
Evaluating Linear XPath Expressions by

Pattern-Matching Automata

Panu Silvasti
(Helsinki University of Technology, Finland

psilvast@cs.hut.fi)

Seppo Sippu
(University of Helsinki, Finland

sippu@cs.helsinki.fi)

Eljas Soisalon-Soininen
(Helsinki University of Technology, Finland

ess@cs.hut.fi)

Abstract: We consider the problem of efficiently evaluating a large number of XPath
expressions, especially in the case when they define subscriber profiles for filtering of
XML documents. For each document in an XML document stream, the task is to
determine those profiles that match the document. In this article we present a new
general method for filtering with profiles expressed by linear XPath expressions with
child operators (/), descendant operators (//), and wildcards (∗). This new filtering
algorithm is based on a backtracking deterministic finite automaton derived from the
classic Aho–Corasick pattern-matching automaton. This automaton has a size linear in
the sum of the sizes of the XPath filters, and the worst-case time bound of the algorithm
is much less than the time bound of the simulation of linear-size nondeterministic
automata.
Our new algorithm has a predecessor that can handle child and descendant operators
but not wildcards, and has been shown to be extremely efficient when a document-
type definition (DTD) has been used to prune out all the wildcards and most of the
descendant operators. But in some cases, such as when the DTD is highly recursive,
it may not be possible to prune out all wildcards without producing a too large set of
filters. Then it is important to have the full generality of an evaluation algorithm, as
presented in this article, that can also handle wildcards.

Key Words: filtering of streams of XML documents, linear XPath expressions

Category: H.3.3

1 Introduction

In a publish-subscribe system based on XML filtering, subscribers usually specify
their profiles by filters written in the XPath language. The system processes a
stream of published XML documents and delivers to subscribers those documents
that match the corresponding profiles. The number of subscribers can be large,
thousands or even millions; thus the scalability of the filtering system is critical.

The primary problem addressed in this article is the filtering problem for
XML streams: given a set of XPath expressions and a stream of XML documents,

Journal of Universal Computer Science, vol. 16, no. 5 (2010), 833-851
submitted: 27/6/09, accepted: 12/2/10, appeared: 1/3/10 © J.UCS

determine for each document in the stream those expressions that match the
document. More specifically, we study the filtering problem for linear XPath
expressions, that is, XPath expressions that do not have branches in their parse
tree. Linear XPath expressions without predicates are defined by the following
grammar:

path → / step | // step | path path,
step → label | ∗,

where label denotes an XML-element label.
Several approaches to XML filtering with XPath-defined profiles use a fi-

nite automaton as a basis of the filtering algorithm [Altinel and Franklin 2000,
Diao et al. 2003, Green et al. 2004, Gupta and Suciu 2003, Onizuka 2003]. Diao
et al. [2003] report an evaluation method called YFilter that evaluates nonde-
terministic finite automata (NFAs) constructed from the filters. YFilter uses a
single NFA that combines the effect of the individual NFAs and achieves con-
siderable improvements in performance by path sharing. In other words, YFilter
merges states that correspond to common prefixes in different query paths, while
still retaining the linear size of the NFA with respect to the filter descriptions.

Contrary to YFilter, which uses an NFA of a size linear in the total size of
the filters, the algorithm of Green et al. [2004] is based on a deterministic finite
automaton (DFA). The state explosion of the DFA is avoided by constructing
the DFA lazily, as needed, while input documents are being filtered: if in pro-
cessing the stream of XML documents, no next state is defined on the current
input symbol, the corresponding new state will be computed and the process is
continued at this new state. While exponential in the worst case, this approach
works well in many cases, when the incoming XML documents obey a schema
or DTD (see e.g. Kilpeläinen and Wood [2001]) that is non-recursive or con-
tains only simple cycles (a cycle is simple if its nodes are not contained in other
cycles).

The filtering methods outlined above are general in the sense that input
documents do not need to obey a specific schema or DTD, but are only required
to conform with the XML syntax. If it is known that the documents to be filtered
are produced according to a DTD, a natural question is to ask whether or not
the filtering process can be speeded up by using this knowledge. This question
has been answered positively both in the case of YFilter [Silvasti et al. 2009a]
and in the case of the lazy DFA construction [Silvasti et al. 2009b].

The optimization method of Silvasti et al. [2009a], called filter pruning, takes
as input a DTD and a set of linear XPath filters and produces a set of “pruned”
linear XPath filters. In the pruned filters, wildcards (∗) and descendant operators
(//) are replaced (or pruned) by single symbols and symbol strings, respectively,
that are allowed in place of “∗” and “//”.

834 Silvasti P., Sippu S., Soisalon-Soininen E.: Evaluating Linear Xpath ...

In this article we present yet another automaton-based general algorithm for
filtering with profiles expressed by linear XPath expressions. This new filtering
algorithm is based on a backtracking deterministic finite automaton derived from
the classic Aho–Corasick pattern-matching automaton [Aho and Corasick 1975];
it is called the pattern-matching-automaton-based (or PMA-based) filtering al-
gorithm. The size of the PMA is linear in the sum of the sizes of the filters, and
the worst-case time bound of the algorithm is much less than the time needed
for simulating nondeterministic automata, which is the worst-case time bound of
YFilter [Diao et al. 2003]. Thus, when the worst-case time bound is concerned,
the PMA-based filtering is superior both to YFilter and to the lazy DFA algo-
rithm [Green et al. 2004]; the latter has the worst-case space and time bound
Ω(2k), where k denotes the number of filters.

Our new algorithm and its predecessor [Silvasti et al. 2009a] work in the same
way if only child and descendant operators are present. This implies that our
new PMA-based filtering algorithm will be very efficient, in the same way as its
predecessor [Silvasti et al. 2009a], when wildcards and descendant operators can
be pruned out.

This article is organized as follows. In Section 2 we present the basics of
automata-based filtering, and prove the optimal time complexity of the PMA-
based filtering algorithm, when only the child operators in addition to a leading
descendant operator are allowed. Section 3 is devoted to the analysis of a new
algorithm of multiple-pattern matching when wildcards are allowed in the pat-
terns. Algorithms are presented both for pattern matching of linear text and for
filtering of XML documents. In Section 4 we present and analyze our algorithm
that, using the results of the previous sections, solves the XML filtering problem
for full linear XPath expressions (without predicates).

2 Automaton-Based Filtering

A linear XPath expression (without predicates) is defined as a sequence of XML-
element labels or wildcards separated by child (/) or descendant (//) operators;
in other words a sequence of the form

S = op1 l1 op2 . . . ln−1 opn ln, (1)

where each opi is “/” or “//”, and li is an XML-element label or a wildcard “∗”.
A filter is a union of sequences of form (1).

The filtering problem can now be expressed as a language recognition problem
over alphabet Σ, the set of XML element labels that possibly occur in the input
documents. Let F = {f1, . . . , fk} be a set of filters fi each of which is a union of
sequences of form (1). Moreover, let f̂i denote the union of languages Ŝ obtained
from sequences S of the form (1) as follows: (i) substitute Σ∗ for occurrences of

835Silvasti P., Sippu S., Soisalon-Soininen E.: Evaluating Linear Xpath ...

“//”; (ii) substitute Σ for occurrences of “∗”; (iii) interprete occurrences of “/”
as string-catenation operators (and hence omit); (iv) finally append Σ∗ at the
end of Ŝ.

Then construct a DFA D that accepts the language F̂ = f̂1 ∪ . . . ∪ f̂k in
such a way that, for each w in F̂ , D also reports all those filters fi for which
the language f̂i contains w. To construct such a DFA is possible by simply
marking final state q by index i whenever q was set as a final state because of
the acceptance of a string in f̂i. However, such a DFA containing different types
of final states becomes easily exponential in size because in the worst case there
is a final state for each different subset of {f̂1, . . . , f̂k}.

When processing an XML stream the input document will first be parsed by
a SAX parser, which produces a parse tree from the document. In filtering, each
path from the root to a leaf in this parse tree is fed to the DFA D, and at the end
of the path the accepted filters are reported. It is not necessary to completely
construct the parse trees, but we can perform the evaluation in conjunction of
parsing. A stack of states need to be maintained in order to backtrack correctly
when several paths have the same prefix.

SAX events are processed as follows. (See e.g. the article by Green et al. [2004]
for a more detailed description.) When the beginning of an XML element is
encountered, the current state q will be pushed onto the stack and the new
current state will be the one accessed from q on the element label. When the
end of an XML element is encountered, the state on top of the stack is popped
and set as the new current state.

As an example, consider the set of three filters f1 = {//a1}, f2 = {//a2}, f3 =
{//a3}. When considered as a language recognition problem, filtering with re-
spect to these three filters can be done by a DFA that accepts the language
L = L1 ∪ L2 ∪ L3, where Li denotes the language Σ∗aiΣ

∗, and decides by final
states which of the three filters are matched. The minimized DFA is shown in
Fig. 1.

At final state i, 1 ≤ i ≤ 3, only language Li is recognized, at final states 4, 5
and 6, the sets {L1, L2}, {L1, L3}, and {L2, L3}, respectively, and at final state
7, the set {L1, L2, L3}. Note that the DFA of Fig. 1 cannot be further minimized,
because the final states all accept different subsets of {L1, L2, L3}.

In general, Ω(2k) states are included in the minimal DFA that solves the
filtering problem for k (different) keyword sets, that is, each filter is a union
of sequences of the form //a1/a2/ . . . /ap, where a1a2 . . . ap is called a keyword.
When filters are composed of keyword sets, the filtering problem can be solved
efficiently by using the pattern-matching automaton by Aho and Corasick [1975].

The use of this automaton is based on the acceptance by an output function:
If in a state q filter fi is recognized (that is, string f̂i is accepted at q), then
output(q) is defined to contain i. An array result, indexed by filter numbers, is

836 Silvasti P., Sippu S., Soisalon-Soininen E.: Evaluating Linear Xpath ...

0

1 4

2 5 7

3 6

other

other other

other other any

other other

a1

a3

a1

a2

a3

a2

a3

a2

a3

a2

a1

a1

Figure 1: Minimal DFA that solves the filtering problem for filters f1 =
{//a1}, f2 = {//a2}, f3 = {//a3}.

used to store information about matched keywords in the filters. If the pattern-
matching automaton has recognized a keyword in filter fi, then result[i] is set
to 1 (initially result[i] = 0 for all filters fi). When the input document has been
processed, the result of the filtering can be read from the array result.

The basic version of the pattern-matching automaton (PMA) as defined by
Aho and Corasick [1975] is composed of the goto and failure functions that
dictate the next-state transitions when processing the input. For each prefix y

of some keyword, the PMA has a unique state, denoted state(y), different from
all state(y′), where y′ �= y. The state state(ε), where ε is the empty string, is the
initial state of the PMA. Clearly, the number of states in the PMA is at most
||F || + 1, where ||F || denotes the size of the filter set F (composed of keyword
sets), that is, the sum of the lengths of all keywords in F .

The goto function of the PMA is defined by the equation goto(state(y), a) =
state(ya), where ya is a prefix of some keyword and a is an element in Σ. The fail
function of the PMA is defined by the equation fail(state(uv)) = state(v), where
uv is a prefix of some keyword and v is the longest proper suffix of uv such that
v is also a prefix of some keyword. For nonnegative integer k, we denote by failk

the fail function applied k times: fail0(q) = q, and failk+1(q) = fail(failk(q)).
For any state q we denote by string(q) the unique string y with state(y) = q.

In our filtering application, the output function of the PMA is defined by setting
for each state q:

837Silvasti P., Sippu S., Soisalon-Soininen E.: Evaluating Linear Xpath ...

other

b

a1
b

b

an

{n, n + 1, . . . , 2n}

{1, n + 1, . . . , 2n}

{n + 1, . . . , 2n}

.

.

.

.

.

.

Figure 2: Pattern-matching automaton for the filters f1 = //a1/b, . . . , fn =
//an/b, fn+1 = //b, . . . , f2n = //b.

output(q) = {i | a suffix of string(q) is a keyword in filter fi}. (2)

A straightforward explicit implementation of the output function would make
its size quadratic. Consider for example the filters

f1 = //a1/b, . . . , fn = //an/b, fn+1 = //b, . . . , f2n = //b.

The PMA for this filter set is depicted in Fig. 2. The size of the filter set is 3n,
but the size of the output function is n2 + 2n + 1.

To circumvent this undesirable size growth we store the output sets as linked
lists in the following way. First we define

direct output(q) = {i | string(q) ∈ fi}, (3)

and a way to reach all nonempty direct output sets without passing also the
empty ones: The function output fail is defined by setting for state q:

output fail(q) = failk(q),

if k is the greatest integer less than or equal to the length of string(q) such that
direct output(failm(q)) is empty for all m = 1, . . . , k − 1. We have:

Lemma 1.

output(q) = ∪{direct output(q′) | q′ ∈ output fail∗(q)},
and the representation of the output function as linked lists of direct output sets
is of size O(||F ||).

838 Silvasti P., Sippu S., Soisalon-Soininen E.: Evaluating Linear Xpath ...

Proof. A straightforward induction on the length of the path from state q

consisting of the output fail arcs. The representation of the output function as
linked lists is obtained by linking the direct output sets together in the prescribed
order. �

The PMA as constructed above can be used as a filtering machine exactly
as a DFA. Because of the fail arcs (but only at most one per state), it must be
prescribed that fail arcs are applied only when goto arcs cannot be applied. For
input of size n at most 2n transitions can be performed.

When processing a stream of XML documents, the current state will be
pushed onto the stack if a start-element tag is encountered and a goto arc on the
element can be applied but not when a fail arc is used. When an end-element
tag is encountered, it is discarded, the next element is scanned, and the state on
top of the stack is taken as the new current state.

Theorem 1. Let f1, f2, . . . , fk be filters each of which is composed of a set
of keywords. Then the filtering problem for filters f1, f2, . . . , fk can be solved in
time O(n + m), where n is the length of the input document (counted as the
number of XML elements) and m is the sum of the sizes of the filters.

Proof. We construct the PMA from the keywords in F = f1 ∪ . . . ∪ fk as
described above. If a keyword of fi leads from the initial state to state q, the
set direct output(q) is set to include i. By the results of Aho and Corasick [1975]
and by Lemma 1, this construction takes time linear in the size of F .

Whenever, during the processing of an input, state q with a nonempty output
set is entered, result[i] ← 1 for all i ∈ output(q), after which output(q) is set to
empty. Once processed output(q) can be set to empty, because in the filtering
application we do not want to determine all occurrences of keywords but only
the first. Setting output(q) to empty is necessary, because otherwise we would
not obtain the desired time bound O(n+m) but we should add a term denoting
the number of keyword occurrences.

When the process has finished, the question of whether or not the input x

matches with filter fi (that is, x ∈ f̂i) is answered by checking result[i]: x ∈ f̂i if
and only if result[i] = 1. �

As an example, Fig. 3 (a) shows the PMA obtained from the keywords of
the filters f1 = //a1, f2 = //a2, f3 = //a3. This PMA is augmented with the
output function output(q) that contains i if ai has been read at q.

The failure transitions of the PMA can be eliminated by using the next-move
function of a DFA in place of the goto and fail functions:

next-move(q, a) = goto(failk(q), a), (4)

where k is the least nonnegative integer for which goto(failk(q), a) is defined,
that is, the state failk(q) has a goto transition on element a.

839Silvasti P., Sippu S., Soisalon-Soininen E.: Evaluating Linear Xpath ...

0

1

2

3

other

a1

a2

a3

{1}

{2}

{3}

(a)

0

1

other

2

other

3

other

other

a1

a2

a3

{1}

{2}

{3}

a2a1

a3a2

a3 a1

(b)

Figure 3: The PMA (a) and the corresponding DFA (b) that solve the filtering
problem for f1 = //a1, f2 = //a2, and f3 = //a3, when filters are matched using
the output function: output(1) = {1}, output(2) = {2}, and output(3) = {3}.

Fig. 3 (b) shows the DFA obtained by eliminating failure transitions from
the PMA of Fig. 3 (a). Even though the DFA has exactly as many states as the
PMA, the number of its (next-move) transitions is quadratic in the size of the
keyword set.

If filters are composed of sequences of several keywords, so that they may
also contain non-leading descendant operators “//”, it is still possible to base
the filtering algorithm on matching of keywords. For filter i that consists of a
sequence of l keywords, a possible match has been found if j ∈ result[i] for all
j = 1, . . . , l. Such a possible match is not always an exact match, because the
matched keywords may not appear on the same path, nor in the specified order.

To find out which possible matches of multi-keyword filters are true matches,
the input document must be filtered through some more general filtering al-
gorithm, as through the one that will be presented in the following sections.

840 Silvasti P., Sippu S., Soisalon-Soininen E.: Evaluating Linear Xpath ...

Another problem to be solved is that the multi-pattern matching algorithm of
Aho and Corasick [1975] cannot handle keywords with wildcards. In the next
section, we will present a new algorithm for multiple-pattern string matching
when wildcards can appear in the patterns.

3 Multiple-Pattern Matching with Wildcards

It is typical that XPath expressions describing XML filters contain wildcards
(∗). As our intention is to derive a backtracking version of the multiple-pattern
matching algorithm of Aho and Corasick [1975] for XML filtering, we first need
to extend the basic algorithm to handle patterns with wildcards.

In Section 2 we considered the problem of matching filters that are keyword
sets, but now we allow the filters to be composed of sets of sequences, called
patterns (with wildcards), of the form

∗n1w1 ∗n2 w2 . . . ∗nk wk, (5)

where w1, w2, . . . , wk are keywords in Σ+, k ≥ 1, n1 is a nonnegative integer,
and n2, . . . , nk are positive integers.

In our algorithms, the length mi of pattern Pi is denoted by length(i), and
the number of keywords of pattern Pi is denoted by #keywords(i). For pattern
Pi and the kth keyword wk in Pi, length(i, k) gives the length of the keyword,
and distance(i, k) gives the distance of the keyword from the beginning of Pi,
that is,

distance(i, k) =
k−1∑

j=1

length(i, j) +
k∑

j=1

nj ,

where nj is the length of the wildcard string preceding the jth keyword in Pi.
For example, for patterns

P1 = ∗ab∗∗∗c,
P2 = abc∗∗bab∗b∗b

we have:

length(1, 1) = 2, distance(1, 1) = 1, length(1, 2) = 1, distance(1, 2) = 6,
length(2, 1) = 3, distance(2, 1) = 0, length(2, 2) = 3, distance(2, 2) = 5,
length(2, 3) = 1, distance(2, 3) = 9, length(2, 4) = 1, distance(2, 4) = 11,
length(1) = 7, length(2) = 12.

For solving the multiple-pattern matching problem with wildcards we con-
struct the PMA as defined in Section 2 from the set of all keywords that appear in
the patterns. This idea was previously used to solve the single-pattern matching
problem [Pinter 1985] (also see the articles by Rahman et al. [2006] and Rahman

841Silvasti P., Sippu S., Soisalon-Soininen E.: Evaluating Linear Xpath ...

and Iliopoulos [2007]). However, the algorithms presented in these articles can-
not be directly extended to yield an efficient solution to the multiple-patterns
matching problem.

The output function of the PMA is now defined as:

output(q) = {(i, k) | a suffix of string(q) is the kth keyword of pattern Pi}.

A pair (i, k) in output(q) is called an output tuple for state q; the tuple signals
the recognition at state q of the kth keyword of pattern Pi; this keyword is a
suffix of string(q).

The basic idea of the algorithm is to collect, for each pattern Pi having more
than one keyword, partial matches of Pi that represent matches of maximal
prefixes of Pi found thus far. When a match up to and including the last keyword
of Pi has been found, we have a full match of the pattern.

Partial matches of pattern Pi are stored in a set partial matches(i) that
contains pairs of the form (p, k) meaning that, starting at element position p in
the input text, an occurrence of the prefix of Pi up to and including the kth
keyword has been found. The algorithm simulates the PMA, and at state q,
for all output tuples (i, k) with #keywords(i) > 1, the set partial matches(i) is
updated:

(i) If k = 1, a new possible start of Pi is recorded by inserting (p, 1) into
partial matches(i), where p is the element position of the start of the wildcard
string preceding the keyword string(q) recognized at state q, in other words,

p = element count− length(i, 1) − distance(i, 1),

where element count gives the number of elements scanned thus far.
(ii) If k > 1 and partial matches(i) contains (p, k − 1) with

p = element count − length(i, k) − distance(i, k),

then this partial match (p, k − 1) obtained thus far can be extended to also
include the kth keyword. This is done by replacing (p, k − 1) by (p, k) in the
set partial matches(i) (when k < #keywords(i)) or by deleting (p, k − 1) (when
k = #keywords(i))).

When k reaches #keywords(i), then, instead of recording a partial match
(p, k) in partial matches(i), we record a full match of pattern Pi by inserting p

into the set matches(i).
In order to maintain efficiently the sets partial matches(i), we store them as

balanced binary search trees. In each set partial matches(i) there is at most one
pair (p, k) for any given p, and thus we may use p as a unique search key for the
structure. Moreover, we will also keep a separate finger always pointing to the
smallest element of the structure.

842 Silvasti P., Sippu S., Soisalon-Soininen E.: Evaluating Linear Xpath ...

When searching the structure in order to replace pair (p, k − 1) by pair
(p, k) we also check the element (p′, k′) pointed to by the finger. If here p′ <

element count − length(i), we know that (p′, k′) can never be extended to a full
match and can therefore be deleted. The deletion is repeated until the finger
points to an element (p′, k′), where p′ ≥ element count− length(i). In this way we
can keep the sets partial matches(i) small, namely, containing at most length(i)
elements.

The operation cycle of the PMA is presented as Algorithm 1, and the pro-
cedure check output that maintains the sets partial matches(i) is presented as
Algorithm 2.

Theorem 2. Let S = {P1, . . . , Pr} be a set of patterns with wildcards and
let T be a linear input text of length n. The set of all occurrences of the patterns
of S in the text T can be computed in time

O(n + m +
r∑

i=1

αi log |Pi|),

where m is the sum of the lengths |Pi| of the patterns Pi in S, αi denotes the
number of occurrences of keywords of Pi in T , and the term O(m) represents the
time spent on preprocessing the patterns. Here the occurrences of pattern Pi are
represented by element positions p, and the occurrences of the kth keyword of Pi

by pairs (p, k), where p is the position in T of the first element of the occurrence.
The occurrences of the same patterns in any new text T ′ of length n′ can be

found in time

O(n′ +
r∑

i=1

α′
i log |Pi|),

where α′
i denotes the number of occurrences of keywords of Pi in T ′.

Proof. We construct the PMA for the set of all keywords that appear in the
patterns in S as described above. By construction, this PMA is of size O(m) and
can be constructed in time O(m).

We use Algorithm 1 to simulate the PMA. At each state q all output tuples
(i, k) such that the kth keyword of Pi is a suffix of string(q) will be checked for
partial matches: if the set partial matches(i) contains (p, k − 1) meaning that
the prefix of Pi including the (k − 1)th keyword has been found, (p, k − 1) is
replaced by (p, k). Now if a whole match of Pi is obtained, p is inserted into the
set matches(i).

Each set partial matches(i) can contain at most |Pi| elements, because for
each p there can only be one pair (p, k) and because all elements (p′, k′) with
p′ < element count − |Pi| will be deleted in conjunction with possible updating
of the set. When partial matches(i) is organized as a balanced binary search tree
indexed by unique key p, we conclude the bound O(αi log |Pi|), where αi denotes

843Silvasti P., Sippu S., Soisalon-Soininen E.: Evaluating Linear Xpath ...

the number of occurrences of keywords of Pi, for the total number of checks in
set partial matches(i).

Altogether we conclude the claimed time bound O(n+m+
∑r

i=1 αi log |Pi|).
The time bound O(n′ +

∑r
i=1 α′

i log |Pi|) for any new text T ′ comes from the
fact that the O(m) time for constructing the PMA is not needed. �

Algorithm 1 Operating cycle of the PMA for matching linear text with sets of
patterns containing wildcards.

for all patterns Pi do
matches(i) ← empty
partial matches(i) ← empty

end for
state ← initial state
element count ← 0
scan next(element)
while element was found do

element count ← element count + 1
while goto(state, element) = fail do

state ← fail(state)
end while
state ← goto(state, element)
check output(state)
scan next(element)

end while

Assume then that instead of linear input text we are processing a stream of
XML documents, and that the filters are composed of patterns with wildcards.
That is, each filter fi is of the form (5) with a leading descendant operator “//”.
We can use the construction of Theorem 2 yielding a PMA for all keywords
appearing in the filters with an output function defined by

output(q) = {(i, k) | a suffix of string(q) is the kth keyword of filter fi}.
In this case backtracking is not as simple as in the case when filters do not

contain wildcards (Theorem 1). When upon encountering a start-element tag of
an element a goto arc is applied on the element, the current state will be pushed
onto the stack, but also changes in the sets of partial matches computed at that
state must be logged onto the stack. More specifically, depending on the state-
ment used to change partial matches(i), a tuple containing enough information
for performing the reversal of the change will be pushed onto the stack.

Statements of the forms “insert (p, 1) into partial matches(i)” and “delete
(p, k) from partial matches(i)” cause tuples inserted〈i, p, 1〉 and deleted〈i, p, k〉,

844 Silvasti P., Sippu S., Soisalon-Soininen E.: Evaluating Linear Xpath ...

Algorithm 2 Procedure check output(state) for matching linear text with sets
of patterns containing wildcards.

for all (i, k) ∈ output(state) do
p ← element count − length(i, k) − distance(i, k)
if k = 1 = #keywords(i) then

if p ≥ 0 then
insert p into matches(i)

end if
else if k = 1 < #keywords(i) then

if p ≥ 0 then
insert (p, 1) into partial matches(i)

end if
else if k = #keywords(i) and (p, k − 1) ∈ partial matches(i) then

delete (p, k − 1) from partial matches(i)
insert p into matches(i)

else if k < #keywords(i) and (p, k − 1) ∈ partial matches(i) then
replace (p, k − 1) by (p, k) in partial matches(i)

end if
for all (p′, k′) ∈ partial matches(i) with p′ < element count − length(i) do

delete (p′, k′) from partial matches(i)
end for

end for

respectively, to be logged, and a statement of the form “replace (p, k − 1) by
(p, k) in partial matches(i)” causes tuple replaced〈i, p, k〉 to be logged.

Then when an end-element tag is encountered the topmost state in the
stack will be the new state, but before continuing processing at that state
the reversal operations based on the logged tuples above the topmost state
must be performed. For tuple inserted〈i, p, 1〉, the statement “delete (p, 1) from
partial matches(i)” is performed. For tuple deleted〈i, p, k〉, the statement “in-
sert (p, k) into partial matches(i)” is performed. For tuple replaced〈i, p, k〉, the
statement “replace (p, k) by (p, k − 1) in partial matches(i)” is performed.

There is still one important point that must be taken into account when
processing paths in a tree instead of linear text. This is that we must also cor-
rectly update the variable element count such that its value is the number of
elements in the current path. But this is accomplished by simply decrementing
the counter by one whenever the current state is obtained from the stack.

It is clear that all reversal operations caused by backtracking can be per-
formed as efficiently as the original operations, and the number of reversal oper-
ations cannot be greater than the number of original operations. Thus we have:

845Silvasti P., Sippu S., Soisalon-Soininen E.: Evaluating Linear Xpath ...

Theorem 3. Let f1, f2, . . . , fr be filters each of which is of the form //Pi,
where Pi is a pattern composed of XML element names, child operators (/),
and wildcards (∗). Then the XML filtering problem for document T of length
n (counted as the number of XML elements) can be solved in time O(n + m +∑r

i=1 αi log |Pi|), where m is the sum of the lengths of the filters and αi denotes
the number of occurrences of keywords of Pi in T .

Proof. The claim follows from the result stated in Theorem 2 when we observe
that each reversal operation has the same cost as the operation to be reversed.
Moreover, altogether the number of reversals cannot be more than

∑r
i=1 αi,

because each of them either inserts or deletes a keyword occurrence, and never
more than once. �

4 Matching linear XPath expressions

In this section we are finally ready to present our main result which states how
multiple-pattern matching for streams of XML documents can be done efficiently
when for the filters the full generality of linear XPath filters (without predicates)
are allowed. More specifically, we consider matching with linear XPath filters that
contain descendant operators (//) also in non-leading positions, that is, filters
of the form

fi = //Pi,1//Pi,2// . . . //Pi,mi , (6)

where each subsequence Pi,j is a pattern composed of XML element names, child
operators (/), and wildcards (∗). The special case in which the filter begins with
“/” instead of “//” is handled by requiring that the SAX parser surrounds each
document by tags 〈#〉 and 〈/#〉, where # is new element name. Every filter of
the form /g is transformed into //#/g, thus being of the form (6).

We call the subsequences Pi,j segments of the filter. Each segment is parti-
tioned into one or more keywords as are the patterns considered in the previous
section.

For example, the filter

//a/b/∗/∗/c//∗/∗/d

has two segments, namely a/b/∗/∗/c and ∗/∗/d, where the keywords of the first
segment are ab and c, and the only keyword of the second segment is d.

The number of segments of filter i is given by #segments(i), and the number
of keywords of segment j of filter i is given by #keywords(i, j). For filter number
i, segment number j and keyword number k, length(i, j, k) gives the length of
the kth keyword of segment j of filter i, distance(i, j, k) gives the distance of the
kth keyword from the beginning of the segment, and length(i, j) gives the length
of segment j of filter i.

If the number of the above example filter is i, we have:

846 Silvasti P., Sippu S., Soisalon-Soininen E.: Evaluating Linear Xpath ...

length(i, 1, 1) = 2, distance(i, 1, 1) = 0,
length(i, 1, 2) = 1, distance(i, 1, 2) = 4,
length(i, 2, 1) = 1, distance(i, 2, 1) = 2,
length(i, 1) = 5, length(i, 2) = 3.

As in the previous sections, the PMA is constructed from the set of all keywords
that appear in the filters.

Output tuples in the output sets of states now take the form (i, j, k), where
i is a filter number, j is a number of a segment of filter i, and k is a number of
a keyword of segment j.

Partial matches of segment j of filter i are recorded in set partial matches(i, j)
containing pairs (p, k), where p is an element position in the input document
denoting the possible start of a match of segment j of filter i, and k is the
number of the keyword of segment j up to which the match has been found. As
with the sets partial matches(i) in the previous section, there is at most one pair
(p, k) in partial matches(i, j) for any given element position p. Thus we can store
partial matches(i, j) in the same way as partial matches(i) as balanced binary
trees with key p.

A partial match (p, k) in partial matches(i, j) is a full match of segment
j of filter i if k = #keywords(i, j). The sets partial matches(i, j) are actually
maintained in the same way as the sets partial matches(i) of the previous section,
the only difference being that a new partial match of segment j > 1 at position p

can only be started if a match of segment j−1 has been found at some previous
position p′, and far enough from p. In other words, p′ ≤ p − length(i, j − 1).
Because of this condition, a full match of segment j actually signals full matches
of all segments of the entire filter from segment 1 upto and including segment j.

Full matches of segment j of filter i are collected into the set matches(i, j);
a match of an entire filter i has been found when a full match of the last seg-
ment of the filter has been found, that is, when the set matches(i, j) with j =
#segments(i) becomes nonempty. It is easy to see that sets partial matches(i, j)
can be maintained in time O(αi,j log |Pi,j |) time, where αi,j denotes the num-
ber of occurrences of keywords of Pi,j in the input XML document being fil-
tered (cf. Section 3). Additionally, we need be able to test whether or not
p′ ≤ p − length(i, j − 1), for some p′ in matches(i, j − 1). This can be simply
accomplished by maintaining the sets matches(i, j) as balanced binary trees,
and checking the condition for the smallest element in the tree. The total time
needed for each matches(i, j) is O(βi,j log βi,j), where βi,j denotes the number
of occurrences of Pi,1//Pi,2// . . . //Pi,j .

We have:

Theorem 4. Let f1, f2, . . . , fr be filters each of which is of the form

fi = //Pi,1//Pi,2// . . . //Pi,mi ,

847Silvasti P., Sippu S., Soisalon-Soininen E.: Evaluating Linear Xpath ...

Algorithm 3 Operating cycle of a backtracking PMA for matching XML doc-
uments with filters containing descendant operators and wildcards.

for all filters i and their segments j do
matches(i, j) ← empty
partial matches(i, j) ← empty

end for
state ← initial state
element count ← 0
scan next(token)
while token was found do

if token is the start-element tag of element e then
element count ← element count +1
stack.push(state)
while goto(state, e) = fail do

state ← fail(state)
end while
state ← goto(state, e)
check output(state)

else if token is an end-element tag then
state ← backtrack()
element count ← element count −1

end if
scan next(token)

end while

where Pi,j is a pattern composed of XML element names, child operators (/),
and wildcards (∗). Then the XML filtering problem for document T of length n

(counted as the number of XML elements) can be solved in time

O(n + m +
r∑

i=1

mi∑

j=1

αi,j log |Pi,j | +
r∑

i=1

mi∑

j=1

βi,j log βi,j),

where m is the sum of the lengths of the filters, αi,j denotes the number of
occurrences in T of keywords of Pi,j , and βi,j the number of occurrences in T of
Pi,1//Pi,2// . . . //Pi,j .

Proof. The Algorithms 3–6 give a solution that has the stated time bound,
when we observe the above discussion of how the sets partial matches(i, j) and
matches(i, j) are maintained. Backtracking is needed in the same way as for
the result stated as Theorem 3, but now we have explicitly put all operations
in the algorithms: logging is performed in Algorithms 4 and 5, and Algorithm 6
performs the backtracking. Again (cf. the proof of Theorem 3) the number of

848 Silvasti P., Sippu S., Soisalon-Soininen E.: Evaluating Linear Xpath ...

Algorithm 4 Procedure check output(state) for matching XML documents with
filters containing descendant operators and wildcards.

for all (i, j, k) ∈ output(state) do
p ← element count − length(i, j, k) − distance(i, j, k)
if k = 1 then

if j = 1 then
if p ≥ 0 then

advance match(i, j, p, 1)
end if

else if matches(i, j − 1) contains some p′ ≤ p − length(i, j − 1) then
advance match(i, j, p, 1)

end if
else if (p, k − 1) ∈ partial matches(i, j) then

advance match(i, j, p, k)
end if
for all (p′, k′) ∈ partial matches(i, j) with p′ < element count − length(i, j)
do

delete (p′, k′) from partial matches(i, j)
stack.push(deleted〈i, j, p′, k′〉)

end for
end for

Algorithm 5 Procedure advance match(i, j, p, k).
if k = 1 then

insert (p, 1) into partial matches(i, j)
stack.push(inserted〈i, j, p, 1〉)

else
replace (p, k − 1) by (p, k) in partial matches(i, j)
stack.push(replaced〈i, j, p, k〉)

end if
if k = #keywords(i, j) then

insert p into matches(i, j)
end if

reversals performed cannot be more than the number of all occurrences of any
keywords in T . �

A slightly less tight but much simpler formulation of Theorem 4 can be stated
as follows:

Theorem 5. Let f1, f2, . . . , fr be filters as in Theorem 4. Then the XML
filtering problem for document T of length n (counted as the number of XML

849Silvasti P., Sippu S., Soisalon-Soininen E.: Evaluating Linear Xpath ...

Algorithm 6 Procedure backtrack().
s ← stack.pop()
while s is not a state do

if s = inserted〈i, j, p, 1〉 for some i, j, p then
delete (p, 1) from partial matches(i, j)

else if s = replaced〈i, j, p, k〉 for some i, j, p, k then
replace (p, k) by (p, k − 1) in partial matches(i, j)

else if s = deleted〈i, j, p, k〉 for some i, j, p, k then
insert (p, k) into partial matches(i, j)

end if
s ← stack.pop()

end while
return(s)

elements) can be solved in time

O(n + m + α log α),

where m is the sum of the lengths of the filters and α denotes the number of all
occurrences in T of any keywords of the filters. �

5 Conclusion

In this article we have presented a new algorithm for matching linear XPath
expressions (without predicates) with XML documents. The application we had
in mind was filtering with filters expressed as linear XPath expressions; that is,
for each document in an XML document stream, the task is to determine those
filters that match the document. The basic building block in this algorithm is
the Aho-Corasick multiple-pattern-matching algorithm, which we have extended
in two novel ways. First, we showed how it can be efficiently applied when wild-
cards are present in the patterns, and second, we showed how tree patterns can
be matched with tree-like text. Specifically, we used as patterns linear XPath
expressions and XML documents as tree-like text.

Our main results (Theorem 4 and Theorem 5) are contributions in the sense
that they state new worst-case bounds for XML filtering. Our future work aims
at improvements by dynamically using the information of matched prefixes of
patterns, without explicitly trying to match portions of patterns for which no
corresponding matched prefix exists.

Acknowledgement

The financial support of the Academy of Finland is gratefully acknowledged.

850 Silvasti P., Sippu S., Soisalon-Soininen E.: Evaluating Linear Xpath ...

References

[Aho and Corasick 1975] Aho, A. V., Corasick, M. J.: “Efficient string matching: an
aid to bibliographic search”; Communications of the ACM, 18, 6 (1975), 333–340.

[Altinel and Franklin 2000] Altinel, M., Franklin, M. J.: “Efficient filtering of XML
documents for selective dissemination of information”; VLDB 2000, Proc. of 26th
Internat. Conf. on Very Large Data Bases, 53–64.

[Avila Campillo et al.] Avila-Campillo, I., Raven, D., Green, T., Gupta, A., Kadiyska,
Y., Onizuka, M., D. Suciu, D.: “An XML toolkit for light-weight XML stream pro-
cessing”; http://www.cs.washington.edu/homes/suciu/XMLTK/.

[Diao et al. 2003] Diao, Y., Altinel, M., Franklin, M. J., Zhang, H., Fischer, P.: “Path
sharing and predicate evaluation for high-performance XML filtering”; ACM Trans.
Database Syst., 28, 4 (2003), 467–516.

[Fernandez and Suciu 1998] Fernandez, M. F., Suciu, D.: “Optimizing regular path ex-
pressions using graph schemas”; Proc. of the 14th IEEE Internat. Conf. on Data
Engineering (1998), 14–23.

[Green et al. 2004] Green, T. J., Gupta, A., Miklau, G., Onizuka, M., Suciu, D.: “Pro-
cessing XML streams with deterministic automata and stream indexes”; ACM
Trans. Database Syst., 29, 4 (2004), 752–788.

[Gupta and Suciu 2003] Gupta, A. K., Suciu, D.: “Stream processing of XPath queries
with predicates”; Proc. of the 2003 ACM SIGMOD Internat. Conf. on Management
of Data, 419–430.

[Kalai 2002] Kalai, A.: “Efficient pattern-matching with don’t cares”; Proc. of the 13th
Annual ACM-SIAM Symp. on Discrete Algorithms, 655–656.

[Kilpeläinen and Wood 2001] Kilpeläinen, P., Wood, D.: “SGML and XML document
grammars and exceptions”; Information and Computation, 169 (2001), 230–251.

[Lee et al. 2007] Lee, D., Shin, H., Kwon, J., Yang, W., Lee, S.: “SFilter: schema based
filtering system for XML streams”; MUE 2007, Internat. Conf. on Multimedia and
Ubiquitous Engineering, Seoul, Korea, 266–271.

[Onizuka 2003] Onizuka, M.: “Light-weight xPath processing of XML stream with de-
terministic automata”; Proc. of the 2003 ACM CIKM Internat. Conf. on Information
and Knowledge Management, 342–349.

[Pinter 1985] Pinter, R. Y.: “Efficient string matching”; Apostolico, A., Galil, Z. (eds.)
Combinatorial Algorithms on Words. NATO Advanced Science Institute Series F:
Computer and System Sciences, vol. 12, 11–29.

[Rahman et al. 2006] Rahman, M.S., Iliopoulos, C.S., Lee, I., Mohamed, M., Smyth,
W.F.: “Finding patterns with variable length gaps or don’t cares”; Chen, D.Z., Lee,
D.T. (eds.) Computing and Combinatorics, 12th Annual Internat. Conf., COCOON
2006, Proceedings. LNCS, vol. 4112, 146–155.

[Rahman and Iliopoulos 2007] Rahman, M.S., Iliopoulos, C.S.: “Pattern matching al-
gorithms with don’t cares”; SOFSEM 2007: Theory and Practice of Computer Sci-
ence, 33rd Conf. on Current Trends in Theory and Practice of Comp. Sci., 116–126.

[Silvasti et al. 2009a] Silvasti, P., Sippu, S., Soisalon-Soininen, E.: “Schema-conscious
filtering of XML documents”; EDBT 2009, Proc. of the 12th Internat. Conf. on
Extending Database Technology, 970–981.

[Silvasti et al. 2009b] Silvasti, P., Sippu, S., Soisalon-Soininen, E.: “Processing schema-
optimized XPath filters by deterministic automata”; SEDE 2009, Proc. of the 18th
Internat. Conf. on Software Engineering and Data Engineering, 55–60.

[Suciu 2006] Suciu, D.: “XML data repository”; The Database Research Group
of University of Washington, 2006; http://www.cs.washington.edu/research/
xmldatasets/.

851Silvasti P., Sippu S., Soisalon-Soininen E.: Evaluating Linear Xpath ...

