriber connector integrated in ORE. This connector is

implemented by adopting the WS-Eventing technology [Box et al. 2006] and it

has been designed to be useful in collaborative scenarios where users belonging

to the same administrative domain want to share knowledge in a friendly fashion.

The sequence diagram of this remote service is shown in figure 5.

Following the figure 5, ORE User A publishes the knowledge base (ontolo-

1249Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

OWL ontologies

IF...THEN...

SWRL rules

Publisher/Subscriber
 Web Service

ORE User A ORE User B

4. Publish Rules

3. Edit Rules
2. Get Knowledge

5. Notify Rules

1. Publish Knowledge

Figure 5: Two ORE users sharing knowledge and rules through a pub-

lisher/subscriber knowledge system.

gies and rules) on which he is currently working and he subscribes to the Web

Service in order to be notified when some change happens. Then, ORE User B

downloads this knowledge in order to edit some rules that she is interested in.

After the rules have been edited, she updates the knowledge base by publishing

them in the publication/subscription system. ORE User A who has been pre-

viously subscribed in the system is notified about this change according to the

WS-Eventing notification mechanism. In this manner, he can supervise the new

knowledge or rules that have been added to his model. This feature enables the

knowledge interchange and synchronization among all the parties that are using

the ORE-API in a collaborative fashion.

As previously stated, ORE-API offers reasoning processes with different rea-

soner combinations. The integration of the reasoning processes in ORE-API has

been depicted in figure 6. It starts dividing the initial knowledge model into rules

on one hand (SWRL), and ontology model (OWL) on the other hand. Next, the

ontology model is loaded into the Pellet ontology reasoner producing a semantic

enrichment of this ontology model as output. The reason for doing this separa-

tion between SWRL and OWL is for isolating the execution of the rules in order

to get the full control over their execution for debugging and validating purposes.

Then, ontology rules have to be transformed from the SWRL syntax managed

in the ORE architecture to the specific rule format imposed by the rule reasoner

in case it is necessary. Next, these rules and the semantically enriched ontology

model are inserted in the rule reasoner. Finally, this reasoner infers new facts

that could be grouped as rule-based knowledge as shown in figure 6. Regarding

testing and debugging capabilities, ORE allows enabling or disabling rules in or-

der to isolate groups of rules and control their behavior in a debugging session.

This selective capability provides a rapid method for detecting rules which do

1250 Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

not work as expected. Furthermore, after discovering an unexpected behavior in

a specific ontology rule, ORE-API offers the possibility of disabling an atom (or

a set of atoms) appearing in the antecedent or consequent to exactly identify

the possible errors in the rules during the debugging process.

Figure 6: Ontology processing for knowledge authoring.

The rule reasoner infers knowledge aligned twofold. This alignment is defined

as the ability to provide more information over an inferred fact. Firstly, each

fact is associated with the rule that produces it through the derivation trace

provided by the rule engine. Secondly, each fact is linked to the list of grounded

antecedents that fired that rule. Thanks to both associations, the debugging

process in ORE is able to draw the justifications of any inferred fact. These

associations are highly valuable to detect mistakes when designing and testing

rules. Consequently, since derivation traces are available for each inferred fact,

the identification of unexpected rule firings can be detected in ORE.

After the debugging tasks have been completed, it is necessary to validate

the new inferred facts with respect to the domain model. This operation is

also supported by ORE-API in order to ensure consistency in the knowledge

base. Consistency is referred as the non-existence of contradictory facts in a

model. Usually, inconsistencies appears as violations of the axioms or restrictions

defined in the domain. They are difficult to detect and usually arises because

of unexpected assertions of consequents, ill-designed or conflictive rules. For

example, the property power in temperature devices (see section 2.2) can only

take one value for the same device; therefore a semantic inconsistency occurs

when this property takes more than one different value, e.g. “on” and “off”. Thus,

ORE-API is able to discover inconsistencies, and to notify it to the application

software which is the responsible for handling it appropriately.

According to the architecture depicted in figure 6, the knowledge inferred by

the rule reasoner has been isolated on each execution of the rule reasoner. Each

1251Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

of those executions could be considered as an step in the debugging process. As

a result, after this execution, the third-party application can obtain the variable

values, the derivation traces and the explanations associated to the inferred

knowledge. Then, this application can decide to include the inferred knowledge

again in the initial knowledge base in order to start a new step in the authoring

process or just simply discard the inferred results because a rule has a mistake,

for example. Notice that after discarding the inferred knowledge, the same testing

step could be done again but now changing the activation/deactivation of the

rules and their atoms in order to find the previous mistakes.

3.3 ORE-GUI. The rule editing, testing, debugging and validation

graphical tool

ORE-GUI is a visual tool intended for being used by system administrators.

All the functionalities involved in the knowledge rule authoring process that

have been implemented by ORE-API are now offered here in a graphical mode.

ORE-GUI provides a full control in the navigation across the knowledge models

managed in ORE-API. As previously seen in section 3.2, the knowledge model

is accessed via two different manners. Both local and remote knowledge models

are managed in ORE-GUI indistinctly, with the latter requiring an enrollment in

the publication/subscription system and enabling a collaborative environment

among ORE users. ORE-GUI notifies graphically the updates received by others

ORE users/applications in real-time. In this context, ORE users can cooperate

in order to create the ontology rules in a friendly environment.

The rule authoring process is performed hiding the details of the underlying

SWRL syntax to the user. She edits rules through a wizard that guides the

creation or modification tasks. These tasks are executed in an easy and intuitive

“drag and drop” manner, where ontology elements (concepts, roles, individuals,

etc.) are dragged to the correspondent part of the rule structure displayed in the

GUI. This structure is based on RDF triples, as previously exposed in section 2.2.

To this end, the rule editor in ORE-GUI offers a complete vision on the domain

ontology, where the user can navigate across all the information represented in it.

Both antecedents and consequents of a rule are defined in the same manner: the

wizard guides the user through three steps, dragging and dropping the subject,

predicate and object from the domain model to the correspondent triple element

of the antecedent/consequent being edited in each step. For example, according

to the intelligent building scenario introduced in section 2, to state that Bob is

a person, the following RDF triple is defined:

(Bob, rdf type, Identity),

To edit this triple in ORE-GUI, the user should first drag the individual Bob

from the domain model to the subject part. Then, she selects the predicate is a

1252 Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

(is a is referred here as the rdf type property in a friendly manner) in the second

step. Finally, she drags the Identity concept to the object part. The edition task

is validated by the wizard, avoiding the appearance of syntactical errors during

the rule definition. A full definition of a rule through the wizard instructions is

shown in section 4.

Regarding debugging capabilities provided by ORE-GUI, the tool offers some

options such as the activation/deactivation of rules and rule atoms in a selective

fashion by means of simple clicks. Therefore, they can be rapidly debugged to

establish dependence relationships among them, and to identify whether the rule

has the expected reaction or not. Another important option is to determine why

the rule has been fired. In this sense, ORE-GUI gives a textual explanation that

links the facts causing the fulfillment of the antecedents to the fired rule. After

a rule execution in a debugging session, the user decides whether she wants to

insert the inferred facts into the initial knowledge base in order to perform the

next debugging step or discard these facts totally or partially. As a result, ORE-

GUI can be seen as an ontology rule editing, testing, debugging and validation

tool.

ORE-GUI supports all the reasoning combinations integrated in the ORE-

API. The inference process depicted in figure 6 and performed by the selected

reasoning combination is done just by a click action. Not only will this action

provide new inferred knowledge and a consistence validation, but it also offers

the different knowledge bases showing all the information involved in each step

of the knowledge rule authoring process.

Finally, all the conflictive facts detected after the reasoning task are grouped,

allowing for a manual conflict solving mechanism. This option is offered as a

graphical form in ORE-GUI, by indicating first the conflictive situation to the

user, and then asking her to determine which conflictive rule or fact should be

deactivated or removed. This last feature confers an extra debugging power to

ORE over other tools of knowledge authoring as Protégé [Noy et al. 2001] or

Ontotrack [Liebig et al. 2004], which do not implement it. The benefits of all

ORE-API and ORE-GUI features will be illustrated in section 4 by means of

the intelligent building scenario described in section 2.1.

4 Using the Rule Authoring Tool in the Intelligent Building
Scenario

ORE has been successfully integrated and tested in a ubiquitous computing

scenario. It consists on the management of the pervasive services offered by an

intelligent building and the combination of users’ preferences with those services

(see section 2.1). Particularly, this scenario deals with the management of AC

devices. On one hand, a worker called Bob wants that the AC device placed in

1253Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

his room remains switched on during his stay in the building. This configuration

has been edited by means of a system administrator who transforms it into a

rule by using ORE-GUI. Contrarily, the policy of the building administration

on AC devices states that they must be switched off if the owner of the room

allocating the AC device is located in a different floor of the building where the

room is. This rule is added to the ubicomp system by a system administrator

thanks to ORE-API (see the rule PowerSaveRule in section 2.2).

This scenario is used here to illustrate the entire knowledge authoring pro-

cess described in the introduction of the paper, and it specially focused on the

management of rules. Regarding the first stage, dedicated to the acquisition of

knowledge, the system administrator has modeled the intelligent building do-

main by means of an OWL ontology based on the DMTF-CIM standard, called

OWL-CIM [Garćıa et al. 2008]. This OWL ontology represents the concepts as

partially shown in the TBox of figure 2.A complete vision of the scenario is

depicted in figure 7. The creation of the OWL-CIM ontology that represents

this specific domain has been performed thanks to Protégé [Noy et al. 2001], a

broadly used OWL editor. The specific scenario involving Bob and the AC device

management (partially represented in the ABox of figure 2) has been modeled

following the same idea. This scenario allows establishing the real environment

where a set of rules is going to be defined to control the AC devices. As shown

next, the authoring cycle of these rules could efficiently be managed by ORE.

The OWL files of this scenario exposed in figure 7 has been distributed

within the ORE framework, as a case of study. It describes the ACME busi-

ness building tower, BuildingTower, which is composed of more than twenty

floors. For simplicity, just the two floors involved in the scenario, Floor4 and

Floor16, has been depicted. The composition relationship has been modeled us-

ing the Subsumption association (see section 2.2). Each floor contains in turn

some rooms (also through the Subsumption association). Bob is an employee of

this building whose assigned room is Lab1 (by means of the AssignedOffice

association). This room is located in Floor4. Each floor is equipped with a Floor-

Controller that manages the devices present therein. The controller is linked to

these services by the ServiceAvailableToElement association. For simplicity,

only the Floor4 controller has been depicted in figure 7. Notice that the services

available to the FloorController are the aggregation of the own floor services

together with all the services obtainable from the rooms contained in this floor.

Thus, the controller can access to the ACMEAirConditioner service in Bob’s

room.

On the other hand, the Bob’s personal agent, BobAgent, shows him the

accessible services in Lab1 in a graphic and friendly manner. This agent is linked

to that room using the ServiceAvailableToElement association, in the same

manner that the floor controller does. The available services in the room (e.g.

1254 Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

Figure 7: The running scenario of the intelligent building domain.

air conditioning) are modeled by AllocatedService associations. Hence, Bob’s

personal agent can access to the ACMEAirConditioner service through the

composition of these two associations.

There are three different types of RFID sensors according to the covered

area (not shown in figure 7). Building sensors are located in the external build-

ing doors. They detect a person entering the building, and then they send this

event to the pervasive system. Then, the system creates an IdentityLocation as-

sociation between the person who enters the building and the BuildingTower,

and inserts it in the domain model. Floor sensors are located near the lifts

and ladders, thus detecting people in the floor, whereas Room sensors, placed in

room doors, provides the presence of a person in these rooms. There are not floor

sensors in the main hall because there are not services therein. Thus, the floor

sensors are detecting users when they are getting out of the lift on a given floor.

These events are sent and managed in the pervasive system in the same way

as in the building sensor case, creating the corresponding location association.

Actually, the pervasive system should use a system such as OCP (Open Context

Platform) [Nieto et al. 2006] for updating the knowledge base with the location

1255Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

information from the RFID sensors. OCP is a middleware system whose main

goal is to manage the system’s context information. It collects information from

sensors and transforms it into context knowledge, by annotating semantically

the information provided by sensors. However, this issue is beyond the scope

of this paper. Instead, the sensor information has been simulated in the ORE

framework by means of the following ontology rules:

BT: ⇒ IdentityLocation(?il) ∧ identityLocated(?il, Bob) ∧ location(?il, BuildTower)

F4: ⇒ IdentityLocation(?il) ∧ identityLocated(?il, Bob) ∧ location(?il, F loor4)

F16: ⇒ IdentityLocation(?il) ∧ identityLocated(?il, Bob) ∧ location(?il, F loor16)

Lab1: ⇒ IdentityLocation(?il) ∧ identityLocated(?il, Bob) ∧ location(?il, Lab1)

Note that these rules have an empty antecedent. It is equivalent to true when

the rule is evaluated, therefore the consequent must always be true (assuming

that the rule is activated). Indeed, these rules assert a new location association

?il between Bob and the corresponding part of the building depending on the

sensor. Hence, if the rule BT is activated, it simulates that Bob has been de-

tected by the building sensor and then the location association between Bob and

BuildingTower is asserted. Analogously, the rules F4, F16 and Lab1 simulate

the detection of Bob in Floor4, Floor16 and Lab1, respectively. In this manner,

the sensors functionality is emulated on the pervasive system so as to properly

develop the scenario.

System administrators can use ORE-GUI to subscribe to the publication/sub-

scription system (PSS) in order to obtain the intelligent building domain. This

knowledge base is provided by the pervasive system which is subscribed to the

PSS as well. Moreover, the pervasive system updates the current domain state

according to a context middleware such as OCP. In our case, the context mid-

dleware has been simulated by the four rules previously described.

4.1 Rule authoring process

In order to show an example of the rule authoring process, suppose that a system

administrator is responsible of editing the different users’ preferences by means

of rules. To this end, the system administrator uses a kind of templates which

gathers such users’ preferences to convert this information into rules. For this

specific scenario, the system administrator models Bob’s preferences with respect

to the AC device placed in his room (see section 2.1). As a result, the system

administrator defines a rule to switch on the AC placed in Lab1, which is Bob’

office, when Bob is detected in the building. As seen in section 2.1, this rule is

called BobRule and it is given below in SWRL abstract syntax. BobRule can

be read as follows: if Bob is located in the BuildingTower, and this building

1256 Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

contains the Bob’s assigned room Lab1, and the room has an air conditioner,

then turns this device on.

BobRule : IdentityLocation(?il) ∧ identityLocated(?il, Bob) (1)

∧location(?il, BuildingTower)∧ (2)

Subsumption(?ss) ∧ collection(?ss,BuildingTower) ∧member(?ss, Lab1)∧ (3)

AllocatedService(?as) ∧ allocatedIn(?as, Lab1) ∧ service(?as, ?ac) (4)

∧TemperatureDevice(?ac) (5)

⇒ (6)

power(?ac, “on”) (7)

Figure 8: Bob’s AC preference edited in ORE-GUI as a rule by a system admin-

istrator.

The edition of the Bob’s preference through a rule in ORE-GUI can be seen in

figure 8. First, the upper-right corner shows the concepts, properties, individuals

and variables representing the current domain model. Essentially, these lists are

the friendly, graphical and structured representation of the OWL ontology and

they allow the user to utilize the ontology concepts without any knowledge about

the OWL syntax. Then, the user can drag and drop concepts, properties and

individuals from these lists to the items which compose the rule atoms, i.e. the

1257Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

triples of the form (subject, predicate, object). These three elements are shown

in the bottom area of the figure 8. In case the user would like to create an

atom belonging to the antecedent of the rule, he will be guided by a wizard to

control and avoid any possible mistake in the atom definition. The wizard guides

the user thought messages in the GUI in order to notify the next action in the

authoring process. In an atom definition, the user will start dragging a concept

from the list in the subject area and validate the action by clicking the button

“next” button. This process is repeated in the same manner for the predicate

and object of the atom. Then, in order to finish the process, the user has to press

in “Add to Antecedent” or “Add to Consequent” according to their aim.

The snapshot in figure 8 represents a situation in which all the atoms of the

BobRule antecedent have been already inserted in by the system administrator.

He is now using ORE-GUI to edit the consequent atom power(?ac,“on”). The

subject of the triple, (?ac), has been achieved dropping this variable on the sub-

ject panel, while the predicate is established by dragging the property (power)

from the ontology browser to its corresponding panel. Particularly, the figure

represents the moment when the system administrator inserts the object part.

As seen in the upper-left corner of the figure 8, ORE-GUI is always showing the

current definition of the rule. Notice that the wizard guides the user through

messages in the GUI (e.g., the appearance of the “Step 3. Choose an object

or drag any item” in the bottom area of the figure 8). To finish with the rule

edition, the system administrator just have to select the option “Data value” in

the object area and insert on, and then clicking subsequently on “Add to Conse-

quent” and “Finish Rule”. It is worth mentioning the check boxes available next

to each atom in the rule for enabling/disabling such atoms during a debugging

session.

4.2 Rule testing, debugging and validation tasks

After defining BobRule, it is published in the PSS in a simple manner by just

clicking on the button “Publish Rules” available in the tool. This rule is received

by the pervasive system since it is registered in the publication/subscription sys-

tem. Analogously, the system administration uses ORE-GUI to insert the energy

policy of the building as a rule, i.e. PowerSaveRule (see section 2.2), and then

he also publishes such a rule in the PSS. In this manner, the pervasive system

could use these two rules to infer new knowledge. Furthermore, in this scenario

the ORE-GUI of the system administrator is also configured to automatically

execute an inference process whenever it receives information from other entities

through the PSS, as for example from the pervasive system when it detects a

person in the building, in a floor or in a room. Notice that this is an interest-

ing feature to track and monitor all the changes in the system and to start the

debugging processes of the rules when some unexpected situation appears.

1258 Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

In the initial situation of the scenario (when the pervasive system has not

detected Bob in the building yet), the reasoning process does not produce any

new knowledge as result. Previously to enter the building, suppose that Bob uses

his PDA to activate the AC configuration that corresponds with his preferences.

In this case, such a configuration matches with BobRule, and therefore the

personal agent in Bob’s PDA sends the activation order of this rule to the PSS,

which is received by the pervasive system and the ORE-GUI of the system

administrator (note that Bob is not aware of the existence or activation of this

rule, he only uses the personal agent in his PDA, which shows him the possible

AC configurations in a graphic mode, to activate/deactivate them). Moreover,

suppose that PowerSaveRule is always activated for this scenario.

Next, the pervasive system detects Bob entering the building. To simulate

this situation, the rule BT is activated. This new information is received by

all the registered entities in the PSS (including the ORE-GUI of the system

adminstrator). Thus, the AC device placed in Bob’s room must be switched on

according to BobRule. Specifically, the ORE-GUI of the system administrator

automatically infers the new AC state. Part of the outcome of this inference can

be seen in figure 9. The inference process provide all the inferred facts produced

by the both ontology and rule reasoning using BT and BobRule. Figure 8 shows

only the rule-based knowledge in a isolated way to enable debugging processes.

From the debugging and testing perspective, this first inference process could be

shown as the first step in a debugging session. Notice that the figure 9 displays

the foundations that support the rule firing, i.e. the derivations traces. These

traces can be used to determine whether the rule has been appropriately fired or

its execution is due to an erroneous design. According to the inferred information,

Figure 9: Inference results associated to the entrance of Bob into the building.

1259Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

the administrator could perform some actions. On one hand, he can decide to

insert the inferred information into the system passing to the next step in the

debugging session. On the other hand, he can decide to discard totally or partially

the inferred information and to repeat the inference process changing any rule

definition or enabling/disabling totally or partially some rules in order to test

and validate the correctness of the rules available in the system.

Thus, continuing with the example, the pervasive system now simulates that

Bob is located by a floor sensor in the Floor 4 (Rule F4). In this case, this

fact does not produce any new knowledge nor fire any other rule in the system

administrator console. Then, Bob enters his room and he checks that the AC

device is switched on. After some time, Bob decides to go to visit his friend

Alice, whose office is in the sixteenth floor. He takes the lift, and after leaving

it, the sensor detects Bob in that floor. Rule F16 simulates the new Bob’s loca-

tion in the pervasive system and in turn, rule F4 has been disabled to remove

the previous Bob’s location. In this case, after being notified by means of the

publication/subscriber system, the ORE-GUI of the system administrator shows

the debugging information related to PowerSaveRule which has now been fired.

This situation is reflected in figure 10.

Figure 10: Inconsistency discovered after detecting Bob in Floor14.

In this case, the ORE framework has detected an inconsistency in the knowl-

edge base due to the existence of a conflict between the inferred facts according

to BobRule and PowerSaveRule. Both rules force the AC device to be switched

on and off at same time when Bob leaves the fourth floor. This situation violates

the cardinality constraint over the power property (functional property), which

is restricted to have a unique value. ORE is able to detect this conflict and offers

mechanisms to solve it manually. These mechanisms consist of the selective dele-

tion of one of the conflicting facts. Moreover, thanks to ORE, the necessity of

modifying the incompatible rules has been discovered. In this scenario, the con-

flict might be solved by changing the location(?il, BuildingTower) antecedent

in the BobRule for the location(?il, F loor4) condition. This change causes that

the AC device will only be switched on when Bob is detected by the fourth floor

1260 Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

sensor (and not when he is just entering the building). Such a change could be

directly applied over the same debugging session by the administration of the

system in an easy and rapid manner.

5 Related Work

As the popularity of the Semantic Web has rapidly increased, several ontology

tools has been developed at the same time. Protégé [Noy et al. 2001] is a famous

ontology tool with an OWL plug-in that allows the user to define her own on-

tologies, and to export them into a variety of formats including RDF(S), OWL,

and XML. It also supports the edition and execution of SWRL rules, but this

process is based on a text editor with code completion capabilities oriented for

advanced SWRL experts and do not offer any kind of wizard or visual GUI to

help the authoring process. In this sense, Protégé is observed as an effective and

useful tool for the first stage of knowledge authoring. Ontologies obtained as a

result of modeling domains with Protégé are then a possible input for editing

and validating rules in ORE during the second and third stages. Since both tools

complement each other, they represent a compelling alternative to manage the

entire cycle of the knowledge authoring process. Protégé also contains visual

ontology plug-ins, as Jambalaya, but they are focused on conceptual diagrams

and do not offer any editing capabilities.

SWOOP [Parsia et al. 2005] is an IDE for developing ontologies, based on a

Web browser interface. Hence, it allows browsing through hyper-links, which can

be considered as an initial idea of showing ontologies in an intuitive way to the

user. This tool has demonstrated to be useful for ontology debugging. However,

it does not permit to debug or validate rules.

Some other rule editors have been found in the analysis made in this work, but

they do not offer the ORE’s debugging and validating characteristics. AEGONT

[Murat et al. 2006] is an ontology development environment on .NET framework,

whose major innovation lies in the Rule and Query Views, although they both

are not fully functional yet. The Rule View is designed to ease writing of domain

rules by means of a rule editor for people who are unfamiliar with OWL Rules

Language, but it does not offer debugging capabilities and collaborative edition

of rules. The Query View aims to present a user friendly interface for writing

queries, and it offers statistics analysis as well as query results. On the other

hand, The Graphical Rule Editor allows creating domain rules and translating

them into F-Logic automatically. The rules are defined graphically by means

of boxes, arrows and operators in such a flowchart style, however it does not

provide debugging capabilities.

Finally, there are two rule editors that are nearer the ORE’s philosophy

and graphical design. The first is SWeDE [Pereira and Freire 2006] (Semantic

1261Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

Web Development Environment), an extensible framework built on the Eclipse

IDE including an OWL editor with features like syntax highlighting, auto-

completion, and error-detection. It also integrates existing tools like the OWL

Validator and DumpOnt (an ontology visualizer). The second one is RuleVISor

[Matheus et al. 2005], an alpha-tested rule editor. Its main feature is the ability

to deal with rule definition at a conceptual level that abstracts out the syntactic

complexities of the SWRL representation. The user has the option of adding or

deleting binary atoms, atomic atoms, instances, data value ranges and built-in

functions simply by clicking on the appropriate icons. Both tools are extensible

with respect to inference engines and they hide the specific SWRL syntax when

editing rules, in a similar fashion with respect to ORE. Nevertheless, they lack

a fine-grained debugging mechanism, an API to be used from software applica-

tions and the implementation of any kind of rule conflict detection and solution

mechanisms such as ORE owns.

6 Conclusions and Future Work

This paper presents a new tool designed to manage the authoring process of

rules in knowledge systems based on Semantic Web technologies. The knowledge

model of these systems is normally given by means of ontologies. From these

ontologies it is possible to define production rules (i.e., “if-then”) in order to

describe preferences, behaviours, etc. in a natural and straightforward manner.

These rules are mainly directed to model some aspects of the system according

to the preferences stated in them.

However, controlling the entire authoring process of rules in Semantic Web

frameworks (i.e., edition, test, debug and validation) is far from an easy task.

Only the definition of these rules requires a deep specific knowledge about the

rule programming language, not to mention the understanding of the inference

mechanism. As a result, the aim of this work is to design and implement an

advanced rule editor framework, called ORE (Ontology Rule Editor). This tool

allows the users to edit, test, debug and validate such a kind of rules in an

intuitive and guided manner in a collaborative environment.

In this paper, ORE is presented in the form of an API and of a GUI. The

API is accessed by other software applications to manage rules and performing

rule-based reasoning over the domain elements. The management of ontology el-

ements, the retrieval of the inferred facts generated by ontology and rule-based

reasoning, or the activation/deactivation of rules during the inference process

are some of the ORE-API’s features. On the other hand, ORE-GUI is a stand-

alone application for users such as system administrators which offers the same

operations than in the API in a visual and friendly manner. In ORE-GUI the

definition of rules is guided through several steps, by browsing the domain ele-

ments in the ontology through different views, and dragging and dropping them

1262 Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

to their correspondent slots in the rule antecedents and consequents. In this

manner, this tool hides the specific details about the syntax of the rule language

that is being used.

Once new rules have been created, they can be tested by means of the facil-

ities incorporated in ORE. The platform which performs the inference process

over the knowledge model is based on Jena and Pellet reasoning engines, al-

though it may effortless be extended with new reasoner capabilities (e.g. fuzzy

inference). As for debugging and validation, both syntactic and semantic check-

ing of rule definitions has also been included in the ORE framework. The former

avoids ill-formed rules, by warning the user if the rule is being bad defined. The

latter detects knowledge conflicts among rules, which usually are complicated to

discover. These conflicts arises because of numerous causes: contradictory conse-

quents, ontology axiom violation, etc. The conflict is then reported to the user,

and besides a manual solving mechanism is provided.

The benefits of ORE have been illustrated by integrating the tool into a ubiq-

uitous computing system. In this system we have developed a scenario where

intelligent services are implemented by combining different kind of knowledge

such as the current context, user’s preferences and desired behaviors of the sys-

tem. Such preferences and behaviours are expressed by means of rules in this

scenario. The entire cycle of managing these rules, including the inference pro-

cess and conflict detection, has been demonstrated in this scenario by means of

the usage of ORE.

Future work includes enabling a visual and iconographical browsing through

the ontology. We are working on a visual ontology which gives different capa-

bilities to the domain elements that are shown in the ontology browser. These

capabilities are related to how they can be visually presented (e.g. if a concept is

an spatial container, one may double-click on it and see what is hidden inside).

This will leave the door open to any user in order to create their own rules to

express preferences, for example.

Another expected extension of the ORE framework is to adapt it to the new

OWL release, OWL 2.0 [Motik et al. 2008], which includes more expressive con-

structions, such as negative assertions. OWL 2.0 management is already included

in Pellet, which in turn is included in ORE. However, the ability to define these

new constructions in ORE-GUI is not included yet. We are currently studying

other combinations of axiomatic and rule engines in the ORE framework to im-

prove the semantic expressiveness supported. For instance, Pronto [Klinov 2008]

is a reasoning engine with probabilistic reasoning support that may be included

in ORE framework.

1263Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

Acknowledgments

This work has been partially supported by the Fundación Séneca within the Pro-

gram “Generación del Conocimiento Cient́ıfico de Excelencia” (04552/GERM/06)

and by the Spanish Ministerio de Ciencia e Innovación (MICINN) within the

FPU Program grants AP2006-4154 and AP2006-4150 and the research projects

TIN2008-06441-C02-02 and TIN2009-14475-C04. It has been also partially sup-

ported by the European Comission FEDER funds under Grant CSD2006-00046.

References

[Baader et al. 2003] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele
Nardi, and Peter F. Patel-Schneider, editors. “The Description Logic Handbook:
Theory, Implementation, and Applications”. Cambridge University Press, New
York, NY, USA, 2003.

[Baader and Sattler 2000] Franz Baader and Ulrike Sattler. “Tableau Algorithms for
Description Logics”. In International Conference on Automated Reasoning with
Analytic Tableaux and Related Methods, TABLEAUX 2000, pages 1–18. Springer-
Verlag, July 2000.

[Berners-Lee et al. 2001] Tim Berners-Lee, James Hendler, and Ora Lassila. “The
Semantic Web”. Scientific American, 284(5):3443, 2001.

[Box et al. 2006] Don Box, Luis Felipe Cabrera, Craig Critchley, Francisco Curbera,
Donald Ferguson, Steve Graham, David Hull, Gopal Kakivaya, Amelia Lewis,
Brad Lovering, Peter Niblett, David Orchard, Shivajee Samdarshi, Jeffrey Schlim-
mer, Igor Sedukhin, John Shewchuk, Sanjiva Weerawarana, and David Wor-
tendyke. “Web Services Eventing (WS-Eventing)”. Technical report, W3C, 2006.
http://www.w3.org/Submission/WS-Eventing/

[Bozsak et al. 2002] Erol Bozsak and et al. “KAON - Towards a Large Scale Seman-
tic Web.” In EC-WEB ’02: Proceedings of the Third International Conference on
E-Commerce and Web Technologies, pages 304–313, London, UK, 2002. Springer-
Verlag.

[Carrol et al. 2004] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds,
Andy Seaborne, and Kevin Wilkinson. “Jena: implementing the Semantic Web
recommendations.” In Proceedings of the 13th international World Wide Web con-
ference, pages 74–83. ACM Press, 2004.

[Dean et al. 2004] Mike Dean, Dan Connoll, Frank van Harmelen, James Hendler,
Ian Horrocks, Deborah L. McGuinness, Peter F. Patel-Schneider, and Lynn An-
drea Stein. Web Ontology Language (OWL). Technical report, W3C, 2004.
http://www.w3.org/TR/owl-features/

[Garćıa et al. 2008] Felix J. Garćıa, Gregorio Mart́ınez, Andrés Muñoz, Juan A. Bot́ıa,
and Antonio F. Gómez Skarmeta. “Towards Semantic Web-based Management of
Security Services”. Springer Annals of Telecommunications, 63(3-4):183–194, 2008.

[Mime 2001] Mime Sweeper Research Group. RdfExpert: A
Web-powered Expert System for Generic Inference Tasks.
http://public.research.mimesweeper.com/RDF/RDFExpert/Documentation/
HTML/Overview.html, August 2001.

[Hansmann et al. 2003] Uwe Hansmann, Lothar Merk, Martin S. Nicklous, and
Thomas Stober. “Pervasive Computing : The Mobile World”. Springer, 2003.

[Hefke 2004] M. Hefke “A Framework for the Successful Introduction of KM Using
CBR and Semantic Web Technologies”. Journal of Universal Computer Science,
10(6):731–739, 2004.

1264 Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

[Horrocks et al. 2003] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harme-
len. “From SHIQ and RDF to OWL: The making of a Web Ontology Language”.
Journal of Web Semantics, 1:7–26, 2003.

[Horrocks et al. 2004] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof,
and M. Dean. SWRL: A Semantic Web Rule Language Combining OWL and
RuleML. Technical report, W3C, 2004. http://www.w3.org/Submission/SWRL/

[Horrocks and Patel-Schneider 2004] Ian Horrocks and Peter F. Patel-Schneider. “A
Proposal for an OWL Rules Language.” In WWW ’04: Proceedings of the 13th
international conference on World Wide Web, pages 723–731, New York, NY, USA,
2004. ACM.

[Joo and Lee 2009] J. Joo, and S. M. Lee. “Adoption of the Semantic Web for Over-
coming Technical Limitations of Knowledge Management Systems”. Expert Systems
with Applications: An International Journal, 36(3):7318–7327, 2009.

[Kifer et al. 1995] Michael Kifer, Georg Lausen, and James Wu. “Logical Foundations
of Object-oriented and Frame-based Languages”. Journal ACM, 42(4):741–843,
1995.

[Klinov 2008] Pavel Klinov. Pronto: a Non-monotonic Probabilistic Description Logic
Reasoner. In Proceeding at 5th European Semantic Web Conference (ESWC08),
2008.

[Klyne and Carroll 2004] Graham Klyne and Jeremy J. Carroll. Resource Description
Framework (RDF): Concepts and Abstract Syntax. Technical report, W3C, 2004.
http://www.w3.org/TR/rdf-concepts/

[Liebig et al. 2004] Thorsten Liebig, Holger Pfeifer, and Friedrich von Henke. “Rea-
soning Services for an OWL Authoring Tool: An Experience Report”. In Proceedings
of the International Workshop on Description Logics, 2004.

[Matheus et al. 2005] Christopher J. Matheus, and Kenneth Baclawski Mieczyslaw
M. Kokar, and Jerzy A. Letkowski. An Application of Semantic Web Technolo-
gies to Situation Awareness. In 4th International Semantic Web Conference, 2005.

[Motik et al. 2008] Boris Motik, Peter F. Patel-Schneider, and Ian Horrocks. OWL
2 Web Ontology Language: Structural Specification and Functional-style Syntax.
Technical Report, W3C, April 2008. http://www.w3.org/TR/owl2-syntax/

[Motik et al. 2005] Boris Motik, Ulrike Sattler, and Rudi Studer. “Query Answering
for OWL-DL with Rules”. Journal of Web Semantics: Science, Services and Agents
on the World Wide Web, 3(1):41–60, JUL 2005.

[Muñoz et al. 2006] Andrés Muñoz, Antonia Vera, Juan A. Bot́ıa, and Antonio
F. Gómez Skarmeta. Defining Basic Behaviours in Ambient Intelligence Environ-
ments by means of Rule-based Programming with Visual Tools. In J. C. Augusto,
editor, 1st Workshp of Artificial Intelligence Techniques for Ambient Intelligence.
ECAI, 2006.

[Murat et al. 2006] Tugba Ozacar Murat Osman Unalir, Ovunc Ozturk. Aegean On-
tology Environment (AEGONT). Project Report MSR 2003176, Ege University,
Bornova-Izmir, March 2006.

[Nieto et al. 2006] Ignacio Nieto, Juan A. Bot́ıa, and Antonio F. Gómez-Skarmeta.
“Information and Hybrid Architecture Model of the OCP Contextual Informa-
tion Management System.” Journal of Universal Computer Science, 12(3):357–366,
2006.

[Noy et al. 2001] N. F. Noy, M. Sintek, S. Decker, M. Crubezy, R. W. Fergerson, and
M. A. Musen. “Creating Semantic Web Contents with Protege-2000”. IEEE Intel-
ligent Systems, 16(2):60–71, 2001.

[O’Connor et al. 2005] Martin O’Connor, Holger Knublauch, Samson Tu, Benjamin N.
Grosof, Mike Dean, William Grosso, , and Mark Musen. “Supporting rule system
interoperability on the Semantic Web with SWRL”. In Proceeding of 4th Interna-
tional Semantic Web Conference ISWC, Ireland, Nov 2005.

[Parsia et al. 2005] Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. “Debugging
OWL ontologies”. In Proceedings of the 14th international conference on World

1265Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

Wide Web, pages 633–640, 2005.
[Pereira and Freire 2006] R.G. Pereira and M.M. Freire. “SWEDE: A Semantic Web

Editor Integrating Ontologies and Semantic Annotations with Resource Description
Framework”. In International Conference on Internet and Web Applications and
Services/Advanced AICT-ICIW ’06, 2006.

[Roo 2007] Jos De Roo. Euler Proof Mechanism. http://www.agfa.com/w3c/euler/,
10 2007.

[Sirin et al. 2007] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyan-
pur, and Yarden Katz. “Pellet: A Practical OWL-DL Reasoner”. Journal of Web
Semantics, 5(2):51–53, 2007.

[Suraweera et al. 2004] Pramuditha Suraweera, Antonija Mitrovic, and Brent Martin.
“The Role of Domain Ontology in Knowledge Acquisition for ITSs. In 7th Interna-
tional Conference on Intelligent Tutoring Systems, pages 207–216, 2004.

[Tsarkov and Horrocks 2006] Dmitry Tsarkov and Ian Horrocks. Automated Reason-
ing, volume 4130 of Springer Lecture Notes in Computer Science, chapter FaCT++
Description Logic Reasoner: System Description, pages 292–297. Springer Berlin /
Heidelberg, 2006.

[Horrocks and Sattler 2007] Ian Horrocks and Ulrike Sattler. A Tableaux Deci-
sion Procedure for SHOIQ In Journal of Automated Reasoning Springer Verlag,
39(3):245–429, 2007

[Weiser 1991] Mark Weiser. The Computer for the Twenty-First Century. Scientific
American, 265(3):94–104, 1991.

1266 Ortega A.M., Calero J.M.A., Blaya J.A.B., Perez G.M., Clemente F.J.G: ...

