
Ordered Catenation Closures and Decompositions of

Languages Related to a Language of Derick Wood

Arto Salomaa
(Turku Centre for Computer Science

Joukahaisenkatu 3–5 B, 20520 Turku, Finland
asalomaa@utu.fi)

Abstract: We investigate the problem of decomposing a language into a catenation
of nontrivial languages, none of which can be decomposed further. In many cases this
leads to the operation of an ordered catenation closure, introduced in this paper. We
study properties of this operation, as well as its iterations. Special emphasis is on laid
on ordered catenation closures of finite languages. It is also shown that if an infinite
language is a code or a length code, then its ordered catenation closure does not possess
a finite decomposition of indecomposable factors.

Key Words: decomposition of languages, indecomposable language, finite language,
code, length code, ordered catenation closure

Category: F.4.3, F.1.1

1 Introduction

The catenation or product of languages is an operation widely studied but still
many of the basic problems remain open. For instance, the conditions for com-
mutativity XY = Y X are understood if X and Y are words but are still in
many cases open when they are languages.

Languages can be represented as products in many different ways. Recently
there has been much interest in representations, where the factors cannot be fur-
ther decomposed, [Mateescu et al. 2002, Avgustinovich and Frid 2005]
[Czyzowicz et al. 2003, Han et al., Han and Wood 2005, Salomaa and Yu 2000].
Such prime decompositions constitute the main topic of this paper.

Our starting point is the language introduced and investigated in
[Han et al. 2006]. The language, denoted by LD in the sequel, turns out to be
particularly interesting from the point of view of decomposition theory. The
language LD cannot have a prime decomposition. By analyzing the properties
causing this, we come to a class of languages with the same properties. This
leads also to a special variant of the star operation, the notion of the ordered
catenation closure of a language L, in symbols, L�. We believe that his notion
is of interest also on its own right.

A brief outline about the contents of the paper follows. The next section
gives the basic definitions and also some earlier results relevant to our consider-
ations. It also discusses some fundamental facts about infinite products. Section

Journal of Universal Computer Science, vol. 16, no. 5 (2010), 821-832
submitted: 22/1/09, accepted: 12/2/10, appeared: 1/3/10 © J.UCS



3 introduces the language LD and discusses its basic properties. It also intro-
duces the diamond operation L� and gives some arguments connecting it to LD

and related languages. In Section 4 we prove, for some classes of languages L,
the language L� can never possess a prime decomposition. The main section
of this paper, Section 5, is a study of the diamond operation and its composi-
tions. The operations are compared with the star operation, with special focus
on finite languages and state complexities. The final section describes some open
problems.

2 Decompositions of languages and primality

We assume familiarity with the basics of formal languages. Small letters from the
beginning of the English alphabet a, b, c, d, possibly with indices, denote letters
of our formal alphabet Σ. Words are denoted by small letters from the end of
the English alphabet. The empty word is denoted by λ. Following the regular
expression notation, we sometimes denote the union by ”+” and singleton sets
{x} simply by x. Thus, λ + ab stands for the set {λ} ∪ {ab}. The following
definition, [Mateescu et al. 2002], contains the basic notions of this paper.

Definition 1 A nonempty language L has a nontrivial decomposition if, for
some L1 �= {λ} and L2 �= {λ}, we have L = L1L2. A nonempty language
L �= {λ} having no nontrivial decomposition is prime. A language L has a prime
decomposition if

L = L1 . . . Lm, m ≥ 1,

where each of the languages Li, 1 ≤ i ≤ m, is prime.

Observe that by a ”prime decomposition” without further specifications we
always mean a finite decomposition, that is, the number of prime factors is finite.
We consider below also products with infinitely many factors, prime or nonprime.

One can also visualize different ways of defining a ”prime” language. For
instance, in [Frid 2007] a language L is termed indecomposable if the equation
L = L1L2 implies that either L = L1 or L = L2. It is clear that if a language is
prime in the sense of Definition 1, then it is also indecomposable. On the other
hand, languages φ and {ε} are indecomposable but not prime. These are the
only exceptions, the two notions coincide otherwise, [Salomaa et al.].

It is obvious that every finite language has a prime factorization. It is not
necessarily unique, for instance,

(λ + a2 + a3 + a4)(λ + a3 + a4) = (λ + a2)(λ + a3 + a4 + a5 + a6),

where it is easy to verify that all four factors appearing are indeed prime.

822 Salomaa A.: Ordered Catenation Closures and Decompositions ...



Many languages have prime decompositions, although it might appear not
to be the case at a first look. A typical example is the prime decomposition

Σ∗ = (λ + Σ)(λ + Σ(Σ2)∗),

where Σ is an alphabet. This type of decompositions can be extended to concern
any length codes. In what follows we define also the well-known notion of a code,
[Rozenberg and Salomaa 1997].

Definition 2 A language L is a length code (resp. a code) if every equation

u1 . . . uk = v1 . . . vl, ui, vj ∈ L, 1 ≤ i ≤ k, 1 ≤ j ≤ l,

implies that k = l (resp. that k = l and ui = vi, for 1 ≤ i ≤ k).

For instance, the language {a, ab, ba} is not a code but it is a length code. Def-
inition 2 follows [Salomaa et al.]. Length codes were called numerically decipher-
able in [Weber and Head 1996]. The following result is due to [Han et al. 2007,
Salomaa et al.].

Theorem 1 If a regular language L a length code, then L∗ has a prime decom-
position consisting of two regular factors.

In the sequel we consider also infinite products
∏∞

i=1 Li, where each Li is a
language. Then we consider only finite words defined by the product. We also
assume that each Li contains the empty word. Indeed, an infinite product of
languages defines finite words only if all of these languages, with at most finitely
many exceptions, contain the empty word. In this case there is a language L′

and an integer m ≥ 1 such that the original product can be written as

∞∏

i=1

Li = L′
∞∏

i=m

Li,

where each language in the product on the right side contains the empty word.
Hence, our assumption that λ ∈ Li is natural from the point of view of decom-
positions of languages.

If every language in the product
∏∞

i=1 Li contains the empty word, then each
word in the product belongs to a finite prefix of the product.

3 The language LD and the operation of ordered catenation
closure

We now come to the interesting language

LD = λ + {ai1bi1ai2bi2 . . . aikbik |k ≥ 1, 1 ≤ i1 < i2 < . . . < ik}

823Salomaa A.: Ordered Catenation Closures and Decompositions ...



considered in [Han et al. 2006]. The language LD is not context-free but its com-
plement is. By a careful analysis concerning the form of the possible factors, it
is shown in [Han et al. 2006] that LD has no prime decomposition. As will be
seen in the sequel, this fact is an example of a general result. In this context an
operation related to catenation will be useful.

The first observation is that LD can be expressed as an infinite product

LD =
∞∏

i=1

(λ + aibi),

where obviously all factors are prime. This product is obtained in a specific way
from the “basic” language {aibi|i ≥ 1}. This “specific way” can be formalized
as the notion of an ordered catenation closure.

Recall that the lexicographic ordering of a language L is the total ordering of
the words in L, where the words are first ordered according to increasing length,
and alphabetically among the words of the same length. (Here it is assumed
that the alphabet of L is ordered.) Thus, the first few words in the lexicographic
ordering of the language {a, b}∗ are

λ, a, b, aa, ab, ba, bb, aaa, aab, aba, . . .

Definition 3 The ordered catenation closure L�of a language L is defined by

L� =
n∏

i=1

(λ + xi),

where x1, x2, . . . is the lexicographic ordering of L, and n is the cardinality of L.
(n is an integer or ∞.)

If λ ∈ L, we omit the factor (λ + λ) from the product.
Consider the language Ld = {aibi|i ≥ 1}. Obviously,

L�
d =

∞∏

i=1

(λ + aibi) = LD.

Based on this representation, we will now give a fairly simple argument showing
that LD does not possess a prime decomposition.

We claim that, whenever LD = L1L2, then L2 is not prime. Consequently,
LD cannot have a prime decomposition because it obviously is not itself a prime,
and the last factor in any decomposition cannot be prime.

We may assume that neither of L1 and L2 consists of the empty word alone.
On the other hand, we must have λ ∈ L1 and λ ∈ L2, so every word in L1, as
well as in L2, is in LD. This means that the words aibi ∈ LD, i ≥ 1, must each

824 Salomaa A.: Ordered Catenation Closures and Decompositions ...



belong to L1 or L2 because none of them is a product of two words in LD. We
cannot have aibi ∈ L2 and ai+jbi+j ∈ L1, j ≥ 0, because, otherwise, we would
get the wrong order of the exponents in the product. Thus, there is a number k

such that aibi ∈ L2 whenever i ≥ k. We choose the smallest among such numbers
k. It is now easy to see that, for some L′

2, we have the equation

L2 = (λ + akbk)L′
2,

which establishes our claim.
Indeed, let L′

2 be the left derivative of L2 with respect to the word akbk.
Every word in L′

2 must belong to LD because, otherwise, L2 would have words
not in LD. Moreover, no word in L′

2 has a factor aibi with i ≤ k, and akbk is
a prefix of every nonempty word in L2. From these observations the required
equation follows.

Clearly, the language Ld is a code. The above argument will be generalized
in the next section to concern all codes and length codes.

4 Nonexistence of prime decompositions

We are now ready to establish the following result.

Theorem 2 If L is a code then L� has a prime decomposition exactly in case
L is finite.

Proof. If L is finite, so is L�, and hence has a prime decomposition. Assume
that L = {x1, x2, x3, . . .} is an infinite code, where the ordering of the words is
lexicographic. We now establish the following

Assertion. Whenever we have

L� =
n∏

i=1

(λ + xi) = L1L2,

for some languages L1 and L2, then L2 is not prime.
Clearly, Theorem 2 follows from this Assertion because any prime decom-

position can be changed into L1L2 by defining L1 as the product of all factors
except the last one. (Observe that L� is not prime itself.)

To prove the Assertion, note first that λ ∈ L1 and λ ∈ L2. This implies that
both of the languages L1 and L2 are contained in L�. A further conclusion is
that each of the words xi ∈ L belongs to either L1 or L2. (This follows because
L is a code and, hence, a length code. Thus a word in L cannot be a product of
two words in L.) It cannot be the case that

xj ∈ L1, xi ∈ L2, i < j.

825Salomaa A.: Ordered Catenation Closures and Decompositions ...



This would imply that we could write xjxi = xkxl, for some xk, xl, k < l, which
would contradict the fact that L is a code. Therefore, there is an index t such
that xi ∈ L2 whenever i ≥ t. We choose the smallest such index t.

Let L′
2 be the left derivative of L2 with respect to the word xt. To complete

the proof the Assertion, we prove the validity of the equation

L2 = (λ + xt)(λ + L′
2).

The right side of the equation is contained in the left side. As regards xt and the
product xtL

′
2, this is obvious. To show that L′

2 is contained in L2, we assume the
contrary and let w be a word in the difference L′

2 − L2. By the definition of L′
2

we have xtw ∈ L2 ⊆ L�. By the definition of L�, w is in L�. It is neither in L1,
nor a product of a word in L1 and a word in L2, because in both cases we would
contradict the fact that L is a code. Hence, w is in L2, and our assumption to
the contrary is wrong, and the right side of the equation is contained in the left
side.

Consider an arbitrary word u ∈ L2. Clearly, xi, i < t, cannot be a prefix
of u. If xj , j > t, is a prefix of u, then xtu is in L�. Clearly xtu is not in L1.

If it would be a product of a word in L1 and one in L2, we would again get a
contradiction with the fact the L is a code. Consequently, xtu ∈ L2 and u ∈ L′

2.

Hence, also the left side of our equation is contained in the right side. �

Theorem 2 can be extended to concern length codes. We omit the detailed
proof of the following theorem. The argument follows the lines on the proof
of Theorem 2. However, the proof concerning the impossibility of products
xjxi, i < j, is more involved for length codes. For instance, consider the length
code

{b = x1, bab = x2, bba = x3.}
The product x3x1 must be considered because its “proper order” x1x2 does not
contradict the length code property.

Theorem 3 If L is a length code then L� has a prime decomposition exactly in
case L is finite.

5 Properties of ordered catenation closure. The operation �∞

We now investigate basic properties of the operation 	. We also consider itera-
tions of this operation. In general they lead to infinite hierarchies towards the
operation 	∞.

We begin with an example showing that sometimes rather surprising prime
decompositions can be found for languages L�. Consider the language Lp =
{aq|q odd prime}. Then L�

p consists of λ and all words ai, where i is a sum of

826 Salomaa A.: Ordered Catenation Closures and Decompositions ...



distinct odd primes. Using the ideas similar to [Han et al. 2006, Han et al. 2007],
we get the prime decomposition

L�
p = (λ+ a3 + a5 + a7 + a8 + a11 + a12 + a14 + a16 + a19)(λ+ a10)(λ+ a10(a20)∗.

Observe also that we have now

(L�
p)

� = L�
p.

The following result about closure properties is easy to obtain.

Theorem 4 There are regular languages L such that L� is not context-free. If
L is context-sensitive (resp. recursively enumerable], so is L�.

Proof. The language ab+ (that can be viewed as a simplification of the lan-
guage Ld considered in Section 3) can be used to prove the first sentence. Clearly,
the language

∞∏

i=1

(λ + abi)

is not context-free. The claim concerning recursively enumerable languages is
obvious, and the one about context-sensitive languages can be established using
standard techniques. �

We already referred to compositions of the operation 	. In general, we define

L�1
= L�, L�i+1

= (L�i

)�, i ≥ 1,

and, furthermore,

L�∞
=

∞⋃

i=1

L�i

.

The following chain of inclusions is obvious:

L ⊆ L� ⊆ L�2 ⊆ . . . ⊆ L�∞ ⊆ L∗.

There are many examples where each inclusion in the chain is strict. For
instance, consider L = {a, b}. Then every inclusion the the chain is strict. We
have, in particular,

L�∞
= L∗ab + a + b + λ.

However, the chain of inclusions yields immediately the following result.

Theorem 5 If L is a star language, then L� = L�∞
= L∗.

827Salomaa A.: Ordered Catenation Closures and Decompositions ...



The converse if this theorem is not valid. We can have

L� = L�∞
= L∗

although L is not a star language. The language ({a, b})∗ − ab constitutes a
simple example.

The language Lp considered above satisfies L�
p = L�∞

p and, consequently,
L�∞

p has a prime decomposition. Clearly, L�
p differs from both Lp and L∗

p.

In the remainder of this section we consider the operations 	 and (	)∞ asso-
ciated with finite languages F . We denote the lexicographic order by <l.

Assume that

F = {x1, x2, . . . , xn}, xi <l xi+1, for 1 ≤ i ≤ n − 1.

We assume that F does not contain the empty word; the latter is always con-
tained in F �. Words w are referred to as proper F-words if we can write w =
y1 . . . yk, k ≥ 2, where each yi belongs to F and, moreover, yi <l yi+1 . . . yk, for
1 ≤ i ≤ k − 1.

Observe that we do not assume any properties of F such as F being a code
or a length code. This means that the same word can have two decompositions
in terms of words of F . For instance, if F consists of the words x1 = a, x2 =
b, x3 = ab, then w = ababab is a proper F -word because it can be written as
w = x3x1x2x3. We can also write w = x3x3x3 but this decomposition does not
satisfy the conditions of a proper F -word.

Theorem 4 shows that regular languages are not closed under the operation
	. Finite languages are obviously closed under this operation but not under the
operation (	)∞. However, we will show that F �∞

is always a very simple regular
language properly contained in F ∗.

Lemma 1 If F is a finite language, then F �∞ consists of all proper F -words
and, in addition, of the words in F and of the empty word.

Proof. Observe that if F contains only one word, then there are no proper
F -words, and F �∞

= F +λ. We assume that F contains at least two (nonempty)
words.

Clearly, the words listed in our lemma belong to F �∞
. An obvious inductive

argument shows that these words exhaust all words in F �∞
. �

We are now ready to characterize the set F �∞
.

Theorem 6 Let F be a finite language. If F contains at least two words, then

F �∞
= F ∗F2 + F1,

where F1 and F2 are effectively constructible finite languages. If F consists of
only one word w, then F �∞

= w + λ.

828 Salomaa A.: Ordered Catenation Closures and Decompositions ...



Proof. The second sentence is obvious. To prove the first sentence, we consider
the language F = {x1, x2, . . . , xn} as above, with n ≥ 2. We define the languages
F1 and F2 as follows.

The language F1 consists of the empty word, the words in F and of all proper
F -words w satisfying w <l xn. The language F2 consists of all proper F -words
w = y1y2 . . . yk satisfying

xn <l w and y2 . . . yk ≤l xn.

Clearly, both languages are finite and effectively constructible. (A word w can
sometimes be written as a proper F -word starting with two different prefixes y1

and y′
1. In such cases we choose the representation satisfying the condition for

F2.)
By Lemma 1, the set F1 exhausts all words w in F �∞

satisfying w ≤l xn.

The remaining words in F �∞
are exhausted by F ∗F2 because all words in this

language are proper F -words. �

For instance, if F = {ab, ba, (ba)2}, then we have F1 = {λ, ab, ba, abba, (ba)2}
and

F �∞
= F ∗((ab + ba)(ba)2 + (ab + ba)abba) + F1.

In this case F �∞
= F �∞

(λ + (ba)3), which shows that F �∞
is not prime. This

result can be generalized. If F is a finite language as above with n ≥ 2, we have

F �∞
= F �∞

(λ + xn−1xn).

If F = {a, ak}, k ≥ 2, then

F �∞
= λ + a + aka∗.

Now F �∞
, although not prime itself, has a prime decomposition. This concerns

all finite languages over one letter. It is shown in [Han et al. 2007] that all regular
languages over one letter possess a prime decomposition. On the other hand, if
F is finite, then F �∞

is regular by Theorem 6.
These results can be summarized as follows.

Theorem 7 Let F be a finite language containing at least two nonempty words.
Then F �∞

is not prime. If, in addition, F is a language over one letter, then
F �∞

has a prime decomposition.

It is an open problem whether F �∞
has always a prime decomposition. By

Theorem 6, this problem is a special case of the more general problem: Does
every regular language possess a prime decomposition?

An interesting problem about the complexity of finite languages is is to com-
pare the state complexities of F and F �. Here the technique of representation

829Salomaa A.: Ordered Catenation Closures and Decompositions ...



forms, [Salomaa 1969], is applicable. Essentially, a representation form is ob-
tained by applying to the regular expression the distributive law to the right as
long as possible, and then always crossing out one of two identical “end parts”.
The state complexity of the language is seen directly from the representation
form. We hope to return to this in another context. Here we give an example.

Consider the language L = {ab, a2b, a3b}. Then the regular expression

L� = λ + ab + a2b + a3b + aba2b + aba3b + a2ba3b + aba2ba3b

gives rise to the representation form

λ + a(b(λ + a2) + a(ab + b(λ + a3b))).

(The end part b+ab+ba3b has been crossed out.)From this we infer immediately,
[Salomaa 1969], that the minimal deterministic automaton for L� has 12 states.
We have included also the automata for L and L∗ in the picture. In each case
the sink and the transitions leading to it have been omitted.

L : L∗ :

L� :

b b

b

a

b a b b a

a a a

a

b a

a a a b

b b

a a a

Figure 1: Variants of catenation closure

830 Salomaa A.: Ordered Catenation Closures and Decompositions ...



6 Open problems

We need the following definition from [Salomaa et al.]. We assume that each of
the languages Li and Ki properly contains the empty word.

Definition 4 A language L has a unique infinitary prime decomposition if L =∏∞
i=1 Li, where each Li is prime and, whenever L =

∏∞
i=1 Ki, where each Ki

is prime, then Li = Ki, for all i. If L is over a one-letter alphabet, it is only
required that the languages Ki are the languages Li in some order.

It is not difficult to see that the infinitary prime decomposition given above
for the language LD is unique. A language can have both a prime decompo-
sition in the sense of Definition 1 and an infinitary prime decomposition. For
instance, as seen above, Σ∗ has a prime decomposition and also an infinitary
prime decomposition

Σ∗ =
∏

w

(λ + w),

where w runs through all nonempty words over Σ. But it is an open problem
whether a language can have a prime decomposition and a unique infinitary one.
As we have seen, LD is not such a language.

Another open problem is: Does every regular language have a prime decom-
position? This is true for regular languages over one letter, [Han et al. 2007].

b

a

b

a

b

b

a

b

b

a

a

b

a

a

a

b

Figure 2: An automaton connected with the open problem

We noticed above that the language K = {ab, aba, bab} is not a length
code. The language K∗ has a prime decomposition into two nonregular fac-
tors, [Salomaa et al.]. Has it also a prime decomposition into regular factors?

831Salomaa A.: Ordered Catenation Closures and Decompositions ...



The finite automaton accepting K∗ gives the impression that this is not the
case, in view of the state constructions in [Mateescu et al. 2002]. But we have
no conclusive proof. Again, we have omitted transitions to the garbage state
from the picture. Observe that the automaton in the picture is not minimal:
we have expanded the final states for ab and aba into two equivalent copies, to
illustrate possibilities for decompositions.

References

[Avgustinovich and Frid 2005] Avgustinovich, S.V. and Frid, A., A unique decomposi-
tion theorem for factorial languages. Internat. J. Alg. Comp. 15 (2005) 149–160.

[Czyzowicz et al. 2003] Czyzowicz, J., Fraczak, W., Pelc., A. and Rytter, W., Linear-
time prime decompositions of regular prefix codes. Internat. J. Found. Comp. Sci.
14 (2003) 1019–1031.

[Frid 2007] Frid, A., Commutation in binary factorial languages. Proc. DLT’2007,
Springer LNCS 4588 (2007) 193–204.

[Han et al. 2007] Han, Y.-S., Salomaa, A., Salomaa, K., Wood, D. and Yu, S., Prime
decompositions of regular languages. Theor. Comp. Sci. 376 (2007) 60–69.

[Han et al. 2006] Han, Y.-S., Salomaa, K. and Wood, D., Prime decompositions of
regular languages. In Ibarra, O. and Dang, Z. (eds.) Developments in Language
Theory 2006, Springer LNCS 4036 (2006) 145–155.

[Han et al.] Han, Y.-S., Wang, Y. and Wood, D., Infix-free regular expressions and
languages. Internat. J. Found. Comp. Sci., to appear.

[Han and Wood 2005] Han, Y.-S. and Wood, D., The generalization of generalized
automata: Expression automata. In Implementation and Application of Automata,
CIAA’04, Springer LNCS 3317 (2005) 156–166.

[Mateescu et al. 2002] Mateescu, A., Salomaa, A. and Yu, S., Factorizations of lan-
guages and commutativity conditions. Acta Cybernetica 15 (2002) 339–351.

[Rozenberg and Salomaa 1997] Rozenberg, G. and Salomaa, A. (eds.), Handbook of
Formal Languages 1–3. Springer-Verlag, Berlin, Heidelberg, New York (1997).

[Salomaa 1969] Salomaa, A., Theory of Automata. Pergamon Press, Oxford, London,
New York (1969).

[Salomaa et al.] Salomaa, A., Salomaa, K. and Yu, S., Variants of codes and indecom-
posable languages. Submitted.

[Salomaa and Yu 2000] Salomaa, A. and Yu, S., On the decomposition of finite lan-
guages. In Developments in Language Theory, DLT’99, World Scientific Publ.Co.
(2000) 22–31.

[Weber and Head 1996] Weber, A. and Head, T., The finest homophonic partition and
related code concepts. IEEE Trans. Inform. Theory IT-42 (1996) 1569–1575.

832 Salomaa A.: Ordered Catenation Closures and Decompositions ...


