
On the Linear Number of Matching Substrings

Yo-Sub Han1

(Department of Computer Science, Yonsei University

Seoul 120-749, Republic of Korea

emmous@cs.yonsei.ac.kr)

Abstract: We study the number of matching substrings in the pattern matching prob-
lem. In general, there can be a quadratic number of matching substrings in the size
of a given text. The linearizing restriction enables to find at most a linear number of
matching substrings. We first explore two well-known linearizing restriction rules, the
longest-match rule and the shortest-match substring search rule, and show that both
rules give the same result when a pattern is an infix-free set even though they have
different semantics. Then, we introduce a new linearizing restriction, the leftmost non-
overlapping match rule that is suitable for find-and-replace operations in text searching,
and propose an efficient algorithm for the new rule when a pattern is described by a
regular expression. We also examine the problem of obtaining the maximal number of
non-overlapping matching substrings.

Key Words: string pattern matching, regular expression searching, linearizing re-
striction, Thompson automata

Category: F.2, F.4.3

1 Introduction

People use regular expressions in many applications such as editors, program-

ming languages and software systems in general. In vi or emacs, we use regular ex-

pressions for searching patterns in an editor and in UNIX command grep, we use

regular expressions for searching patterns in text documents. Regular expressions

are often used for describing a pattern in the pattern matching problem. If a pat-

tern language L consists of a single string, then we have the string matching prob-

lem [Boyer and Moore(1977), Knuth et al.(1977)]. If L is a finite set of strings,

then we have the multiple keyword matching problem [Aho and Corasick(1975)].

If L is a regular language given by a regular expression, then we have the regular-

expression matching problem.

Researchers have investigated various regular-expression matching problems.

Thompson [Thompson(1968)] presented the first regular expression matching

algorithm for his UNIX editor, ed. Aho [Aho(1990)] suggested an algorithm

that determines whether or not a text T has a matching substring with re-

spect to a given regular expression pattern E in O(mn) time using O(m) space,

where m is the size of E and n is the size of T . Later, Crochemore and Han-

cart [Crochemore and Hancart(1997)] extended Aho’s algorithm to find all end

1 The research is supported by the IT R&D program of MKE/IITA 2008-S-024-01.

Journal of Universal Computer Science, vol. 16, no. 5 (2010), 715-728
submitted:22/6/09, accepted: 12/2/10, appeared: 1/3/10 © J.UCS

positions of matching substrings of T with the same runtime and space complex-

ity. Note that the back reference is very useful to describe a pattern and is often

used in practice. For instance, we can use ‘\m’ to denote the mth matching sub-

string in the pattern in emacs or perl. The back reference gives more expressive

power; it can describe a pattern that is not regular [Câmpeanu et al.(2003)] and

its membership problem is NP-complete [Aho(1990)].

We only consider the regular-expression pattern matching problem. It is, in

applications such as grep, sufficient to obtain the end positions of matching sub-

strings to report lines containing the matched substrings. However, we often need

to find both the start positions and the end positions of matching substrings to

replace or delete the matched strings. Myers et al. [Myers et al.(1998)] solved the

problem of identifying start positions and end positions of matching substrings

of T with respect to E in O(mn logn) time using O(m log n) space based on the

four Russian technique [Aho et al.(1974)]. Recently, Han et al. [Han et al.(2007)]

proposed another algorithm that runs in O(mn2) time using O(m) space based

on the algorithm of Crochemore and Hancart [Crochemore and Hancart(1997)].

Given a regular expression pattern E and a text T , there can be at most
n(n+1)

2 matching substrings of T that belong to L(E). For example, E = (a+b)+

and T = abbaabaaba · · · baba, where |T | = n. These matching substrings of-

ten overlap and nest with each other. To avoid this situation, researchers re-

strict the search to find and report only a linear subset of the matching sub-

strings. There are two well-known linearizing restrictions: The longest match

rule, which is a generalization of the leftmost longest match rule suggested by

IEEE POSIX [IEEE(1993)] and the shortest-match substring search rule sug-

gested by Clarke and Cormack [Clarke and Cormack(1997)]. These two rules

have different semantics and, therefore, may identify different matching sub-

strings for same E and T .

In Section 2, we define some basic notions. We revisit the two linearizing

restrictions in the literature and examine the relationship between them in Sec-

tion 3. We observe that the two rules allow overlapping strings, which is not

suitable for some applications, and we propose a new linearizing restriction, the

leftmost non-overlapping match rule in Section 4. The new rule does not allow

overlapping strings and guarantees a linear number of matching substrings. We

demonstrate that the new rule is suitable for find-and-replace operations in text

searching. Then, we apply the rule to the regular-expression matching prob-

lem and develop an algorithm for the problem in Section 5. The algorithm is

based on the Thompson automata and it is easy to implement as similar al-

gorithms [Aho(1990), Crochemore and Hancart(1997)]. We also investigate the

problem of obtaining the maximal number of non-overlapping substrings.

716 Han Y.-S.: On the Linear Number of Matching Substrings

2 Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings

over Σ. A language over Σ is any subset of Σ∗. The character ∅ denotes the

empty language and the character λ denotes the null string. Given two strings x

and y overΣ, we define x to be a prefix of y if there exists z ∈ Σ∗ such that xz = y

and x to be a suffix of y if there exists z ∈ Σ∗ such that zx = y. Furthermore,

we say that x is a substring or an infix of y if there are two strings u and v such

that uxv = y. Given a string x = x1 · · ·xn, |x| is the number of characters in

x and x(i, j) = xixi+1 · · ·xj is the substring of x from position i to position j,

where i ≤ j. Given a set X of strings over Σ, we define X to be infix-free if

no string in X is an infix of any other string in X . Given a string x, let xR be

the reversal of x, in which case XR = {xR | x ∈ X}. We define a (regular)

language L to be infix-free if L is an infix-free set. A regular expression E is

infix-free if L(E) is infix-free. We can define prefix-free and suffix-free regular

expressions and languages in a similar way.

A finite-state automaton (FA) A is specified by a tuple (Q,Σ, δ, s, F), where

Q is a finite set of states, Σ is an input alphabet, δ : Q×Σ → 2Q is a transition

function, s ∈ Q is the start state and F ⊆ Q is a set of final states. If F consists

of a single state f , then we use f instead of {f} for simplicity. Let |Q| be the

number of states in Q and |δ| be the number of transitions in δ. Then, the size

of A is |A| = |Q| + |δ|. A string x over Σ is accepted by A if there is a labeled

path from s to a final state in F that spells out x. Thus, the language L(A) of

an FA A is the set of all strings spelled out by paths from s to a final state in

F . We assume that A has only useful states; that is, each state appears on some

path from the start state to some final state.

A pattern is essentially a language. Given a pattern L and a text T , we

define a string x to be a matching substring of T with respect to L if x is a

substring of T and x ∈ L. The pattern matching problem is to identify all

matching substrings of T with respect to a given pattern L. If L is represented

by a regular expression E, then it is the regular-expression matching problem. If

E is prefix-free, then it is the prefix-free regular-expression matching problem.

For complete background knowledge in automata theory, the reader may refer

to Wood [Wood(1987)].

3 Linearizing Restrictions

In the pattern matching problem for a text T , matching substrings of T often

overlap with or nest with other matching substrings. Moreover, in the worst-case,

there are a quadratic number of matching substrings of T . To avoid these situa-

tions, researchers have designed methods to find a linear subset of the matching

substrings while preserving specified properties for each matching string. We

717Han Y.-S.: On the Linear Number of Matching Substrings

call such methods linearizing restrictions. There are two well-known linearizing

restrictions in the matching problem.

3.1 Longest-match Rule

We first examine the leftmost longest match rule defined in the IEEE POSIX

Standard [IEEE(1993)] as follows:

“The search is performed as if all possible suffixes of the string were

tested for a prefix matching the pattern; the longest suffix containing a

matching prefix is chosen, and the longest possible matching prefix of the

chosen suffix is identified as the matching sequence.”

The rule reports the matching substring whose start position is leftmost and

if there are several matching substrings at the same start position, then the

longest string is identified. Since it is simple and easy to implement, the rule has

been adopted in many tools such as regex, perl and tcl/tk. This rule reports at

most one matching string.

The longest-match rule is a generalization of the leftmost longest match rule

that performs a general search instead of identifying a single match string. The

longest-match rule is defined as follows: Given a text T and a pattern L, we

search for the longest matching prefix with respect to L from position i in T , for

1 ≤ i ≤ n, where n is the size of T . Since there can be at most one longest match-

ing prefix at each position, there are at most n matching substrings. Namely,

the longest-match rule guarantees a linear number of matching substrings in the

size of T and, therefore, is a linearizing restriction.

We consider the longest-match rule for the regular-expression matching prob-

lem. Given a regular expression E and a text T , we can find all start positions

of matching substrings of T in O(mn) time using O(m) space based on the al-

gorithm of Aho [Aho(1990)], where m = |E| and n = |T |. Once we have all

start positions, we search for the longest matching substring starting from each

start position. For each state position, it takes O(mn) time to find the longest

matching substring. Therefore, we can solve the regular-expression matching

problem using the longest-match rule in O(kmn) time and O(m) space, where

k is the number of output matching substrings. Note that we can improve the

running time by using the algorithm of Myers [Myers(1992)] with additional

space.

3.2 Shortest-match Substring Search Rule

Clarke and Cormack [Clarke and Cormack(1997)] proposed a different lineariz-

ing restriction, the shortest-match substring search rule:

718 Han Y.-S.: On the Linear Number of Matching Substrings

“Locate the set of shortest nonnested (but possible overlapping) strings

that each match the pattern.”

We can rephrase the rule as follows: Given a text T and a pattern L, identify

all matching substrings of T whose infixes are not matching substrings; thus,

the resulting set of matching substrings by this rule is an infix-free set. They

demonstrated that the shortest-match substring search rule is appropriate for

searching structured text such as SGML and XML.

Clarke and Cormack [Clarke and Cormack(1997)] showed that there are at

most linear number of matching substrings in the size of T . Furthermore, they

considered the case when a pattern is described by an FA A. Let l be the maxi-

mal number of out-transitions from a state in A, m be the number of states in

A and n be the size of T . They proposed an O(lmn) worst-case running time

algorithm using O(m) space. If we use the Thompson automata, which are of-

ten used in the regular-expression matching problem, then the running time is

O(mn) since l is at most 2 in the Thompson automata [Giammarresi et al.(2004),

Thompson(1968)] Although the rule is simple and straightforward, the idea of

this linearizing restriction is shown to be very useful in various cases.

3.3 Comparison of Two Linearizing Restrictions

Both the longest-match rule and the shortest-match substring search rule en-

sure that the number of matching substrings is linear in the size of T . However,

the two rules have different semantics and, thus, may give different results for

the same text and the same pattern. For example, if T = abc and the pat-

tern L = {a, abc}, then the longest-match rule outputs abc whereas the shortest-

match substring search rule outputs a. Notice that both rules determine what to

report for given an arbitrary text T and an arbitrary pattern L; namely, there

are no restrictions on the pattern and on the text. On the other hand, Han et

al. [Han et al.(2007)] investigated the case that a certain pattern L can have at

most linear number of matching substrings for any input text2. Then, they ob-

served that if L is prefix-free, then there can be at most n matching substrings

of T because of the prefix-freeness of L and designed an efficient algorithm when

L is given by a prefix-free regular expression. Hence, the following observation

is immediate.

Proposition1. If L is prefix-free or suffix-free, then there are at most n match-

ing substrings of T with respect to L, where n is the size of a given text T .

2 We cannot have an input text that guarantees a linear number of matching substrings
in general; for instance, for a pattern Σ+, any input text has more than a linear
number of matching substrings.

719Han Y.-S.: On the Linear Number of Matching Substrings

Proposition 1 demonstrates that we can apply the linearizing restriction for

patterns to obtain a linear number of matching substrings. Moreover, we may

have the same matching substrings for the two different rules. This leads us to

examine the linearizing restriction on patterns that can bridge the semantic dif-

ference between the longest-match rule and the shortest-match substring search

rule.

Proposition2. Given a pattern L and a text T , if L is infix-free, then the

longest-match rule and the shortest-match substring search rule give the same

result. However, the converse does not hold.

Proof. Assume that a set S = {s1, . . . , sk} is the set of matching substrings of

T with respect to L, where k is the number of the matching substrings. Let n

be the size of T . Since L is infix-free, there are at most n matching substrings

and therefore k ≤ n [Han et al.(2007)]. By the definition of matching substrings,

si ∈ S, for 1 ≤ i ≤ k, must belong to L; it implies that S is a subset of L

and, therefore, S is also infix-free. Thus, S is the output of the shortest-match

substring search rule. Note that all strings in S start from different positions in T .

(If any two strings si and sj , for 1 ≤ i �= j ≤ k, start from the same position, then

the shorter string must be a prefix of the longer string—a contradiction.) Since

each string in S starts from a different position, all strings in S are identified

as matching substrings by the longest-match rule. Therefore, S is the output of

both rules.

We demonstrate that the converse does not hold with the following counter

example; T = abccbb and L = {abc, cc, ccc}. Both rules output abc, cc but L is

not infix-free. �	

Theorem 2 shows that we can eliminate the semantic difference between two

rules by choosing an infix-free pattern. Moreover, if we know that a given pat-

tern is infix-free, then an algorithm for one rule can be used for the other rule.

For example, if a given pattern is an infix-free regular language, then we can

use the algorithm of Clarke and Cormack [Clarke and Cormack(1997)] for the

regular-expression matching problem with the longest-match rule. In additions,

we can use an infix-free regular-expression matching algorithm [Han et al.(2007)]

for both linearizing restriction rules; the algorithm reads T only twice using the

Thompson automata.

4 Leftmost Non-overlapping Match Rule

In the pattern matching, two matching substrings of a given text T may over-

lap with each other. Assume that we want to find matching substrings and

delete them from T . Then, only one of two overlapping matching substrings

720 Han Y.-S.: On the Linear Number of Matching Substrings

should be identified. For example, if T = BEFOREIGN and the pattern L =

{BEFORE, FOREIGN}, then both BEFORE and FOREIGN are matching sub-

strings. However, if we delete BEFORE from T , then FOREIGN does not exist

anymore. Similar situations can happen if we do modification or replacement

for matching substrings. Therefore, if two matching substrings overlap, then we

select the string that starts ahead of the other string. Sometimes one matching

substring is nested in the other matching substring. Even in this case, we choose

the string that has an earlier start position. For example, if T = AUTOPIAN

and L = {TO, UTOPIA}, then UTOPIA is identified even though TO is in

L and shorter than UTOPIA since UTOPIA starts ahead of TO in T . These

two examples show that the previous two rules, the longest-match rule and the

shortest-match substring search rule, are not suitable for such find-and-replace

operations in text searching since both rules allow matching substrings to over-

lap. We suggest a new linearizing restriction that is suitable for find-and-replace

operations by identifying only non-overlapping matching substrings.

Definition 3. We define the leftmost non-overlapping match rule as follows:

Given a text T , we identify the leftmost matching substring. Then, we

move to the next position of the matching substring in T and repeat the

identification of the leftmost matching substring in the remaining text

until we cannot find it anymore. For example, if two matching strings

overlap, then we choose the string whose start position is ahead of the

other string’s start position and discard the other string; see (a) in Fig. 1.

If there are more than two matching substrings that start from the same

position, then we choose the shortest string among them; see (b) in

Fig. 1.

B E F O R E I G N E D I T O R

(a) (b)

Figure 1: The figure illustrates the leftmost non-overlapping match rule. (a)

When the pattern is {BEFORE, FOREIGN}; the rule chooses BEFORE. (b)

When the pattern is {EDIT, EDITOR}; the rule chooses EDIT.

Let PM(L, T) denote the set of matching substrings of a given text T with

respect to a given pattern L by the leftmost non-overlapping match rule. Let

|PM(L, T)| be the number of matching strings in PM(L, T). For example, if

721Han Y.-S.: On the Linear Number of Matching Substrings

T = abcbabb and L = {aa, ab, ba, bb}, then PM(L, T) = {(1, 2), (4, 5), (6, 7)}
and |PM(L, T)| = 3. Note that although the substring T (5, 6) = ab is in L, it

is not in PM(L, T) since it overlaps with another matching substring T (4, 5).

From the definition of the leftmost non-overlapping match rule, we obtain the

following results.

Proposition4. The leftmost non-overlapping match rule ensures that the num-

ber of matching substrings of T is at most n, where n is the size of T . Namely,

|PM(L, T)| ≤ n

Proposition5. If two distinct matching pairs (u1, v1) and (u2, v2) ∈ PM(L, T),

then either v1 < u2 or v2 < u1.

Proposition 4 shows that we always have a linear number of matching sub-

strings in the size of a given text by the leftmost non-overlapping match rule.

Note that we do not require L to be a particular type of language such as a regu-

lar language or a context-free language. Similar to the longest-match rule or the

shortest-match substring search rule, the leftmost non-overlapping match rule

can be treated as a general principle for any text search application. Since reg-

ular expressions are often used for the matching problem, we study the regular-

expression matching problem with the leftmost non-overlapping match rule in

Section 5.

5 Regular-expression Matching Problem

We consider the regular-expression matching problem using the leftmost non-

overlapping match rule. Before we present an algorithm for this problem, we

explain an example. Assume that we are given a regular expression E = a(a+b)∗c
for the text in Fig. 2. Then, PM(L(E), T) = {(1, 5), (8, 11), (12, 14)}.

a b a b c b c a b b c a a c b bT

Figure 2: The output of PM(L(E), T), where E = a(a+ b)∗c.

Note that T (1, 5), T (8, 11) and T (12, 14) are not the only matching substrings

of T for L(E). T (3, 5) = abc and T (13, 14) = ac are also in L(E). Nevertheless,

since both T (3, 5) and T (13, 14) overlap other matching substrings of T and

they are not the leftmost matching substrings, the leftmost non-overlapping

722 Han Y.-S.: On the Linear Number of Matching Substrings

ExpressionMatching (A, T)

X = null({s})
if f ∈ X then output λ

for j = 1 to n

X = null(goto(X,wj))

if f ∈ X then output j

rof

Figure 3: A regular-expression matching procedure for finding all the end posi-

tions of matching substrings of T for the pattern L(A), where A = (Q,Σ, δ, s, f)

is a Thompson automaton and T = w1 · · ·wn is a text.

match rule does not identify them. For example, both T (1, 5) and T (3, 5) are in

L(E) but T (1, 5) is selected since T (1, 5) is the leftmost matching substring.

We show that the regular-expression matching problem with the leftmost

non-overlapping match rule can be solved using a double scan of T based on the

algorithm of Crochemore and Hancart [Crochemore and Hancart(1997)].

Proposition6 [Crochemore and Hancart(1997)]. Given a regular expres-

sion E and a text T , we can find all the end positions of matching substrings

of T with respect to L(E) in O(mn) worst-case time with O(m) space using

ExpressionMatching in Fig. 3, where m is the size of E and n is the size of T .

The algorithm ExpressionMatching (EM) in Fig. 3 is a modified version of

Aho’s algorithm [Aho(1990)] that determines whether or not a given text has

a substring accepted by a given FA. EM has two sub-functions: The function

null(X) computes all states in A that can be reached from a state in the set X

of states by null transitions and the goto(X,wj) function gives all states that can

be reached from a state inX by a transition with wj , the current input character.

The null(X) function takes O(m) time to identify all null transition reachable

states and the goto(X,wj) function takes a constant time to compute the new

set. For details of the algorithm, the sub-functions and the time complexity, the

reader may look at the literatures [Aho(1990), Crochemore and Hancart(1997)].

Given a regular expression E and a text T = w1 · · ·wn, we first compute all

start positions of matching substrings of T with respect to E. We prepend Σ∗

to ER; thus, allowing matching to begin at any position in TR. We construct

the Thompson automaton A for Σ∗ER and run ExpressionMatching (A, TR).

Therefore, we can find all start positions of matching substrings in O(mn) time,

where m = |E| and n = |T |. For example, if we run EM on the text in Fig. 2,

then we obtain the following positions as indicated by “↓” in Fig. 4.

723Han Y.-S.: On the Linear Number of Matching Substrings

a b a b c b c a b b c a a c b b

↓ ↓ ↓ ↓ ↓ ⇐=

T

Figure 4: The output of a single scan of TR with respect to Σ∗ER using EM,

where E = a(a+ b)∗c.

Let P = {p1, . . . , pk} be the set of the start positions of matching substrings

that we have computed after the single scan of TR, where k is the number of

start positions of matching substrings and pi < pj for i < j. Then, we read

a character from pi position of T to find the corresponding shortest matching

string that belongs to L(E). Once we find one matching substring T (pi, j), where

pi < j, we move to the next start position in P that is greater than j to avoid

the overlapping. A full algorithm is given in Fig. 5.

ReverseEM (A, T, P)

X = { }, i = 1

for j = pi to n

X = null(goto(X,wj))

if f ∈ X

output (pi, j)

while (pi < j)

i = i + 1

j = pi
fi

rof

Figure 5: A reverse-scan matching procedure for a given Thompson automa-

ton A = (Q,Σ, δ, s, f) for E, a text T = w1 · · ·wn and a set P = {p1, . . . , pk} of

the start positions of matching substrings of T .

For example, if we run ReverseEM for the result in Fig. 4, where P =

{1, 3, 8, 12, 13}, then the algorithm first outputs (1, 5). The algorithm skips 3

in P since it makes an overlapping with the current output (1, 5) and goes to 8

in P to avoid an overlapping. Fig. 6 illustrates this step.

ReverseEM is based on EM in Fig. 3 and the while loop in ReverseEM

speeds up for finding the next matching substring by skipping inappropriate start

724 Han Y.-S.: On the Linear Number of Matching Substrings

a b a b c b c a b b c a a c b b

↓ ↓ ↓ ↓ ↓
T

P

Figure 6: An example of ReverseEM to find corresponding end positions for a

given set P according to the leftmost non-overlapping match rule, where E =

a(a+ b)∗c.

positions and ensures that the algorithm prohibits the overlapping matching

substrings. Note that the while loop is executed at most k times in total even

though it is inside the for loop. Therefore, the worst-case time complexity of

ReverseEM is still O(mn).

Theorem 7. Given a pattern regular expression E and a text T , we can com-

pute the set of matching substrings that conforms the leftmost non-overlapping

match rule in O(mn) worst-case time using O(m) space, where m is the size of

E and n is the size of T .

Next, we show that our algorithm gives the correct matching substrings.

Theorem 8. A pair (u, v) is recognized by ReverseEM if and only if (u, v) ∈
PM(L(E), T), where E is a given pattern regular expression and T is a given

text.

Proof. Assume that we have computed the set P = {p1, . . . , pk} of the start

positions of matching substrings using EM in Fig. 3, where k is the number of

start positions of matching substrings.

=⇒ If (u, v) is recognized by ReverseEM, then T (u, v) ∈ L(E) and u ∈ P

since output in ReverseEM gives (pi, j) and pi ∈ P . It is clear that there

is no matching substring T (u, v′), where v′ < v, from the algorithm; namely,

T (u, v) is the shortest matching substring among all matching substrings that

start from the same position u in T . Now assume that T (u, v) overlaps with

another matching substring T (u′, v′) and T (u, v) is not the leftmost matching

substrings; hence, u′ < u < v′. Then, when ReverseEM recognizes (u′, v′), the
value of j becomes v′. After the output (u′, v′), ReverseEM executes the while

loop to choose the next start position from P that is greater than the current

position j. Since u < j = v′, u cannot be chosen as a start position because of the

while loop. It implies that the algorithm skips the start position u and therefore

(u, v) cannot be recognized by the algorithm—a contradiction; there cannot be

a such matching substring T (u′, v′) in T . Therefore, if (u, v) is recognized by

ReverseEM, then (u, v) ∈ PM(L(E), T).

725Han Y.-S.: On the Linear Number of Matching Substrings

⇐= Since (u, v) ∈ PM(L(E), T), T (u, v) is the shortest matching substring

from position u in T with respect to L and u must be in P . If u is p1 in P , then

it is clear that ReverseEM recognizes (u, v). Assume u = pi, where 1 < i ≤ k.

Now the only possible case that ReverseEM fails to recognize (u, v) is when u

is skipped by the while in the algorithm; namely, u < j for some j. It implies

that there is an output (q′, j), where q′ < u < j and q′ ∈ P . It contradicts that

T (u, v) is the leftmost non-overlapping matching substring of T . Therefore, this

situation is not possible and (u, v) must be recognized by ReverseEM. �	

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 7: Assume that we have 10 matching substrings denoted by arrow lines.

Then, the leftmost non-overlapping match rule gives a single matching substring

out of 10 matching substrings.

Now we consider the maximal number of non-overlapping matching sub-

strings. The leftmost non-overlapping match rule does not guarantee the maxi-

mal number of non-overlapping matching substrings since it finds the leftmost

matching substring. See Fig. 7 for an example. If we want to find the maximal

number of non-overlapping matching substrings, first we identify all shortest

matching substrings from each position of T . Next, we sort these matching sub-

strings according to the end position and select the non-overlapping matching

substrings from left to right in the greedy manner3. For example, in Fig. 7, this

approach gives (3, 7), (9, 11), (13, 14), (15, 17), (18, 20), (22, 22). It is easy

to prove that this approach guarantees the maximal number of non-overlapping

matching substrings. Since we can find the shortest matching substring from

each start position in O(mn) time, we can find all shortest matching substrings

in O(mn2) time. Let k be the number of such matching substrings. Then, we can

find the maximal number of non-overlapping matching substrings in O(k log k)

time using sorting and the greedy selection. Since k ≤ n, we establish the fol-

lowing statement.

Theorem 9. Given a pattern regular expression E and a text T , we can compute

the maximal number of non-overlapping matching substrings of T in O(mn2)

worst-case time using O(m) space.

3 This procedure is similar to the optimal job scheduling algorithm that maximizes
the number of compatible jobs [Kleinberg and Tardos(2005)].

726 Han Y.-S.: On the Linear Number of Matching Substrings

6 Conclusions

We have investigated the linear number of matching substrings in the pattern

matching problem. We have reexamined two linearizing restriction rules: The

longest-match rule that is a generalization of the IEEE POSIX rule [IEEE(1993)]

and the shortest-match substring search rule [Clarke and Cormack(1997)]. We

have shown that the two rules give the same result when the given pattern is an

infix-free language. Note that both rules have different semantics and give differ-

ent outputs in general. Then, we have introduced a new linearizing restriction,

the leftmost non-overlapping match rule, which should be useful for implement-

ing find-and-replace operations in text searching. Furthermore, we have proposed

an O(mn) worst-case running time algorithm for the regular-expression match-

ing problem using the new linearizing rule.

Acknowledgments

We wish to thank the referees for the careful reading of the paper and many valu-

able suggestions. As usual, however, we alone are responsible for any remaining

sins of omission and commission.

References

[Aho(1990)] Aho, A.: “Algorithms for finding patterns in strings”; J. van Leeuwen,
ed., Algorithms and Complexity; volume A of Handbook of Theoretical Computer
Science; 255–300; The MIT Press, Cambridge, MA, 1990.

[Aho and Corasick(1975)] Aho, A., Corasick, M.: “Efficient string matching: An aid to
bibliographic search”; Communications of the ACM; 18 (1975), 333–340.

[Aho et al.(1974)] Aho, A., Hopcroft, J., Ullman, J.: The Design and Analysis of Com-
puter Algorithms; Addison-Wesley Publishing Company, 1974.

[Boyer and Moore(1977)] Boyer, R. S., Moore, J. S.: “A fast string searching algo-
rithm”; Communications of the ACM; 20 (1977), 10, 762–772.

[Câmpeanu et al.(2003)] Câmpeanu, C., Salomaa, K., Yu, S.: “A formal study of prac-
tical regular expressions”; International Journal of Foundations of Computer Sci-
ence; 14 (2003), 6, 1007–1018.

[Clarke and Cormack(1997)] Clarke, C. L. A., Cormack, G. V.: “On the use of regular
expressions for searching text”; ACM Transactions on Programming Languages
and Systems; 19 (1997), 3, 413–426.

[Crochemore and Hancart(1997)] Crochemore, M., Hancart, C.: “Automata for match-
ing patterns”; G. Rozenberg, A. Salomaa, eds., Linear modeling: background and
application; volume 2 of Handbook of Formal Languages; 399–462; Springer-Verlag,
1997.

[Giammarresi et al.(2004)] Giammarresi, D., Ponty, J.-L., Wood, D., Ziadi, D.: “A
characterization of Thompson digraphs”; Discrete Applied Mathematics; 134
(2004), 317–337.

[Han et al.(2007)] Han, Y.-S., Wang, Y., Wood, D.: “Prefix-free regular languages and
pattern matching”; Theoretical Computer Science; 389 (2007), 1-2, 307–317.

[IEEE(1993)] IEEE: IEEE standard for information technology: Portable Operating
System Interface (POSIX) : part 2, shell and utilities; IEEE Computer Society
Press, 1993.

727Han Y.-S.: On the Linear Number of Matching Substrings

[Kleinberg and Tardos(2005)] Kleinberg, J., Tardos, E.: Algorithm Design; Addison-
Wesley Longman Publishing Co., Inc., 2005.

[Knuth et al.(1977)] Knuth, D., Morris, Jr., J., Pratt, V.: “Fast pattern matching in
strings”; SIAM Journal on Computing; 6 (1977), 323–350.

[Myers(1992)] Myers, E. W.: “A four Russians algorithm for regular expression pattern
matching”; Journal of the ACM; 39 (1992), 2, 430–448.

[Myers et al.(1998)] Myers, E. W., Oliva, P., Guimãraes, K. S.: “Reporting exact and
approximate regular expression matches”; Proceedings of CPM’98; Lecture Notes
in Computer Science 1448; 91–103; 1998.

[Thompson(1968)] Thompson, K.: “Regular expression search algorithm”; Communi-
cations of the ACM; 11 (1968), 419–422.

[Wood(1987)] Wood, D.: Theory of Computation; John Wiley & Sons, Inc., New York,
NY, 1987.

728 Han Y.-S.: On the Linear Number of Matching Substrings

