
On Reliable Platform Configuration Change Reporting
Mechanisms for Trusted Computing Enabled Platforms

Kurt Dietrich
(Institute for Applied Information Processing and Communications (IAIK)

Graz University of Technology
Inffeldgasse 16a, 8010 Graz, Austria

Kurt.Dietrich@iaik.tugraz.at)

Abstract: One of the most important use-cases of Trusted Computing is Remote Attestation. It
allows platforms to get a trustworthy proof of the loaded software and current configuration of
certain remote platforms, thereby enabling them to make decisions about the remote platforms’
trust status. Common concepts like Internet Protocol security or Transport Layer Security make
these decisions based on shared secrets or certificates issued by third parties. Unlike remote at-
testation, these concepts do not take the current configuration or currently loaded software of the
platforms into account. Consequently, combining remote attestation and existing secure channel
concepts can solve the long lasting problem of secure channels that have to rely on insecure chan-
nel endpoints. Although this gap can now be closed by Trusted Computing, one important prob-
lem remains unsolved: A platform’s configuration changes every time new software is loaded.
Consequently, a reliable and in-time method to provide a proof for this configuration change -
especially on multiprocess machines - is required to signal the platforms involved in the com-
munication that a configuration change of the respectively other platform has taken place. Our
research results show that a simple reporting mechanism can be integrated into current Trusted
Platform Modules and Transport Layer Security implementations with a few additional Trusted
Platform Modules commands and a few extensions to the TLS protocol.
Key Words: Trusted computing, platform configuration reporting, secure channels, TLS, Re-
mote Attestation
Category: L.4, K.6.5

1 Introduction

Secure channel technologies - like Transport Layer Security (TLS) - are crucial compo-
nents of many today’s security concepts. This technology is used in many applications
e.g. netbanking, e-commerce, e-government etc.. Modern concepts, like Trusted Com-
puting, can considerably improve the security of these channels by providing reliable
information about the current configuration of the channel’s endpoints.

Many research projects are working to find an answer to the question how TPMs
and Trusted Computing features could be integrated into secure channel technologies
like transport layer security (TLS) or IP security (IPSec). In all these approaches, attes-
tation information of a platform’s configuration is presented to the remote platform and
a secure channel is only established if the platform accepts the attested configuration.
However, this attestation information only contains the configuration changes (i.e. soft-
ware loaded) that have been recorded so far. Once the secure channel is opened, it is

Journal of Universal Computer Science, vol. 16, no. 4 (2010), 507-518
submitted: 10/10/09, accepted: 21/12/09, appeared: 28/2/10 © J.UCS

hard to detect a change in the configuration of a platform by a remote party. Detecting
these changes is important as a platform that passed the attestation process with a valid
configuration could change into a configuration that is not accepted by the host. This
change into an invalid state could be triggered by loading a virus or Trojan Horse that
could do substantial damage to the platform before the connection can be closed.

The common technique to detect such changes is to periodically read the config-
uration from the platform configuration registers (PCRs) or to periodically perform a
TPM Quote operation [TCG 2007]. However, executing a TPM Quote command and
validating the information is time consuming. Depending on the platforms’s policy,
each time a Quote is requested, a new attestation identity key (AIK) has to be created.
To worsen the situation, a newly created AIK also has to be newly certified, which
involves requesting an AIK certificate from a privacy CA.

These steps have to be performed for every newly established secure connection.
When considering the situation on a common platform where multiple processes are
concurrently running and opening channels to remote platforms, the situation is even
worse. Multiple concurrent TLS sessions are active on the same platform, and different
AIKs might be employed for each session. Consequently, each session has to load its
own AIK(s) into the TPM prior to performing a quote operation.

For server platforms that have to handle hundred to thousands of connections at the
same time, this procedure without a doubt leads to a great bottleneck and is, therefore,
not applicable on these platforms. The ongoing loading and un-loading of AIKs also
involves asymmetric cryptography. Another drawback of this technique is the missing
assurance that a platform change is delivered in-time - malicious software could be
loaded on a platform without notice of the local platform. Consequently, a new efficient
mechanism that is able to report configuration changes at the time when they occur and
which can be applied on heavy duty server platforms is required.

In this paper, we discuss two approaches for simple, yet reliable and secure reporting
mechanisms of configuration changes that can easily be integrated into existing trusted
computing enhanced TLS frameworks. We propose to modify the TLS mac computa-
tion [Dierks and Allen 1999] which is used for integrity protection of the transported
data as follows: instead of computing the mac in software on the platform’s CPU, we
propose computing the mac within the TPM. This allows a platform to recognize con-
figuration changes of the remote platform. By integrating the PCR values in the com-
putation of the mac-key, changes in the configuration directly influence the mac-value
of the TLS records. Consequently, the verifying platform can detect these changes and
has - as the computation is performed inside the TPM - a reliable proof of this fact.

In this paper, extensions and alternatives to our previous proposal discussed in
[Dietrich 2008] are presented. We discuss a different method for computing the mac-
key inside the TPM and analyse the advantages and disadvantages of both approaches.
All the proposed approaches are implemented in our proof-of-concept prototypes. Fi-
nally, we give a discussion of the set of commands we integrated in our prototypes.

508 Dietrich K.: On Reliable Platform Configuration Change ...

Throughout the remainder of the article, we use the term trusted channel for Trusted
Computing enhanced secure connections.

The paper is organized as follows: Section 1.1 gives an overview of related work
and additional background information on trusted computing enhanced secure channels.
This is followed by a discussion of our concept in detail in Section 2 and the required
modifications of the TPM and the TLS specification in Section 2.6. Section 2.1 gives an
overview of our second approach for modifying a TPM to support configuration change
reporting including a discussion of additional commands that have been added to the
TPM specification for the second approach. Moreover, we discuss how TPMs can be
modified to support TLS client authentication.

Finally, we give a comparison of both mac-key generation concepts, summarize the
results and give an outlook on future investigations and improvements of the concepts.

1.1 Related Work

A lot of different publications concerning trusted channels exist. Although all of these
publications discuss the integration of Trusted Computing technology into secure chan-
nels, however, none of them address the problem of reporting a configuration change
while a trusted channel is open.

The publication of Goldman et al [Goldman, Perez, Sailer 2006] analyses several
methods of linking server endpoint validation with the TCG’s proposed remote attesta-
tion. They investigate relay attacks where a compromised server might relay a remote
attestation quote from a trusted server to an untrusted one. Furthermore, they introduce
the idea of a platform property certificate that links attestation identity keys to platform
endpoint properties. This approach focuses on virtualized environments and allows fast
endpoint certificate revocation and creation with application dependent security prop-
erties. However, they do not address the problem of state change reporting.

Trusted Network Connect (TNC) is a concept proposed by the TCG which is work-
ing on a reference architecture that focuses on policy enforcement and authentication for
granting network access. The architecture is basically generic and is based on collect-
ing and verifying integrity information of the communication partners. Which integrity
information is actually included is not discussed, as it is part of the policy and depends
on the invoked platforms. Moreover, the framework focuses on policy enforcement and
does not necessarily rely on remote attestation and TPM support. Like Goldman et al,
they do not consider configuration changes while trusted channels are open. Further-
more, they do not address the problem of linking the channels to the certain TPM.

The first approach addressing the report of configuration changes is discussed in
[Gasmi 2007]. The authors propose an implementation that reliably determines the
trustworthiness of the communication endpoints and show how the implementation can
be combined with secure channel technology. In contrast to other proposals, they try
to address the problem of configuration change reporting. They propose to store the
session keys in the trusted computing base and restricting access to them based on

509Dietrich K.: On Reliable Platform Configuration Change ...

the platforms configuration. They add an extra TLS message that notifies the remote
peer about a configuration change. Furthermore, they define an additional TLS exten-
sion (state change extension) that carries the encrypted configuration information. This
information is exchanged between the communication partners in case the configura-
tion changes. However, this approach requires extra messages and extra components to
report the configuration state changes through the secure channel. Moreover, they do
not create this proof inside the TPM and, therefore, do not have an implicit proof of a
change in the TLS protocol.

Stumpf et. al. present a concept that binds a Diffie-Hellman key to a platform con-
figuration [Stumpf 2006]. In their approach, they incorporate a public Diffie-Hellman
key in the TPM Quote as external data. However, their concept is susceptible to relay
attacks as this approach is not resistant to man-in-the-middle attacks during the remote
attestation process and they do not address the problem of configuration change report-
ing.

2 Secure Platform Configuration Change Reporting

In this section, we give a brief summary of our platform configuration reporting ap-
proach as discussed in [Dietrich 2008] which uses a modified message authentication
code calculation process. In common TLS implementations, the data that is sent through
the secure channel is split into separated records. For each of these records, an integrity
protection value is calculated using the record data and a secret key - the mac-key - as
input. The mac-key is only known to the local and the remote platform, which provides
authentication and integrity protection for the transmitted data records. The mac-key
derived by the TLS stack is sent to the TPM that takes the key as input and finally
computes TLSwrite mac final = h(TLSwrite mac

�
PCRhash

�
sν)

1 (see Figure 1).
Every record that is sent to the TPM causes the TPM to re-calculate the mac-key.

The HMAC value of the record is then computed from the mac-key, the record data and
a sequence counter: MACrecord = HMAC(mac key

�
recorddata

�
sequence

number). This process is done on both endpoints, the remote and the local TLS end-
point. Consequently, both endpoints have the same key material and are able to sign and
verify the symmetric signature on the TLS record data.

One can easily see that every change in the platform configuration directly affects
the mac-key and, consequently, the value of the hmac value of the TLS records.

This modified procedure for deriving the mac-key has the following consequences:
In case of a configuration change, a remote platform will not be able to verify the
hmac [Menezes 1997] values created with this key because it still uses the key that was
derived from the previous configuration.

1 Sν is a shared secret between local and remote host that provides a proof that the mac-key
calculation was done inside a TPM. See [Dietrich 2008] for details how this value is exchanged
between the platforms and installed in the TPMs.

510 Dietrich K.: On Reliable Platform Configuration Change ...

Figure 1: hmac Key Derivation

If the hmac cannot be verified, that can mean three things. First, the transmitted
records have been modified during transmission. Second, the configuration of the re-
mote platform has changed since the last received record and third, the hmac computa-
tion was done outside of the TPM.

In these cases, the verifying peer has to react to this event, which means that it can
simply send a TLS alert message and close the connection or renegotiate new session
parameters. If the newly negotiated parameters and the new configuration are valid, the
secure channel remains open, otherwise the channel is closed.

Furthermore, the derivation function includes a shared secret (s ν) that is only known
to the TPM of the sending platform and the TLS stack of the receiving platform. With
this procedure, the sending platform can prove that the mac-key computiation was done
inside its TPM.

2.1 Alternative MAC Key Derivation

In our original approach, we used the mac-key from the standard TLS key derivation
process to further derive the final mac-key inside the TPM. A different approach could
be to perform the common key derivation directly inside the TPM instead of using the

511Dietrich K.: On Reliable Platform Configuration Change ...

output of this function. The TLS specification defines this derivation process as

key = PRF (master secret, ”key expansion”, randomserver + randomclient).

(1)
The mac-key is derived from a master secret (MS) which is derived from a pre-master
secret. Details about this process can be found in [Dierks and Allen 1999]. The session
key and the mac-key material are derived from the MS. The key material is computed
as follows:key = PRF (master secret, ”key expansion”, serverrandom +

clientrandom) where the pseudo random function (PRF) is defined as: PRF (secret,

label, seed) = MD5(Sl, label+ seed)⊕SHA1(Sr, label+ seed). (where Sl denotes
the leftmost bits of the master secret and Sr denotes the rightmost bits of the master
secret).

The TPM could then compute the mac-key via

key =PRF (master secret, ”key expansion”, randomserver + randomclient,

h(PCRx1 ..PCRxn)).

(2)

In this case, the PRF must be modified that way that it includes the hash of the PCR
registers. This could be achieved in two ways: The hash of the PCR registers could
either be computed by

PRF (secret, label, seed, h(PCRs) =MD5(S1

�
label+ seed

�
h(PCRs))⊕

SHA1(S2

�
label+ seed

�
h(PCRs)).

(3)

or

PRF (secret, label, seed, PCRs) =h(MD5(S1

�
label+ seed)⊕

SHA1(S2

�
label+ seed)

�
PCRx1 ...PCRxn

�
sν).

(4)

The first PRF requires the computation of an additional hash operation whereas in the
second PRF the content of the PCRs is hashed together with secret, label and seed. For
our approach, we chose the second approach as it is the easiest one to implement and
requires only one hash calculation to be performed when a PCR is extended.

In contrast to our original approach, we derive and store the session key inside
the TPM. Storing the key obsoletes the requirement of sending the mac-key computed
in the TLS stack to the TPM which reduces the communication overhead as well as
the processing latency when computing the final mac-key. Moreover, we use a counter
inside the TPM to compute the TLS record sequence number. This counter is increased
everytime a new record is sent to the TPM.

Although this approach requires an additional hash engine inside the TPM, we can
benefit from this fact as it allows us to use MD5 based ciphersuites in addition to the
SHA1 based ciphersuites.

512 Dietrich K.: On Reliable Platform Configuration Change ...

PCR 1

PCR 2

.

.

PCR n

TLS record

TPM

hash

SHA1(S2||label+seed)

MAC value

TLS
mac key

Session parameters

s
v

TLS parameters

MD5(S1||label+seed)

PCR extend

trigger

Channel paramters

Seq. number generator

MAC engine

Figure 2: Alternative hmac Key Derivation

2.2 Session Parameter Setup

In this section, the required initialization and setup steps for the TPM and the TLS
stack are discussed. For the first approach, the local TPM requires a TLSwrite mac

which can be obtained from the TLS stack key derivation process. The local TLS
stack, however, requires the initial TPM QUOTE INFO structure and the AIK cer-
tificate from the remote platform. The certificate is required to verify the authentic-
ity of the remote TPM by validating the AIK certificate, whereas TPM QUOTE INFO
contains the current configuration. This configuration information is required by the
stack to compute TLSread mac final. For this calculation, the TLS stack also requires
TLSread mac which can additionally be obtained as described in [Rescorla 2001]. Con-
sequently, TPM QUOTE INFO and the AIK certificate must be exchanged with the
remote platform before TLSwrite mac final and TLSread mac final can be computed.
Moreover, both platforms require a shared secret sν that has to be exchanged before the
hmac computation can start. This is also true for the second approach. Moreover, this
second approach has to initialize the TPM prior starting the TLS session. This requires
the stack to send the master secret, client and server random to the TPM, as well.

513Dietrich K.: On Reliable Platform Configuration Change ...

2.3 Binding the TLS Channels to different Processes

The approach we have discussed in the previous sections focuses on single connec-
tions. On modern platforms, concurrent connections are often used - not only on server
systems. Concurrent connections can be initiated by e.g. different processes within a
single machine with one single TPM or, in virtualized environments, with many differ-
ent virtual TPMs. In any case, an application must not be able to read or use s ν from
a different process under the assumption that the process isolation mechanism of the
underlying operating system works flawlessly.

In order to achieve this access protection, the TPM must provide an authentication
mechanism that can be used by each TLS stack instance. In our approach and proto-
types, we use the standard authentication mechanisms and protocols e,g, OIAP, OSAP
provided by the TPM specification.

2.4 TLS Client Authentication with TPMs

In common client authentication scenarios, the client credentials allowing access, for
example to a company’s VPN, are stored on the platform’s disk where they are sub-
ject to manipulation or even theft. The protection of these credentials solely relies on
the security services and protection mechanisms provided by the platform. Having a
security element like a TPM on the platform, it seems reasonable to use the protection
mechanism provided by TPMs. A simple approach could be using the bind mechanism
of the TPM to bind the credentials to a certain platform state. However, that does not
fully guarantee the nondisclosure of these credentials as they are decrypted and used
in plain for the authentication process - TPMs provide shielded locations and protected
capabilites which can provide a much better protection. Consequently, it is reasonable
to store and use the credentials inside the TPM.

Basically, client authentication in TLS works as follows: During the handshake, the
server requests a certificate from the client. The client sends a Certificate Verify message
including the signature on the hash of the handshake messages sent so-far. The server is
then able to verify the signature with the previously sent certificate and by comparing
the hash value of the client messages recorded by the client with the hash value of the
messages received by the client, thereby authenticating the client.

Instead of creating the signature within the TLS stack, the signature could be cre-
ated inside the TPM, therewith providing a strong protection of the signature key. Al-
though this method can also be achieved with common smart cards, the TPM and its
DRM capabilities offer features for managing these credentials, which is hard to achieve
with smart cards. Assuming a running trusted platform, network administrators could
remotely distribute or delete the client credentials among their managed platforms. Fur-
thermore, the use of the client credentials could be limited to a certain amount of uses
simply by locking them to a monotonic counter. Moreover, authorization to use the
credentials could be bound to a certain platform configuration, thereby preventing a
succesfull connection with invalid configured platforms.

514 Dietrich K.: On Reliable Platform Configuration Change ...

A proof-of-concept implementation of the client authentication commands for
TPMs is discussed in the following paragraph.

2.5 TLS Client Authentication Commands

For our TLS supported client authentication prototype, we added the following com-
mands to the TPM emulator:

– TPM LoadClientAuthKey(TPM KEY HANDLE parent key handle, TPM KEY
tls aut key). This method loads the specified key into the TPM and returns a TPM
KEY HANDLE structure.

– TPM UpdateClientMsg(UINT32 client message size, BYTE[] client message).
This command sends a single hash of a handshake message to the TPM. Con-
sequently, this command is subsequently invoked for every message sent by the
client.

– TPM SignClientMsg(TPM KEY HANDLE tls auth key handle). This command
instructs the TPM to compute the signature over the handshake messages with the
given key addressed by the key handle.

In order to use these commands, the TLS stack has to establish an OIAP session
with the TPM. Furthermore, this approach does not require any modifications of the
verification module of the TLS stack which is responsible for verifying the signature.

2.6 TPM Enhancements

The proposed mac-key computation algorithms require modifications of the current
TPM specification. The TPM has to support a few additional commands which is the
key derivation process as discussed in Section 2 and Section 2.1.

In order to implement our original concept, the TPM has to support the TLSwrite

mac final key derivation process (as discussed in Section 2). The process can easily
be integrated in existing TPM implementations as it only requires two additional hash
calculations. As hash algorithms are available on common TPMs, new cryptographic
algorithms are not required as long as the supported ciphersuites are limited to cipher-
suites that use sha1 for integrity protection.

For our proof-of-concept prototype, we added the commands listed as follows:

– TPM LoadSharedSecret(TPM KEY HANDLE aik key handle, UINT32 encrypted
shared secret size, BYTE[] encrypted shared secret). This command initializes a
new TLS session and downloads the encrypted secret sν from the remote platform
and the handle to the AIK it was encrypted with. The response of the command
is a shared secret of the type TPM KEY HANDLE, a handle to the shared secret
within the TPM.

515Dietrich K.: On Reliable Platform Configuration Change ...

– TPM ComputeMac(TPM KEY HANDLE shared secret handle, UINT32 keySize,
BYTE[] HMAC key, TPM PCR SELECTION pcrs, UINT32 dataSize, BYTE[]
data). This command instructs the TPM to compute the derived mac-key and mac-
value of the provided data, including the shared secret adressed by shared secret
handle. The result of this command is the TPM DIGEST mac-value. When a ses-
sion is closed, the shared secret should be deleted from the TPM.

– TPM ClearSharedSecret(TPM KEY HANDLE shared secret handle) This com-
mand forces the TPM to clear the shared secret adressed by shared secret handle.

For our analysis, we implemented these commands as authorized as well as unau-
thorized commands. However, for a maximum level of security, applications should use
the authorized set of commands.

For our second approach, we additionally implemented the following commands:

– TPM SetSessionParameters(UINT32 master secret size, BYTE[] master secret,
UINT32 client rnd size, BYTE[] client random, UINT32 server rnd size, BYTE[]
server random, UINT32 enc shared secret size, BYTE[] encrypted shared secret,
TPM PCR SELECTION pcrs). This command initialized a new TLS session by
loading the master secret, the shared secret sν , client and server random and the
PCR selection into the TPM. Moreover, this method resets the sequence counter.

– TPM ComputeMac(UINT32 dataSize, BYTE[] data). This method computes and
returns the mac value for the provided data.

3 Discussion

Our experiments showed that both approaches are feasible. However, the second ap-
proach requires some additional modifications of the TPM in comparison with the orig-
inal approach. Moreover, the second approach requires more session specific data and
additional algorithms to be stored inside the TPM. To be more detailed, the differences
are: The TPM has to receive additional key derivation parameters i.e. master secret,
client and server random and has to store it in the TPM every time a new session is
initialized. Moreover, the TPM has to support the modified pseudo random function in-
cluding the additional MD5 hash algorithm. Implementing additional hash algorithms
and a PRF into the TPM reduces the flexibility of the original approach, where most
of the algorithms are implemented in software. This software can easily be replaced
in future TLS implementations when new algorithms are defined in the specifications.
Nevertheless, due to the fewer data that has to be transferred to the TPM, the second
approach has a performance advantage against the first approach.

From the security’s point of view, both approaches provide a high level of security.
All computations are done inside a tamper-proofed device. Moreover, manipulatation of
the session parameters requires authetication which is employed by the TPMs internal

516 Dietrich K.: On Reliable Platform Configuration Change ...

authentication mechanisms and protocols (i.e. OIAP). A modification of the platforms
software configuration results in a modification of one or more PCRs. The final session
keys are derived from the current stage of PCRs, hence, the configuration change is
reflected in the MAC of the TLS records. These records are encrypted so that manipu-
lations are hard to apply. A possible attack could be to modify the encrypted data stream
where an adversary could flip certain bits of the datastream. The attack would result in
a denial of service as the receiving platform would have to reject the incoming packets
and would have to negotiate new session parameters. This attack is not special to our
approach as it is also a threat to current TLS connections. Hardware attacks on TPMs
are not considered in our discussion as they are not part of the TCG’s threat model.

3.1 A Note on Configuration Reporting with Mobile TPMs

Our concept for configuration change reporting is also applicable to mobile TPMs. The
major difference between common TPMs and mobile TPMs (MTMs) is that, depending
on the security features provided by the mobile platform, MTMs can be implemented
only in software [Dietrich and Winter (2009)]. This property makes them an ideal basis
for our approach as the mac computation of the TLS records is a resource demanding
task as all records have to be sent to the TPM prior to mac calculation. This calculation
can efficiently be achieved in software and, therefore, in software based MTMs.

4 Conclusion and Future Work

In this paper, we discussed two alternatives to provide a configuration change reporting
mechanism for trusted computing enabled platforms. Our proposals showed how the
mechanism for protecting TLS records can be used to provide a proof for configuration
changes by calculating the mac inside the TPM. While the first approach is rather easy
to integrate into common TPMs, the second one is more complex but shows a better
runtime performance. Moreover, we proposed a method how a TPM could be used for
TLS client authentication, thereby providing stronger protection of the client credentials
as similar software implementations and without the requirement of additional hardware
like smart cards.

As the TPM specification does not include the required features for this approach
we had to define additional commands and modify existing TPM implementations. Our
concepts are currently available only in software - nevertheless, they provide a valuable
extension to software based TPM implementations. Such implementations include vir-
tual TPMs, like the one used in virtualization techniques like XEN [Williams 2007] or
para-virtualization technologies and mobile TPMs [TCG-MPWG (2007)].

The current prototype only supports the creation of authentication keys inside the
TPM. Future versions could include the installation of externally created authentica-
tion credentials. Moreover, a more sophisticated authentication management than the
existing one could be integrated.

517Dietrich K.: On Reliable Platform Configuration Change ...

References

[Dierks and Allen 1999] T. Dierks and C. Allen, Internet Engineering Task Force,“The TLS Pro-
tocol Version 1.1”, RFC 4346 (Proposed Standard), 1999.

[Dietrich 2008] Kurt Dietrich, “A Secure and Reliable Platform Configuration Change Report-
ing Mechanism for Trusted Computing Enhanced Secure Channels”, International Confer-
ence for Young Computer Scientists, p. 2137-2142, IEEE Computer Society, Los Alamitos,
CA, USA, ISBN: 978-0-7695-3398-8, 2008

[Dietrich and Winter (2009)] Dietrich, K., Winter, J.: “Implementation aspects of mobile and
embedded trusted computing.”; L. Chen, C. J. Mitchell, A. Martin, eds., TRUST; volume
5471 of Lecture Notes in Computer Science; 29–44; Springer, 2009.

[Galbraith and Paterson (2008)] Galbraith, S. D., Paterson, K. G., eds.: Pairing-Based Cryptog-
raphy - Pairing 2008, Second International Conference, Egham, UK, September 1-3, 2008.
Proceedings; volume 5209 of Lecture Notes in Computer Science; Springer, 2008.

[Gasmi 2007] Yacine Gasmi and Ahmad-Reza Sadeghi and Patrick Stewin and Martin Unger and
N. Asokan, “Beyond secure channels”, STC ’07: Proceedings of the 2007 ACM workshop
on Scalable trusted computing, pages 30–40, 2007

[Goldman, Perez, Sailer 2006] Kenneth Goldman and Ronald Perez and Reiner Sailer, “Link-
ing remote attestation to secure tunnel endpoints”, STC ’06: Proceedings of the first ACM
workshop on Scalable trusted computing, pages 21–24, 2006

[JSR 139 Process (2004)] SUN Community Process JSR 139: “J2ME(TM) Connected Limited
Device Configuration (CLDC) Specification 1.1 Final Release”; Specification available at:
http://jcp.org/aboutJava/communityprocess/final/jsr139/index.html (2004).

[Kesselman (2000)] Kesselman, S. J.: Java Platform Performance: Strategies and Tactics; Addi-
son Wesley, 2000.

[Krall (1998)] Krall, A.: “Efficient javavm just-in-time compilation”; International Conference
on Parallel Architectures and Compilation Techniques; 205–212; 1998.

[Menezes 1997] Menezes, A. J. , Van Oorschot, P. C., Vanstone, S. A.: Handbook of applied
cryptography; CRC Press series on discrete mathematics and its applications; CRC Press,
Boca Raton, c1997; includes bibliographical references (p. 703-754) and index.

[Ortiz (2002)] Ortiz, E.: “Introduction to ota application provisioning”; Tech-
nical report; SUN Developer Network (2002); article available at:
http://developers.sun.com/mobility/midp/articles/ota/.

[Rescorla 2001] Eric Rescorla, “SSL and TLS: designing and building secure systems”,Addison-
Wesley, ISBN:0201615983, 2001

[Stumpf 2006] F. Stumpf and O. Tafreschi and P. Röder and C. Eckert, “A Robust Integrity Re-
porting Protocol for Remote Attestation”, Second Workshop on Advances in Trusted Com-
puting (WATC ’06 Fall), Tokyo, 2006

[SUN Microsystems (1997)] SUN Microsystems: “Java Native Interface Specification”; Avail-
able online at: http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/jniTOC.html (1997).

[Sun Microsystems (2002)] Sun Microsystems: “K Native Interface (KNI)”; Technical report;
4150 Network Circle Santa Clara, California 95054 (2002).

[TCG-MPWG (2007)] TCG-Mobile-Phone-Working-Group: “TCG Mobile Trusted
Module Sepecification Version 1 rev. 1.0”; Specification available online at:
https://www.trustedcomputinggroup.org/specs/mobilephone/tcg-mobile-trusted-modul
e-1.0.pdf (2007).

[TCG 2007] Trusted Computing Group - TPM Working Group “TPM 1.2
Main Specification - Part 3 Commands”, Specification available online at:
https://www.trustedcomputinggroup.org/specs/TPM/mainP3Commandsrev103.zip, 2007

[Yellin, Lindholm (1999)] Yellin Frank, Lindholm Tim: “The Java Vir-
tual Machine Specification Second Edition”, Available online at:
http://java.sun.com/docs/books/jvms/second edition/html/VMSpecTOC.doc.html (1999).

[Williams 2007] David E. Williams and Juan R. Garcia, “Virtualization with Xen: including Xe-
nEnterprise, XenServer, and XenExpress”, Syngress, ISBN:9781597491679, 2007

518 Dietrich K.: On Reliable Platform Configuration Change ...

