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Abstract: This paper presents a nonlinear solver based on the Newton-Krylov meth-
ods, where the Newton equations are solved by Krylov-subspace type approaches. We
focus on the solution of unsteady systems, in which the temporal terms are discretized
by the backward Euler method using finite difference. To save computational cost, an
adaptive time stepping is used to minimize the number of time steps. The developed
program can be applied to solve any nonlinear equations, provided the users could sup-
ply the discrete form of the equations. In particular, the nonlinear solver is implemented
to solve unsteady reacting flows.
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1 Introduction

Developing efficient solvers for nonlinear system of equations arising from simu-
lations in physical and chemical processes is still of big interest [Ern et al. 1995,
Karaa et al. 2003, Noskov 2005, Shen et al. 2008, Tackenberg et al. 2009]. The
difficulties associated with solving such problems stem from the large number of
dependent unknowns, the nonlinear and coupling characteristics of the governing
partial differential equations (PDEs), and the different length scales present in
the problem [Nakamura et al. 2006]. Advanced computational techniques are in
demand to solve these nonlinear systems accurately, efficiently, and robustly.

Newton’s method is particularly robust in solving coupled nonlinear complex
dynamic equations involving physics and chemistry, such as those describing
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reacting flows [Bennett and Smooke 1998, Smooke et al. 1989, Xu et al. 1993].
Theoretically, the Newton iteration converges quadratically under certain suf-
ficient conditions, which means that the magnitude of the residual is squared
with each Newton step so that it tends to zero very quickly. The disadvantage
of Newton’s method is that the size of the Jacobian matrix formed is extremely
large and it is difficult to find a good initial guess. In order to stabilize the
convergence at an early stage of the iteration and to save computing time, the
damped Newton’s method is used.

At each Newton step, a system of linear equations has to be solved, and
the selection of linear system solver is not trivial. The splitting techniques of
ADI and fractional-step are often used to solve multi-dimensional linear equa-
tions, however, they do not work well in situations that are highly nonlin-
ear, such as the strongly coupled chemical reacting flow. As reported by Xu
[Xu and Smooke 1993], difficulties had been encountered in obtaining a con-
verged solution of the pressure and pressure correction equations when using
the splitting method for simulating two-dimensional laminar diffusion flame.
Current work focuses on the application of newly developed Krylov subspace it-
erative method to the solution of nonlinear problems that are modeled by PDEs.

In this work we are interested in developing a general purpose two-dimensional
solver for nonlinear equations. It can be used to solve a variety of problems, as
long as the discrete form of the equations are provided by the users. As an appli-
cation, the program is applied to obtain the solution of laminar diffusion flames
with one-step chemical reaction. The governing equations of this problem are
highly nonlinear and the dependent variables are strongly coupled so that their
solution constitutes a challenging test for nonlinear elliptic solvers.

2 Damped Newton Method

The Newton’s method for a system of equations can be derived from multi-
variable Taylor expansion. Let F (u) = 0 be the system of equations in residual
form, obtained by discretizing the governing differential equations, the Tay-
lor expansion of the left-hand side, F (u), about the current location uk is
[Knoll and Keyes 2004]

F(uk+1) = F(uk) + F′(uk)(uk+1 − uk) + O
(
(uk+1 − uk)2

)
, (1)

where, F is the nonlinear vector residual function and u is the vector of un-
known dependent variables. By using the condition of F (u) = 0, i.e., Eq. (1),
and neglecting the second-order terms, the standard Newton iteration can be
constructed as

J(uk)δuk = −F(uk), k = 0, 1, ..., (2)
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or
uk+1 = uk + δuk = uk − J(uk)−1F(uk), k = 0, 1, ..., (3)

where J ≡ F′ is the Jacobian matrix, and k indicates the k-th Newton iteration.
The damped Newton’s method is consequently written in the following form:

uk+1 = uk + λkδuk = uk − λkJ(uk)−1F(uk), k = 0, 1, ..., (4)

where λk is the k-th damping parameter, taking as 0 < λk ≤ 1. Since there are
no practical means to suggest an initial guess which is within the domain of con-
vergence, damping is observed to be necessary for convergence [Xu et al. 1993].
The damping parameter is taking as λ = 1 at the first iteration and a minimum
function defined by Eq. (5) at other iterations [Xu and Smooke 1993].

λk =
{

1, k = 0
min(λk

p, 1), k > 0
(5)

where λk
p is calculated as

λk
p =

{
max

∣∣(umax
m − uk

i,j,m)/δuk
i,j,m

∣∣ , δuk
i,j,m > 0

max
∣∣(uk

i,j,m − umin
m )/δuk

i,j,m

∣∣ , δuk
i,j,m < 0

(6)

If the projected update δuk+1 using Eq. (4) corresponding to λk is larger than
the update at the kth iteration δuk, the damping parameter will be recursively
taken a half until δuk+1 ≤ δuk, or until λk is smaller than predefined tolerance.

The Newton iteration is terminated when the 2-norm of the update δu sat-
isfies the pre-determined convergence tolerance. To be specific, following the
procedure described in [Ern et al. 1995], we scale each of the dependent vari-
ables in the nonlinear system such that each of them is of a size similar to the
others of equal importance, and the 2-norm of the discrete vector δun can be
written as [Ern et al. 1995]

‖δun‖ =

√√√√ 1
N

n1∑
i=1

n2∑
j=1

n3∑
k=1

(
1
αk

δun

)2

, (7)

where N = n1n2n3, αk is the scaling factor of the k-th component of the un-
known vector, and n1, n2, and n3 are the number of points in the first space
direction, the number of points in the second space direction, and the number
of elements of the unknown vector u respectively. In each of the Newton it-
eration, the inner linear system is solved by a Krylov type linear solver with
preconditioners.
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3 Implementation

3.1 Construction of Numerical Jacobian

The governing equations and boundary conditions are discretized by using an
implicit finite-diffference technique on a nine-point stencil. The implicit for-
mulation allows for 3 orders of magnitude fewer time steps for describing the
complete transient, as compared to explicit formulations. Diffusion terms are
approximated by centered differences and convective terms by a monotonicity-
preserving upwind scheme. Thus, the partial differential equations are trans-
formed into Neq coupled nonlinear algebraic equations, where Neq equals to the
number of unknowns multiplied by the number of mesh points in the compu-
tational domain. The resulting system of equations, written in residual form, is
solved by a damped Newton’s method.

As discussed in Section 2, to solve the nonlinear system of equations with
Newton’s method, we have to perform function evaluation and compute the
derivative function. For many nonlinear problems, the analytical calculation of
Jacobian matrix may be very tedious in practice. As an alternative, we approxi-
mate the Jacobian matrix by forward difference. The Jacobian matrix in Eqs. (2)
∼ (4) is computed numerically through the following procedure. Assuming that
there are k components in the unknown vector, i.e., u = [u1 u2 . . . uk]T , we can
denote the corresponding residual vector as F = [F1 F2 . . . Fk]T . At each mesh
point (i,j), there is a corresponding dense square block with dimensions of k×k,

∂F
∂u

=

⎡
⎢⎢⎢⎢⎣

∂F1
∂u1

∂F1
∂u2

· · · ∂F1
∂uk

∂F2
∂u1

∂F2
∂u2

· · · ∂F2
∂uk

...
...

...
...

∂Fk

∂u1

∂Fk

∂u2
· · · ∂Fk

∂uk

⎤
⎥⎥⎥⎥⎦ . (8)

Each element in the above k × k block is evaluated by finite difference approx-
imation, which can avoid the computation of the derivative and provide sav-
ings in linear algebra work, but pays the price of slower rate of convergence
[Kelley 2003]. The finite difference approximation to the jth column of the Ja-
cobian matrix can be written as [Xu et al. 1993]

∂Fi

∂uj
=

Fi(uj + δuj) − Fi(uj)
δuj

, (9)

where δuj is a small perturbation of the jth element of vector u, and it is
implemented as δuj = ξuj + η, where ξ and η are taking as the square root of
the machine precision. One new function evaluation is required for each column
of Jacobian Jj , so a total of N function evaluations are resulted for an unknown
vector of size N .
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The cost of constructing the Jacobian is substantial. Due to the sparse struc-
ture of Jacobian, the total number of function evaluations can be reduced by
applying a vector function evaluation technique, where several columns of the Ja-
cobian are evaluated simultaneously. After the Jacobian is obtained, the Newton
equation may be solved by any linear algebraic solvers, which will be discussed
later.

3.2 Adaptive Time Stepping

The unsteady nonlinear system of equations in discrete form can be written as

C
∂u

∂t
+ F (u) = 0, (10)

where C is a scaling matrix. Using backward Euler discretization of the temporal
term, we obtain the following equation

C
un − un−1

tn − tn−1
+ F (un) = 0, (11)

where un and un−1 represents the unknown vectors at time step n and n − 1
respectively. The nonlinear system of equations, Eq (11), has to be solve by New-
ton’s method at each time step. The new Jacobian matrix including unsteady
terms is simply

J ′(un) =
C

tn − tn−1
+ J(un). (12)

The unsteady term in Eq. (12) contributes to the diagonal terms in the Jacobian
matrix, which makes the Jacobian more diagonally dominant than that of the
steady-state equations. The resulting linear system is actually better conditioned
and it can be solved more easily by an iterative method [Kelley 2003].

It is clear from Eq. (12) that a small time step will produce a better con-
ditioned matrix. However, the selection of a small time step will substantially
increase the computation time for a steady-state solution. Therefore, the length
of time steps are adaptively chosen to minimize the number of time steps and
save computation cost. The length of time steps is determined by monitoring
the local truncation error of the time discretization. Following procedures in
[Xu and Smooke 1993] by applying Taylor expansion, the local truncation error
at the nth time step due to backward Euler discretization can be approximated
as

Te ≈ γ(Δtn+1)2

2
= ε, (13)

where ε is a specified tolerance, and γ is calculated as

γ = max

∣∣∣∣∂2u

∂t2

∣∣∣∣
tn≤t≤tn+1

. (14)
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The second order partial derivative in Eq. (14) is approximated in the calculation
by taking central difference at the time step tn−1

γ = max

∣∣∣∣∣ 2
tn − tn−2

(
un

ij − un−1
ij

tn − tn−1
− un−1

ij − un−2
ij

tn−1 − tn−2

)∣∣∣∣∣ (15)

where i and j indicate the node position in the x and y directions respectively.
The new time step at time level n + 1 can then be predicted as

Δtt+1 =
√

2ε

γ
. (16)

3.3 Numerical Algorithm

Numerical methods described in the paper for solving multi-dimensional multi-
variable unsteady nonlinear equations are summarized in Algorithms 1 and 2,
where Algorithm 1 expresses the procedure of Newton iteration with damping
parameters, while Algorithm 2 presents the steps of time iteration, in which
the length of time steps is adaptively calculated based on the local truncation
error.

4 Krylov-subspace based Method

Krylov-subspace based iterative methods build the iteration by evaluating matrix-
vector product in the appropriate Krylov subspace. In Krylov method, the so-
lution to a linear system Ax = b is expressed as a summation of the following
form [Kelley 2003]

xk = x0 +
k−1∑
i=0

γiA
ir0, (17)

where r0 = b − Ax0 and x0 is the initial iterate, xk ∈ Kk, and the kth Krylov
subspace is defined as

Kk = span(r0, Ar0, . . . , A
k−1r0). (18)

Among them, the most successful general purpose Krylov iterative methods for
solving non-symmetrical matrices include GMRES (generalized minimal residual
method) [Saad 1996] and BiCGSTAB (bi-conjugate gradient stabilized method)
[Vorst 1992]. GMRES method has robust theoretical properties, but its major
drawback is that the required storage at each iteration increases linearly with
the iteration count. On the contrary, BiCGSTAB has the advantage of fixed
storage throughout the linear iteration, but may break down due to a division
by zero [Kelley 2003]. Since there might be a significant amount of unknown
variables in a nonlinear system, storage could be a big concern. As a result, both
GMRES and BiCGSTAB are implemented as the linear solvers, preconditioned
with block Gauss-Seidel [Ern et al. 1995].
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Algorithm 1 Newton iteration
1: provide a guessed solution, set convergence = false and k = 0
2: while k < maxNumberIter or convergence == false do
3: k + +
4: construct Jacobian using Eq. (8)
5: Solve Eq. (2) for δuk using preconditioned Krylov methods
6: calculate damping parameters using Eq. (5)
7: compute new solution by Eq. (4)
8: project δuk+1 using existing Jacobian and Eq. (2)
9: if δuk+1 ≤ ε then

10: set convergence = true

11: break
12: end if
13: while δuk+1 ≥ δuk do
14: set λ = 1

2λ

15: if λ < λmin then
16: set convergence = false

17: set stop = true

18: break
19: end if
20: project δuk+1 using existing Jacobian and Eq. (2)
21: end while
22: if stop == true then
23: break
24: end if
25: end while

Algorithm 2 Unsteady Newton
1: specify Δt and tmax

2: let t = 0, t = t + Δt

3: while t < tmax do
4: call Newton iteration for the unsteady equations (Eq. (12))
5: while convergence == false do
6: let Δt = 1

2Δt

7: call Newton iteration for the unsteady equations (Eq. (12))
8: end while
9: set t = t + Δt

10: calculate the next adaptive time step using Eq. (16)
11: end while

897Shen W., Zhang C., Zhang J., Ma X.: Newton Method  ...



1 2 3

4 5 6

7 8 9

Figure 1: A sample 9-point grid.

5 Numerical Example

The Newton solver is applied to solve high-nonlinear diffusion flame, which is
modeled by the Navier-Stokes equations and the transport equation of mixture
fraction [Ern et al. 1995, Xu et al. 1993].

Continuity equation[Tannehill et al. 1997]

∂ρ

∂t
+ ∇ · (ρv) = 0. (19)

Momentum equation[Tannehill et al. 1997]

∂ (ρv)
∂t

+∇· (ρv ⊗ v) = ρg−∇p +∇·
(

μ

(
∇v + (∇v)T − 2

3
I (∇ · v)

))
. (20)

Mixture fraction equation[Xu et al. 1993]

∂ (ρφ)
∂t

+ ∇ · (ρvφ) = ∇ · (ρD∇φ) . (21)

The configuration of the jet flow in this paper is similar to that reported in
[Mohammed et al. 1998]. The fuel jet and the coflowing oxidizer jet are co-
centered, where the inner fuel jet has a radius of RI = 0.2 cm, and the outer
oxidizer jet has a radius of RO = 2.5 cm. The fuel is nitrogen-diluted consisting
of CH4 and N2, where the mass fraction of CH4 is about 0.52. The oxidizer is
the air, where the mass fraction of O2 is 0.232. Both the fuel and the oxidizer are
set with a velocity of vI = vO = 35 cm/s. The computational domain expands
from r = 0 to r = 7.5 cm in the radial direction and from z = 0 to z = 30
cm in the axial direction, such that the radial dimension of the domain is much
larger than the radius of the coflowing oxidizer jet, RO, and the axial dimension
of the domain is much larger than the flame length [Ern et al. 1995], Lf . The
computational domain is covered by a non-uniformly distributed mesh of size
129 × 161. Using the simplest 3 × 3 mesh as an example (shown in Fig. 1), for
the 9 point stencil, the structure of the Jacobian matrix is presented in Eq. (22).
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J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

� � � �
� � � � � �

� � � �
� � � � � �
� � � � � � � � �

� � � � � �
� � � �
� � � � � �

� � � �

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)

As discussed in Section 3.1, if there are k dependent variables, each element in
the above matrix would contain a k × k dense block, as shown in Eq. (8). Let
nc, nr, and nz denote the number of components, number of points in the radial
direction, number of points in the axial direction respectively, then the number
of rows or the number of unknowns is nc × nr × nz, the maximum number of
nonzero elements in each row is 9 × nc, and the maximum number of nonzeros
in the Jacobian matrix is 9 × n2

c × nr × nz.
Following the flame sheet model, the one-step irreversible reaction for the

methane-air diffusion flame can be written in the following form, as shown in
[Bennett and Smooke 1998, Xu et al. 1993],

νCH4CH4 + νO2O2 + N2 → νH2OH2O + νCO2CO2 + N2, (23)

where the stoichiometric coefficients νCH4 , νO2 , νH2O, and νCO2 , are taken as 1,
2, 2, and 1 respectively. We use this equation to recover the temperature and
the mass fraction of major species. Under the assumption of infinite rate chem-
istry, the reaction zone becomes infinitely thin under the stoichiometric condition
[Ern et al. 1995]. In three dimensions the infinitely thin reaction zone forms a
surface called stoichiometric surface, while in two dimensions, the reaction zone
forms a curve. The combustion domain has been separated into two parts: the
fuel side where oxidizer is absent and the oxidizer side where fuel is absent. At
the stoichiometric surface, the mass fractions of both fuel and oxidizer are zero,
i.e., YCH4 = YO2 = 0, so the stoichiometric mixture fraction is constant there,
and determined as [Xu et al. 1993]

φs =
1

1 + WCO2νCO2
WCH4νCH4

(YCH4 )f

(YCO2 )o

, (24)

where the subscript s, o, and f indicates the stoichiometric surface, oxidizer
side, and fuel side respectively. We have to keep track of the location of the
stoichiometric surface to determine the scopes of fuel side region and oxidizer
side region, since different mechanisms are used in computing the temperature
and the mass fraction of major species in different regions. For example, on the
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fuel side, we have

T = Tfφ +
(

To + (YCO2 )o
Q

cp

WCH4νCH4

WO2νO2

)
(1 − φ), (25)

YCH4 = (YCH4)fφ + (YO2)o
WCH4νCH4

WO2νO2

(φ − 1), (26)

and on the oxidizer side, we have

T = To(1 − φ) +
(

Q

cp
(YCH4)f + Tf

)
φ, (27)

YO2 = (YO2)o(1 − φ) − (YCH4)f
WO2νO2

WCH4νCH4

φ. (28)

The mass fraction of other species can be obtained in a similar way, as presented
in [Ern et al. 1995, Xu et al. 1993]. In Eqs. (25) ∼ (28), Q is the heat release
per unit mass of the fuel, cp the specific heat of the mixture, W the molecular
weight of each species. In the mixture fraction equation, fluid properties, such
as the viscosity, the mixture density, the mixture diffusivity, are temperature
dependent. After the temperature is obtained, the related properties can be
found as follows. The temperature dependence of viscosity is approximated by
the power law [Xu et al. 1993] μ = μ0

(
T
T0

)r

, where T0 = 298 K, r = 0.7, and

μ0 = 1.857×10−4 gm/cm. From the definition of the Prandtl number Pr = μcp

k ,
we obtain the relation of cp

k = Pr
μ . The Lewis number is assumed to be one

Le = k
ρDcp

= 1, and we further obtain ρD = k
cp

= μ
Pr , where k is the thermal

conductivity of the mixture, and the Prandtl number is taken as Pr = 0.75.
The nonlinear coupled equations of the combustion problems are very difficult

to solve. A good initial solution guess is absolutely necessary for the convergence
of the Newton’s method and very important for fast solution of the iterative
process. In the current investigation, the initial guess is set to zero for u, v, and
φ, and 298 K for T . The Newton iteration is considered to have converged if the
2-norm of the update of the scaled dependent variable, defined in Eq. (7), is less
than 1.0 × 10−4, and GMRES or BiCGSTAB is considered to have converged
when the 2-norm of the scaled residual vector is less than or equal to 1

10 of the
Newton tolerance [Ern et al. 1995].

The computation is performed on a Sun-Blade-100 machine with a single
500 MHz SPARC processor and 2 GB memory. The evolution of the laminar
diffusion flame with time is presented in Fig. 2, which shows the development
of flame temperature profile in the early stage of a flame. At t = 0.125 s, the
obtained temperature profile of the flame is close to the steady-state solution,
with highest temperature of 2050 K and highest axial velocity of 2.61 m/s. The
unsteady diffusion flame simulated in the paper agrees qualitatively well with
that in [Mohammed et al. 1998]. As expected, it has been observed in several
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Figure 2: The dependency of flame temperature on time: (a) t = 0.025 s, (b)
t = 0.05 s, (c) t = 0.075 s, (d) t = 0.1 s, and (e) t = 0.125 s.

running cases that about 50% ∼ 80% computational time has been saved due to
the introduction of adaptive time stepping.

6 Conclusions and Future Work

A two-dimensional nonlinear solver has been developed to solve coupled differen-
tial equations using damped Newton’s method. The program has been applied to
find the solution of a diffusion flame, where the air flow is coupled with chemical
reactions, and reasonable results are obtained. This indicates that the Newton’s
method is very efficient for the simulation of coupled high nonlinear physical
processes such as the complicated combustion problems. To make the Newton
iterations more robust, Krylov-subspace based iterative methods have been used
to solve the linear system of equations at each Newton step. The backward Eu-
ler method has been used to discretize the unsteady terms, and adaptive time
stepping has been applied to save computation time. In future study, we would
like to further speed up the steady-state solution of diffusion flame by using
multiscale multigrid high performance computing techniques.
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