Journal of Universal Computer Science, vol. 16, no. 5 (2010), 749-794
submitted: 20/9/09, accepted: 12/2/10, appeared: 1/3/10 © J.UCS

Entropy and Higher Moments of Information'

Helmut Jiirgensen
(Department of Computer Science, The University of Western Ontario
London, Ontario, Canada N6A 5B7)

David E. Matthews
(Department of Statistics and Actuarial Science, University of Waterloo
Waterloo, Ontario, Canada N2L 3G1)

Abstract: The entropy of a finite probability space or, equivalently, a memoryless
source is the average information content of an event. The fact that entropy is an
expectation suggests that it could be quite important in certain applications to take
into account higher moments of information and parameters derived from these like
the variance or skewness. In this paper we initiate a study of the higher moments of
information for sources without memory and sources with memory. We derive prop-
erties of these moments for information defined in the sense of Shannon and indicate
how these considerations can be extended to include the concepts of information in
the sense of Aczél or Rényi. For memoryless sources, these concepts are immediately
supported by the usual definitions of moments; for general stationary sources, let alone
general sources, no such applicable framework seems to exist; on the other hand, the
special properties of stationary Markov sources suggest such definitions which are both,
well-motivated and mathematically meaningful.
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1 Introduction

Consider a finite probability space X = (X, p) with set X of elementary events
and probabilities p(z) for x € X. A small set of intuitively convincing axioms
defines the average information content of an event in X uniquely as

() = Y pla) - log =

= ()

up to a constant factor ¢ > 0. Here the constant ¢ can be related to the base of

the logarithm and, thus, to the unit of measurement for information?. To define
the constant one may require - as is often done — that, for | X | = 2 and p(z) = 1

for x € X, H(X) = a for some constant a € Ry as a normalization condition;

1 This research was supported by grants from the Natural Sciences and Engineering
Research Council of Canada.

2 In information theory one usually assumes that the base is 2; for the purpose of
mathematical manipulations it is more convenient to use natural logarithms. For
base-2 logarithms the unit of information is bits, for natural logarithms it is often
called nats.
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as H(X) = log2, this determines the base of the logarithm. The quantity H(X)
measures information in the sense of Shannon [Sha48].

Formally, H(X) looks like the entropy in thermodynamics. There are some
crucial differences between the information theoretic and physical notions of
entropy, however, despite this formal similarity. Moreover, there are also formal
similarities to expressions for and properties of, descriptional complexity in the
sense of Kolmogorov or Chaitin [Cal02] and to properties of energy; see [R82,
Jiir08] for a discussion of these and related issues. Some of these problems become
apparent when one considers continuous rather than discrete probability spaces.

Entropy is often used as a statistic in decision making. An early important
example is that of cryptographic security due to Shannon [Sha49]. We outline
this application as it reveals several important problems.

A cryptographic system is said to achieve perfect (key or message) secrecy
if the (key or message) equivocation conditional on the received cryptogram is
large, essentially equal to the a priori entropy of the keys or messages, respec-
tively. On the basis of this idea, one computes a quantity, called the wunicity
distance, for a cryptographic system; in a simplified interpretation often found
in the cryptographic literature, the unicity distance is the length of encrypted
messages up to which unique decryption is impossible.

This interpretation is not supported by the mathematics without some care-
ful clarifications. More importantly, however, referring to something as being
impossible in the context of statistics, even when it has a probability of 0, is
rather stretching the terminology.

To clarify this point, here is an example taken from [Jiir08], but originally
stated in [Rob98, JRI6]:

Consider the cryptanalysis of a message E encrypted by a perfectly
secure cryptographic system (in the sense of Shannon). In such a sys-
tem, the encrypted message can be the result of any possible message
with the same probability. Suppose that there are 21900000 messages
altogether. Hence the probability of the encrypted message being E is
21000000 " W7ith some work, however, we have found that E might say
that there will be a devastating terrorist attack in Berlin tomorrow at
9 a.m. The probability that our reading of the encrypted message is
correct is 271000000 " The entropy of the information space of correct
versus incorrect reading is nearly zero. What should we do?
As shown in [Rob98, JR96], the dilemma is not restricted to information theory,
but recurs in other settings, like complexity theory or risk analysis, in which
taking global measurements seems to be insufficient for an adequate description
of reality as it is perceived. Some quite different recent attempts to deal with
this problem include [Fli95, Lyr02, Lyr04]; whether these solve the problem is
unclear. Information as defined in information theory may not describe what we
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intend it to mean. In particular, information may be subjective.

In the context of cryptography, this issue was raised already by us in [JM84].
We proposed to base decisions not on entropy alone, but to involve at least its
variance in the evaluation process.

Formally, the entropy H(X) is an expectation of the random variable

called the information content of the event x € X (see [Rén61, Rén65]). This
interpretation suggests alternative definitions of information which differ from
H (X)) mainly in the way the information content of an event is expressed [ADT75,
San87, Csi08, ESS98]. We restrict our attention to information defined as H(X)
in this paper, and only briefly outline the extension of our results to other notions
of information in Section 7 below.

As an expectation, H(X) is the first moment of the probability distribution
of the random variable I(z); it is natural to consider higher moments of this
random variable to address the usual problems associated with the expectation.
For the application of entropy in cryptography, using the variance was proposed
and briefly discussed by us in [JM84]. It is surprising to note that, despite it
being a natural idea in statistics, there are no studies of the higher moments of
information except a very recent paper by da Fontoura Costa [FC].

In the present paper we initiate a systematic exploration of the concept of
higher moments of information in the sense of Shannon. We also briefly discuss
how this work can be extended to other concepts of information.

Our paper is structured as follows: In Section 2 we establish the notation and
review some elementary facts from probability and information theory. We then
turn to the case of finite probability spaces or memoryless sources in Section 3.
We derive formula for the moments of information and consider their behaviours
as the parameters vary. We briefly discuss the longer-term behaviour of memo-
ryless sources in Section 4. We investigate the possibility of extending the ideas
to arbitrary stationary sources in Section 5. It turns that there are serious math-
ematical and intuitive obstacles to this attempt. In Section 6 we show that the
theory can be extended to stationary Markov sources in a meaningful way. In
Section 7 we outline how our ideas generalize to other notions of information,
that is, changes to the formula defining the random variable I. We conclude with
general comments in Section 8.

2 Notation and Basic Notions

In this section we introduce the notation to be used and we review some basic
concepts and some required background. For general results regarding informa-
tion theory we refer to the books by Csiszar and Korner [CK81], Guiagu [Gui77],
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MacKay [Mac07] or by Yaglom and Yaglom [YY73]. Comprehensive treatments
of the axiomatic for information measures are available in the books by Aczél
and Dar6czy [AD75] and by Ebanks, Sahoo and Sander [ESS98]. For background
about functional equations, we refer to a book by Aczél [Acz61].

We employ the usual notation for sets. Consider sets S and T | S| is the
cardinality of S; 2% is the set of all subsets of S; for S being a subset of T, a
proper subset of T' or not a subset of T', we write S C T, S C T and S € T,
respectively; by T'\ S we denote the difference set, that is theset {¢ | t € T,t ¢ S}.
When S is a singleton set, we often omit the set brackets, that is, we write x
instead of {z} when there is no risk of confusion.

By N we denote the set {1,2,...} of positive integers; let No = N U {0}. As
usual, Z and R denote the sets of integers and real numbers. Let Ry = {r | r €
R,r > 0}.

All logarithms in this paper are natural logarithms unless stated otherwise
explicitly. The change of the base of a logarithm is afforded by the equation

1
log, =z = 8T
log, a
Thus
logn 2 — log z
2% = log2’

In the context of information theory, changing the base of the logarithms amounts
to changing the unit of measurement: nats for natural logarithms versus bits for
logarithms with base 2.

An alphabet is a finite non-empty set. Throughout this paper, let X' be an
alphabet with | ¥'| > 1. Elements of an alphabet are called letters or symbols.
We assume that a and b are distinct symbols in Y. A word over X' is a finite
sequence of symbols from Y. By X* one denotes the set of all words over X
including the empty word ¢; let X+ = ¥* \ . With the concatenation of words
as multiplication, X* is a monoid and X% is a semigroup, freely generated by
X,

A finite probability space X is a construct X = (X, p*) where X is a finite
non-empty set, the set of elementary events, and p~ is a probability measure on
2X. For x € X, the value of IX(z) = log px—l(x) is the information content of x
and

H(X) = EFX @) = 3 ¥ (@) - p(2)
zeX
is the entropy or the information content of X. We omit the superscript X
referring to the probability space in question when there is no risk of confusion.

Note that I(x) - p(z) — 0 as p(x) — 0. One has 0 < H(X) < log| X |. In

particular, H(X) = 0 if and only if p(z) = 1 for exactly one € X and, hence,
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p(z’) = 0 for all 2/ € X \ x; on the other hand, H(X) = log| X | if and only if
p(z) =|X| ' forall z € X.

This definition of information was proposed by Shannon [Sha48]. Occasion-
ally, we need to distinguish this notion of information from other notions of
information; in such cases we write Ishannon and Hshannon instead of I and H.

Let X and Y be finite non-empty sets, let Z = X x Y and let Z = (Z, p?)
be a probability space. From Z one obtains probabilities p* and p¥ on X and
Y and conditional probabilities as usual: for x € X and y € Y,

X(x) =p? Z(z,
p-(z) =p”(zxY), pxly(x ly) = ppx(f(lj)’
= p? Z(z
P (y) =p?(X xy), and PY‘I(ZJ | z) = p))g(;f)/)

with the appropriate exceptions to avoid division by 0. One obtains the proba-
bility spaces X = (X,p¥), ¥ = (Y,p"), X|y = (X,p*¥) and Y]z = (V,p"")
and their entropies. In particular,

HX | y)=> W) p*(z|y) = Zlgx‘y

zeX reX

Xy (o
a7 e )

and similarly

HY |z)=> ") -p" "y z) =) log Y‘z )Y'“’(ylw)

yey yeY

The conditional entropy (of X given ) is defined as

Hx | Y) = Y HX | y) 0" (),

yey
that is, as the expectation E H(X | y). With Z = X x Y one has

H(Z)=H(X xY)=HY)+H(X | )
=HX)+HY|X) <H(X)+ H()

with equality if and only if X and ) are independent. We refer to this property
as the additivity property of H.

The quantity I(X : V) = H(Y) — H(Y | X) is the information of X about
Y. As

I(X:Y)=HQY)—HY|X)=H(Q)—-HXx)Y)+ HX)
=HX)-HX|Y)=I:X)

this quantity is also called the mutual information.
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For a probability space X = (X,p) and k € N, we consider the kth power
Xk = (XF p*) of X where X* is the set of k-tuples

N
(l‘)k = (ml,xg,...,xk)
of elements x1,xs,..., 2 in X and
. k
P (@) = [T e,
i=1

One has H(X*) = k- H(X).

Let X be an alphabet as above. A message is a mapping p : Z — Y. We
consider ¢ € Z as a moment in time; then w(é) is the symbol in p generated at
time 7. We often write a message p as a sequence or a part of a sequence in the
form

W=...0-20_-1000102 ...

where 0; = u(i) and where we omit separating commas. In the theories of codes
and languages, such sequences are called bi-infinite words or (-words (see [JK97]
for additional background information).

For t € Ny, let [t] = {1,2,...,t}. In particular, [0] = 0. A finite strictly
increasing sequence T' = (i1, i2, ..., i) of integers with ¢ € Ny is called a sequence
of time instances. Thus i1,i9,...,4; € Z and i; < is < .-+ < 1i3; note that T
is the empty sequence () when ¢ = 0. The sequence T' can be considered as
a strictly increasing mapping of [¢] into Z, that is, T'(j) = i; for j € [t]. For
j S [t], let T@] = (il, ce 7ij—17ij+1; ce ,it), that is

T(k), if k< j,

T k) =
3(k) {T(k+1), it k>,

for k€ {1,2,...,t —1}. For h € Z, T + h is the sequence T shifted by h steps,
that is, the sequence (i1 + h,i2 + h,...,i: + h). Let T be the set of sequences of
time instances.
.
For T € T and (0); € X7, the set

- . . .
Cr ((01) = {n | '+ Z = 2 with u(T(j)) = o; for j € [¢]}
is called a cylindre set. Let
— —
Cr = {CT ( a)t) | (0): € xt}.

Each set Cr is finite.
A source is a construct & = ({Sr | T € T}, X) with the following two prop-
erties:
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1. For all T € ¥, Sy = (Cr,pr) is a probability space.

9. For all T € %, for all j € [¢] and for all (0);_1 € X7,

—
Preoj ((U)tfl) = Z pr (017 e e305-1,0,05,..., o—tfl) .
ceX

We refer to property (2) as the consistency condition.

A source 6 = ({Sr | T € T}, %) is said to be stationary if and only if, for
all T € X, pr41 = pr.

When 6 is stationary, one has ppyp = pr for any shift h € Z. A stationary
source is, therefore, defined completely by the probability spaces Sj;) with ¢t € N.
For a stationary source, one can give a convincing definition of entropy because
of the following well-known result.

Theorem 1 Let G = ({Sr | T € T},X) be a stationary source. The limits

i H(S101)

t—o00 t
and

Jim H (Set1 | Sp1))

exist and are equal.

For a proof see, for instance, [CK81, Gui77]|. Note that the theorem only
holds for the information measure in the sense of Shannon and related ones.

Because of Theorem 1 one defines the entropy of a stationary source & as
H(6) = limy oo H(S¢11 | Sp¢))- Intuitively, H(&) is the average information
content of an output symbol of the source after the source has been observed
for a long time or, alternatively, as the average information content of an output
symbol in a very long message.

The assumption of stationarity allows one to simplify the notation for cylindre
sets. For T' = (1,2,...,t), a message in Crp ((?))t) can be described by a finite

— . V¢ . Ve
word @ = 010920y instead of the t-tuple (o);. Thus, instead of pr((c):) we
simply write p(@). The notation & implies that o; is the ith symbol in this
word.

A stationary source © is called a Markov source if it satisfies the following
conditions®:

3 We do not consider non-stationary Markov sources nor Markov sources with a mem-

ory (or order) greater than 1 in this paper; hence, by a ‘Markov source’ we mean a

stationary Markov source of order 1. Moreover, unless stated otherwise, we assume
that the initial distribution of such a source is steady-state.
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1. For all t € Nwith t > 1 and all o1,03,...,0: € X,
Pre) (o | 0102 0_1) = P(t—1,t) (Ut | Ut—1)-

2. For all i e Ng and all o € X, p;(0) = po(0).

A stationary Markov source can be represented conveniently by a matrix and
a vector as follows. Let P be the square matrix indexed by X x X such that
the entry ps, o, of P is the probability p(o2 | 1), that is, the probability of o9
being the next symbol when o7 has just been output by the source. For n € Ny,
let 7(n) be the vector describing the distribution of the output symbol at time
n, that is, 7(n), = pn(c). Then m(n) = 7(0)P™. The second condition, called
steady-state condition, is equivalent to 7(0)P = 7(0). If & is a stationary Markov
source, one has

H(G) = Z po(O’O) 'p(Ul | UO) -1ogp(;

00,01€X o1 | 00).

Note that the steady-state condition is crucial for the proof of this equality.

A source & is said to be memoryless if it is a Markov source with a defining
matrix in which all rows are equal. Thus, a memoryless source is completely
defined by a probability space S = (X, p). The entropy H (&) of a memoryless
source 6 is equal to H(S).

3 Information Moments of Memoryless Sources

In this section we consider only sources without memory. Such a source is a finite
probability space S = (X, p) in which X is the output alphabet and, for o € X,
p(o) = Prob (o) is the probability of output o. The information content

I(o) = log ﬁ — —logp(o)

of ¢ is a random variable with H(S) = EI(0) as its expectation. We assume
that | 2| > 1.

For the definition of the moments of information and for their analysis one
needs the following generalization of a well-known fact about the information
function.

Lemma 2 For alli € N,

xlirgo z (logz) = 0.
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PROOF. Applying L’Hopital’s rule j times with 1 < j <4 yields

Ilinﬁoa:(logx) _xlinio( WWii—1)---(i—j+1)xz(logz) .

For j = ¢ this results in

. 1;: . _ i ) _
Ilirﬂoa:(logm) zlinﬁo( 1)tila=0.

Remark 3 Using Lemma 2, let 0 (log0)’ = 0 for all i € N.

Let ¢ € N. The i-th moment of the information is computed as

MW(1) =EI(o)" = Y p(o) - (~logp(0))".
oy

In particular, M (I) = H(S), the entropy of S; moreover, M?(I) — H(S)? =
Var [ is the variance of I.

Graphs of the first six moments of I are shown in Figure 1 for the case of
| ¥'| = 2. In Figure 2 we show graphs of the first six moments of I for the case
of | 2| = 3. In Figure 3 we show graphs of the variance of I for the cases of
| X | =2and | X| =3 (see also [TM84]).

Let n=|XY|>1and ¥ = {01,09,...,0,}. Fori =1,2,...,n,let p; = p(0;).
The n-tuple (p1,p2,...,pn) is an element of the compact space

An_{(q17QQa"'7Qn)|O<qi<1f0ri_]-;27"'vn7 ZQZ_]-}
=1

The moments of information are independent of the names of the symbols in X
and may thus be considered as functions mapping A,, into R. When it is conve-
nient we emphasize this interpretation by writing H,, () for the entropy, I(p;) in-
stead of I(o;) and My(f) (m) for the i-th moment, where 7 = (p1,p2,...,pn) € Ap.
As A, is compact, M,(f) (7) has maximal and minimal values on A,,.

By Lemma 2 and —zlogz > 0 for 0 < x < 1, one computes that M® (1) > 0
when 7 = (p1,p2,...,pn) is such that p; # 0 and p; # 0 for some ¢,j with
1 <14 < j < n; otherwise My(f) (m) = 0. The latter are the minima. When
p1 = P2 = -+ = Py, that is, p; = 1/n for all ¢, then M (7) = (logn).
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1.0 — 1.0 —
0.8 — 0.8 —
0.6 — 0.6 —
EI 0.4 — E 2 0.4 —
0.2 — 0.2 —
0.0 — 0.0 —
I I I I T T T I I I I I
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
p1 p1
1.5 5 —
4 -
1.0 —
3 -
2 -
EI® 05 EI \ /
T U
0.0 4 0 —
T I I T T T T I I I I T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
p1 p1
25 — 100 —
20 — 80 —
15 — 60 —
E 5 10 — E 6 40 —
0 0 —
T I I T T T I I I I I T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
p1 p1

Figure 1: The first six moments of I about the origin, when | X'| = 2. The
probability distribution is (p1,1 — p1). Note the scale changes on the vertical
axes. The logarithm base is e.
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As Z;.’zlpj =1, p,=1~— Z;:ll pj. Therefore, M,(f) can be considered as a
function of the n — 1 variables p1,pa,...,pn—1 in the closed interval [0 : 1] in
the form

MO =Y i (1) + 7o (100)'
n—1 ) n—1 n—1 )
= i (Ie) + (1= ) (T(1= )"
=1 k=1 k=1

We now determine the first derivatives of My(f) with respect to p; where j =
1,2,...,n— 1.

Lemma 4 For j=1,2,...,n—1, one has
0 ; i i-1 0
—— MDY (x) = (I(p: .- (I(ps —I(p;
apj n (7‘(’) ( (pj)) +1 pj ( (pJ)) apj (p])
i i-1 0
~(Ipn)) +i-pn (L(pa)) 5y L (Pn)-
Dj

For I(p) = —logp, this specializes to

9 . : -
9 @y — ( N i1
8ijn (m) = (—logp;)" —i-(—logp;)

—(~logpy)' +i-(~logpa)""
PROOF. For j=1,2,....,n—1 one has

%Mﬁ)(ﬂ = % (pj : (I(pj))i) + 8%] (pn~ (I(pn))i) :

One computes

5o (o 102)) = (@) + i, (1) 5 T0))

= (~logp;)’ —i- (—logp;)
With p,, as above,

8pjp" =1
and, using I(p,) = — logpn,
0 1
8ij(pn) on
One has
0 I N (1 i 7 i-1 0 7
@(Pn'( (Pn)) ) = —(I(pn)) +i-pu- (1(pn)) “op, LPn)

= —(—logpn) +i- (—logpn)™".
This completes the proof. O
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1.0 —

0.8 —

0.6 —

0.4 —

0.2 4

0.0 —

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3: The variance of I when | X'| is 2 or 3. The logarithm base is e.

Remark 5 When logarithms are taken with respect to base B instead of base e
the derivatives in Lemma 4 have the form

0 , , ,
iy VO] —( (= N g

5 M) = ((~logspi)' = (~logs o))
1 i—1 i—1

~ 5 ((~10850)" " = (~logpp)")

= (—logg pj +logp Pn)

1—1
: <Z (—logp p;)* (—logppn) "

k=0

.
]

i —

— 52 (~loggpy)"* (—1og3pn)i_2_k> :

k=0

PROOF. In the proof of the lemma one computes

0 1
—I(p; d —I(pn
Opj (p;) pjInB an Op; (Pn) pnln B
One verifies the factorization by multiplication. O

)

The factorization of the partial derivatives of My(f provided above is used on

several occasions in the sequel.
We list a few important properties of M,(f).

Proposition 6 Let n,i € N with n > 1. The function M,(f)(w) : A, — R has
the following properties:

1. M,(f)(w) = Z;”zlpj (— 1ogpj)i where ™ = (p1,p2,...,Pn) € An.
2. MT(,,i) s continuous.

3.0 < MY (r).
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4. M,(f)(ﬂ) = 0 if and only if, for some j with 1 <k < n, p; =1 and, hence,
pr =0 forall k with1 <k<nandk #j.

5 Forj=1,2,....,.n—1,
o .
— M (7)) =0
5 i)

if and only if

i—1 i—1

(—logpj)i —i-(—logp;) = (—logpn)i—i- (—logpn)

In particular, this is true when p1 = po = -+ = p, = %, and in this case

M (7) = (logn)".

6. The entropy My(bl)(w) has a unique mazimum when py =py =+ = p, = %

’

and in this case M,(ll)(ﬂ) = logn. It has no other extrema.

PROOF. The first two statements are obviously true. When 0 < p; <1 then
p; (—logp;)" > 0. This proves the third and fourth statements. By Lemma 4,
the partial derivatives are 0 if and only if

(L)' +i-ps ()" %I(pj)

= (I(pn))z — % Pn - (I(pn))i_l I(pn)-

9
E)pj
With I(p;) = —logp; and I(p,) = —log pn, one obtains the formula stated. The
last statement is well-known. O

Remark 7 By Remark 5, the condition in Proposition 6(5) is

i—1

) i ; ) i—1
(—logp JUJ')Z "B (—logp pj) = (—logp pn)z "B (—logp lUn)z .

when one uses logarithms with base B.

Some of the statements in Lemma 4 and Proposition 6 do not depend on the
specific choice of the information function I. These are applicable also to other

information measures as discussed briefly below in Section 7.

We now determine the extrema of the second moment M7(L2) as n varies.

Proposition 8 The following statements hold true for M,(lz) with base-B loga-

rithms, where B > 1 and c = ﬁ:

1. For all n, the derivatives %M,(f)(ﬂ) for j =1,2,...,n—1 are equal to 0
J

fOT’/T:(%,%,...,%).
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2. Forn =2, M,(ZQ)(W) has two mazima and one minimum as follows:
(a) The mazima are obtained for m = (p1,1 — p1) with

1 1

p1=z=x

— /2 _ 4
272V

for every base B.
(b) The minimum is obtained for m = (3, 1).

3. Forn > 3, M,(f)(w) has a single extremum which is the unique mazimum at
T=(3,1,...,3).

PROOF. All calculations in this proof are carried out using a base B for
the logarithms where B > 1.
For i = 2, the formule in Proposition 6(5) have the form

a?—2a; —b*+2b=0

where j =1,2,...,n—1, a; = —logpj, b= —logp, and p, =1 — Ez;llpk. By
Remark 5, when we use base B instead of base e, the formula turn into

2 2
2 2 _
4G~ lnBaj B 1an7 0
with a; = —logg p; and b = —logg pn.
To allow for a change in the base of the logarithm, we write ¢ instead of
2/1n B in this proof. Thus, the equations have the general form

a?—caj—bQ—i—cb:O.

Note that B¢ = e2. This can be factorized into
(a; —b)(a; +b—c)=0.

For a solution, one of the two factors is equal to 0.
Note that
a; —b= —logp; + logp, = 1og& =0
bj
if and only if p; = py,. In particular, a; — b = 0 for all j if and only if p; = ps =
-++ = pp = 1/n. This solution is called trivial in the remainder of the proof.

All other solutions of the system of equations are obtained from various
combinations of which factors are equal to 0. Because of the symmetry, it suffices
to distinguish the cases according to how many factors of the form (a; — b) are
equal to 0. Permutations of the co-ordinates will yield all solutions from these.
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First, consider n = 2. The only non-trivial solutions can be the solutions of
the equation a3 +b — ¢ =0. As p; = 1 — p1, one has
a1 +b—c=—logp; —log(l—p1) —c=—logpi(l —p1) —c,

hence
pi—p=-B"°
using log = logp with B = e not excluded. Thus

RSN O U W S
PL=95=\1" B~ 27 2B '

Both roots are real as e2 = B® > 4.
Next, consider n = 3. Then p3 = 1 — p; — p2. To obtain the non-trivial
solutions we need to consider the following three cases:

1.a1—b=0and as +b—c=0.
2. a1+b—c=0and ax — b=0.
3.a1+b—c=0andays +b—c=0.

Case 1: Then p; = 1 — p; — pa, hence p; = (1 — p2)/2. The second equation
yields
P2

1
ag—i—b—c——logpg—log(i—E) —c

p2(1 — p2)

5 —c=0.

= —log

Hence, equivalently,
P —p2+ % =0
with
1 1 2 1 1
p2:§i 1_§:§im Bc — 8.
As e? — 8 = B¢ — 8 < 0, these solutions are not real-valued. Case 2 is similar to
Case 1.

Case 3: We consider the equations
ai +b—c=—logp; —log(l —p1 —p2) —c=0
and
ag +b—c=—logps —log(l —p1 —p2) —c=0.
Solving the first one for p; yields

:1—p2i (1 —p2)? 1

2 4 Be’

P1



Juergensen H., Matthews D.E.: Entropy and Higher Moments of Information 765

Substituting this into the second equation results in

1—p2 (1—])2)2 1 1
21— Nk — =0.
Y2 < 9 + 1 Be p2+BC

One solves this to find 1 1
=3t i

As above this solution is not real-valued.
Finally, we consider n > 3. As in the case of n = 3, we consider the two

equations

B¢ — 8.

(a1 = b)(a1 +b—c)=0and (a2 —b)(az+b—1¢) =0,

where, however,
b= —log(l—p1 —p2—r)
for some r with 0 < r < 1. The idea is that » = Z;é pr. We distinguish the

three cases as above.
Case 1: One computes that

_1—p2—’l“
pP1= 5
and ) )
—r
_ _ 2 Rc _
p2=— :l:ZBC/2 (1—-r)2Bc—8.

As0<r<1,by
(1—7)?B°=8=((1—-7)e)* —8<e?—8<0

p2 is not real-valued.
Case 2 is analogous to Case 1.
Case 3: One computes

1—pa—1r 1

p1 = 5 iZBC/Q\/(l—pQ—T)QBC—ZL
and 1 1
—r
- _ R _ »)2Rc _
P2 =—7 i4BC/2\/(1 r)2Bc — 8.

As above, po is not real-valued.
This completes the proof. O
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Statements like the ones in Proposition 8 are independent of the choice of
the base of the logarithms. This needed to be proved, but was not completely
unexpected. Indeed, features, like extrema, of a function intended to describe a
physical phenomenon should not depend on the unit of measurement.

The significant difference in the shapes of the second moment between the
cases n = 2 and n > 2, as stated in Proposition 8 was a surprise to us. The issue
is clarified, at least in part, by the following results concerning the variance
Var,, I. One observes a similar phenomenon for the third moment. The details
for that case are stated in Proposition 11.

Proposition 9 The variance Var, I has the following properties:

1. Var, I(m) is a continuous function of w € A,, into Ry UO0.

2. Var, I(m) = 0 if and only if © satisfies the following condition: Let k € N be
the number of components p; of m with 0 < p;; then, for j =1,2,...,n, if
pj # 0 then p; = 1/k.

3. Varg I(m) has ezactly two mazima assuming the base B of the logarithms
satisfies B > 1.

4. Assume that the base B of the logarithms satisfies B > 1. There are 2" — 1
distinct values of m = (p1,p2,...,Dn) for which the gradient of Var, I() is
equal to the O-vector; these values are as follows:

—p1=p2=--=pp = % This corresponds to the unique global minimum
of Var,, I().

— There is an integer k, such that 1 <k <n-—1, a set K C {1,2,...,n}
with | K | = k and a unique real number x with 0 < x <  and v < %

such that
z, ifjeK,
p; = Ckn e
Lk ifj¢ K.

PROOF. The first statement follows from Var, I = E(I —EI)? = EI? —
(EI)? and the continuity of the moments.

When 7 satisfies the condition of the second statement, then M,(ll)(w) =logk
and M,(LQ)(W) = (logk)?, hence Var, I(r) = 0. To prove the converse, sup-
pose, without loss of generality, that the k strictly positive components of 7

are pi,...,pg- Since

k
2
Var, I(7) = ij (—logpj - M,,(Ll)(ﬂ')) >0
j=1
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with equality occurring only when —logp; = Mr(ll)(w) for j = 1,2,...,k, the
result follows immediately.
We turn to the proof of (3). Assume that n = 2. One proves that

Vara 1(7) = (1= ) (1o (2 ))2.

1—-p

The first derivative of Vars I(7) with respect to pp is

9 B o P1
8—prar2 I(r) =logp (1 —pl) ((1 2p1) logp (1 —pl) +c)

2
InB*
which corresponds to minimum variance, or when

where, as before, ¢ = Thus, local extrema occur when p; = 1 — p; = %,

P1
1—2p))1 A —0.
(1—2p1) 0g3<1 p1>+c

Let

P1

o) = (-2t (2] e

— b1
The following facts concerning f(p1) establish that f(p1) has exactly two real
roots, p1 and po, such that 0 < p; < % < p2 < 1, which are symmetric with
respect to % The function f(p1) is continuous on the open interval (0, 1); for
p1 > 0, lim,, o f(p1) <0; for p1 < 1, lim,, 1 f(p1) < 0; moreover, when B > 1,
limy,, 12 f(p1) = ¢ > 0. Thus, by the intermediate-value theorem, f(p;) has at
least two real roots p; and py with 0 < p; < % < pg < 1. As the first derivative

D1 >+ (1—2py)
1 InBpi(1—p1)

0
8—p1f(p1) = —2logp <1

is positive for 0 < p; < % and negative for % < p1 < 1, there are no more roots
in that interval.
As Varg I() is symmetric with respect to %, one has % —P1=p2 —

To compute p; and po, let

N[ =

pr=_0L
I—pm
Thus
BI
pl:l—l—B’”
and
1—2p1—1_Bx.
1+ B*=
Then 1— B=
fp) = rtc
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With x; and x5 the two real roots of
z(1—B*)+¢(1+ B*) =0,

one has

PL= 1 Bm and py =
or vice versa. This completes the proof of (3).

For (4) we consider the partial derivatives

iVarn I(m) = iM,(f) (m) — 2 (My(bl)(ﬂ))Q

Op;j Opj Opj
= (I(p))? +2-p; - 1(p;) - %I@j)
)P 42 pu - L) - %I@n)

—9. Mr(zl)(ﬂ—) .

(I<pj> oy 1)

J

—I(pn) + pn - %H}%))

for j = 1,2,...,n — 1. For the rest of this proof, let log = logg where B > 1.
With I(z) = —logz, ¢ = 25 and H = H,(r) = él)(w), the entropy, one finds

o
gy, Varn 1(m) = (= logp;)? — ¢(—logp;) — (—logpn)? + c(—log py,)
J

—2H - (—logp;) — 2H -logpn
= (—logp; +logpn) -
(—logp; —logp, —c—2H).

Without loss of generality we assume that p; > 0 for all j. It follows that

0
—Var, I(m) =0
g, Varn 1)
if and only if
pj = pn or logp; +logp, +c+2H = 0.

Thus, if all partial derivatives are equal to 0 then there is a k with 1 < k <n
such that, for k values of j one has p; = p, while for the other n — k values
of j one has p; # py, but logp; + logp, + ¢ + 2H = 0. There are 2" — 1
possible choices of the k£ values of j. Without loss of generality, we assume that
Drn—k+1 = Pn—k+2 = -+~ = Dp, and that p; #p, for j=1,2,...,n — k.
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Let p, =  where 0 < z < 1; then
Z p; = kx and Z pj =1—kz,
j>n—k i<n—k
hence z < 1. For j < n — k one has p; # x; define
fr,j(x) =logp; +logp, + ¢+ 2H
=logp; +logx +c

1 1
+2 E pilog — + 2kxlog — = 0.
. 23 z
i<n—k

When k& = n then p; =z = %, and the variance is zero.
For the rest of the proof we assume that 1 < kK <n—1. When k =n—1
then p1 =1 — (n — 1)z, hence

frn-1,1(x) =logp1 +logp, +c+2H
=log(1—(n—1)z)+logz +c

1 1
= (1 — 2(n — 1)1‘) 10gm +c.

Intuition and the shape of the graphs in Figure 3 suggest that for all other values
of k one has

1—kzx
Pj = but p; # x,
for j=1,2,...,n — k. In that case,pj#ximpliesx#%;moreover,
1 1-— 1
v<Lifand onlyif L2F% L
n n—=k n
For these assumptions, define
1—kx
fi(z) =log p— +logz +c¢
+2((1 = k) log =X 4 kalog 2
— k) 1o z
gl—k;x ga:
(n—k)x
=(1-2 log ———— .
( kx)log s +c

The function fi has the following properties:
1. limg_q fr(z) = —oco for z > 0;

2. fr(x) is continuous for 0 < z < 1;
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3. fu(x) =c>0for =5 orz =1 when B> 1;

4. The derivative of fj is given by

fi(x) = ~2k1og
*”1_$%2;%@'<f:£f*ﬁﬁlgf)
:—2k1og%
g (=R | 1=k

1—kzx  x(l—kx)

For0<1:<%0nehas

(n—k)x
0= 1—kx .
hence ( K
n—~k)x
F0r0<:c<ﬁ0nehas
1—2kx
(1 — kx) >0

Thus the derivative of fj is strictly positive for
0<x<mi L1
r<min|—,—].
2k’ n

By the intermediate-value theorem, f; has exactly one root z( satisfying

0< < mi L
min [ —, — .
o 2k’ n

There are 2" — 1 non-empty sets K C {1,2,...,n}.Let k=|K|. For k=n
one gets the global minimum. With 1 < k£ < n, our assumptions imply

{%, ifje K,
Pi=19, o
e, ifj ¢ K.

As zg < %, one has

1— k(Eo 1
_— > —.
n—k n
Therefore, the k-element subsets of {1,2,...,n} are in one-to-one correspondence

with the vectors 7 defined by the conditions above. O
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For Proposition 9(3) and n = 2, by numerical calculations we can determine
that z; ~ —2.399356 and zy =~ 2.399356, so that the corresponding values
of p; at which the maximal variance of approximately 0.4392288 occurs are
approximately 0.08322182 and 0.91677818, respectively. Here the symbols 1,
o and p; refer to the symbols used in the proof above.

The statement of Proposition 9(4) does not exclude the possibility that there
could be further values of 7 for which the gradient of the variance is the 0-vector.
The graphs in Figure 3 suggest that the n values of 7 resulting from k =n — 1
correspond to local maxima; moreover, we believe that, in general, these are
the only local maxima of Var, I. For n = 3, Proposition 9(4) establishes at
least 2% — 1 = 7 distinct values of 7 for which the gradient of Vars I(7) is the
O-vector as visible in Figure 3: (1) the global minimum at the point with all co-
ordinates equal to % and the variance equal to 0; (2) the three local maxima at the
points with two co-ordinates approximately equal to 0.06165176, the remaining
co-ordinate approximately equal to 0.8766965 and the variance approximately
equal to 0.7618022; (3) the three saddle points with two co-ordinates approx-
imately equal to 0.4744505, the remaining co-ordinate approximately equal to
0.051099 and the variance approximately equal to 0.2407779. For n = 4, by
Proposition 9(4) we find 15 points as follows:

1. all co-ordinates are equal to % and the variance is equal to 0;

2. four points for k = 1, three co-ordinates of which are approximately equal to
0.3209829 with the remaining co-ordinate approximately equal to 0.03705117
and the variance being approximately equal to 0.16663207.

3. six points for k& = 2, two co-ordinates of which are approximately equal
to 0.458394 with the remaining two co-ordinates approximately equal to
0.04160604 and the variance approximately equal to 0.4392288.

4. four points for k = 3, three co-ordinates of which are approximately equal to
0.04950273 with the remaining co-ordinate approximately equal to 0.8514918
and the variance approximately equal to 1.023491.

Numerical calculations suggest: the points according to (2) and (3) correspond
to local minima; the points according to (4) correspond to local maxima. Clearly,
the point of (1) corresponds to a global minimum.

At this moment we do not see a pattern emerging from the calculations which
might support a plausible conjecture beyond the following claims based on the
graphs shown in Figures 1-3:
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Conjecture 10 Leti,n € N withn > 2 and m € A,,.

1. Letn=2. Fori>1, M,(Li)(w) has two mazima at

; 1 1 .
) = (5 20, 3”(1))

)

with 0 < M < % Moreover,

1
(2) = — 2_ 4
xr % e 5

and 9 is strictly increasing as i — oo with
. 1

lim 2 = =,
2

2. Let n =2 and let 7r§02 and 2 be as above. Then, for i > 2

MO (r)) = M () > (log 2)'

n

is strictly increasing and unbounded as i — oo.
9. Letn > 2. Fori>2, M" () has n local mazima.

4. Forn > 2, as i — oo, the maximal values of Mr(f) are strictly increasing and
unbounded.

The value of (2 has been obtained in Proposition 8. For n = 2 the graphs
suggest not only that MQ(i) () has the shape of a trough but also that its inner
walls become extremely steep as ¢ — oo. In the limit the shape seems to be that
of the symbol | | with walls of infinite height. For the claim (3) of Conjecture 10,
we have a partial answer as follows.

Proposition 11 Letn € N, n > 2 and let B > 1 be the base of the logarithms.
The points m = (p1,D2,...,Pn) € A, at which the gradient of M,(L‘s)(w) is the
0-vector have the following properties:

1. For all n, the gradient of My([o’)(w) is the 0-vector when py = ps = -+ =p, =
1

"

2. Forn = 2, ,(LB)(W) has a global minimum at p; = py = % and two local

1 a1 .
"= (52,5 700)

with 0 < 23) < % Moreover,

N

mazxima at

9 19
- 3) » 22
2O<x <42.

These are the only points at which the gradient of M2(3) (m) is the O-vector.
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3. Forn =3, M,(f)(ﬂ) has a global minimum at py = py = ps = %, three local
mazxima and three saddle points. They are at points w the components of
which satisfy the following conditions:

(a) two of the components are equal to some value x and the remaining
component is equal to 1 — 2x;

(b) for the local mazima,

(¢) for the saddle points, 0.4708 < x < 0.4709.

These are the only points at which the gradient of M:,S?’) (7) is the 0-vector.

4. For all n € N with n > 2, if the gradient of M,(LB)(W) is the O-vector then
ezxactly one of the following two conditions is met:

(a) m is such that py = ps =--- =p, =

3=

(b) There is an x € R with 0 < z < 1 and a set K C {1,2,...,n} with
k=|K|=n—1 such that the following statements hold true:

i. O<J;<%,pj:mf0ralleKandpj;émforjgéK;
i. forj ¢ K,

1
1npj:—3+2nx—§~ 4—(1+1nx)2,

1.

n’

iii. for at least one j € {1,2,...,n} one has p; <
. for all j € {1,2,...,n} one has p; > e~ 3.

5. For n > 20 the gradient of M (7) is the 0-vector if and only if p1 = p2 =
oo =pp = L. At this point M (m) is a global mazimum.

PROOF. Using Remark 5 with log = logg and d = 1/1n B, one has
9 413

——M;”) () = ((—=logp;) — (—logpn))
Op;

- ((—log p;)* + (= log p;)(—log pn) + (—log py)*

—3d - ((—logp;) + (—logpn)))
= (—logp; + logpy)
- ((log pjpn)? + 3dlog p;pn, — logp;jlogpy) .
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for j = 1,2,...,n — 1. As in the proof of Proposition 9(4), for the gradient to
be the 0-vector, there is a k with 1 < k < n and aset K C {1,2,...,n} with
| K| =k and n € K such that p; = p, for j € K and p; # p,, but

(log pjpn)? + 3dlog p;p, — logpjlogp, =0

for j ¢ K.

When k = n, then p; = ps = -+ = p, = + and M = (logn)3. This
proves (1).

For the rest of the proof let £k < n — 1 and, without loss of generality, let
K={n—-k+1n—-k+2,...,n}. As in the proof of Proposition 9(4), let
pn:xwith0<x<1.Ask<n,m<%.Forjgn—konehaspj#xand
Z;.:lkpj =1 — kz. It follows that there is a j € {1,2,...,n} with p; < %

Define the function

h(z,y) = (In(zy))® + 3In(zy) —Inz - Iny.

With x as above, p; =y for j ¢ K only if h(z,y) = 0. Note that h(x,y) is given
by the condition above when B = e. One computes

h(z,y) = (Inz)* + (Iny)? +Inz-Iny + 3Inz + 31ny.

Solving this for Inz and Iny yields

1
2 2
and
|
]ny:—3+2nxi§ 4—(1—|—1nm)2

For Iny to be real-valued, it is necessary that
4—(1+Inz)*>0.

This holds if and only if
—2<1+Inx<2.

As z < 1,1 +1Inz < 2is always true. Thus, 2 has to satisfy e~ < z. Similarly,
also e™3 < y. As p; < % for some j, one has e™3 < %, that is, n < e3. This
implies n < 20. Hence, for n > 20, there is no solution of h(x,y) satisfying the
conditions. This proves (5).

When e~2 = y then = = 1; similarly, e~
all values p; > e 3.

The fact that Inz < 0 implies 1 4+ Inz < 1. Hence

3 = z implies y = 1. Therefore, for

2—(1+Inz)— (1 +Inz)? >0
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which implies

? \J4— 14z’ > 3+21nx7

where both sides are positive because of 2 > e~3. Therefore, the case of

_3+1nx+§. 4

2
5 5 (I1+1Inz)

Iny =

is impossible as it implies that Iny > 0. By symmetry this also applies to Inx.
As a consequence,

—(1+1nz)*

3+lnz V3
Iny =— -5 4

2
This implies that, for all j ¢ K, there is only a single possible value y for p; and

11—k
y= n—=k

As this result is independent of n it follows that k = n — 1. This proves (4).

We now turn to the cases of n = 2 and n = 3. For n = 2 we are looking for
zand y with 0 <z < 1 <y <1 and z +y = 1 such that h(z,y) = 0. Define
g(x) = h(z,1 — ). The function g has the following properties:

— lim,_ g(z) = +oo for z > 0;

— limg, 1 g(z) = +oo for x < 1;

— 9(55) = 9(z5) <03

— g(x) is continuous for 0 < z < 1;

— the derivative of g is negative for 0 < < £ and positive for § <z < 1.

By the intermediate-value theorem the function g(z) has exactly two zeroes x1 2
which satisfy 0 < z1 < 2—10 and % < 29 = 1 — 21 < 1. Numerical calculations
show that x; > % and 9 < %. One computes

1 19
M (= =2} ~1.344 33302
2" (20730 34437 > 0.3330

5 (11

Therefore, at (21, x2) and (22, 21) the moment M2(3)(7r) is maximal and at (3, 1)
it is minimal. This proves Statement (2) with 2® =1 — ;.

For n = 3 we need to consider the situation when exactly two of the proba-
bilities are the same, say equal to x, and the remaining probability y is equal to

1 — 2z. Define g(z) = h(z,1 — 2z). The function g has the following properties:
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— limg_, g(z) = 400 for z > 0;
— lim,_,1 g(z) = 400 for z < 3;

— g(=) is continuous for 0 < z < %;

— there is an 2’ with % <z < % such that the derivative of g is negative for
0 < z < &’ and positive for 2/ < z < 3.

To apply the intermediate value theorem and to find good approximations of the
roots (if they exist) we need to find z; and x5 such that

1
O<x1<x'<x2<§,

g(z1) < 0 and g(z2) < 0.
Observe that, if
(Inz(1 —22))* 4+ 3Inz(1 — 2z) < 0,
then also g(z) < 0 as Inx - In(1 — 22) > 0. In more general terms, when
(Inz(1 —ma))® + 3nz(1 — mz) <0,
then also h(z,1 —maz) < 0 where m € N and 0 < ma < 1. One has
(Inz(1 —mz))® + 3Inz(1 — mz) < 0,

if and only if
z(1 —ma) > e 3.

3

As solutions of z(1 — ma) &~ e~ one computes

1
aw—-(1i 1—4me—3).
2m

This is real-valued for 4m < 20 and complex for 4m > 21.
For the case of n = 3 we need to consider m = 2. One computes

1 0.443924,
x%—~<1:|: 1—8@*3)%
4 0.056076.

The smaller of these values is approximately equal to 1—18. Numerical calculation

shows that |18
= =
(207 20) <0
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1 19
h(ﬁ’ﬁ) > 0,

which shows there is a solution x; with

and

Approximating x; by 2—10 one computes

111
A@3>(—— — —§> ~ 2.689546154

207207 20
while
(In3)% ~ 1.32596896.
Using =, which is what one would try from 3 — 55 by symmetry, as an

approximation of zs is insufficient. Numerical calculation shows that 0.4708 <
o < 0.4709. Using x4 ~ 0.47085 as an approximation, one finds that the third
moment is approximately equal to 1.740889037.

Thus, in summary: M§3)(7r) has a global minimum when all components of
m are equal to %; it has three local maxima when two of the components of 7
are equal to z; and the remaining one is equal to 1 — 2x7; it has three saddle
points when two of the components of 7 are equal to z2 and the remaining one
is equal to 1 — 2x5. O

Proposition 11 asserts the existence of 3 distinct points at which the gradient
of M,(LB) is the 0-vector for n = 2; of 7 such points for n = 3; of just 1 such point
for n > 20. For 4 < n < 20 we only have the necessary condition (4). Numerical
calculations lead us to believe that there is only a single point with gradient
equal to the 0-vector even for values of n which are much smaller than 20.

We extract some observations from the proof of Proposition 11.

Remark 12 Let m € N and x € R with 0 < mz < 1.

1. (Inz(1 —ma))*+3mmz(1—mz) = 0 has a real-valued solution for the product
(1 — ma) if and only if m < 5. In that case there are the two solutions

1
——-(1i 1—4nw*ﬂ.
2m
2. If they exist, solutions to h(x,1—maz) =0 for m > 2 are nearly symmetrical
around ﬁ The value of the smaller one is approximately equal to
1
— (1— \/1—4me—3).
2m
PROOF. The first statement was proved above. The second statement
follows from the fact that, as z being small implies that 1 — mx is nearly equal
to 1, hence also | Inx - In(1 — mz) | is small. O
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4 Memoryless Sources with Words as Outputs

We now turn to a different set of problems. We consider the case of S¥ = (X%, p¥)
with k& > 1; this probability space models the behaviour of a memoryless source,
when one considers output words of length & rather than single output symbols.
It is well known that H(S*) = kH(S). This is a consequence of the additivity
of H for products of independent probability spaces. Note that additivity holds
true when information is measured in the sense of Shannon, but can be violated
when other information measures are used.

To derive the higher moments of information, we consider the following
more general situation: Consider k independent finite probability spaces &; =
(X p) for j =1,2,...,k with k > 1, and let

X:X1XX2X'~'XXk:(X,p)

where
X:X1><X2><-'~><Xk
and
p(l‘l,l‘g, o ,$k> = Hp(j)(a?])
where (21, 22,...,2) € X. For information in the sense of Shannon,
I(xy,29,...,2k Zl(j) Z( logp(j) ))
7j=1

Hence, for i € N,

i %
k k
Jj=1 j=1
k k ij
‘ Z , <zlezk) H( (”’3))
2142240442k ]71

i1+ig+ o Fip=1

> (legk . ,z’k) ﬁ (_logp(j)(xj))ij

) i1.7i27”'7?k ) Jj=1
i1+t Fip=t

This proves:

Proposition 13 Let X = X} X Xy X -+ X X} be a product of k independent
probability spaces as above. The i-th moment of the information is

k
. k 4 4
MO = IIA4UH 1
( ) Z <i1,i2;~~'vik> j=1 ( )

i1,12,..,0k

inbip o ip=i



Juergensen H., Matthews D.E.: Entropy and Higher Moments of Information 779

For the specific case of ¢ = 1 one finds the well-known additivity of H. For
i =2 and k = 2, one gets

M@ (1) = MP AW 4 2H (X)) H(Xy) + M3 (1),
When X; = X5 this simplifies to
M@ (1) =2M@ (1MW) + 2H (X,)?
and
Varl = 2MP (W) —2H (X)) = 2Var IV,

Applying these results to the k-symbol output behaviour of a memoryless
source S yields the following formule for the moments and variance of informa-
tion in the sense of Shannon.

Corollary 14 Let S = (X, p) be a memoryless source, let k,i € N. Let I* denote
the information measure in the sense of Shannon for S*. Then

k
, k .
MO (kY = M) (11
(%) = Z <i1 io ik) H (1 )
2 T ol

) ill,ig,...,ilk )
i1 Fia+ i =1

and
2
Var I* = M@ (1) - (M‘WI’“)) — kVarI',

The variance of I* is unbounded as k — oo when Var I' > 0.

5 Information Moments of General Sources

Recall that a source
S=({Sr|Te%}, 2

with alphabet X' is a family of finite probability spaces connected by a consis-
tency condition. Just using the formal definitions, one can define the moments
of information and derived parameters like variance and skewness for each of
the spaces St with 7' € ¥. Having all these values is not helpful in general.
Intuitively, the following quantities promise better insights:

1. average per-symbol parameter values;
2. conditional parameter values.

We explain what we mean by this only in words as the technicalities are not
relevant for the rest of this paper. By parameters, we mean moments of informa-
tion, variance and similar quantities derived from the moments. In particular,
entropy, the first moment, is one of the parameters under consideration. Let P
be any such parameter.
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1. By an average per-symbol value of P, we mean the value of

P(Sr)
|T|

for T € .

2. By a conditional value of P, we mean the value of
P(S7/ | Sr)
for TV, T € %.

In particular, one would consider long-term values, that is, these values when
|T| is very large and |T"| is small.

For P = H, the entropy, it is helpful to assume that & is stationary. A
stationary source is completely specified by the probability spaces Sj;) with
t € N. By the additivity property of H and the consistency condition one obtains
expressions for H(Sr) for any T € ¥ and the connection

H (Spr411) = H (St) + H (See1 | S11y) < H (S1a) + H (Ser)

between the conditional and unconditional entropies. Note that this connection
is valid for the information measure H in the sense of Shannon, but not for
information measures in general (see [AD75, ESS98]). It is crucial in the proof
of Theorem 1 to show that the limits

- H(S)4) ,
o G i 150150
exist and are equal. For the information measure H = Hghannon, this limiting
behaviour of both the average per-symbol value and the conditional value justifies
defining the entropy of & as

H(G) = tE%H(St+1 | S[t])

This idea does not generalize to other information measures.

We continue assuming that & is stationary. For T € ¥, let I” denote the ran-
dom variable representing the information content of events of Sy with respect
to some information measure I. With T’ € %, let IT'I7) be the random variable
representing the information content of events of (Sy/ | Sr) with respect to I.

We consider the moments M@ (I7), for i € N, and the variance VarI”. In
particular, when I = Ishannon, then M(l)(IT) is the entropy of the space Sr. In
view of Theorem 1, it seems natural to consider the limiting behaviour of

MO (It and Var I1t]
_— 1
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and of
M(i)(I(tH\[t])) and Var 7¢+UED

as t — oo. Our attempts to prove the existence and equality of the corresponding
limits as suggested by Theorem 1 have been unsuccessful so far. In the example
below we show that the proof method of Theorem 1 is not likely to apply as, when
I = IShannon, not even Var I12] nor M) (1121} satisfy the additivity condition.

We consider the following stationary Markov source & with alphabet X =
{1,2}. As noted before, such a source can be represented by a matrix P and a
vector 7 such that 7P = m. Let

P11 P12
™= (% %) and P =
D2,1 P2,2
such that
3 >p11=p22>0 and pro=1—-p11=p21
and

Hy(p11,1—p11) = —pialogpii —pi2logpi s > (\/5 - 1) log2.

Here H, is the entropy function on As. Hence, Ha(p1,1,1 — p1,1) is the entropy
of the first row of P and

Hy(p1,1,1 —p11) = Ha(p2,1,1 — paj1).

This choice of P is possible as Hy maps As continuously onto the real numbers
between 0 and log 2. Let ¢ = Ha(p1,1,1 —p1,1).

Thus m; is the probability of 7 being the first symbol; p; ; is the probability of
7 being the next symbol given that ¢ was the previous symbol. The probability

of the two-symbol sequence (4, 7) is Z5L.

One computes
M@ (1) = (log 2)2.

As the source is stationary, one has
MO)(12) = MO(1)
and, therefore,
M@ (1YY + M@ (1?) = 2(log 2)°.
One also computes

1 1\?

i=1,2 j=1,2
= (c+log2)? + Var I1?]
> 2(log2)? = M@ (1Y) + M@ (1?).
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Moreover,
VarI2) > 0 = VarI' + VarI*.

This proves that additivity does not hold in general for M and Var, not even
when G is a stationary Markov source. If an analogue of Theorem 1 for higher
information moments holds true at all, its proof cannot rely on the additivity
property; it could, however, rely on the convergence of the sequences of the
underlying probability spaces (S¢y1 | Sj¢)) and [} or the limit of the Cesaro
averages of the latter.

6 Information Moments of Markov Sources

To define the moments of information for a memoryless source with a finite
alphabet one simply uses the standard definition of moments, but specialized to
the case when the random variable is an information measure. For an arbitrary
stationary source, a convincing definition of information can be derived from
Theorem 1; however, this is not necessarily the first moment of a probability
distribution and, moreover, the techniques employed do not lend themselves to
plausible definitions of analoga of higher moments of information. In this section
we focus on stationary Markov sources. For such sources, one can provide a
convincing definition of the higher moments of information.

We assume the reader to be familiar with elementary facts concerning fi-
nite Markov chains. A Markov source (with finite alphabet) is just a finite
Markov chain with states called symbols. Keeping this in mind, the terminology
of Markov chains applies to Markov sources. Let & = ({Sp | T € €}, %) be a
Markov source?. Such a source is conveniently described by a row vector 7 and
a matrix P as follows:

1. 7 is indexed by X, such that

0<7m, <1 and ngzl.
oceX

2. P is indexed by X' x X, such that, for each entry,

0< Poyor <1 and > pogo, = L.
o1ex

The value of 7, is interpreted as the probability of output of & at time 0 being
0. The matrix entry py, s, is the probability p(o1 | o¢) of the next output symbol
being o; given the present one has been oy.

4 We only consider Markov sources with memory size 1. Allowing for a larger memory

size does not make an essential difference apart from leading to a more complicated
notation.
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For n € Ny, let w(n) be the row vector, indexed by X, in which 7(n), is the
probability of o being the output at time n. Then 7(0) = 7 and n(n) = 7P".
We assume that & is stationary; this implies that 7 = 7(n) for all n and, hence,
P = 7. A vector m with this property need not exist for a given matrix P; we
refer the reader to the literature on Markov chains for detailed analyses of this
issue; however, when it exists uniquely it represents lim,,_,o, 7(n).

For the remainder of this section we assume that & is a stationary Markov
source given by m and P. The Markov property implies that

(Stt1 | Spep) = (Sea | Sb)
for all ¢t. By stationarity one has
(Stg1 | Si) = (S1 ] So)-
Therefore, slightly abusing notation,
Jimn (811 | S07) = (81 | So)-

Using the definition of entropy for stationary sources as suggested by Theorem 1,
one finds )
H(S) aog;ezp()(%) p(o1 | 00) - log (1 [90)

which is the first central moment of Shannon information for the source (S | Sp).

As an alternative, one could try to base the definition of H(&) on the other
limit in Theorem 1. Of course, this works; however, in that case, H(&) cannot
be interpreted as an expectation of a given probability space. The obvious limit
to consider is lim; . S[4] or a variant of it modelled as a Cesaro average. Using
these we get H () as the entropy, not a satisfactory solution.

The important observation is: for a stationary Markov source one has a lim-
iting finite probability space on which to base definitions.

Definition 1 Let & be a stationary Markov source with finite alphabet Y. Let
I be an information measure. For i € I, the i-th moment of I of & is the i-th
moment of I on the space (S1 | So).

Given this definition of moments, it is clear how to derive formula for param-
eters like variance or skewness from these. The results of Section 3 apply. A more
detailed analysis would reveal specific properties of the information moments of
stationary Markov sources. We postpone this study to a later time.

7 Moments for Other Kinds of Entropy

There have been many conceptually different definitions of the notion of in-
formation. For a brief survey see [Csi08]. While most definitions are based on
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probability spaces, there have also been attempts to use logical relationships,
expressed in algebraic terms, as a foundation (for example [IU62, Ing65]|; see
also [Gui77]). These definitions result in a general class of information measures
which includes Shannon’s H as a highly significant special case.

In that class one also finds the information measure Hyartiey proposed by
Hartley in 1928 [Har28]. For a finite probability space S = (X, p), let

cs =|{o]oe X plc)>0}|

Then Hyartley (S) = log cg. Note that, like Hshannon, HHartley can be interpreted
as an expectation, albeit in a trivial way, as E Inartiey (0) Where Tharpiey(0) =
logcg for all 0 € X

Variants, intuitively well motivated, of the sets of axioms defining the in-
formation measure Hgpannon lead to the following two parameterized classes of
information measures:

— Aczél’s measure (entropy of degree «)

Egezp(a)a -1
(D) =1) (0g2)*

where a € R, a # 1 and, usually, a > 0.

Hicre(S) =

— Rényi’s measure (entropy of order 3)

(S) = log (Zlge_zﬁp(a)ﬁ)

B

Rényi
where § € Ry and § # 1.

For details see [Acz84, AFN74, AD75, Rén65, Rén61, ESS98, San87|. Both in
Hacze1 and Hgenyi, the denominator achieves the normalization. One proves that

. - o 3 B
olél_,Inl HACZél (S) - élinl HRényi(S) - HShannon(S)
and

gli)r%) ngényi (S) = HHartley (S) .

It is occasionally necessary to deal with the case of cg < | X' | separately.
The measure Hacz¢ can be interpreted as an expectation as follows: Let
p(o)* ' -1

a—1 -1’

1) - 1) - (log 2)

We need to assume that oo # 1. Then

Ifcsai(0) = <(

plo)* ! -1
)" =1) - (log2) ™!

= Hicsa(S)-
cex

Elfce(0) = Y plo)- ((

N[
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The measure Hgenyi cannot be understood as an expectation in such a simple
fashion; it can, however, be obtained in a form which is similar to that of an arith-
metic mean, called a quasiarithmetic mean. Let ¢ be a continuous and strictly
increasing mapping of R U0 into R. Under some well motivated conditions, the

measures Hshannon and Hg are the only functions H satisfying

H(S) = w_l (E w(IShannon(o')))

where, as before, .
IShannon(U) IOg p(O’) .
With Hshannon being a special case of both Haczs1 and Hgenyi, the fact that the
latter have the form of an expectation or a related form suggests to extend our
investigation of the higher moments of information to these more general cases.
We indicate this for the case of information in the sense of Aczél. For i € N,

the i-th moment of I§_,, is given by the formula

czé
i

E (1% (o)) — . p(U)afl_l
(IRcaer(0)) aze:zp( ) ((%)QA B 1) . (log2)_1

Graphs of the first two moments of 1§,
several values of @ and | X'| = 2 are shown in Figures 4, 5 and 6. The corre-
sponding graphs for | X' | = 3 are shown in Figures 7, 8 and 9.

, about the origin and its variance for

8 Final Observations

Taken on its own, information in the statistical sense, being an average, need not
be a sufficient basis for decisions. This statement is independent of the specific
measure of information — be it in the sense of Shannon or Aczél or Rényi or any
other proposed notion of information. In 1983, in the context of cryptography, we
proposed to consider higher moments of information and, in particular, also the
variance of information for a better foundation of assessments of cryptographic
security. In this paper we provide a first systematic investigation of the moments
of information measures.

For information theory, by Theorem 1, stationarity of sources constitutes a
natural boundary for the applicability of methods. We looked for meaningful con-
cepts corresponding to moments in probability theory within this realm, leaving
the notion of information open in general, but focussing on information in the
sense of Shannon, when required.

The basic concepts can be defined as usual as most sources are based on
finite probability spaces. We presented these ideas in the section on memoryless
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sources; obviously, they can can be re-phrased for finite sources of more compli-
cated types. The intriguing outcome of this investigation is that the behaviour
of the moments M(i),, of information — and consequently of derived quantities
like variance and skewness — is highly dependent on the parameters i and n; we
could prove a partial characterization of these dependencies.

For stationary sources in general, the mechanism, which leads to the defi-
nition of their entropy, seems not to be applicable to higher moments. At this
point, we do not have a mathematically well-motivated definition of the higher
moments of information for such sources.

The intermediate case of stationary Markov sources is special. There is a
limit for one of the two sequences of probability spaces considered in the proof
of Theorem 1, though not the other one. Hence, the definition of moments of
information can be based on this limiting probability space. These definitions
are consistent with our intuition.

We have laid some groundwork for the investigation of moments of informa-
tion. To some of the more important problems left open in this paper we have
partial solutions which we hope to complete in the near future.
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Figure 4: The first moment (entropy) of Ig.,. about the origin for different
values of «, when | X'| = 2. The proability distribution is (p1,1 — p1).
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Figure 5: The second moment of IY ., about the origin for different values of «,
when | X' | = 2. The proability distribution is (p1, 1 — p1). Note the scale changes
on the vertical axes.
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Figure 7: The first moment (entropy) of Ig.,, about the origin for different
values of «, when | X'| = 3.
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