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Abstract: Mobile agent technology advocates the mobility of code rather than the
transfer of data. As data is found in several sites, a mobile agent has to plan an
itinerary to visit several sites where it collects resources to accomplish its mission. This
gives rise to the mobile-agent itinerary problem (MIP) which seeks a route maximizing
overall benefit from the resources while meeting a deadline. This paper formalizes MIP
and develops a reduction to the resource constrained longest-path problem (CLPP) in
acyclic graphs. A dynamic programming (DP) algorithm was designed to produce a
family of optimal routes, allowing a mobile agent to dynamically revise its route. A
fully-polynomial approximation scheme was developed to reduce the pseudo-polynomial
running time of DP, whereby the distance to the optimal is controlled by a parameter
ε and the running time is limited by a polynomial on problem size and 1/ε. The
paper reports results from experiments assessing the performance of the algorithms
and discusses extensions to handle non-additive objectives, non-additive constraints,
and probabilistic resource constraints.

Key Words: mobile agents, constrained routing, constrained longest-path, dynamic
programming, approximation algorithms

Category: F.2.2, G.2.2, I.2.11

1 Introduction

The Internet has grown to become the world’s largest repository of information
and communication media for millions of people [Kotz and Gray 1999]. Countless
companies rely on the Internet to conduct business, including financial markets,
the entertainment industry, and the services industry to name a few. Today,
information is dynamic, distributed over the network, and its access varies in
time and space. To this end, the mobile agent technology advocates the mobility
of code rather than data to cope with large volumes of data and discontinuous
network connections.

A mobile agent is not bound to the system on which it begins its execu-
tion, being free to reach other hosts in the network [Lange and Oshima 1998]. A
mobile agent is defined as a self-contained piece of software responsible for the
execution of a task. It can transport its code (the static part) and state (the
dynamic and time-varying part) to another environment. The state contains all
of the necessary information and variable values that enable the agent to resume
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its execution. According to [Lange and Oshima 1999], the motivation for agent
mobility is not the technology itself but rather the benefits agents offer for creat-
ing and operating distributed systems. They list seven reasons for using mobile
agents, in particular: they overcome network latency, reduce network load, and
are naturally heterogeneous.

In typical applications, a mobile agent visits several hosts in a network to
complete a task, the so-called agencies [Erfurth and Rossak 2003]. Agencies are
dedicated platforms that provide information, from local sensors and data repos-
itories, and also offer services such as specialized algorithms, computational fa-
cilities, and environments for inter-agent communication. As services and infor-
mation necessary to accomplish a task are available at several sites, in differ-
ent forms, levels of accuracy, and reliabilities, a mobile agent has to plan an
itinerary to visit the agencies. Mobile agents should be able to compute and
revise itineraries in response to the dynamic behavior of modern networks, and
change of information and state of agencies. Itinerary computation is not a sin-
gle, but rather an evolving family of problems that are somewhat dependent on
the target application.

[Brewington et al. 1999] present a distributed system for information retrieval
in which a mobile agent visits a sequence of machines until the requested infor-
mation is found. Each machine takes a given time to process the agent’s task
and has a probability of being successful, namely a probability of retrieving
the desired information. There are travel times from one machine to another.
Itinerary computation consists in finding a route that minimizes the expected
travel time to complete the task. As itinerary computation underlies the traveling
salesman problem, these authors propose simplifications that allow the design of
polynomial-time dynamic programming algorithms.

[Erfurth and Rossak 2003] propose a framework for itinerary computation
under uncertainty. Given a general task, a mobile agent consults service maps and
assembles a list of sites to visit in order to complete its task. The agent produces
an itinerary by solving shortest-path and traveling-salesman problems that may
visit remote sites. Because the maps on the remote sites can be outdated and
imprecise, the agent solves the problem approximately with heuristics and revises
the itinerary as it travels through the network.

[Wu et al. 2004] address the routing of mobile agents to fuse data in dis-
tributed sensor networks. Rather than concentrating sensor signals at a single
point, a mobile agent traverses the network incrementally fusing data until a level
of accuracy is reached. The authors consider the energy consumption at the sen-
sor nodes, the path loss associated with data transmission between nodes, and
the signal energy which is proportional to the energy emitted by the target. The
authors develop an analytic expression for each of these three criteria as a func-
tion of the nodes and the order in which they are visited. The routing problem is
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cast as a combinatorial path problem that, in a single objective, maximizes signal
energy while minimizing path loss and energy consumption. A genetic algorithm
is proposed to circumvent the computational hardness of the problem.

[Rech et al. 2005, Rech et al. 2006] focus on the computation of an itinerary
to enable an agent to achieve its mission while respecting a time deadline. The
mission is characterized by a subset of resources that the agent should collect
from the network servers while respecting a partial order. Resource is an ab-
stract concept that could mean processing capacity, a data base, and a device,
among other things. The network servers provide resources of varying kinds
and qualities, giving rise to the problem of deciding which servers and the or-
der in which they should be visited to maximize mission quality, but without
violating the deadline. These authors state an itinerary computation problem
and propose some heuristics. Applications of their framework are found in the
electric-power grid, in which a mobile agent performs fault diagnosis by collect-
ing data from geographically distributed sites and running a decision-making
engine [Tolbert et al. 2001].

This paper is related to the mobile agent framework of [Rech et al. 2005].
Specifically, it contributes to mobile agent technology by developing a graph-
theoretic model for itinerary computation under time constraints that enables
the design of provably optimal, dynamic-programming (DP) algorithms and ap-
proximation algorithms. Section 2 formally states the mobile-agent itinerary
problem (MIP) and gives a reformulation as a (resource) constrained longest-
path problem (CLPP). Section 3 briefly discusses algorithms for CLPP and
presents a dual, reverse tree, dynamic-programming algorithm which allows a
mobile agent to dynamically adapt to stochastic variations on travel and pro-
cessing time. Section 4 reports results from computational experiments designed
to assess the performance of the DP and approximation algorithms. Section
5 outlines a number of extensions from this work, including the treatment of
non-additive objective functions, non-additive constraints, and probabilistic con-
straints. Section 6 gives a summary of the paper.

2 Mobile Agent Routing with Time Constraints

2.1 Problem Set-Up

The mobile agent framework from [Rech et al. 2005] is based on a computational
system consisting of a set N of nodes and a set R of resources. Each node i ∈ N

provides a subset Ri ⊆ R of resources. The illustrative scenario given in Fig. 1
has N = {n0, n1, . . . , n6} and R = {r0, r1, . . . , r8}. Node n0 and resource r0 are
dummy objects not appearing in the figure which will be discussed later. Notice
that resource r1 appears in more than one node, r1 ∈ Rn1 and r1 ∈ Rn3 , whereas
resource r8 is available only at node 5, r8 ∈ Rn5 .
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Communication Network

r1, r2 r3, r4 r1 r5, r6 r7, r8 r3

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

Figure 1: Resources provided by the computational system of the sample sce-
nario. Source: [Rech et al. 2005].

Each mobile agent has a mission M defining the resources and the sequence
in which they should be collected to accomplish its task. A benefit function
b : R × N × R+ → R+ determines how each resource r ∈ R contributes to
the mission depending on the node and time usage. The resource diagram of a
mission M is modeled by a UML activity diagram defining the resources and the
order in which they must be used (precedence relations). Resources other than
those appearing in the resource diagram or otherwise disrespecting the order
add no value to the mission.

The agent starts its mission at a dummy node labeled n0 where only a dummy
resource r0 is avaliable. Sometimes these dummy objects will be omitted from
diagrams and formulas to simplify notation. The resource diagram of mission
M in the illustrative scenario appears in Fig. 2. Notice that the agent uses
the dummy resource r0 first. Then it uses resources r1 and r2 in this order.
The stereotype 〈〈variable〉〉 means that the benefit from using resource r1 varies
according to time usage. The agent has to use resources r3 and r4, in this order,
and resource r5. The diagram does not show any precedence between r5 and the
other two resources, so r5 may be used before r3, in between r3 and r4, or after
r4. However, these three resources must be used before the agent uses resource
r6. After r6, the agent is free to use or discard the optional resources r7 and r8.
The final resource is r0 which forces the agent to return to its origin.

Given N , R, and the resource diagram, the node diagram of a mission M is
obtained by replacing each resource in the resource diagram by the nodes where
it is found in the computational system. The resulting diagram is a UML activity
diagram. Fig. 3 depicts the node diagram for mission M of the sample scenario.

As resources are found in different nodes with potentially different benefits,
the problem rests on computing an itinerary for the mobile agent to collect re-
sources according to the resource diagram that maximizes the cumulative ben-
efit, while meeting a time deadline d. An itinerary I defines the sequence of
nodes visited by the mobile agent and the resources used in each one of the
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Figure 2: Resource diagram of mission M . Source: [Rech et al. 2005].

them. Formally, an itinerary I = 〈(i1, k1, t1), (i2, k2, t2), . . .〉 gives a sequence of
nodes, resources to be used, and time spent at each node. For the illustrative
example, a feasible itinerary is I = 〈(n1, r1, tn1r1), (n1, r2, tn1r2), (n2, r3, tn2r3),
(n2, r4, tn2r4), (n4, r5, tn4r5), (n4, r6, tn4r6), (n5, r8, tn5r8)〉 which traces a path in
the resource diagram (Fig. 2) that is compatible with the node diagram (Fig.
3). tir is the processing time for maximum benefit of resource r at node i. An
itinerary does not necessarily traverse all nodes, but some nodes may be visited
more than once. Notice that the itinerary does not include the dummy node n0
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at which the agent’s mission starts and finishes.
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Figure 3: Node diagram of mission M . Source: [Rech et al. 2005].

The execution of a mission M corresponds to an aperiodic activity that occurs
sporadically. The processing time of a mission is a direct function of its itinerary,
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accounting for the network latency lij for the agent to migrate from a node i to j

and the time tir for maximum benefit of resource r at node i. A normal resource
r adds the total benefit bir if the agent stays at i for a time equal to or greater
than tir. On the other hand, a variable resource r adds a benefit proportional
to the visit time t given by bir min(t/tir, 1). The deadline d determines the time
by which the agent should finish its mission. In the illustrative scenario, the
latencies are all unitary including node n0 and the benefits are given in Tab. 1.
As the illustrative itinerary consumes ln0n1 + ln1n2 + ln2n4 + ln4n5 + ln5n0 = 5
time units in latency and tn1r1 + tn1r2 + tn2r3 + tn2r4 + tn4r5 + tn4r6 + tn5r8 =
10+2+7+2+8+5+3 = 37 to use resources, the total time to finalize the mission
is t(I) = 42 which induces a total benefit b(I) = 10 + 3 + 3 + 7 + 5 + 3 + 8 = 39.

Table 1: Time required and benefit induced by resources.

Resource Node Benefit Time Resource Node Benefit Time
(rk) (ni) (bnirk

) (tnirk
) (rk) (ni) (bnirk

) (tnirk
)

r1 n1 10 10 r4 n2 7 2
r1 n3 10 10 r5 n4 5 8
r2 n1 3 2 r6 n4 3 5
r3 n2 3 7 r7 n5 6 7
r3 n6 3 7 r8 n5 8 3

Having introduced the notation, the mobile-agent itinerary problem (MIP)
consists in finding a feasible itinerary that maximizes the cumulative benefit
while meeting the time deadline. By a feasible itinerary we mean a node-resource-
usage sequence I that uses resources as defined by the resource diagram and visits
the nodes where they are found. The expressions:

b(I) =
∑
ij∈I

{bijkj min(1, �tj/tijkj�) : kj is not variable} (1a)

+
∑
ij∈I

{bijkj min(1, tj/tijkj ) : kj is variable}

t(I) = ln0i1 +
|I|−1∑
j=1

lijij+1 + li|I|n0 +
|I|∑

j=1

tj (1b)

give the total benefit and the mission time. Formally, the problem is cast as:

MIP : Maximize b(I)

S.to: t(I) ≤ d

I is feasible
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The notation and problem formulation presented heretofore are contributions
of this paper. It formalizes the somewhat imprecise problem statement and so-
lution definition put forward in [Rech et al. 2005, Rech 2006]. For instance, the
itinerary was given only by the node sequence which is not sufficient to fully
represent a solution.

MIP is an NP-Hard problem since the standard knapsack problem is reducible
to MIP in polynomial time and size [Garey and Johnson 1979, Shima 2006]. Con-
sider a knapsack problem of capacity b with n items, each with a weight wj and
value aj . It suffices to associate each item j with a node nj and a resource rj :
R = {rj : j = 1, . . . , n}, N = {nj : j = 1, . . . , n}, and Rj = {rj}. The benefit of
resource rj is bnjrj = aj and its processing time at nj is tnjrj = aj . By defining
the resource diagram as a sequence optionally visiting each node, the latencies
lij = 0, and the deadline d = b, a solution to MIP yields the solution to the
knapsack problem.

2.2 Heuristics for the Mobile-Agent Itinerary Problem

Owing to the computational hardness of the mobile-agent itinerary problem,
MIP, a few heuristics appeared in the literature to produce approximate solu-
tions [Rech et al. 2005, Rech et al. 2006, Rech 2006]. Brief descriptions of these
heuristics follow below.

Lazy Heuristic: it seeks for the quickest route by ignoring resource benefits.
Resources with stereotype 〈〈variable〉〉 are executed as quickly as possible.
The branch of smallest execution time is chosen whenever there are alterna-
tives. The mobile agent transfers itself to the closest node only if the current
node does not support the resource needed at the moment.

Greedy Heuristic: its behavior is the opposite of the lazy heuristic, choosing
always the alternative that offers the greatest benefit regardless of the exe-
cution time. Resources labeled with stereotype 〈〈variable〉〉 are executed to
maximum benefit and when a resource is not available at the current node
the mobile agent migrates to nearest node that offers the resource.

Random Heuristic: when a resource required according to the resource dia-
gram is not available at the current node, the agent chooses the next node
at random. Resources with variable benefit are utilized for a random time.

Highest Density Heuristic: when there is a choice of the next benefit to be
collected, the mobile agent chooses the pair benefit-node with the highest
ratio benefit to execution time, the so-called density. Suppose the current
node is ni. The density of a resource rk available at a node nj is defined by
dbnjrk

= bnjrk
/(tnjrk

+ lninj ) where bnjrk
is the benefit induced by resource
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rk when processed at node nj for a time tnjrk
. To decide upon utilizing

optional resources, the mobile agent keeps track of the mean value db of
densities observed thus far and collects an optional resource rk at a node nj

only if dbnjrk
≥ db.

Clock Versions: the heuristics above can be augmented to decide upon the
execution of optional resources based on the time remaining until the dead-
line. Optional resources are collected only if the remaining time is greater
than the time required to collect the mandatory resources, including the time
necessary to move from one node to another. Except for the lazy heuristic,
clock versions can be devised for all of the other heuristics.

The descriptions above serve as guidelines for implementing heuristics. There are
several ways of designing heuristics, combining them with local improvement pro-
cedures, and even resorting to meta-heuristics [Glover and Kochenberger 2003].
Regardless of the arrangement of such heuristics, they can fail to find a feasi-
ble let alone an optimal itinerary even in simple instances of MIP. The baseline
heuristics (without clock) yielded the itineraries given in Tab. 2 for the sample
instance. The baseline heuristics are insensitive to a time deadline.

Table 2: Itineraries computed by baseline heuristics.

Heuristic Itinerary (I) t(I) b(I)
Lazy 〈(n1, r1, 0), (n1, r2, tn1r2), (n6, r3, tn6r3), (n2, r4, tn2r4),

(n4, r5, tn4r5), (n4, r6, tn4r6)〉 29 21
Greedy 〈(n1, r1, tn1r1), (n1, r2, tn1r2), (n4, r5, tn4r5), (n6, r3, tn6r3),

(n2, r4, tn2r4), (n4, r6, tn4r6), (n5, r7, tn5r7), (n5, r8, tn5r8)〉 51 45
Random 〈(n3, r1, 10), (n1, r2, tn1,r2), (n4, r5, tn4r5), (n2, r3, tn2r3),

(n2, r4, tn2,r4), (n4, r6, tn4r6), (n5, r7, tn5r7)〉 48 37
Density 〈(n1, r1, tn1r1), (n1, r2, tn1r2), (n4, r5, tn4r5), (n2, r3, tn2r3),

(n2, r4, tn2r4), (n4, r6, tn4r6), (n5, r8, tn5r8)〉 43 39

2.3 Routing as a (Resource) Constrained Longest-Path Problem

Here, we show that the mobile-agent itinerary problem is reducible to the (re-
source) constrained longest-path problem by generating a suitable, acyclic mis-
sion graph. This enables us to develop effective dynamic-programming (DP)
algorithms that yield provably optimal itineraries for a range of time deadlines
(constraints) and DP-based approximation algorithms that trade-off computa-
tional time and solution quality. Further, these algorithms can handle benefits
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and execution times modeled as random variables, as well as additive and non-
additive (min-max) constraints and objectives. The reduction is presented in a
somewhat informal manner by illustrating its principles in the sample instance.

Fig. 4 depicts the mission graph G = (V, E) for the sample instance given
by the resource diagram of Fig. 2, the node diagram of Fig. 3, and the pa-
rameters from Tab. 1. The nodes are not uniquely labeled to keep the pre-
sentation intuitive. The principles of the reduction rest on representing each
node ni of the node diagram by two nodes, ni and n′

i, and an arc (ni, n
′
i)

to which is associated a benefit bnirj for using resource rj at this node dur-
ing a time tnirj . So, the agent is effectively using resource rj when travers-
ing arc (ni, n

′
i). Since the mission graph is acyclic, MIP can be cast as a re-

source constrained shortest-path problem by taking the arc costs as the negative
of their benefits [Ziegelmann 2001, Xiao et al. 2005, Shima 2006]. Good previ-
ous work on the constrained shortest-path problem is done by [Joksch 1966],
[Handler and Zang 1980], [Beasley and Christofides 1989], [Mehlhorn and Ziegel-
mann 2000]. Let us explain the structure of the mission graph for the sample
instance:

1. Starting from node n0, the mobile agent may move to node n1 or node n3

to collect the variable resource r1. Either way, the agent collects no benefit
in the migration but spends 1 unit of time as modeled by the pair (0, 1)
associated with the arcs (n0, n1) and (n0, n3).

2. At node n1 (equivalently at n3), the agent can use resource r1 from 0 to 10
time units and accumulate a proportional benefit as it moves from node n1

to n′
1. The graph presents only three of these options, namely the arc (0, 0)

with the decision of not using resource r1, the arc (5, 5) in which case the
agent uses r1 for 5 time units, and the arc (10, 10) with maximum benefit.

3. Resource r2 is only available at node n1, so if the agent is already at node
n1 it spends no time transferring to n1 as represented by the arcs with label
(0, 0) from n′

1 to n1. On the other hand, if the agent is at node n3, it spends
one time unit and receives no benefit to move from n3 to n1, which is modeled
by the arcs (n′

3, n1) with label (0, 1). At node n1, the agent has no choice
but to collect the resource r2 which takes 2 units of time and accrues 3 units
of benefit. This is modeled by arc (n1, n

′
1).

4. At node n1, the mobile agent should collect resources r3, r4, and r5. Resource
r3 should be collected before r4, but r5 can be obtained before r3, in between
r3 and r4, or after r4. The agent can move to node n2 or n6 to collect resource
r3, or move to node n4 to collect resource r5. Any of these moves accrues no
benefit but takes 1 unit of time.

Suppose the agent moves to node n4 to collect resource r5, which accrues a
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Figure 4: Mission graph for the sample instance.
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benefit of 5 and consumes 8 units of time as modeled by arc (n4, n
′
4). The

agent then has to collect resource r3 by moving to either node n2 or n6, two
options that appear in the graph. After collecting resource r3, which accrues
3 units of benefit and takes 7 units of time in either node, the agent remains
at or moves to node n2 to collect resource r4.

The other two options, where the agent collects resource r5 in between r3

and r4 or after r4, are also covered in the mission graph.

5. In the same manner, one can verify that the mission graph represents the
different ways of collecting the remaining resources: r6, r7 (optional), and r8

(optional). The terminal node of the graph is n0.

Clearly, an itinerary for the mobile agent to accomplish the mission is one-to-
one related to a path from the top node n0 (source) to the bottom node n0 (sink).
Given a deadline d, the problem consists in finding a longest-path from the source
to the sink that does not consume more time than d. Or, equivalently, a shortest-
path in the same graph but with negative benefits. A path from source to sink
uniquely defines a sequence of nodes, resources, and time usages that make up an
itinerary for the mobile agent. For instance, the leftmost path in Fig. 4 yields the
itinerary I = 〈(n1, r1, 0), (n1, r2, 2), (n2, r3, 7), (n2, r4, 2), (n4, r5, 8), (n4, r6, 5),
(n5, r8, 3), (n5, r7, 7)〉, where t(I) = 39 and b(I) = 35.

A relative simple algorithm can be implemented to generate the mission-
graph from the resource diagram, node diagram, and problem parameters. Such
algorithm would combine a breadth-first search with a combination-generation
procedure, which would handle the processing of resources that are not related
by precedence constraints, such as r5 and the set {r3, r4} in Fig. 2. The computa-
tional complexity of the mission-graph generation algorithm is a direct function
of the number of resources that can be processed in any order. Thus, mission-
graph generation and itinerary computation via constrained longest-path are
only effective if the number of parallel activities are relatively small.

3 Algorithms for the Constrained Longest-Path Problem

The focus here is on the modeling and design of algorithms for the constrained
longest-path problem as a means to solve the mobile-agent itinerary problem. In
the presence of only one resource constraint, the (resource) constrained longest-
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path problem is cast in mathematical programming as:

P : Max
∑

(i,j)∈E

bijxij (2a)

S.to :
∑

(i,j)∈E

rijxij ≤ r (2b)

∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji =

⎧⎨
⎩

1, if i = s

0, if i ∈ V − {s, t}
−1, if i = t

(2c)

xij ∈ {0, 1}, ∀(i, j) ∈ E (2d)

where: G = (V, E) is a directed graph; bij ∈ Z+ is the benefit of traversing arc
(i, j); xij is a decision variable that takes on value 1 if (i, j) is part of the longest
path, otherwise it takes on value 0; rij is the resource consumption to move along
arc (i, j) where rij ∈ Z+; r is the amount of resource available; s is the source
node; and t is the sink or destination node. An illustrative instance of CLPP
appears in Fig. 5, where each arc (i, j) is labeled with the benefit and resource-
consumption pair (bij , rij) and the available resource is r = 11. For applications
to the mobile-agent itinerary problem and the development of algorithms, G is
assumed to be acyclic. Further, V = {1, . . . , n}, the source is s = 1, the sink
is t = n, and the vertices are numbered according to a topological order of G,
meaning that i < j if there exists a path from i to j.

(2, 3)

(2, 3)
(1, 2)

(1, 2)

(2, 1) (4, 1)

(bij , rij) = (4, 1)

(1, 3)(1, 3)

(1, 4)

(2, 2)

(4, 2)

(3, 1) (3, 1)

(0, 0)

sinksource 1

2

3

4

5

6

7

8

9

10

Figure 5: Illustrative instance of the constrained longest-path problem, where
the resource available is r = 11.

3.1 Dynamic Programming Algorithm

Dynamic programming is a powerful technique for solving sequential decision-
making problems, often encountered in control engineering and computer science
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[Bertsekas 1995, Cormen et al. 2001]. It breaks up the problem into a sequence
of related sub-problems that are solved recursively with less effort than tackling
the whole problem. A key property of dynamic programming is that it produces
globally optimal solutions when suitably applied. Another property is that DP
yields the optimal solution for a family of problems, namely problems where the
available resource varies from none to the maximum. For the problem at hand,
there are two choices regarding the application of the DP framework:

Longest-path tree: the longest paths can be from source s to the other nodes
or from the nodes to sink t. The first strategy is called direct tree whereas the
second, reverse tree. For applications to mobile-agent technology, the reverse
tree is preferred as it allows the agent to dynamically adapt to variation in
resource usage as it moves along its itinerary.

Objective: assuming the reverse tree structure, the primal approach computes
the maximum benefit bi(r) to reach sink t from a node i given that r units of
resource are available. The dual approach computes the minimum resource
ri(b) necessary to reach sink t from a node i with a benefit of at least b.
Both approaches lead to pseudo-polynomial time algorithms, with the run-
ning time of the primal dependent on the available resource r, whereas the
dual is dependent on the optimal objective or an upper bound. Notice that
rounding and scaling of benefits compromise only the benefit not resource
feasibility in dual form, making the dual formulation suitable for approxi-
mation algorithms.

This paper presents only the dual, reverse tree formulation as it allows dy-
namic adaptation and the design of approximate algorithms. The other formula-
tions are akin to those for the resource constrained shortest-path problem found
in [Shima 2006]. A path from node i to sink t is said to be a b-path if its benefit
is at least b and an r-path if its resource consumption is not in excess of r. Let
ri(b) be the resource consumption of a b-path, from node i to sink t, of least
consumption which is defined recursively by:

ri(b) = min
(i,j)∈E

{rj(max{b− bij , 0}) + rij} (3)

Let b� be the value of an optimal solution to problem P . The goal is to find
the b�-path of least resource consumption from source s = 1 to sink t = n. By
setting:

ri(b) =

⎧⎨
⎩

0, if i = t and b = 0
∞, if i = t and b > 0
∞, if i = t and b > b�

(4)

and recursively applying recursion (3), the dual of the constrained longest-path
problem is solved with the optimal solution given by r1(b�). Although b� is not
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known a priori, the DP algorithm accepts an upper bound b̄ on b� for which
halting conditions are devised below. The DP algorithm for the dual, reverse
tree form is:

Dual-Reverse-DP(b̄)
1: for b = 1 to b̄ do
2: rn(b)←∞
3: πn(b)← nil

4: end for
5: rn(0)← 0
6: πn(0)← nil

7: for b = 0 to b̄ do
8: for i = n− 1 downto 1 do
9: ri(b)←∞

10: πi(b)← nil

11: for j : (i, j) ∈ E do
12: if rij + rj(max{b− bij , 0}) < ri(b) then
13: ri(b)← rij + rj(max{b− bij , 0})
14: πi(b)← j

15: end if
16: end for
17: end for
18: end for

πi(b) gives the successor of node i in the minimum resource consumption b-path
from node i to sink t. The running time of Dual-Reverse-DP is clearly Θ(|E|b̄)
and its memory usage is Θ(nb̄) to store tables ri(b) and πi(b).

3.1.1 Example

Dual-Reverse-DP was applied to the instance of Fig. 5, which yielded Tab. 3 with
the minimum resource consumptions and Tab. 4 with the successor pointers. The
length of the longest, unconstrained path (with respect to resource) from node
1 to the sink defined the upper bound b̄ = 15. According to Tab. 3, b = 15
is the least benefit for which r1(b) > r = 11, implying that b� = b − 1 = 14.
The optimal path from node 1 to sink t is 〈1, 2, 4, 6, 7, 8, 10〉 which consumes
r1(14) = 10 units of resource and induces a benefit of b� = 14 units.

Fig. 6 depicts the reverse, longest-path tree. It gives the longest-path of
minimum resource consumption from each node to the sink for varying benefits.
For node 6, path 〈6, 7, 8, 10〉 induces a benefit of 7 units when the resource
availability is 3 or 4 units. There does not exist a path from node 6 to 10 with a
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Table 3: Dynamic programming table ri(b) for sample instance.

ri(b)\b 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
r1(b) 8 8 8 8 8 8 8 8 8 8 8 8 8 10 10 12
r2(b) 5 5 5 5 5 5 5 5 5 5 5 7 7 9 ∞∞
r3(b) 7 7 7 7 7 7 7 7 7 9 11∞∞∞∞∞
r4(b) 6 6 6 6 6 6 6 6 6 8 ∞∞∞∞∞∞
r5(b) 4 4 4 4 4 4 4 6 ∞∞∞∞∞∞∞∞
r6(b) 3 3 3 3 3 3 3 3 5 ∞∞∞∞∞∞∞
r7(b) 2 2 2 2 2 4 ∞∞∞∞∞∞∞∞∞∞
r8(b) 0∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞
r9(b) 1 1 1 1 ∞∞∞∞∞∞∞∞∞∞∞∞
r10(b) 0∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Table 4: Dynamic programming table πi(b) for sample instance.

πi(b)\b 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π1(b) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
π2(b) 5 5 5 5 5 5 5 5 5 5 5 4 4 4 - -
π3(b) 6 6 6 6 6 6 6 6 6 4 4 - - - - -
π4(b) 5 5 5 5 5 5 5 5 6 6 - - - - - -
π5(b) 7 7 7 7 7 7 7 7 - - - - - - - -
π6(b) 7 7 7 7 7 7 7 7 7 - - - - - - -
π7(b) 8 8 8 8 8 9 - - - - - - - - - -
π8(b) 10 - - - - - - - - - - - - - - -
π9(b) 10 10 10 10 - - - - - - - - - - - -
π10(b) - - - - - - - - - - - - - - - -

resource consumption smaller than 3 units. With a resource availability of 5 or
more units, path 〈6, 7, 9, 10〉 gives the maximum benefit of 8 units.

3.1.2 Halting Conditions (b�)

The maximum benefit of a resource-feasible path is b� = max{b : r1(b) ≤ r}.
The halting condition for the dynamic-programming algorithm is satisfied by
the least b for which r1(b) > r, meaning that the optimal path from source to
sink induces a benefit b� = b− 1 and consumes r1(b− 1) units of resource. Thus,
Dual-Reverse-DP can be easily modified to run until this halting condition is
met, thereby making the algorithm run in time Θ(|E|b�) and using Θ(nb�) units
of memory.
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Figure 6: Reverse longest-path tree for the illustrative instance.

A straightforward bound for b� is b̄ = (n − 1)max{bij : (i, j) ∈ E}, as the
longest path from source to sink cannot use more than (n−1) arcs, each of which
with a benefit not greater than the maximum arc benefit. A tighter bound is the
length of the longest, unconstrained path from source to sink. It is computed
in Θ(|E|) time using a shortest-path algorithm for acyclic graphs with negative
benefits as the arc costs [Cormen et al. 2001].

3.2 Approximation Algorithm

An algorithm that returns a solution whose distance to the optimum is controlled
by a parameter ε is called an approximation algorithm and it is said to be a fully
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polynomial time approximation scheme (FPTAS) if its running time is bounded
by a polynomial on the size of the problem instance and 1/ε. An FPTAS for
the resource constrained longest-path problem is proposed below based on the
algorithm design principles from [Sahni 1977, Hassin 1992].

Take a fixed ε, 0 < ε < 1. A polynomial-time ε-approximation test is develop
below to answer the question “b� < v?” given some v. The test outputs “yes” if
b� < v. It outputs “no” if b� ≥ v(1 − ε). The test rounds up the benefit values
bij , replacing them by: ⌈

bij

vε/(n− 1)

⌉
Notice that the original objective of P is related to the objective with scaled
benefit values as follows:

max
∑

(i,j)∈E

bijxij ≤ max
∑

(i,j)∈E

⌈
bij

vε/(n− 1)

⌉
vε

(n− 1)
xij

=
vε

(n− 1)
max

∑
(i,j)∈E

⌈
bij

vε/(n− 1)

⌉
xij

This rounding scheme increases each edge-benefit by at most vε/(n−1) and each
path-benefit by at most vε. Then, the test runs Dual-Reverse-DP over graph G

with scaled edge-benefits �bij/(vε/(n−1))�. But it computes rj(b) for b = 0, 1, . . .

until r1(b) > r for some b = b′ < (n− 1)/ε, or else b = b̂ ≥ (n− 1)/ε. In the first
case,

b′ <
n− 1

ε
⇔ vε

n− 1
b′ <

vε

n− 1
n− 1

ε
⇒ b� < v

meaning that every r-path has benefit at most b� < v. In the second case,

b̂ ≥ n− 1
ε
⇔ vε

n− 1
b̂ ≥ vε

n− 1
n− 1

ε
⇔ vε

n− 1
b̂− vε ≥ v − vε⇒ b� ≥ v(1 − ε)

meaning that an r-path of benefit at least v(1 − ε) has been found. The test is
formalized as follows.

Test(v)

1: b← 0
2: for (i, j) ∈ E do

3: bij ←
⌈

min{bij ,v}
vε/(n−1)

⌉
4: end for
5: if b ≥ (n− 1)/ε then
6: Output “no”
7: end if
8: Use Dual-Reverse-DP to compute rj(b) for j = 1, . . . , n
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9: if r1(b) > r then
10: Output “yes”
11: else
12: b← b + 1
13: Repeat from step 5
14: end if

The steps 1 through 4 of Test(v) run in time O(|E| log(n/ε)) because the
rounding up in step 3 can be performed in time O(log(n − 1)/ε) with binary
search. Each iteration of Dual-Reverse-DP runs in time O(|E|). Because there
are O(n/ε) iterations, steps 5 through 14 run in time O(|E|n/ε). The running
time of Test(v) is therefore O(|E|n/ε).

The approximate algorithm requires a lower bound b and an upper bound b̄

for b� to apply Test(v). As discussed above, a straightforward upper bound is
b̄ = (n − 1)max{bij : (i, j) ∈ E}. A tighter bound consists of the length of the
longest, resource-unconstrained path from source to sink which is obtained in
O(|E|) time. A simple lower bound is b = min{bij : (i, j) ∈ E}. A better lower
bound consists of the benefit of the shortest, resource-unconstrained path from
source to sink which is computed in O(|E|) time.

A lower bound b is an ε-approximation to b� if b ≥ b̄(1−ε). Otherwise Test(v)
is applied to improve the bound with b < v < b̄(1−ε). If Test(v)=“yes”, then the
upper bound b̄ is reduced to v, otherwise the lower bound b is increased to v(1−ε).
The test is repeated until the ratio b̄/b gets below a constant, say ϕ, at which
point Dual-Reverse-DP is applied with scaled edge-benefits �bij/(bε/(n−1))� to
produce an ε-approximation.

The ratio b̄/b is best reduced via a binary search on the interval (b, b̄) in
logarithmic scale. If the test value for the binary search is v, then the ratio
either becomes v/b or b̄/v. The size of the resulting interval should be the same
to maximize the ratio reduction in the worst case, meaning that v/b = b̄/v and
therefore v =

√
bb̄.

The running time of the ε-approximation algorithm is a direct function of the
number of steps to reduce b̄/b below the desired ratio ϕ and the complexity of
Test(v). Since v =

√
bb̄, we assume in the worst-case scenario that Test(v) always

returns “yes” and the ratio is normalized with b = 1 for the purpose of analysis.

Thus, the number k of steps to reach the ratio ϕ is given by

√
· · ·

√√
b̄/b ≤ ϕ⇔

(b̄/b)(
1
2 )k ≤ ϕ⇔ logϕ(b̄/b)(

1
2 )k ≤ logϕ ϕ⇔ 2k ≥ logϕ(b̄/b)⇔ k ≥ log2 logϕ(b̄/b).

The ε-approximation algorithm is detailed below.
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FPTAS(b, b̄, ϕ, ε)

1: while b̄/b > ϕ do
2: v =

√
bb̄

3: if Test(v)=“yes” then
4: b̄← v

5: else
6: b← v(1− ε)
7: end if
8: end while
9: Set bij ← �bij/(bε/(n− 1))�

10: Apply Dual-Reverse-DP to obtain an optimal r-path

The algorithm reaches the desired ratio in O(log log(b̄/b)) steps. Each step
requires O(|E|n/ε) time to run Test(v) and O(log log(b̄/b)) time to compute the
test point. Thus, the ε-approximation algorithm runs in O

(
log log(b̄/b)(|E|n/ε+

log log(b̄/b))
)

time.

3.2.1 Example

The ε-approximation algorithm was applied to the sample instance with the
aim of illustrating its behavior. With lower bound b = 1, upper bound b̄ =
20, and ε = 0.01, the algorithm produced the results given in Tab. 5 for ϕ ∈
{1.03, 1.2, 2}. For all these ϕ the algorithm outputs path 〈1, 2, 4, 6, 7, 8, 10〉 with
resource consumption 10 and benefit 14, which is an optimal path from source
to sink.

Table 5: Approximation algorithm applied to the sample instance.

ϕ = 2 ϕ = 1.2 ϕ = 1.03
k bk b̄k b̄k/bk bk b̄k b̄k/bk bk b̄k b̄k/bk

1 1.0000 20.0000 20.0000 1.0000 20.0000 20.0000 1.0000 20.0000 20.0000
2 4.4274 20.0000 4.5173 4.4274 20.0000 4.5173 4.4274 20.0000 4.5173
3 9.3159 20.0000 2.1469 9.3159 20.0000 2.1469 9.3159 20.0000 2.1469
4 13.5133 20.0000 1.4800 13.5133 20.0000 1.4800 13.5133 20.0000 1.4800
5 13.5133 16.4398 1.2166 13.5133 16.4398 1.2166
6 13.5133 14.9049 1.1030 13.5133 14.9049 1.1030
7 13.5133 14.1921 1.0502
8 13.7101 14.1921 1.0352
9 13.8095 14.1921 1.0277
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By varying the parameter ε, from 0.01 through 0.07, and the performance
ratio ϕ ∈ {1.1, 1.2, 1.5, 2}, the ε-approximation algorithm solved 100 times the
sample instance for each parameter set-up. The averages over the running times
taken by the algorithm appear in Fig. 7. The algorithm was implemented in
Matlab and ran on a laptop with a 2.0GHz Intel Pentium Processor and GNU
Linux. As should be expected, the plot clearly shows a decrease in computational
time as the performance ratio ϕ and approximation parameter ε increase.
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Figure 7: Influence of ϕ and ε on the approximation algorithm applied to the
sample instance.

4 Computational Experiments

This section reports computational results from the application of the dynamic
programming and approximation algorithm to instances of CLPP. The exper-
iments aim to assess the relative performance between these algorithms. A
pseudo-random procedure was developed to generate acyclic graphs, whose pa-
rameters include the number of nodes, the average number of incident arcs in
each node, and bounds for benefit and resource consumption of the arcs. Three
instances were synthesized, namely instance I1, I2, and I3. Properties and other
parameters of these instance appear in Table 6. The table gives the least and
maximum benefit for paths connecting source s to sink t. For instance I1, this
means that b = 71, 384 is a lower bound for the objective function, whereas
b̄ = 563, 284 is an upper bound. The table also gives the least and maximum re-
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source consumption for s− t paths and the resource available (r). These bounds
are easily obtained by computing unconstrained shortest and longest paths.

Table 6: Properties and parameters of the instances

Instances
Parameters I1 I2 I3

Nodes 77 141 176
Arcs 411 775 916
Least benefit 71,384 76,999 138,346
Maximum benefit 563,284 981,224 1,145,516
Least cost 46,776 87,412 104,051
Maximum cost 545,096 1,012,884 1,160,784
Resource available 235,994 408,014 475,066

The dynamic programming and approximation algorithms were implemented
in C language, in a workstation running the operating system GNU Ubuntu and
equipped with a 2.00GHz Intel Core-Duo Processor and having 2Gb of RAM.
The benefit, resource consumption, and computational time necessary to obtain
the resource constrained longest path with dynamic programming are reported
in Table 7.

Table 7: Results obtained with dynamic programming

Instance Benefit Resources CPU (s)
I1 536,723 167,903 7.34
I2 957,465 405,322 24.98
I3 1,107,836 460,333 36.22

The FPTAS was applied to each of the instances for ϕ ∈ {1.1, 1.5, 2.0} and
ε ∈ {0.01, 0.02, 0.03, 0.04, 0.05}. The initial lower bound was set at b(0) = 1,
whereas the initial upper bound was set at b̄(0) = 2, 000, 000 for all the instances.
Tables 8, 9, and 10 show the results for I1, I2, and I3 for ϕ = 1.1 and varying
ε, respectively. These tables give the final lower and upper bounds, the ratio
between these bounds, the number of iterations, the total benefit and resource
consumption of the best path, and the CPU time taken by the approximation
algorithm. Notice that the ratio b̄�/b� between the final upper and lower bound is
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not greater than ϕ = 1.1. Similar results were obtained for ϕ = 1.5 and ϕ = 2.0.
From these experiments, some remarks are made:

1. the approximation scheme produces optimal solutions even though the dis-
tance between upper and lower bound is about 10%.

2. the approximation scheme is substantially faster than the DP algorithm,
consuming 11% of the time taken by DP on average when ε = 0.01 and only
2% when ε = 0.05.

Table 8: FPTAS applied to instance I1 with ϕ = 1.1

Final bounds Solution
ε b� b̄� b̄�/b� Iter Benefit Resources CPU (s)

0.01 526,317.4375 563,650.9375 1.07 8 536,723 167,903 0.71
0.02 509,841.0937 552,584.5000 1.08 8 536,723 167,903 0.35
0.03 493,719.4062 541,625.1250 1.09 8 536,723 167,903 0.23
0.04 509,541.9687 554,425.7500 1.08 8 536,723 167,903 0.17
0.05 494,026.5000 541,383.0000 1.09 8 536,723 167,903 0.13

Table 9: FPTAS applied to instance I2 with ϕ = 1.1

Final bounds Solution
ε b� b̄� b̄�/b� Iter Benefit Resources CPU (s)

0.01 928,665.1250 998,921.1875 1.08 8 957,465 405,322 2.83
0.02 900,592.6875 984,761.1250 1.09 8 957,465 405,322 1.36
0.03 892,967.5625 970,659.5625 1.09 9 957,465 405,322 0.99
0.04 918,352.4375 986,580.5625 1.07 8 957,465 405,322 0.65
0.05 895,502.2500 965,738.8125 1.08 8 957,465 405,322 0.50

The influence of the parameters ϕ and ε on the approximate solution to in-
stances I1, I2, and I3 are depicted in Figures 8, 9, and 10 respectively. These
plots illustrate the increase in computational time with the decrease in the ratio
ϕ = b̄/b between upper and lower bound. They also indicate that the computa-
tional time decreases with the increase of ε within the range of consideration.

All in all, the computational results show that the fully polynomial approxi-
mation scheme can yield an optimal solution to the resource constrained longest-
path problem far more quickly than dynamic programming.
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Table 10: FPTAS applied to instance I3 with ϕ = 1.1

Final bounds Solution
ε b� b̄� b̄�/b� Iter Benefit Resources CPU (s)

0.01 1,039,962.5625 1,115,831.5000 1.07 8 1,107,836 460,333 4.57
0.02 1,075,110.7500 1,157,911.1250 1.08 8 1,107,836 460,333 2.11
0.03 1,046,048.2500 1,136,675.5000 1.09 8 1,107,836 460,333 1.42
0.04 1,017,482.5000 1,115,615.5000 1.10 8 1,107,836 460,333 1.00
0.05 1,039,994.6875 1,122,367.1250 1.08 9 1,107,836 460,333 0.91
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Figure 8: The influence of ϕ and ε on the approximate solution to instance I1.

5 Extensions

This section presents alternative forms for the resource constrained longest-path
problem that have a non-additive objective, non-additive resource constraints,
and probabilistic or chance constraints. Models and algorithm outlines are given
for these extensions.

5.1 Non-Additive Objectives

Take the problem of finding an r-path that maximizes the minimum benefit of the
arcs along the path. An application arises when benefits represent probabilities of
success and one wants to maximize the lowest probability, which corresponds to
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Figure 9: Influence of ϕ and ε on the approximate solution to instance I2.
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Figure 10: Influence of ϕ and ε on the approximate solution to instance I3.

the weakest link. The original objective (2a) is additive, whereas the alternative
is non-additive and given by:

max
x

min{bijxij : (i, j) ∈ E}

where x = (xij : (i, j) ∈ E) is the decision vector. A path from node i to sink
t is a b-min-path if the benefit of any arc in the path is at least b. Let rnad

i (b)
be the resource consumption of a b-min-path, from node i to sink t, of least
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consumption which is defined recursively by:

rnad
i (b) =

{
min

(i,j)∈E:bij≥b
{rnad

j (b) + rij}, if {(i, j) ∈ E : bij ≥ b} = ∅
∞, otherwise

(5)

Let b�
nad be the maximum non-additive benefit among all r-paths from source

to sink. The path that yields b�
nad is found by setting:

rnad
i (b) =

⎧⎨
⎩

0, if i = t and b = 0
∞, if i = t and b > 0
∞, if i = t and b > b�

nad

and recursively applying equation (5). The optimal solution to the non-additive
objective, constrained longest-path problem is given by rnad

1 (b�
nad). A dynamic

programming algorithm to solve recursion (5) can be devised in the same manner
of the one designed for an additive objective. Further, it is relatively easy to
compute an upper bound for b�

nad for use in the DP algorithm.

5.2 Non-Additive Constraints

Another variation of the baseline problem arises when the resource is non-
additive. One example is when the resource consumption of a path is given by its
most consuming link—the longest edge may restrict the size of the battery of a
robot, the amount of fuel between refueling stations, or the power consumption
between adjacent nodes to transmit data. In such cases, constraint (2b) becomes:

max{rijxij : (i, j) ∈ E} ≤ r

The problem asks to find a path from source s to sink t of maximum benefit
such that each arc on the path consumes at most r units. This problem can be
reduced to a resource-unconstrained problem by removing every arc (i, j) for
which rij > r and then solving a standard longest-path problem in an acyclic
graph. The solution is then found in time O(|E|).

5.3 Probabilistic Constraints

Consider a scenario where the resource consumption in a link (i, j) is given
by a random variable rij . Rather than using the worst-case travel time from
node i to j, one may choose to model travel time as a random variable. To
deal with random variables, constraint (2b) has to be cast in a deterministic
equivalent form. One way consists of using probabilistic or chance constraints
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[Charnes and Cooper 1963, Birge and Louveaux 1997], expressed as:

P

⎛
⎝ ∑

(i,j)∈E

rijxij ≤ r

⎞
⎠ ≥ α⇔ P

⎛
⎝r ≥

∑
(i,j)∈E

rijxij

⎞
⎠ ≥ α (6a)

⇔ P (r ≥ r) ≥ α (6b)

where P (·) denotes the probability operator and rij are assumed normally dis-
tributed. Then r =

∑
(i,j)∈E rijxij is a normally distributed random variable

with mean:

E[r] = E[
∑

(i,j)∈E

rijxij ] =
∑

(i,j)∈E

E[rij ]xij

By assuming that rij are all independent, then:

V ar (r) =
∑

(i,j)∈E

V ar (rijxij) +
∑

(i,j)∈E

∑
(l,t)∈E−{(l,t)}

Cov (rijxij , rltxlt)

=
∑

(i,j)∈E

V ar (rijxij)

where V ar(·) is the variance operator and Cov(·, ·) gives the covariance of two
random variables. Then, constraint (6b) can be expressed in the following deter-
ministic, equivalent form:

r ≥
√

V ar(r)F−1
x (α) + E[r]

= F−1
x (α)

√ ∑
(i,j)∈E

V ar (rijxij) +
∑

(i,j)∈E

E[rij ]xij

= F−1
x (α)

√ ∑
(i,j)∈E

E
[
(rijxij − E[rij ]xij)

2
]

+
∑

(i,j)∈E

E[rij ]xij

= F−1
x (α)

√ ∑
(i,j)∈E

E
[
(rij − E[rij ])

2
x2

ij

]
+

∑
(i,j)∈E

E[rij ]xij

= F−1
x (α)

√ ∑
(i,j)∈E

V ar (rij)x2
ij +

∑
(i,j)∈E

E[rij ]xij (8)

where:

– x is a normally distributed random variable with mean μ = 0 and standard
deviation σ = 1;

– Fx(x) is the cumulative distribution1 of random variable x; and
1 Fx(y) = P (x ≤ y) is the cumulative probability distribution of x, that is, Fx(y) =R x=y

x=−∞ fx(x)dx , where fx(x) is the probability density function.
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– F−1
x (α) = η is the α-quantile, that is, η = min {y : Fx(y) ≥ α}.

Notice that x2
ij = xij since xij ∈ {0, 1} and thereby inequality (8) becomes:

r ≥ F−1
x (α)

√ ∑
(i,j)∈E

V ar (rij)xij +
∑

(i,j)∈E

E[rij ]xij (9)

This deterministic equivalent cannot be modeled in problem P , given by (2a)
through (2d), because the inequality is nonlinear. An alternative is to find an
upper bound for the term

∑
(i,j)∈E V ar(rij)xij which would render (9) a linear

inequality. One such bound is induced by a path of maximum variance from
source to sink, which can be easily obtained.

It is worth remarking that the framework above can handle general distribu-
tions so long as the mean, variance, and α-quantile are provided.

6 Summary

The Internet is the world’s largest repository of information on which applica-
tions in the services industry and financial markets rely, to name a few. Innu-
merous applications thereof access large volumes of data stored in several sites
of varying reliability and availability. Rather than retrieving information and
performing the computations at a single site, mobile agent technology advocates
the mobility of code to more efficiently and reliably deliver the services. To com-
plete a task, a mobile agent visits a number of hosts that provide information
from sensors, retrieve data from repositories, and perform specialized services.
Since the information is available at different sites and with different degrees of
reliability, a mobile agent should plan an itinerary to visit the hosts which gives
rise to a family of itinerary planning problems.

Heretofore, the focus has been on the computation of an itinerary to ac-
complish an agent’s mission that maximizes overall benefit without violating
a deadline. The mission is characterized by a set of resources to be collected
respecting a partial order given by a UML diagram (resource diagram). As re-
sources are available at many sites, itinerary computation consists in finding a
sequence of node-resource pairs to collect the essential resources, and possibly
optional ones, within the time limit while maximizing resource benefits.

This paper showed that the mobile-agent itinerary problem (MIP) can be
cast as a resource constrained longest-path problem (CLPP) that captures all
the elements of MIP. A dynamic-programming (DP) algorithm was developed
for CLPP in acyclic graphs that runs in Θ(|E|b̄). This algorithm produces the
longest-path from all nodes to the destination node and for all resource avail-
abilities ranging from 0 to r (the maximum). That is, the algorithm produces a
tree-family of resource-constrained longest-paths to the sink, allowing an agent
to dynamically revise its itinerary as it progresses towards the sink.
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Because CLPP is NP-Hard and the DP algorithm is pseudo-polynomial, an
approximation algorithm was developed using the rounding technique applied to
the DP algorithm. This algorithm runs in O

(
log log(b̄/b)(|E|n/ε + log log(b̄/b))

)
time. It is said to be a fully polynomial time approximation scheme (FPTAS)
because the distance to the optimal is controlled by a parameter ε and its running
time is bounded by a polynomial on the size of the problem instance and 1/ε.
The paper reports results from experiments aimed to assess the performance
of the DP and approximation algorithms in a number of representative MIP
instances.

The paper also discusses extensions to the models and algorithms. First,
the algorithms can readily handle non-additive objectives by replacing the sum
with the min operator in the recursions. Second, non-additive constraints are
tackled by removing all the arcs that do not respect the bounds and then finding
an unconstrained longest-path in the pruned, acyclic graph. Third, for resource
consumption modeled with random variables, the paper develops a deterministic
equivalent for the chance constraint.
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