
Orthogonal Concatenation:

Language Equations and State Complexity

In Honor of Derick Wood’s 70th Birthday

Mark Daley
(Department of Computer Science and Department of Biology

University of Western Ontario
London, Ontario N6A 5B7, Canada

daley@csd.uwo.ca)

Michael Domaratzki
(Department of Computer Science

University of Manitoba
Winnipeg, Manitoba R3T 2N2, Canada

mdomarat@cs.umanitoba.ca)

Kai Salomaa
(School of Computing, Queen’s University

Kingston, Ontario K7L 3N6, Canada
ksalomaa@cs.queensu.ca)

Abstract: A language L is the orthogonal concatenation of languages L1 and L2 if
every word of L can be written in a unique way as a concatenation of a word in L1

and a word in L2. The notion can be generalized for arbitrary language operations.
We consider decidability properties of language orthogonality and the solvability of
language equations involving the orthogonal concatenation operation. We establish a
tight bound for the state complexity of orthogonal concatenation of regular languages.

Key Words: language operations, language equations, regular languages, state com-
plexity, decidability

Category: F.4.3, F.1.3

1 Introduction

The Code Division Multiple Access (CDMA) multiplexing scheme used in ra-
dio communications allows for the simultaneous reception of transmissions from
multiple senders by assigning each sender a waveform which, when superimposed
with the waveforms of other senders, generates a signal which can be uniquely
decomposed back in to the original waveforms. This is possible due to the addi-
tive nature of interfering radio waves and the careful choice of waveforms which
are mutually orthogonal. In the case of binary signaling, we may represent wave-
forms as binary vectors of some finite size leading to a simple choice of those

Journal of Universal Computer Science, vol. 16, no. 5 (2010), 653-675
submitted: 15/6/09, accepted: 12/2/10, appeared: 1/3/10 © J.UCS

waveforms which are represented by orthogonal vectors in the sense of traditional
linear algebra1.

The theoretical and practical properties of CDMA have been investigated
thoroughly in the engineering literature, including algebraic studies of CDMA
variants (see, e.g., [Castaing and De Lathauwer 2004]). These studies, however,
principally concern themselves with the details of radio communications, rather
than abstract communications channels. In this paper we seek to generalize the
notion of orthogonality to arbitrary word operations to perhaps facilitate the
investigation of code-division multiplexing schemes in the more general context
of abstract coding theory. Restrictions of operational orthogonality have been
previously studied for the concatenation operation in the formal language theory
literature on language equations.

We present here a general framework for studying orthogonality of opera-
tions on formal languages and demonstrate preliminary results for the opera-
tions of concatenation and shuffle on trajectories. In section 4 we consider lan-
guage equations involving orthogonal concatenation. Concatenation is a fun-
damental operation on formal languages. The inverse operation of language
decomposition and the computation of irreducible (or prime) components are
important theoretical tools used in data classification [Czyzowicz et al. 2003],
however, the complexity of language decomposition is not yet properly under-
stood [Wood et al. 2007, Mateescu et al. 2002, Salomaa 2008]. For orthogonal
concatenation the situation is even worse, and even the decidability status of
the question whether a regular language has an orthogonal decomposition with
respect to concatenation remains open.

In section 5 we study the state complexity of the orthogonal concatenation
operation. The orthogonality condition may appear quite restrictive and, at first
sight, one could expect that the state complexity is significantly lower than in the
case of unrestricted concatenation [Jirásková 2005, Maslov 1970, Yu et al. 1994,
Yu 1997]. However, we show that the worst-case state complexity of orthogo-
nal concatenation differs from the state complexity of ordinary concatenation
precisely by a factor of two.

The state complexity of a related, but essentially different, operation of
unique concatenation was investigated by [Rampersad et al. 2009]. Whereas or-
thogonal concatenation is defined only for pairs of orthogonal languages, the
unique concatenation of any two languages is defined to consist of those words
that can be written in a unique way as a concatenation of words from the com-
ponent languages [Rampersad et al. 2009].

A preliminary version of parts of this work was presented at TALE’07
[Daley et al. 2007] and at DCFS’08 [Daley et al. 2008].

1 We refer the reader to [Rao and Dianat 2005] for an introductory text on CDMA.

654 Daley M., Domartzki M., Salomaa K.: Orthogonal Concatenation ...

2 Preliminaries

In the following Σ is a finite alphabet. The set of all words over Σ is Σ∗ and Σ+

is the set of non-empty words over Σ. The length of a word w ∈ Σ∗ is |w| and
ε is the empty word. The set of symbols of Σ occurring in a word w is alph(w).
We write u <p v if u is a proper prefix of v, u, v ∈ Σ∗. The powerset of a set A

is P(A).
For w ∈ Σ∗ and L ⊆ Σ∗ we define

w−1L = {u ∈ Σ∗ | wu ∈ L}, Lw−1 = {u ∈ Σ∗ | uw ∈ L}.

The reversal of a word w = a1 · · · an, a ∈ Σ, i = 1, . . . , n, is wR = an · · ·a1 and
the reversal of a language L is LR = {wR | w ∈ L}.

The notions associated with orthogonality have close connections to formal
power series and, for example, the proof of the main decidability result for or-
thogonal concatenation [Anselmo and Restivo 1996] relies on power series. Here
we do not discuss power series in detail and the interested reader can find more
information e.g. in [Kuich and Salomaa 1986].

A deterministic finite automaton (DFA) is a five-tuple

A = (Q, Σ, δ, q0, F), (1)

where Σ is a finite alphabet, Q is a finite set of states, q0 ∈ Q is the start state,
F ⊆ Q is the set of accepting states and δ : Q × Σ → Q defines the transitions
of A. In the standard way the transition function δ is extended to a function
Q × Σ∗ → Q. Further, for a set P ⊆ Q and a ∈ Σ, we use the shorthand
δ(P, a) = {δ(q, a) : q ∈ P}.

We say that a state q is reachable from a state p if there exists w ∈ Σ∗ such
that δ(p, w) = q. A dead state is a state q ∈ Q−F such that only q is reachable
from q. States q1, q2 ∈ Q are said to be equivalent if for any w ∈ Σ∗,

δ(q1, w) ∈ F iff δ(q2, w) ∈ F.

A DFA A = (Q, Σ, δ, q0, F) is a permutation automaton if, for each b ∈ Σ,
the function δ(·, b) : Q → Q is a permutation of the set of states Q.

The language recognized by a DFA A as in (1) is L(A) = {w ∈ Σ∗ |
δ(q0, w) ∈ F }. Deterministic finite automata accept exactly the regular lan-
guages [Wood 1987, Yu 1997]. Any regular language has a unique DFA with a
minimal number of states. In a minimal DFA all states are reachable from the
start state and pairwise inequivalent.

For all unexplained notions concerning finite automata we refer the reader to
[Wood 1987, Yu 1997]. More information on state complexity and references can
be found in [Goldstine et al. 2002, Holzer and Kutrib 2009, Wood et al. 2004,
Yu 2001].

655Daley M., Domartzki M., Salomaa K.: Orthogonal Concatenation ...

To conclude this section we recall the notion of shuffle on trajectories oper-
ation originally introduced in [Mateescu et al. 1998].

A trajectory t is a word over the alphabet {0, 1}. For x, y ∈ Σ∗, the shuffle
of x and y along a trajectory t, x t y, is defined inductively as follows.

If x = ax′, y = by′ (with a, b ∈ Σ) and t = et′ (with e ∈ {0, 1}), then

x et′ y =
{

a(x′
t′ by′) if e = 0;

b(ax′
t′ y′) if e = 1.

If x = ax′ (a ∈ Σ), y = ε and t = et′ (e ∈ {0, 1}), then

x et′ ε =
{

a(x′
t′ ε) if e = 0;

∅ otherwise.

If x = ε, y = by′ (b ∈ Σ) and t = et′ (e ∈ {0, 1}), then

ε et′ y =
{

b(ε t′ y′) if e = 1;
∅ otherwise.

We let x ε y = ∅ if {x, y} �= {ε}. Finally, if x = y = ε, then ε t ε = ε if t = ε

and ∅ otherwise.
We extend shuffle on trajectories to sets T ⊆ {0, 1}∗ of trajectories as follows:

x T y =
⋃
t∈T

x t y.

Further, for L1, L2 ⊆ Σ∗, we define

L1 T L2 =
⋃

x∈L1
y∈L2

x T y.

3 Definition and Basic Properties of Orthogonality

We begin by introducing the notion of operational orthogonality. By a binary2

word operation on Σ∗ we mean a function ◦ : (Σ∗)2 → 2Σ∗
. The operation ◦ is

extended to languages L1, L2 ⊆ Σ∗ as

L1 ◦ L2 =
⋃

x∈L1,y∈L2

x ◦ y.

Definition 1. Let L, L1, L2 be languages over Σ. We say that L is an orthogonal
◦-composition of L1 and L2, denoted

L = L1 ◦⊥ L2,

if the following two conditions hold
2 All below notions can be extended in an obvious way for n-ary operations, n ≥ 2.

For simplicity below we discuss only the binary case.

656 Daley M., Domartzki M., Salomaa K.: Orthogonal Concatenation ...

(OR1) L = L1 ◦ L2, and

(OR2) (∀ui, vi ∈ Li, i = 1, 2) if (u1, u2) �= (v1, v2) then u1 ◦ u2 ∩ v1 ◦ v2 = ∅.

Given languages L1 and L2, we define their orthogonal ◦-composition as

L1 ◦⊥ L2 =
{

L1 ◦ L2 if condition (OR2) holds,
undefined otherwise.

If L1◦⊥L2 is defined, we say also that the languages L1 and L2 are ◦-orthogonal.
Note that in the above statement the order of the languages is significant since
the ◦-orthogonality relation is not symmetric.

Example 1. Let Σ be an alphabet containing symbols 0 and 1. For x = x1 · · ·xm,
xi ∈ Σ, i = 1, . . . , m, m ≥ 0 and y ∈ Σ∗, define the marked concatenation of
words x and y as

x • y = x10 · · ·xm011y.

Any languages L1, L2 ⊆ Σ∗ are •-orthogonal.

Example 2. Let • be the marked concatenation from Example 1 and consider the
operation � : (Σ∗)2 → 2Σ∗

defined by setting

x � y = {x • y, y • x}, x, y ∈ Σ∗.

Languages L1, L2 ⊆ Σ∗ are �-orthogonal if and only if L1 ∩ L2 has at most one
word. Note that for any distinct words z1, z2 ∈ L1 ∩ L2, z1 � z2 ∩ z2 � z1 �= ∅,
resulting in a violation of the condition (OR2). However, if L1 ∩ L2 = {z}, the
pair (z, z) does not violate (OR2) although z�z contains a word that is a marked
concatenation of a word of L1 with a word of L2, and vice versa.

For commutative word operations we can make the following observations:

Lemma2. Let ◦ be a commutative binary word operation. Then L1 and L2 are
◦-orthogonal if and only if L2 and L1 are ◦-orthogonal.

Proof. Let ◦ be a commutative binary word operation, and assume that L1 and
L2 are ◦-orthogonal. Assume, contrary to what we want to prove, that L2 and
L1 are not ◦-orthogonal. Then there exists x ∈ L2 ◦ L1 with two factorizations
x ∈ y1 ◦ z1 and x ∈ y2 ◦ z2, where y1, y2 ∈ L2 and z1, z2 ∈ L1. But now since
yi ◦ zi = zi ◦ yi, i = 1, 2, we have contradicted that L1 and L2 are ◦-orthogonal.

�

More generally, using the notation from [Kari 1994], let ◦R be the word op-
eration defined by x ◦R y = y ◦ x. Then the following result is established:

657Daley M., Domartzki M., Salomaa K.: Orthogonal Concatenation ...

Lemma3. Let ◦ be a binary word operation. Then L1 and L2 are ◦-orthogonal
if and only if L2 and L1 are ◦R-orthogonal.

We note that the converse of Lemma 2 does not hold. In particular, if ◦ is the
binary word operation defined by a ◦ b = {ab} and x ◦ y = ∅ for (x, y) �= (a, b),
then the operation ◦ is not commutative, but any pair of languages L1 and L2

are ◦-orthogonal.

4 Concatenation Orthogonality

In the following we concentrate on the concatenation operation. When we need
to use notation for orthogonality of the operation, we denote concatenation by
�. When we do not need notation for orthogonality we denote, as usual, con-
catenation of languages L1 and L2 as L1 · L2, or simply as L1L2.

Let L ⊆ Σ∗ be a language. If L is a code then L �⊥ L is defined, i.e., L is
�-orthogonal with itself. However, the converse does not hold since

{a, b, ab} �⊥ {a, b, ab} = {aa, ab, aab, ba, bb, bab, aba, abb, abab},

and hence {a, b, ab} is �-orthogonal with itself.
By definition, a sufficient condition for languages L and L′ to be �-orthogonal

is that

(i) L is a prefix code, or,

(ii) L′ is a suffix code.

In particular, it follows that

L and Σ∗ are �-orthogonal iff L is a prefix code, (2)

and,
Σ∗ and L are �-orthogonal iff L is a suffix code. (3)

The below result showing that the operation �⊥ is associative for non-empty
languages follows easily from the corresponding well known property of formal
power series.

Lemma4. Let Li, i = 1, 2, 3, be non-empty languages. Then

(L1 �⊥ L2) �⊥ L3 = L1 �⊥ (L2 �⊥ L3).

The above equality includes the condition that the left side is defined if and
only if the right side is defined.

658 Daley M., Domartzki M., Salomaa K.: Orthogonal Concatenation ...

Lemma 4 needs the assumption on the non-emptiness of the languages. For
example, if L = {a, aa} then

(∅ �⊥ L) �⊥ L = ∅

but ∅�⊥(L�⊥L) is undefined. In the statement of Lemma 4 it would be sufficient
to require that only L1 and L3 are non-empty.

A natural question will be for which languages we can decide whether or not
the languages are concatenation-orthogonal.

Proposition5. Given regular languages L1 and L2, it is decidable whether or
not L1 and L2 are �-orthogonal.

Proof. The result is well-known and follows also from Theorem 12 below since
concatenation can be expressed as shuffle along the regular set of trajectories
0∗1∗. �

As can be expected, the result of Proposition 5 cannot be extended for
context-free languages, not even in the case where only one of the languages
L1 or L2 is context-free. Since it is undecidable whether or not a given linear
context-free language is a prefix- (respectively, a suffix-) code, see e.g.
[Jürgensen and Konstantinidis 1997], the observations (2) and (3) give the fol-
lowing undecidability result.

Theorem 6. Given a linear language L and a regular language R it is undecid-
able whether or not

(i) L and R are �-orthogonal,

(ii) R and L are �-orthogonal.

If L1 and L2 are languages over a unary alphabet {a}, L1 and L2 cannot be
�-orthogonal whenever they contain any two words in common. This relates to
the commutativity of unary concatenation. For commutative operations it may
be appropriate to consider a somewhat different definition of orthogonality. We
hope to return to this topic in later work.

4.1 Language equations

Here we consider language equations involving the orthogonal concatenation
operation. The result of Proposition 5 means that given regular languages L, L1

and L2 we can effectively decide whether or not the equation

L = L1 �⊥ L2

659Daley M., Domartzki M., Salomaa K.: Orthogonal Concatenation ...

having no variables holds. Next we consider one-variable equations

L = L1 �⊥ X, (4)

or its symmetric variant
L = X �⊥ L1, (5)

and two variable equations
L = X �⊥ Y. (6)

Recall that the orthogonality property is not symmetric. However, we can
make the observation that if L1 and L2 are �-orthogonal then LR

2 and LR
1 are

�-orthogonal and
(L1 �⊥ L2)R = LR

2 �⊥ LR
1 .

Thus an equation L = X �⊥ L1 has a solution X0 if and only if the equation
LR = LR

1 �⊥ X has a solution XR
0 . This means, in particular, that when the

language constants are regular (or restricted to any language family that is closed
under reversal) an equation (5) can always be reduced to an equation (4). In the
following we restrict one-variable equations to be of type (4).

A two-variable equation (6) has always the solution

L = L �⊥ {ε} = {ε} �⊥ L.

We say that these solutions are trivial solutions.
Without loss of generality we can assume that all solutions to equations (4)

or (6) must be over an alphabet Σ where Σ contains all symbols occurring in
words of L. The alphabet Σ is usually not mentioned separately.

The following strong result is established in [Anselmo and Restivo 1996].

Theorem 7. [Anselmo and Restivo 1996] For regular languages L and L1 it is
decidable whether or not a one-variable equation (4) has a solution. A possible
solution is regular and can be effectively constructed.

The solutions for one-variable language equations L = L1X obviously do not
need to be unique if we do not impose the condition of orthogonality. The proof
of Theorem 7 in [Anselmo and Restivo 1996] implies that if (4) has a solution,
it is unique. The proof given there uses formal power series and below we give
an elementary proof of the fact that possible solutions for one-variable equations
with orthogonal concatenation are unique, even without assuming regularity of
the languages L and L1.

Lemma8. Let L and L1 be nonempty languages. If an equation L = L1 �⊥ X

has a solution for the variable X, the solution is unique.

660 Daley M., Domartzki M., Salomaa K.: Orthogonal Concatenation ...

Proof. For the sake of contradiction assume that there exist languages L2 �= L′
2

such that
L = L1 �⊥ L2 = L1 �⊥ L′

2. (7)

Let v2 be a word of minimal length in the symmetric difference of L2 and L′
2.

Without loss of generality we can assume that v2 ∈ L2 − L′
2. Let u1 be a word

of minimal length in L1. Now (7) implies that there exist u′
1 ∈ L1 and v′2 ∈ L′

2

such that
u1v2 = u′

1v
′
2. (8)

If v′2 ∈ L2, then the above equation would violate the �-orthogonality of L1 and
L2, and we can conclude that v′2 ∈ L′

2 − L2.
In particular, v′2 �= v2 and since v2 is of minimal length in the symmetric

difference of L2 and L′
2 it follows that |v′2| > |v2|. Now by (8), |u′

1| < |u1| which
contradicts the assumption that u1 is of minimal length in L1. �

It is known that any one-variable equation involving (ordinary) concatenation

L = L1X (9)

has a minimal solution [Kari and Thierrin 1996]. As a consequence of Theorem 7
or Lemma 8 we observe that any solution to (4) has to be a minimal solution to
the corresponding equation L = L1X involving ordinary concatenation.

The analogy of Lemma 8 does not hold for two-variable equations (6). For
example, by considering decompositions of individual words it is easy to see that
solutions to (6) need not be unique.

For two-variable equations involving ordinary concatenation

L = XY, (10)

where L is regular, the existence of non-trivial solutions is decidable
[Conway 1971, Kari and Thierrin 1996, Mateescu et al. 2002].

For a given regular language L it is possible that the equation (10) has a
non-trivial solution but the corresponding two-variable equation with orthogonal
concatenation (6) has only trivial solutions. As an example we can consider the
finite language {ε, a, a2} = {1, a} · {1, a} where concatenation is clearly non-
orthogonal.

While any solution to (4) has to be regular, assuming that L and L1 are
regular, it is noted in [Anselmo and Restivo 1996] that a regular language can
be the orthogonal concatenation of two non-regular languages. For example,

a∗ = Π̂∞
i=0(ε + a22i

) �⊥ Π̂∞
i=0(ε + a22i+1

). (11)

Above we denote by Π̂∞
i=0Li the set consisting of infinite products of words

wi ∈ Li, i = 1, 2, . . ., where for all but finitely many indices i ∈ IN, wi = ε. This
means that the infinite product Π̂∞

i=0Li denotes a set of finite words.

661Daley M., Domartzki M., Salomaa K.: Orthogonal Concatenation ...

The unary language a∗ has different orthogonal decompositions into regular
components, however, in this case one of the components has to be finite.

Lemma9. Let L be a regular unary language. If (6) has a solution (LX , LY)
where LX and LY are regular, then one of the languages LX or LY has to be
finite.

Proof. If LX and LY are infinite and regular, there exist m1, m2 ≥ 0 and n1, n2 ≥
1 such that am1(an1)∗ ⊆ LX and am2(an2)∗ ⊆ LY . This means that the word
am1+m2+n1n2 has two different decompositions into words of LX and LY , and
the languages are not �-orthogonal. �

¿From Theorem 7 it follows that in any solution for (6), where L is regular,
if the language for one of the variables X or Y is regular, also the language
for the other variable has to be regular. This property clearly does not hold for
solutions of equation (10) involving ordinary concatenation.

Open problem 10 (i) Is it possible, for a regular language L, that (6) has non-
regular solutions for X and Y but no non-trivial regular solution?

(ii) Given a regular language L is it decidable whether or not (6) has a non-
trivial solution (respectively, a non-trivial regular solution)?

Note that the result of Theorem 7 cannot, at least not directly, be used to
enumerate all possible regular solutions for two-variable equations (6) because
there is no known state complexity upper bound for regular solutions for X and
Y as a function of the state complexity of L.

To conclude this section we show that existence of solutions for two-variable
equations is undecidable when the constant language is context-free.

Theorem 11. Given a linear context-free language L it is undecidable whether
or not the equation (6) has a non-trivial solution.

Proof. Let IPCP = (u1, . . . , um; v1, . . . , vm), ui, vi ∈ {a, b}+, i = 1, . . . , m, m ≥
1, be an arbitrary instance of the Post correspondence problem (PCP). Without
loss of generality we assume that

u1 �= v1. (12)

We denote

I ′PCP = (u1, . . . , um, um+1; v1, . . . , vm, vm+1) where um+1 = c, vm+1 = cc.

Now I ′PCP is a PCP instance over the alphabet {a, b, c}. The new elements um+1

and vm+1 have been added only for technical reasons and they clearly cannot be

662 Daley M., Domartzki M., Salomaa K.: Orthogonal Concatenation ...

used in any solution for I ′PCP (because they have different length and no other
words of I ′PCP contain occurrences of c). Thus

the instance I ′PCP has a solution iff the instance IPCP has a solution. (13)

We define

Ω = {1, . . . , m, m + 1, #, a, b, c} and Σ = Ω ∪ {$}.

For notational convenience, the alphabet Σ is allowed to depend on the given
PCP instance. Everything below works if we code the symbols 1, . . . , m+1 over a
fixed alphabet where the coding is chosen so that the first symbol of the encoding
of m + 1 is distinct from the first symbol of the encoding of 1.

We define a linear context-free language L ⊆ Σ∗:

L = {ik · · · i1#ui1 · · ·uik
| k ≥ 1, 1 ≤ ij ≤ m + 1, j = 1, . . . , k} · {ε, $}

∪ {ik · · · i1#vi1 · · · vik
| k ≥ 1, 1 ≤ ij ≤ m + 1, j = 1, . . . , k} · {$, $$}.

First we establish some properties of any decomposition of L as a non-trivial
concatenation of two languages (without imposing any orthogonality condition).
Then we show that (6) has a non-trivial solution if and only if the PCP instance
I ′PCP does not have a solution.

Claim 1 If we can write
L = L1 · L2, (14)

where L1 �= {ε}, then L2 ⊆ {ε, $, $$}.

Proof. If the claim does not hold, then (since the symbols $ occur only at the
end of words of L) the language L2 contains a word y ∈ Ω+ · {ε, $, $$}. If y ∈ L,
then there cannot exist any nonempty word w such that wy ∈ L. In other words,
if ε ∈ L1 then L1 = {ε} which is a contradiction.

Hence we can conclude that ε �∈ L1 and (14) implies that there exist z1, z2 ∈
Σ∗ such that 1 · z1 ∈ L1 and (m + 1) · z2 ∈ L1. However, only one of the words
1 · z1 · y and (m + 1) · z2 · y can be in L because um+1, vm+1 end with c and u1,
v1 do not end with c.

This concludes the proof of the claim. �

Claim 2 If we can write L = L1 · L2 where L1 �= {ε}, then $$ �∈ L2.

Proof. By Claim 1, we know that L2 ⊆ $∗. Since 1#u1 ∈ L, it has to be the case
that 1#u1 ∈ L1. Now if $$ ∈ L2, then 1#u1$$ ∈ L1 ·L2 but 1#u1$$ �∈ L by the
definition of L and (12). �

663Daley M., Domartzki M., Salomaa K.: Orthogonal Concatenation ...

Now we continue to show that I ′PCP has a solution if and only if the equa-
tion (6) does not have any non-trivial solution.

First assume that i1, . . . , ik is a solution for I ′PCP . Let L1 and L2 be an
arbitrary non-trivial solution for X and Y in (6). By Claim 1 and Claim 2 we
know that the only possibilities are that L2 = {$} or L2 = {ε, $}. The first case
is impossible, since there exist words in L which do not end with $. Thus, we
must have L2 = {ε, $}.

Since w1 = ik · · · i1#ui1 · · ·uik
∈ L, it follows that w1 ∈ L1. Since

ik · · · i1#vi1 · · · vik
$$ ∈ L,

it must be the case that w2 = ik · · · i1#vi1 · · · vik
$ ∈ L1. (Note that the word

ik · · · i1#vi1 · · · vik
$$ cannot be in L1 since L1$ ⊆ L.) Now the word w1 ·$ = w2 ·ε

has two different decompositions and the languages L1 and L2 cannot be �-
orthogonal.

Second, assume that I ′PCP does not have a solution. We define

L1 = {ik · · · i1#ui1 · · ·uik
| k ≥ 1, 1 ≤ ij ≤ m + 1, j = 1, . . . , k}

∪ {ik · · · i1#vi1 · · · vik
| k ≥ 1, 1 ≤ ij ≤ m + 1, j = 1, . . . , k} · {$}.

We have L = L1 ·{ε, $} and we verify that L1 and {ε, $} are �-orthogonal. If this
were not the case, there must exist r, s ≥ 1 and 1 ≤ i1, . . . , ir, j1, . . . , js ≤ m+1,
such that

ir · · · i1#ui1 · · ·uir · $ = js · · · j1#vj1 · · · vjs$ · ε.
The above implies that r = s, ir · · · i1 = jr · · · j1 and ui1 · · ·uir = vi1 · · · vir . This
is impossible since I ′PCP was assumed not to have a solution.

By (13) this concludes the proof of the theorem. �

4.2 Shuffle on Trajectories Orthogonality

In this subsection we consider orthogonality modulo the shuffle on trajectories
operation. We consider the question of the decidability of the orthogonality prop-
erty for this operation.

Theorem 12. Given regular languages L1, L2 ⊆ Σ∗ and a regular set of trajec-
tories T , it is decidable whether L1 and L2 are T -orthogonal.

Proof. 3 Let fi be the rational transduction defined by

fi = {(u, u′) : u′ ∈ u �T Li}
3 We are grateful to an anonymous referee of an earlier version of this paper who

suggested this construction.

664 Daley M., Domartzki M., Salomaa K.: Orthogonal Concatenation ...

for i = 1, 2. Here �T is the deletion along trajectories operation
[Domaratzki 2004, Kari and Sośık 2005]; the closure properties of �T easily
show that fi is a rational transduction for i = 1, 2. Let L = L1 T L2. Then L1

and L2 are T -orthogonal if and only if fi|L is a function for i = 1, 2. Whether
or not each fi|L is a function can be decided by a result of [Schützenberger 1976].

We note that [Iwama 1983] has proven that it is decidable whether L1 and
L2 are -orthogonal for regular languages L1, L2 (i.e., the case of T = {0, 1}∗).

5 State Complexity

Recall that the concatenation of languages recognized by an m-state DFA A

and an n-state DFA B needs at most m · 2n − 2n−1 states and there exist worst-
case examples where the bound can be reached [Jirásková 2005, Maslov 1970,
Yu et al. 1994, Yu 1997]. The worst-case examples given in the above references
that reach this bound are clearly not orthogonal. State complexity of concate-
nation of prefix-free and suffix-free languages was investigated in
[Wood et al. 2009(a), Han and Salomaa 2007]. Pairs of prefix- and suffix-free
languages are necessarily orthogonal. For prefix-free languages state complex-
ity of concatenation is linear in m and n, but the situation is not symmetric for
suffix-free languages.

Here we establish a tight bound for the state complexity of orthogonal con-
catenation. First we show that the state complexity of the concatenation orthog-
onal languages recognized, respectively, by an m state DFA A and an n state
DFA B can reach m2n−1−2n−2 in cases where B has a dead state. On the other
hand, if B does not have a dead state, orthogonality places restrictions on the
DFA A that give a corresponding upper bound for the state complexity.

In the following let

A = (Q, Σ, δA, q0, FA), B = (P, Σ, δB, p0, FB) (15)

be two DFAs. First without making any assumptions on orthogonality, we recall
from [Yu 1997] the construction of a DFA

C = (R, Σ, γ, r0, FC) (16)

that recognizes L(A)L(B).
We choose R = Q ×P(P) − FA ×P(P − {p0}), r0 = (q0, ∅), FC = {(q, X) ∈

R | X ∩ FB �= ∅} and the transitions of γ are defined by setting for q ∈ Q,
X ⊆ P , a ∈ Σ, γ((q, X), a) = (δA(q, a), Y), where

Y =
{

δB(X, a) ∪ {p0} if δA(q, a) ∈ FA,

δB(X, a) if δA(q, a) �∈ FA.
(17)

665Daley M., Domartzki M., Salomaa K.: Orthogonal Concatenation ...

This construction gives the upper bound for the state complexity of con-
catenation by choosing A to have one accepting state [Yu 1997]. Also, assuming
that B has a dead state pdead, we note that in the DFA C states (q, X) and
(q, X − {pdead}) are always equivalent. This gives the following upper bound.

Lemma13. Let A and B be (minimal) DFAs with m and n states, respectively,
and we assume that B has a dead state. Then the state complexity of the language
L(A)L(B) is at most

m2n−1 − 2n−2. (18)

The next lemma establishes that the upper bound of Lemma 13 can be
reached by a pair of orthogonal languages.

Lemma14. Let m, n ≥ 3. There exist a DFA A with m states and a DFA B with
n states such that B has a dead state and the state complexity of L(A)�⊥ L(B)
is m2n−1 − 2n−2.

Proof. Let Σ = {a, b, c, d} and for A and B we use notations as in (15).
We choose Q = {0, 1, . . . , m− 1}, q0 = 0, FA = {m− 2}, and the transitions

of δA are defined by setting

1. δA(0, a) = 0, δA(m − 2, c) = 0,

2. δA(i, b) = i + 1, i = 0, 1, . . . , m − 3,

3. δA(i, d) = i + 1, i = 0, 1, . . . , m − 4, δA(m − 2, d) = 0,

4. all transitions not listed in the above cases go to the dead state m − 1.

The DFA A is depicted in Figure 1.
For the DFA B we choose P = {0, 1, . . . , n − 1}, p0 = 0, FB = {1}, and δB

is defined by setting

1. δB(i, a) = i + 1, i = 1, . . . , n − 3, δB(n − 2, a) = 1,

2. δB(i, b) = i, i = 1, 2, . . . , n − 2,

3. δB(i, c) = i, i = 2, 3, . . . , n − 2, δB(0, c) = 1

4. δB(i, d) = i, i = 0, 1, . . . , n − 2,

5. all transitions not listed in the above cases go to the dead state n − 1.

The DFA B is depicted in Figure 2.
We show that L(A) and L(B) are concatenation orthogonal. For the sake of

contradiction, assume that there exist ui ∈ L(A), vi ∈ L(B), i = 1, 2, where

u1v1 = u2v2 and u1 <p u2. (19)

666 Daley M., Domartzki M., Salomaa K.: Orthogonal Concatenation ...

b
b, d

b, d

b, d

b, d

a

c, d

m-2 m-3

21

0

Figure 1: The DFA A. The figure does not show the dead state m − 1 and the
transitions into it.

0 1

2 3

n-2

b, d

b, c, d b, c, d

b, c, d

c

a

a

a

a

a

 d

Figure 2: The DFA B. The figure does not show the dead state n − 1.

Thus there exists w ∈ Σ+ such that v1 = wv2.
Since v2 ∈ L(B), we can write v2 = dicz, i ≥ 0, z ∈ Σ∗ and the number of

symbols a in z has to be of the form jz · (n − 2), jz ≥ 0. This follows from the
observation that in the cycle of B the transitions on symbols other than a are
self-loops and the only accepting state is 1.

Now u2 = u1w and w cannot end with a symbol d since A does not accept
any words ending with d. This means that after reading w, the DFA B cannot be

667Daley M., Domartzki M., Salomaa K.: Orthogonal Concatenation ...

in the start state. Hence the computation of B on v1 = wdicz cannot be in state
1 after reading the prefix wdic (since the only c-transition entering 1 is from the
start state). After reading the following jz(n− 2) a-transitions the computation
cannot end in an accepting state of B.

We have seen that (19) produces a contradiction and, consequently, L(A)
and L(B) have to be orthogonal.

Since B has a dead state, by Lemma 13, we know that the state complexity
of L(A)�⊥ L(B) is at most m2n−1−2n−2 and hence it is sufficient to show that
this value is also a lower bound.

Let C = (R, Σ, γ, r0, FC) be the DFA constructed from A and B as in (16).
We denote by R1 the subset of R that consists of all elements (q, X) ∈ R where
n − 1 �∈ X . Since R1 has m2n−1 − 2n−2 states, it is sufficient to show that all
states of R1 are reachable and pairwise inequivalent in the DFA C.

Claim 3 All states of R1 are reachable.

Proof. First we consider a state

(0, X), where X ⊆ {1, . . . , n − 2}. (20)

Using induction on |X | we show that (0, X) is reachable. As the base case, (0, ∅)
is the start state of C. Consider then

X = {j1, . . . , jr}, 1 ≤ j1 < . . . < jr ≤ n − 2, r ≥ 1. (21)

By the silent inductive assumption the state r0 = (0, {j2−j1+1, . . . , jr−j1+1}) is
reachable. We note that in the DFA B, b-transitions on the states in {1, . . . , n−2}
are self-loops. Hence

γ(r0, b
m−2) = (m − 2, {0, j2 − j1 + 1, . . . , jr − j1 + 1}).

Then by applying one c-transition and shifting the second component by (j1−1)
a-transitions we get the state (0, X) where X is as in (21).

Next if Y = {0} ∪ X where X ⊆ {1, . . . n − 2} we note that

γ((0, X), bm−2d) = (0, Y).

Finally, from a state (0, Z), Z ⊆ {0, 1, . . . , n − 2} we get any state (i, Z), 1 ≤
i ≤ m − 3 or i = m − 1 using only d-transitions. Note that δA(m − 3, d) is the
dead state m− 1. Assuming that 0 ∈ Z, we have γ((0, Z), dm−3b) = (m− 2, Z).
Recall that (m − 2, Z) �∈ R1 if 0 �∈ Z.

This concludes the proof of Claim 3. �

Claim 4 All states of R1 are pairwise inequivalent.

668 Daley M., Domartzki M., Salomaa K.: Orthogonal Concatenation ...

Proof. Let (i1, X1) and (i2, X2) be two distinct states in R1.
First we consider the case where X1 �= X2; without loss of generality let

x ∈ X1 − X2. If x ∈ {1, . . . , n − 2} we note that γ((i1, X1), an−1−x) ∈ FC

since the a-transitions in B take x to the accepting state 1. For the same reason
γ((i2, X2), an−1−x) �∈ FC . Note that the a-transitions of A keep i2 unchanged or
take it to the dead state and hence the a-transitions of C do not create any new
elements in the second component.

If x = 0, then applying the letter c takes (i1, X1) to a final state. However,
since only the state 0 in B has a transition labelled c which enters the final state
1, (i2, X2) is not mapped to a final state by c.

Second we consider the case where X1 = X2 and 0 ≤ i1 < i2 ≤ m − 1.

(i) First consider the case where i1 < m−2. Now γ((i1, X1), bm−2−i1c) = (0, Y)
where 1 ∈ Y and hence (0, Y) ∈ FC . Note that m − 2 − i1 > 0 and the
transitions along bm−2−i1 take (i2, X2) to a state (m − 1, Z) where 0 �∈ Z.
We observe that the last c-transition cannot take (m− 1, Z) to an accepting
state of C.

(ii) The only remaining case case is i1 = m − 2, i2 = m − 1. Now in A the
word cbm−2 takes the state i1 (= m − 2) to the accepting state m − 2
and hence γ((i1, X1), cbm−2c) = (0, Y ′) where 1 ∈ Y ′. On the other hand,
γ((i2, X2), cbm−2) = (m−1, Z ′) where 0 �∈ Z ′ and hence γ((i2, X2), cbm−2c) �∈
FC .

This concludes the proof of Claim 4 and the proof of Lemma 14. �
�

We note that the DFA B used in the proof of Lemma 14 has a dead state
and, by Lemma 13, the result is tight for this type of automata.

Next we consider the situation where B does not have a dead state.

Lemma15. Let A and B as in (15) be minimal DFAs such that L(A) and L(B)
are concatenation orthogonal. If B does not have a dead state, then no accepting
state of A can be reachable from itself along a nonempty word.

Proof. For the sake of contradiction assume that there exists q ∈ FA where
δA(q, u) = q, δA(q0, w) = q, for some w ∈ Σ∗ and u ∈ Σ+.

Since B does not have a dead state, there exist 0 ≤ i < j such that
δB(p0, u

i) = δB(p0, u
j) = p and δB(p, v) ∈ FB for some v ∈ Σ∗. Thus, the

words w and wuj−i are in L(A) and the words ujv and uiv are in L(B). Since
w · ujv = wuj−i · uiv this would imply that L(A) and L(B) are not orthogonal.

�

669Daley M., Domartzki M., Salomaa K.: Orthogonal Concatenation ...

Now if B does not have a dead state, and assuming that L(A) and L(B) are
orthogonal, we can define an anti-reflexive partial ordering of accepting states
of A,

<acc⊆ FA × FA such that p1 <acc p2 iff p2 is reachable from p1. (22)

Furthermore, we know that if p ∈ FA is maximal with respect to <acc, the only
state reachable from p is the dead state, using also the fact that A is minimal.
Note that these conditions do not restrict L(A) to be finite.

Under the above conditions, if we construct C as in (16), more than m2n−1−
2n−2 states of C can be reachable only if A has at least n accepting states. To
see this, note that if (q, X) is a state of C, where q ∈ Q, X ⊆ P , and (q, X)
is reachable along a word w, then the computation of A on w has to enter
an accepting state at least |X | times. Since the reachability relation between
accepting states of A is an anti-reflexive partial ordering and A has a dead state,
it is easy to verify that if n ≥ m, at least half of the states of C constructed as
in (16) must be unreachable.

Corollary 16. If n ≥ m ≥ 3, the worst-case state complexity of the orthogonal
concatenation of an m-state and an n-state DFA is m2n−1 − 2n−2.

However, assuming m > n, the above observations do not directly prevent the
state complexity of orthogonal concatenation from exceeding the bound m2n−1−
2n−2 in cases where B does not have a dead state. In order to cover also these
cases we need to look more carefully at the restrictions that orthogonality places
on A in the situation where the second DFA B does not have a dead state.

In the following of this section, unless otherwise mentioned, A and B are
always minimal DFAs with notations as in (15), where A has m states and B

has n states. Furthermore, we assume that

(A1) L(A) and L(B) are orthogonal, and,

(A2) B does not have a dead state.

In particular, by Lemma 15, we know that the accepting states of A can be
ordered by a relation <acc as in (22). Also, C is the DFA constructed from A

and B as in (16).

Lemma17. Let p1, p2 ∈ P , p1 �= p2. If

there exists b ∈ Σ such that δB(p1, b) = δB(p2, b), (23)

then for any set {p1, p2} ⊆ X ⊆ P and any q ∈ Q, the state (q, X) cannot be
reachable in C.

670 Daley M., Domartzki M., Salomaa K.: Orthogonal Concatenation ...

Proof. Recall that the start state of C is (q0, ∅) and new states can be added to
the second component according to the rule (17). Thus, if X occurs as a second
component of a reachable state there exist u1, u3 ∈ Σ∗ and u2 ∈ Σ+ such that
δA(q0, u1) ∈ FA, δA(q0, u1u2) ∈ FA, δB(p0, u2u3) = p1 and δB(p0, u3) = p2. Here,
due to symmetry, we can assume that the predecessor of p1 is first generated by
rule (17) after reading u1, and the predecessor of p2 is generated after reading
u1u2.

Denote p = δB(p1, b) = δB(p2, b) where b is as in (23). Since B does not have
a dead state, there exists w ∈ Σ∗ such that δB(p, w) ∈ FB.

With the above assumptions we note that A accepts u1 and u1u2. On the
other hand, B accepts u2u3bw and u3bw. This means that the word u1u2u3bw

would have two different decompositions as a concatenation of words in L(A)
and L(B), respectively. �

For any distinct states p1 and p2 satisfying the assumptions of Lemma 17 we
know that p1 and p2 cannot both occur in the second component of a reachable
state of C. Also, we note that if q1 ∈ FA is a minimal state with respect to <acc,
the only reachable state of C with first component q1 is (q1, {p0}), and these
observations give the following corollary.

Corollary 18. Let A and B be DFAs with m and n states, respectively, such
that L(A) and L(B) are orthogonal, and, B does not have a dead state. Then
the state complexity of L(A)�⊥ L(B) can exceed m2n−1 − 2n−2 only if the DFA
B is a permutation automaton.

Note that two states as given in the statement of Lemma 17 exist if and only
if B is not a permutation automaton.

For a state q ∈ Q, by the valid second components of q we mean the sets
X ⊆ P such that (q, X) is a reachable state in C.

Lemma19. Assume that B is a permutation automaton. Then for every q ∈ Q

such that an accepting state is reachable from q along a nonempty word, there
exists pq ∈ P such that pq is not in any valid second component of q.

Proof. Let q ∈ Q be such that

δA(q, w) ∈ FA (24)

for some w ∈ Σ+. Since B is a permutation automaton we can choose as pq ∈ Q

the state with the property
δB(pq, w) = p0. (25)

Now assume that pq occurs in some valid second component of q. Recalling
that the transitions of C are defined by (17), this means that there exist u1, u2 ∈
Σ∗ such that δA(q0, u1) ∈ FA, δA(q0, u1u2) = q, and δB(p0, u2) = pq.

671Daley M., Domartzki M., Salomaa K.: Orthogonal Concatenation ...

Choose v to be any nonempty word in L(B). Now using (24) and (25) we
note that A accepts the words u1 and u1u2w. On the other hand, B accepts
the words u2wv and v. Since w �= ε, this produces a contradiction with the
orthogonality of L(A) and L(B). �

Combining all of the above we can prove the following upper bound.

Lemma20. Let m, n ≥ 4. Let A and B be DFAs with m and n states respectively
such that L(A) and L(B) are orthogonal and B does not have a dead state. Then
the state complexity of L(A) �⊥ L(B) is at most m2n−1 − 2n−2.

Proof. We give an upper bound estimate for the number of reachable states in
C. By Corollary 18 we can assume that B is a permutation automaton.

Let q1, q2, q3 ∈ FA be such that q1 is minimal with respect to <acc and

q1 <acc q2 <acc q3.

Note that if <acc does not admit a chain of length three, the valid second com-
ponents of any state q ∈ Q would have cardinality at most two, and the claim
holds trivially. Without loss of generality we can choose q2 to have distance at
most one from any minimal element of FA in the ordering <acc, and similarly q3

to have distance at most two from any minimal element.
Now the only valid second component of q1 is {p0}. Since any computation

reaching q2 can have passed at most one accepting state, the possible valid second
components of q2 are of the form {p0} ∪ Y where Y is a singleton or the empty
set. Also since q2 <acc q3, by Lemma 19, there exists some element of P that
cannot occur in Y . This means that there exists at most (n− 1) possibilities for
the valid second component of q2.

By Lemma 15, we know that A has a dead state qdead and an upper bound
for the number of valid second components of qdead is 2n.

If q ∈ Q − FA is not the dead state, then some accepting state must be
reachable from q along a nonempty word. Thus, by Lemma 19, an upper bound
for the number of valid second components of q is 2n−1.

If q′ ∈ FA − {q1, q2}, we know that any valid second components of q′ must
contain p0 and an upper bound for the number of valid second components is
again 2n−1.

Thus, an upper bound for the number of reachable states of C is

1 + n − 1 + 2n + (m − 3) · 2n−1.

When n ≥ 4 the above value is bounded above by the value of m2n−1−2n−2. �

Now we can state the main result of this section.

672 Daley M., Domartzki M., Salomaa K.: Orthogonal Concatenation ...

Theorem 21. For m ≥ 3 and n ≥ 4, the worst-case state complexity of the or-
thogonal concatenation of, respectively, an m-state and an n-state DFA language
is m2n−1 − 2n−2.

Proof. This follows by Lemma 13, Lemma 14, Corollary 16 and Lemma 20. �

Note that the lower bound construction of Lemma 14 assumes m, n ≥ 3 and
the result of Theorem 21 does not cover some small values of m and n. Also, the
construction given in Lemma 14 uses an alphabet with 4 letters and the precise
state complexity remains open for alphabets of size 2 or 3.

5.1 Nondeterministic State and Transition Complexity

We briefly consider the nondeterministic state complexity of orthogonal concate-
nation. The state complexity of concatenation was studied by
[Holzer and Kutrib 2003], who showed that if L1 (resp., L2) has nondeterminis-
tic state complexity n1 (resp., n2) then there is an NFA for their concatenation
with n1 + n2 states, and this bound is tight. For prefix-free languages the tight
bound is n1 + n2 − 1 [Wood et al. 2009(b)]. The languages used to show the
tightness of the bound in [Holzer and Kutrib 2003] are (an1)∗ and (bn2)∗, which
are obviously orthogonal. Thus, we get immediately the following result:

Theorem 22. The worst-case nondeterministic state complexity of the orthog-
onal concatenation of, respectively, an m-state and an n-state NFA language is
precisely m + n.

The same witness languages are also used for lower bounds on the transition
complexity of regular languages [Domaratzki and Salomaa 2007], and thus the
bounds for transition complexity are also unaffected by orthogonality.

5.2 State Complexity: Conclusions

We have investigated the state complexity of orthogonal concatenation. The
worst-case (deterministic) state complexity of orthogonal concatenation is pre-
cisely half that of ordinary catenation. However, the nondeterministic state com-
plexity and transition complexity remain unchanged.

We note that the upper bound known for state complexity of unique concate-
nation [Rampersad et al. 2009] is markedly different compared to the bound of
Theorem 21 and, in fact, larger than the worst-case bound for ordinary concate-
nation. The tight bound for the state complexity of unique square of an n-state
DFA is n · 3n − 3n−1[Rampersad et al. 2009]. We can intuitively explain the dif-
ference by noting that in the case of unique concatenation, it is the automata
that are responsible for excluding those words which have multiple factorizations.

673Daley M., Domartzki M., Salomaa K.: Orthogonal Concatenation ...

However, for orthogonal concatenation, the languages are known beforehand to
obey the appropriate uniqueness restriction. Thus, the bound is considerably
lower in the latter case.

The situation for nondeterministic state complexity is similar: for orthogonal
concatenation the nondeterministic state complexity is the sum of sizes of the
NFAs for the the component languages, while in the unique concatenation case
it is at least exponential [Rampersad et al. 2009].

The state complexity of powers of regular languages was recently investi-
gated in [Domaratzki and Okhotin 2009]. The state complexity of the orthogonal
square of a regular language is still open.

References

[Anselmo and Restivo 1996] Anselmo, M., Restivo, A.: “On languages factorizing the
free monoid”; Internat. J. Algebra and Computation 6 (1996) 413–427.

[Castaing and De Lathauwer 2004] Castaing, J., De Lathauwer, L.: “An algebraic
technique for the blind separation of DS-CDMA Signals”; Proc. 12th European
Signal Processing Conference, EUSIPCO 2004, Vienna, (2004) 377–380.

[Czyzowicz et al. 2003] Czyzowicz, J., Fraczac, W., Pelc, A., Rytter, W.: “Linear time
decomposition of regular prefix-codes”; Internat. J. Foundations of Comput. Sci.
14 (2003) 1019–1031.

[Conway 1971] Conway, J.H.: “Regular algebra and finite machines”; Chapman and
Hall (1971)

[Daley et al. 2007] Daley, M., Domaratzki, M., Salomaa, K.: “Orthogonality of lan-
guage operations”; Proc. Theory and Applications of Languages Equations, TALE
2007, Kunc, M., Okhotin, A. (eds.), TUCS General Publication No. 44, (June 2007)
43–53.

[Daley et al. 2008] Daley, M., Domaratzki, M., Salomaa, K.: “State complexity of or-
thogonal catenation”; Proc. 10th Workshop Descriptional Complexity of Formal
Systems, DCFS 2008, Câmpeanu, C., Pighizzini, G., (eds.), (2008) 134–144.

[Domaratzki 2004] Domaratzki, M.: “Deletion along trajectories”; Theoret. Comput.
Sci. 320, 2–3 (2004) 293–313.

[Domaratzki and Okhotin 2009] Domaratzki, M., Okhotin, A.: “State complexity of
power”; Theoret. Comput. Sci. 410, 24–25 (2009) 2377–2392.

[Domaratzki and Salomaa 2007] Domaratzki, M., Salomaa, K.: “Transition complexity
of language operations”; Theoret. Comput. Sci. 387 (2007) 147–154.

[Goldstine et al. 2002] Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H.,
Malcher, A., Wotschke, D.: “Descriptional complexity of machines with limited
resources”; J. Universal Comput. Sci. 8 (2002) 193–234.

[Han and Salomaa 2007] Han, Y.-S., Salomaa, K.: “State complexity of basic opera-
tions on suffix-free regular languages”; Theoret. Comput. Sci. 410, 27–29 (2009)
2537–2548.

[Holzer and Kutrib 2003] Holzer, M., Kutrib, M.: “Nondeterministic descriptional
complexity of regular languages”; Internat. J. Foundations of Comput. Sci. 14
(2003) 1087–1102.

[Holzer and Kutrib 2009] Holzer, M., Kutrib, M.: “Descriptional and computational
complexity of finite automata”; Proc. LATA’09, Lect. Notes Comput. Sci. 5457,
Springer (2009) 23–42.

[Iwama 1983] Iwama, K.: “Unique decomposability of shuffled strings”; Proc. 15th
Annual ACM Symposium on Theory of Computing, Johnson, D. et al. (eds.),
(1983) 374–381.

674 Daley M., Domartzki M., Salomaa K.: Orthogonal Concatenation ...

[Jirásková 2005] Jirásková, G.: “State complexity of some operations on binary regular
languages”; Theoret. Comput. Sci. 330 (2005) 287–298.

[Jürgensen and Konstantinidis 1997] Jürgensen, H., Konstantinidis, S.: “Codes”; in
Handbook of Formal Languages, Vol. I, Rozenberg, G., Salomaa, A. (eds.) Springer
(1997) 511–607.

[Kari 1994] Kari, L.: “On language equations with invertible operations”, Theoret.
Comput. Sci. 132 (1994) 129–150.

[Kari and Sośık 2005] Kari, L., Sośık, P.: “Aspects of shuffle and deletion on trajecto-
ries”; Theoret. Comput. Sci. 332 (2005) 47–61.

[Kari and Thierrin 1996] Kari, L., Thierrin, G.: “Maximal and minimal solutions to
language equations”; J. Comput. System Sci. 53 (1996) 487–496.

[Kuich and Salomaa 1986] Kuich, W., Salomaa, A.: “Semirings, Automata, Lan-
guages”; EATCS Monographs on Theoretical Computer Science, Springer-Verlag
(1986)

[Maslov 1970] Maslov, A.N.: “Estimates of the number of states of finite automata”;
Soviet Math. Dokl. 11 (1970) 1373–1375.

[Mateescu et al. 1998] Mateescu, A., Rozenberg, G., Salomaa, A.: “Shuffle on trajec-
tories: Syntactic constraints”; Theoret. Comput. Sci. 197 (1998) 1–56.

[Mateescu et al. 2002] Mateescu, A., Salomaa, A., Yu, S.: “Factorizations of languages
and commutativity conditions”; Acta Cybernetica 15 (2002) 339–351.

[Rampersad et al. 2009] Rampersad, N., Ravikumar, B., Santean, N., Shallit, J.:
“State complexity of unique rational operations”; Theoret. Comput. Sci. 410, 24–25
(2009) 2431–2441.

[Rao and Dianat 2005] Rao, R., Dianat, S.: “Basics of Code Division Multiple Access
(CDMA)”; SPIE, (2005)

[Salomaa 2008] Salomaa, K.: “Language decompositions, primality, and trajectory-
based operations”; Proc. CIAA 2008, Lect. Notes Comput. Sci. 5148, Springer
(2008) 17–22.

[Schützenberger 1976] Schützenberger, M.P.: “Sur les relation rationnelles entre
monöıdes libres”; Theoret. Comput. Sci. 3 (1976) 243–259.

[Wood 1987] Wood, D.: “Theory of Computation”; Harper & Row, New York, NY
(1987)

[Wood et al. 2004] Salomaa, A., Wood, D., Yu, S.: “On the state complexity of rever-
sals of regular languages”; Theoret. Comput. Sci. 320(2–3) (2004) 315–329.

[Wood et al. 2007] Han, Y.-S., Salomaa, A., Salomaa, K., Wood, D., Yu, S.: “On the
existence of prime decompositions”; Theoret. Comput. Sci. 376 (2007) 60–69.

[Wood et al. 2009(a)] Han, Y.-S., Salomaa, K., Wood, D.: “State complexity of prefix-
free regular languages”; in: Automata, Formal Languages, and Related Topics,

Ésik, Z., Fülöp, Z. (eds.), Institute of Informatics, University of Szeged (March
2009) 99–115.

[Wood et al. 2009(b)] Han, Y.-S., Salomaa, K., Wood, D.: “Nondeterministic state
complexity of basic operations for prefix-free regular languages”; Fundamenta In-
form. 90 (2009) 93–106.

[Yu et al. 1994] Yu, S., Zhuang, Q., Salomaa, K.: “The state complexities of some basic
operations on regular languages”; Theoret. Comput. Sci. 125 (1994) 315–328.

[Yu 1997] Yu, S.: “Regular languages”; in Handbook of Formal Languages, Vol. I,
Rozenberg, G., Salomaa, A. (eds.) Springer, (1997) 41–110.

[Yu 2001] Yu, S., “State complexity of regular languages”; J. Automata, Languages
and Combinatorics 6 (2001) 221–234.

675Daley M., Domartzki M., Salomaa K.: Orthogonal Concatenation ...

