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(Institute for Applied Information Processing and Communications (IAIK)

Graz University of Technology
Inffeldgasse 16a, 8010 Graz, Austria

Franz.Roeck@student.tugraz.at)

Abstract: With the spreading of embedded and mobile devices, public-key cryptography has
become an important feature for securing communication and protecting personal data. However,
the computational requirements of public-key cryptosystems are often beyond the constraints em-
bedded processors are bound to. This is especially true for cryptosystems that make heavy use
of modular exponentiation like the Direct Anonymous Attestation scheme. The most popular al-
gorithm for modular exponentiation is the Montgomery exponentiation based on sliding window
technology. This technology offers several configuration options in order to get the best trade-off
between the amount of precomputations and multiplications that are required for different expo-
nentiation operands. Consequently, the optimum configuration and best parameters for receiving
the highest performance gain are of interest. In this paper, we analyse different approaches for
improving the performance of modular exponentiations with respect to the DAA scheme on Java
enabled platforms. In particular, we analyse the optimal parameter setting for the Montgomery
exponentiation and investigate how natively executed modular multiplications and modular re-
ductions, with respect to a minimum of native code involved, can be integrated to improve the
performance of mobile Java applications. Our experimental results show that the optimal setup
of the Montgomery algorithm for a single modular exponentiation differs from the optimal setup
used for the combination of all operations and operands used in the Direct Anonymous Attesta-
tion scheme. We also show that it is possible to get an immense performance gain by executing
small parts of critical arithmetic operations natively on the platform thereby, not reducing the
flexibility of mobile Java code.
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1 Introduction

Today, nearly every mobile phone is equipped with a Java virtual machine [Yellin,
Lindholm (1999)] which allows the device owner to install and run different appli-
cations over-the-air [Ortiz (2002)]. However, Java bytecode has the drawback to run
slower than optimized C or Assembler code. As many important algorithms used for
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public-key cryptography such as RSA or the Direct Anonymous Attestation [Brickell,
Camenisch, Chen (2004)] scheme rely on computation-intensive arithmetic operations
such as modular exponentiations, this drawback has enormous effects on the execution
speed. The modular exponentiations required for these operations involve very long in-
tegers, typically ranging from 512 to 2048 bits. A modular exponentiation is generally
realized through a sequence of modular multiplications and consumes the majority of
the execution time in inner loops. Improving the performance of these loop operations,
therefore, has a significant impact on the total execution time of public-key cryptosys-
tems.

The most prominent representative of a public-key cryptosystem used in Trusted
Computing is the DAA scheme. This scheme involves many modular exponentiations,
for example, creating a DAA signature requires the host to compute:

Thost = Ttpm ∗ (A ∗ Sw)r1 ∗ Srν̄ mod N (1)

which involves three modular exponentiations and three multiplication with bases typ-
ically ranging up to 2048 bits and exponents ranging from 344 to 2737 bits [Brickell
et al. (2005)]. In addition, the TPM has to compute:

Ttpm = R
rf0
0 ∗ R

rf1
1 ∗ Srν mod N (2)

while on general Trusted Computing (TC) enabled platforms, these computations (2)
are executed inside the TPM, in case of virtual TPMs or mobile trusted modules (MTMs)
[TCG-Mobile-Phone-Working-Group (2007)], [Dietrich and Winter (2009)] these ex-
ponentiations are done solely in software and are, therefore, performed on the platforms
main CPU. According to (1) and (2), the host has to compute six modular exponentia-
tions in total. Consequently, the most efficient implementation and parameter setting of
the long integer modular arithmetic is crucial for the overall computation speed.

The performance of these computations can be improved in different ways. In this
article, we discuss two of them: the first method addresses the used exponentiation algo-
rithm. Many of these algorithms use windowing techniques that involve precomputing
values that are later required for the actual multiplications. Therefore, it is essential
to find the optimal distribution between the number of precomputated values and the
number of modular multiplications in order to get the maximum overall performance.
This distribution depends on the used window size - a larger window means more pre-
computed values and lesser multiplications. However, the optimal window size depends
on the operands and their lengths used for the modular exponention and, therefore,
varies for different cryptosystems. To be more exact, the window size varies for differ-
ent modular exponentiations, depending on their operands, which is also the case when
creating DAA signatures.

A discussion of our results in finding the optimal parameters for the DAA scheme
is given in Section 2.4.

The second method addressed focuses on the Java architecture: Java offers the op-
tion of Just-in-Time (JIT) compilation [Krall (1998)] or Dynamic-Ahead-Compilation
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(DAC). However, these options are not available on many embedded virtual machines
[JSR 139 Process (2004)]. Moreover, specialized operations like modular arithmetics
have a significant performance advantage when implemented specific for a certain plat-
form instead of compiled by a JIT compiler. In order to take advantage of these perfor-
mance gains with respect to the portability of Java applications, only the crucial parts of
the arithmetic computations are moved to the native platform. These operations include
the modular multiplication, modular reduction and squaring operations. The required
modifications to the algorithm implementations and the different options for platform
access from Java are discussed in Section 3. The remainder of this article is organised
as follows: in Section 2, a brief introduction into the modular arithmetic that is used
for our experiments is given. Finally, Section 4 includes a summary and a discussion of
further analysis.

2 Long Integer Arithmetic

Many important public-key cryptosystems, such as RSA or Diffie-Hellman, rely on
modular exponentiation, for example, operations of the form c = m e mod n where
m, e and n are long integer values [Menezes et al. (c1997)]. Although a variety of al-
gorithms for modular exponentiation in literature exist, all of them can be reduced to
modular multiplications, reductions and squarings. Hence, reducing the number of mul-
tiplications and reductions is desirable. The modular multiplication can be achieved in
different ways. One method for achieving efficient reduction is discussed in the follow-
ing Sections.

2.1 Sliding Window Exponentiation

Many exponentiation algorithms use a sliding window technique as discussed by Kaya
Koc [Kaya Koc (1995)].

This technique reduces the average number of multiplications required for exponen-
tiation. It is based on repeated squarings and multiplications but also includes a precom-
putation step. The number of these precomputations depends on the factor k. This factor
denotes the size of our window - the larger the size of k the more precomputation have to
be done and the possibility of fewer multiplications excluding precomputations is given.
However, precomputing values is time consuming and might exceed the performance
gain achieved by reducing the number of multiplications. Consequently, experimenting
with k in order to find the optimal value for certain exponent lengths is recommended.

We have chosen an algorithm with a fixed window size as this kind of algorithms
is one of the most widely used. Moreover, it is one of the fasted algorithm for modular
exponentiation, it is easy to implement and provides a good trade-off between codesize
and performance [Kaya Koc and Acar (1996)]. A comparison with algorithms that use
variable window sizes is out of scope of this paper.
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Algorithm 1 Sliding Window Exponentiation

Require: g, e = (etet−1...e1e0)2 with et = 1, and an integer k ≥ 1.
Ensure: ge

1: Precomputation
2: g1 ⇐ g, g2 ⇐ g2

3: for i = 1 to (2k−1 − 1) do
4: g2i+1 ⇐ g2i−1 ∗ g2

5: end for
6: end Precomputation
7: A ⇐ 1, i ⇐ t

8: while i ≥ 0 do
9: if ei = 0 then

10: A ⇐ A2,i ⇐ i − 1
11: else
12: find the longest bitstring eiei−1...el such that i − l + 1 ≤ k and el = 1, and

do the following:
13: A ⇐ A2i−l+1 ∗ g(eiei−1...el)2

, i ⇐ l − 1
14: end if
15: end while
16: Return (A)

2.2 Montgomery Reduction

The Montgomery Reduction is a very efficient algorithm used for reduction in large
modular multiplications. As shown in Algorithm 2, the reduction is done by calculating
TR−1. By choosing the so called Montgomery residual factor R = bn = 2n, this can
be done very efficiently. Before doing modular multiplications, the factors have to be
initialized by multiplying them with R, so that in the end, after multiplying the final
result with R−1, the Montgomery residual factor cancels out. The Montgomery Reduc-
tion also prohibits the intermediate values arising from multiplications and squarings to
be large.

2.3 Efficient Squaring

For the squaring operations, we have chosen the separated operand scanning method
as recommended in [Kaya Koc (1995)]. Although building the square of a long integer
has an performance advantage over multiplying the value by itself, it can never be more
than twice as fast as a multiplication [Menezes et al. (c1997)].
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Algorithm 2 Montgomery reduction

Input: integers m = (mn−1...m1m0)b with gcd(m, b) = 1, R = bn,m′ = −m−1

mod b, and T = (t2n−1...t1t0)b < mR.
Output: TR−1 mod m

1: A ⇐ T (Notation: A = (a2n−1...a1a0)b)
2: for i = 0 to (n − 1) do
3: ui ⇐ aim

′ mod b

4: A ⇐ A + uimbi

5: end for
6: A ⇐ A/bn

7: if A ≥ m then
8: A ⇐ A − m

9: end if
10: Return(A)

Algorithm 3 Multiple-precision squaring

Input: positive integer x = (xt−1xt−2...x1x0)b

Output: x ∗ x = x2 in radix b representation
1: for i = 0 to (2t − 1) do
2: wi ⇐ 0
3: end for
4: for i = 0 to (t − 1) do
5: (uv)b ⇐ w2i + xi ∗ xi, w2i ⇐ v, c ⇐ u

6: for j = (i + 1) to (t − 1) do
7: (uv)b ⇐ wi+j + 2xj ∗ xi + c, wi+j ⇐ v, c ⇐ u

8: end for
9: wi+t ⇐ u

10: end for
11: Return((w2t−1w2t−2...w1w0)b)

2.4 Results

In this section, an analysis of the performance results of the exponentiation process is
given. A first investigation of a single modular exponentiation revealed the average time
for performing one single modular multiplication and one single squaring operation, as
shown in Table 1. The results stem from the observation of the modular exponentiation
with varying exponents of the coefficient S rν̄ : This exponentiation which requires an
exponent (rν̄ ) of size 2737 bits and a base (S) of a size up to 2048 bits is therefore one
of the largest coefficients in Formula (1). The parameters where chosen according to
the proposed values in the DAA scheme [Brickell et al. (2005)].

The values in Table 1 represent the average results when using a window size of
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multiply square
operations 389 2737

meantime PC 0.17 ms 0.12 ms
meantime ARM9 19 ms 15 ms

Table 1: Performance of a single arithmetic operation

6. By varying the window size, the average performance values change according to
Figure 1. The best performance is given at a windowsize of 7 that are 2 7 = 128 pre-
computations which requires a total time of 625 ms to complete on the ARM9 platform
and about 8.02 ms on the PC platform. (Note that all performance values were created
with a modulus length of 2048 bits.)

Figure 1: Performance values for different windowsizes - single exponentiation

Combining the precomputation, the modular multiplications, reductions and squar-
ings together, we get total time required for one single modular exponention as shown
in Table 2.

PC ARM9
modExp 0.41 s 50.14 s

Table 2: Performance of a single modular exponentiation

However, the measured values are only valid for this specific modular exponentia-
tion with the given parameters. A sequence of modular exponentiations as used in DAA
for creating a signature (1) (2) that involves operands with different base lengths and
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different exponent lengths show a different behavior and therefore require, a different
average window size.

Figure 2 shows the computation speed in relation to the window size for a complete
DAA signature. For creating a DAA signature, an optimum average windowsize of 6 is
the best choice for the modular exponentiations. This setting results in 64 precompu-
tated values per modular exponentiation.

Figure 2: Performance values for different windowsizes - DAA sign

Keep in mind that a complete DAA signature also includes the computation of s n =
rn + c ∗ X for the private parameters X . These private parameters include the private
keys f0, f1, ν and credential parameters e, ν̄ as well as the computation of the hash c =
H(H(H(n‖R0‖R1‖S‖Z‖‖T ‖T̃‖nν)‖nt)‖m) of the system and signature parameters
as well as the the message m. Nevertheless, our investigation revealed that although
these computations have an influence on the overall computation time, they are neglible
when selecting the optimal window size for the exponentiations.

2.4.1 Testequipment

For our experiments, we used an ARM9 based micro processor platform as it is used
in commom mobile phones and a standard PC with a 2.00 GHz Semptorm CPU. The
Java Virtual machines used for our investigations were a SUN Java 1.6 on the PC and a
proprietary VM from SonyEricsson.

3 Java Native Calls

A major performance improvement can be achieved by executing the critical operations
natively on the platform. Java applications are running in a sand-box and, therefore, can
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not execute native code a priori. However, different methods to overcome this constraint
exist. In order to access platform specific functions and equipment, Java offers an inter-
face, the Java native interface (JNI) [SUN Microsystems (1997)] that allows to leave
the virtual machine’s sandbox, execute native code and return to original execution path
of the Java application. Moreover, the interface provides a mechanism to transfer data
to and from the Java application to the native code for processing.

The calls to the native world are associated with a small amount of time overhead
for the native function call itself and the amount of data being transferred. Finding out
how large the costs for native calls exactly are, is rather difficult, as it depends on the
implementation of the JNI in the underlaying virtual machine. A native function call
itself is estimated to be two to three times slower than a pure java function call on a
typical virtual machine [Kesselman (2000)]. Moreover, the transfer overhead depends
on how the transfer is done, as various possibilities how to achieve that exist. A good
advice is to avoid memcopies. Instead of doing a complete copy of the parameters from
the Java heap to the C heap, the native function can also get direct access to the data
inside the Java object heap, which results in an substantial performance-boost compared
to a native call that uses memcopy for data transfer [Kesselman (2000)] (Chapter 9.2.6).
Because of these costs, it is reasonable to reduce the number of native calls as this
overhead could lead to a performance loss. However, in case of complex arithmetic
operations, the time required for the computations outweighs the time required for data
transfer.

Another mechanism to allow Java applications execute native code is to integrate
the code directly into the virtual machine [Sun Microsystems (2002)] where the VM
offers an interface to the native code for applications executed by itself. This technique
is used on many mobile JVMs as it is more lightweight than the JNI framework and
easily portable to different platforms. However, the integration of the native code has to
be provided by the VM manufacturer or the platform vendor.

As discussed in Section 2, modular exponentiations can be reduced to modular mul-
tiplications, reductions and squarings. These operations are the most time consuming
ones when taking the whole exponentiation computation into account. Speeding up
these computations results in a remarkable improvement of the whole operation. In our
approach, we move these computations to the platform’s execution environment. In de-
tail, we now perform multiplications, squarings and reductions on the native platform.
Although the overall number of these operations executed, of course, stays the same
as when executed in pure Java, the performance gain is tremendous. Table 4 gives an
overview of the achieved results.

The speed of a single multiplication or a single squaring executed in native code is
about 3 times faster compared to the same code executed in Java on the PC platform. On
the ARM9 platform, the performance gain is about 5 times. Note that all multiplications
and squarings already include the Montgomery reduction step. Having in mind that Java
on the PC platform uses JIT compilation, the arithmetic operations done in native code
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Java ARM9 native ARM9 JIT Java PC native PC
mult. 19 ms 4 ms 0.165 ms 0.057 ms
squ. 15 ms 3 ms 0.128 ms 0.044 ms

Table 3: Average performance values of a single modular exponentiation with windowsize 6

even outrun the native code generated by the JIT compiler.

Java ARM9 native ARM9 JIT Java PC native PC
Sign 162.63 s 40.36 s 1.34 s 0.47 s

Verify 80.40 s 21.07 s 0.66 s 0.24 s

Table 4: DAA Signature Times

Figure 3: Pure Java and Java native code performance difference of DAA-sign (PC)

3.1 Deployment of the Native Library

The Java virtualization model allows mobile applications to be downloaded and ex-
ecuted more or less independent of the operating system and platform configuration.
However, the involvement of specific platform code violates this assumption and a
method for deploying our native code optimizations is required.

Using the JNI interface, the platform dependent code can be distributed by a sim-
ple mechanism. Java applications are typically deployed by packing the compiled Java
classfiles together in a single archive file, which is then delivered to the target platform.
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This archive file can also contain the native code library. When starting the application,
the library can be extracted and copied to the native filesystem on the target platform
where the JVM is searching for dynamic libraries. After the library has been stored on
the platform, the application gives a command to the JVM to load the library. For the

Figure 4: Pure Java and Java native code performance difference of DAA-sign (ARM9)

k-native interface, the situation is different. As the native code is already on the plat-
form - to be more exact, it resides inside the JVM, the application is not required to
carry the native code by itself. The drawback here is that this option is only available
on specific JVMs. The native optimisations have to be integrated either by the platform
integrator or the JVM vendor. In this case, it is reasonable that the application also car-
ries the required arithmetic implementation in pure java and checks the presence of the
native speedups before execution. If they are not present, the application has to use the
arithmetic implemented in pure Java.

4 Conclusion

In this paper, we analysed two different approaches for optimising and increasing the
performance of the DAA scheme on Java enabled platforms. The first approach ad-
dressed improvements of the modular exponentiation by finding the optimal window
size for sliding window exponentiation algorithms with a fixed windows size.

We have shown that the optimal window size, for the used sliding window tech-
nology, is six for the combination of all modular exponentiations in the DAA signa-
ture and seven for a single modular exponentiation. Although it would be possible to
estimate the optimal window size for each single modular exponentiation of (1), the
management-overhead would increase because one would have to keep track of which
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exponentiation operation is currently executed. Consequently, we suggest to use the
obtained mean-value.

The second approach addressed special features provided by Java. We have shown
that moving the critical operations of a modular exponentiation i.e. modular multi-
plications, squarings and reductions to native functions, results in a performance-gain
thereby providing a good balance between native code and pure Java code.

With a factor of three on the PC and a factor of four on an ARM9 processor, we
could achieve a major performance improvement. However, the ARM9 is relatively
slow compared to the PC, so, the factor of four brings us from 80 seconds for a verifi-
cation down to approximately 20 seconds on this platform, which is already close for a
possible practical use.

Unfortunately, this benefit is limited to platforms and JVMs with native support.
The 40 seconds, which are required for a signature on an ARM9 with native functions,
are still far away from practical use although they are already much better than the
160 seconds required for a signature computed in pure Java. The advantages of the
native functions can not only be used for our DAA-signature, but all cryptography al-
gorithms based on large number exponentiation should be able to reach a remarkable
performance-gain when using native functions for their math operations.

Performance improvements could also be achieved by using dedicated security hard-
ware for the computations which is typically much faster than software implementa-
tions. There are different approaches to investigate because the security hardware could
be the SIM card that is attached to every mobile phone, it could be specific instruction
set extensions [Grobschadl et al. (2007)] that are integrated in the main CPU or it could
be Secure elements either fix attached to the device or removeable as part of an SD card.

Another idea could be to change the cryptographic primitives of the DAA scheme
towards pairing-based cryptography as suggested in [Galbraith and Paterson (2008)].

Consequently, further research in the area of performance improvements for DAA
should focus on the integration of dedicated cryptographic micro controller and im-
proved cryptographic algorithms
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