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Abstract: The last k days of trading together tell the financial market trends. It may be incon-
ceivable if we are told to ignore the 3rd, 6th, and 8th day, a priori. We introduce a novel approach
to show exactly that — it pays to ignore some fixed days among the recent k days, fixed a priori,
in order to minimize risk and maximize profit simultaneously. The theory developed here has
direct implications to our common senses on how we should look at the financial market trends.
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1 Introduction

Accurate detection of market trends of stocks, interest rates or foreign exchange rates
leads to profitable investments. Millions of investors, professionals and amateurs alike,
rely on common sense, gut feel, or professionally advised market trend indicators. All
methods indiscriminately depend on the past k days of market performance. For exam-
ple, “the market has risen for the last k consecutive days”. Or, “most of the last k days
were rising so that the price curve has intersected with the average curve”, as in the
well known moving average method [Pring, 2002]. A smaller k is more sensitive but
generates more false buy/sell signals; a bigger k is less risky but also less sensitive.

The problem we are interested in is at the meta level for all methods: Instead of
watching all k days, are there patterns that are mathematically more likely to appear in
a bull market, but less likely to appear in a bear market, than other patterns?

Such patterns do exist. We wish to show that it is better to pretend that you did not
see some of the k days, fixed a priori. This way you minimize risk and maximize profit
simultaneously. We will introduce a mathematical theory to justify this counterintuitive
claim, and validate it by experiments. Our theory depends on a remarkable fact that
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there are provably good patterns that are inherently and disproportionally more likely
to appear in the up market sequences but not in the down markets.

Market trends depend on many other factors such as trade volumes, trader psychol-
ogy, political events, weather, or even rumors. These are beyond this research. We will
strip off all such obstructing factors and study the essence of an observation theory of a
time series.

2 Problem simplification, formalization and definition

In order to make precise and clean mathematical statements, we simplify the market
movement to a 0-1 sequence, one bit per day, with 0 meaning market moving down,
and 1 up. Denote S(n, p) to be an n day iid (independent and identically distributed)
sequence where each bit has probability p being 1 and 1 − p being 0. If p > 0.5, it
is an up market; otherwise a down market. Now, the problem is: how do we observe a
sequence S(n, p), not knowing p, and correctly predict p > 0.5 (up market) or p ≤ 0.5
(down market)? For a fixed S(n, p), the sensitivity (risk) of a method is defined as the
probability the method correctly (falsely) predicts p > 0.5 when p > 0.5 (p ≤ 0.5).
A true positive observation potentially leads to a profit. A false positive observation
potentially leads to a loss.

Your brother-in-law Bill might tell you: “If you see eight 1’s in a row, then it is an
up market, buy.” Your professional account manager Pam may have a different advice:
“If you see eight 1’s in the past 11 days (thus the price curve meets the average curve),
the market is turning up. It’s time to buy!” Let’s use I 11

8 to denote Pam’s indicator, and
I8 for Bill’s.

Bill’s I8 is too conservative for S(30, 0.7), with only 39.7% chance to detect this
trend, because 0.397 is the probability 11111111 appears in S(30, 0.7). Pam’s I 11

8 is
certainly more sensitive, but it is much too aggressive with 13.9% chance making a false
positive prediction in a down market S(100, 0.3), as compared to I8’s false positive
rate 0.43% in S(100, 0.3). Can one significantly increase I8’s sensitivity but lower its
risk simultaneously? Our mathematical theory of optimized patterns will answer this
question positively. We will later give one such example with a success rate of 48.5%
in S(30, 0.7) and a false positive rate of 0.32% in S(100, 0.3) simultaneously. In order
to compare methods, we must balance two factors: sensitivity and risk.

Definition 1. Let PA,p and PB,p be the probabilities of two different methods A and
B having a hit in a region S(n, p), respectively. We say A is better than B, denoted by
A � B, if for any p > 0.5,

PA,p

PB,p
× PB,1−p

PA,1−p
≥ 1. (1)

We say A is uniformly better than B with respect to ε > 0, denoted by B < ε A, if

min
0.5+ε≤p≤1−ε

{PA,p

PB,p
} × max

ε≤p≤0.5−ε
{PB,p

PA,p
} ≥ 1. (2)
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According to this definition, any method with higher sensitivity than risk is better than
predicting “buy” all the time which has 100% sensitivity and 100% risk. The definition
can be equivalently expressed by the following game. A player chooses to bet a number
k. He wins k dollars for a correct prediction and loses k dollars for a wrong prediction.
Assume that (1) holds. If A bets after B, then for a fixed p > 0.5, A can always choose
its bet properly to win more money than B in S(n, p) and lose less money than B in
S(n, 1 − p), simultaneously. This cannot be achieved by B even if he bets after A. If
B <ε A, then A can always win more money than B in S(n, 1 − ε ≥ p ≥ 0.5 + ε) and
lose less money than B in S(n, 0.5 − ε ≥ p ≥ ε).

3 The mathematical theory of spaced patterns

Bill’s I8 is to wait for pattern 11111111 to appear in S(n, p). Imagine if there is a super
pattern that is much more sensitive than I8 in S(n, p) when p > 0.5 but not much more
(or even less) sensitive when p < 0.5, our problem would have been solved. Shorten
I8 to I7 = 1111111 certainly will increase sensitivity in S(n, p), but this is for all
p, actually increasing the risk faster. Let us use the notation 11*11*1*111 to denote a
pattern where a “*” represents a day we do not care if it is 0 or 1. This is like we still
use I8, but take 3 days off for vacation. Thus Pam’s I 11

8 is equivalent to looking for any
of the

(
11
8

)
patterns with eight 1’s and three stars.

Since, S(n, p) is an iid sequence, all patterns with eight 1’s and three stars appear in
S(n, p) with equal frequency, which is precisely

∑n−11+1
i=1 p8 = (n− 11 + 1)p8. Bill’s

11111111 even has a bit higher frequency at
∑n−8+1

i=1 p8 = (n−8+1)p8. It seems that
we are not making any progress.

Remarkably, these super patterns indeed exist. A mathematical theory for this has
been introduced for the purpose of homology search programs by Ma, Tromp, and Li
[Ma et al., 2002], and has been recently extensively studied in the field of bioinformat-
ics [Keich et al. 2004, Choi and Zhang, 2003, Buhler et al., 2003, Brejova et al., 2004,
Li et al., 2004, Li et al., 2006], and implemented in PatternHunter and (mega)BLAST
which are supporting thousands of DNA sequence homology search queries daily. The
survey [Brown et al., 2004] contains many more related references. We now extend this
theory to market trend detection.

Even with the same number of 1’s, not all patterns are created equal. This counterin-
tuitive observation of [Ma et al., 2002] have been further studied in [Keich et al. 2004,
Choi and Zhang, 2003, Buhler et al., 2003, Li et al., 2004]. Figure 1 shows the remark-
able sensitivity comparison of 11111111 and the optimal 11*11*1*111 for S(30, p),
where the x-axis is p and the y-axis is the probability the pattern appears in S(30, p).
The probabilities are computed by a recursive formula given in [Keich et al. 2004] in
exponential time. The positions of stars are important. A simple swapping of the second
1 with the next star drastically reduces the sensitivity from 0.5168 for 11*11*1*111 to
0.4915 1*111*1*111 by 2.5%, in S(30, 0.7). The problem of finding the optimal seed
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is NP-hard [Li et al., 2004, Ma and Li, 2007, Li et al., 2006]. It is easy to verify that
I11
8 <0.1 11*11*1*111, as 11*11*1*111 wins the betting game against I 11

8 by betting
4 dollars for each dollar Pam bets. Then 11*11*1*111 always wins more money than
I11
8 in S(n, 1 ≥ p ≥ 0.6) and loses less money than I 11

8 in S(n, 0.4 ≥ p ≥ 0.1). It also
can be verified that 11*11*1*111� 11111111. 11*11*1*111 is the optimal pattern. All
other patterns with eight 1’s and no more than three stars have smaller hit probabilities,
with 11111111 having roughly the smallest probability.

Now we see why both Bill and Pam’s advices are bad, and why we should ignore
the 3rd, 6th, and 8th day.
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Figure 1: Hit probabilities in S(30, p) of I 11
8 , 11*11*1*111, and 11111111.

Pam’s strategy can now be viewed as unnecessarily using all
(
11
8

)
patterns of eight

1’s and three stars. If we select wisely, it is possible to design a combination of two
patterns that achieve significantly higher probability when p > 0.5 and significantly
lower probability when p < 0.5 than 11111111, as shown in Figure 2. 1111*1*1111
and 11*11111*11 combine to have hit probabilities 48.5% in S(30, 0.7) and 0.32% in
S(100, 0.3), as promised earlier.

It is also possible to design optimal combination of more patterns to approach Pam’s
sensitivity while remaining at low risk. Figure 3 shows how 3 optimal patterns ap-
proach the sensitivity of I 9

7 in S(30, p) for p > 0.5 and still remain at significantly
lower risk for p < 0.5. Searching for optimal combination of patterns is also NP-hard
[Li et al., 2004].

Empirical patterns of market behavior have been widely studied and implemented
as computer systems [Pring, 2002, Jobman 1995]. Financial analysts dream of finding
patterns that distinguish up and down markets accurately. Our theory, although for a
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Figure 2: Hit probability of the two weight nine spaced patterns vs one weight 8 con-
secutive pattern in S(30, p). The x-axis is p. The y-axis is hit probability. The left figure
is in logarithmic scale for clearer display.

simplified model, provides mathematically justified good patterns.

4 Experiments

Single indicator systems based solely on market price are inferior to those with mul-
tiple indicators using comprehensive market information including, for example, trade
volumes, seasonal fluctuations, and historical patterns. Nevertheless, the intention for
our two simple experiments here is to demonstrate our theory that gapped obervation is
better than consecutive observation.

We first consider an artificial example. Suppose a market is modeled by a 3-state
hidden markov model described in Figure 4. The UP state represents a raising market
which generates a 1 with 0.7 probability and a 0 with 0.3 probability, independently.
The DOWN state represents a declining market which generates a 1 with 0.3 probabil-
ity and a 0 with 0.7 probability, independently. The EVEN state represents a leveled
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Figure 3: Hit probabilities of 1,2,3 optimal patterns vs I 9
7 .

Table 1: The average of 250 simulations

R # Hits Final MTM Min MTM Max MTM # Bankrupts
I7=1111111 30 12 679 84 719 16

I11
7 15 47 916 76 959 14

5 Spaced Seeds 25 26 984 83 1027 13

market with 1 and 0 at 0.5 probability independently generated. With some low proba-
bility a state transfers to another, as indicated in the transition probabilities in Figure 4.
Let the hidden markov model generate a sequence of 1’s and 0’s of 5000 days, contain-
ing short “even” regions, long “down” regions and slightly longer “up” regions, rep-
resenting a generally upward market. We compare I 11

7 , I7, and 5 random spaced seeds
(111*1*1**11, 1**111*11*1, 11***111*11, 1*11**1*111, 11*111*1**1).We did not
use optimal patterns as it takes too much time to find them. Each strategy starts with
$100 and fixes a bet R. The goal is to maximize mark-to-market (MTM) and minimize
number of bankruptcies simultaneously. For simplicity, every time there is a match, we
buy, and then sell precisely after 5 days. Let W be the number of ones during these 5
days and L = 5−W the number of zeroes. The reward will be R×(W −L). Fixing the
bets, Table 1 averages 250 simulations. The not-even-optimal 5-spaced-seeds strategy
is the clear winner, making more money and having fewer bankruptcies than both I 7

and I11
7 .

The second experiment compares the simple moving average crossover method, I 7,
I9
7 , one optimal spaced seed, and two optimal spaced seeds, using the actual S&P 500

Index data. We chose I 9
7 because I7 is the best performer among the Ik indicators.

Historical data of S&P 500, from Oct 20, 1982 to Feb. 14, 2005 (which is the date when
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Figure 4: The HMM used to generate the market trend sequence.

this experiment was performed) were downloaded from Yahoo.com. A 0-1 sequence
was generated, one bit per day, with 1 at the k-th day if the price at the k-th day is
greater than at the k− 1st day, and 0 otherwise. No other manipulation is performed on
the data. The initial investment is $10,000. All profits are reinvested. Commission costs
and taxes were ignored.

We employ simple and single trading strategies in order to make clean comparisons.
Optimization by combining multiple indicators is not our goal here. For the simple MA
crossover method, we have tested n-day moving averages, for n = 10, 11, . . . , 400.
When n is around 250 (12 months), as also used in [Pring, 2002], the profit is maxi-
mized. We have also tested using k-day averages, for k = 1, 2, 3, ...22. The profit is
maximized when k = 1. For the Ik indicator group, when k > 8 there is no hit (not
trade); as k goes smaller than 7, the results deteriorate; when k = 7, 8 the results are the
best. For the IL

L−2 indicator group, L13
11 is the best policy for S&P 500 index, at $71,000,

but it performed poorly for the NASDAQ index. Since L 13
11 is not as good as simple op-

timal seed anyways, we choose to present I 9
7 in Table 2 because it is a more balanced

indicator. On the other hand, our optimal seeds are unique, taken directly from Figure 3,
and independent of the S&P 500 and NASDAQ market data. For pattern-based meth-
ods, a simple strategy is uniformly applied: buy when a subsequence of 1’s matches the
given pattern(s); and sell when a subsequence of 0’s matches (the ones in) the given pat-
tern(s). We did not do short sales which would further improve the profit. The result is
given in Table 2. The buy-sell pattern for one optimal seed is in Figure 5. Its last buy was
on June 5, 2003 at 990.14. At that point the S&P index had grown 990.14/139.23 = 7.1
times. Our asset had grown 74, 698/10, 000 = 7.47 times. For comparison, trading was
also simulated on the NASDAQ index (downloaded from Yahoo.com), using the same
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Table 2: Comparison of the simple moving average (MA) crossover method with the
spaced seed methods, using the actual S&P 500 index and NASDAQ index data.

Trading Indicators
Trading Details 12 Month I7= 1 Optimal Seed 2 Optimal Seeds

MA crossover I9
7 1111111 111*11*11 111*1*111, 11*1111*1

Initial Investment 10,000 10,000 10,000 10,000 10,000
S&P 500 20-Oct-82: 139.23 to 14-Feb-05: 1206.4

Mark-to-Market 68,923 29,384 32,343 74,689 80,582
# Trades 43 51 3 8 10

# Trades with Profit 12 25 2 7 8
# Trades with Loss 31 26 1 1 2

Avg Gain per $1,000 per trade 29.4 18.8 309.3 210.0 178.8
NASDAQ 2-Jan-85: 353.20; 3-Jan-05: 2152.15

Mark-to-Market 88,436 104,208 110475 111,105 144,496
#Trades 41 73 32 18 22

# Trades with Profit 15 40 19 13 17
# Trades with Loss 26 33 13 5 5

Avg Gain per $1,000 per trade 51.3 24.7 68.6 125.2 126.6

parameters. As the NASDAQ index is more chaotic, we averaged each 2 consecutive
days when the 0-1 sequence is produced.
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Figure 5: The buy-sell points of 111*11*11 on S&P 500 index.

5 Discussion

We have presented and validated a mathematical theory of gapped observation of market
movements. We have shown that some patterns are disproportionally more likely to
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appear in a bull market and less likely in a bear market, ideal for trade indicators. Our
patterns were optimized against the iid sequences and worked reasonably well on the
real data.

One may wonder if one could achieve similar effects by optimizing a function or a
support vector machine. This can be done, based on the same principle of our theory,
as now we know what to optimize. But that’s missing the point. The point here is to
initiate an observation theory study on such real-time-market-decision time series. We
have provided a simple intuitive method for this problem, with a few patterns that can
be used by commonplace traders.

While we have demonstrated that even a simple minded approach works well, the
0-1 market sequence can certainly be generalized. The levels of ups and downs and
can be more accurately modeled. When there is an underlying statistical model of
data, it is possible to optimize patterns relative to the data model [Brejova et al., 2004,
Buhler et al., 2003]. The independence assumption of day-to-day market can be gener-
alized by a hidden markov model [Brejova et al., 2004] to model for example the Friday
effect. Many market trend indicators potentially can be adapted using the gapped obser-
vations. For example, our method tells the weighted moving average which day should
be weighted more. While no method will definitely make money, we have shown that
our gapped observation method, although implemented in a most rudimentary way, does
help to make more money and lose less money. In principle, the theory is adaptable to
other observable time series such as the up and down of the trade volumes. The the-
ory also extends beyond financial market analysis to an observation theory of any time
series.
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