
A Model for Capturing and Managing Software 
Engineering Knowledge and Experience 

 
 

Gerardo Matturro 
(Universidad ORT Uruguay, Montevideo, Uruguay 

matturro@uni.ort.edu.uy) 
 

Andrés Silva 
(Universidad Politécnica de Madrid, Madrid, Spain 

asilva@fi.upm.es) 
 
 
 

Abstract: During software development projects there is always a particular working “product” 
that is generated but rarely managed: the knowledge and experience that team members 
acquire. This knowledge and experience, if conveniently managed, can be reused in future 
software projects and be the basis for process improvement initiatives. In this paper we present 
a model for managing the knowledge and experience team members acquire during software 
development projects in a non-disruptive way, by integrating its management into daily project 
activities. The purpose of the model is to identify and capture this knowledge and experience in 
order to derive lessons learned and proposals for best practices that enable an organization to 
preserve them for future use, and support software process improvement activities. The main 
contribution of the model is that it enables an organization to consider knowledge and 
experience management activities as an integral part of its software projects, instead of being 
considered, as it was until now, as a follow-up activity that is (infrequently) carried out after the 
end of the projects. 
 
Keywords: Knowledge management, software engineering, experience capture 
Categories: M.2, M.8 

1 Introduction 

IEEE Computer Society defines software engineering as the application of a 
systematic, disciplined, quantifiable approach to the development, operation and 
maintenance of software; that is, the application of engineering to software [IEEE, 
90]. As commented by Ye, even though software development shares many 
characteristics with other engineering disciplines, it presents, however, new research 
challenges because it also strongly depends on the knowledge and the creativity of 
software development individuals [Ye, 06].  

Knowledge management can be defined as the set of processes that govern the 
creation, transfer and utilization of knowledge [Gupta, 04]. Interventions into 
managing knowledge in organizations, also called KM initiatives, attempt at creating 
an environment that supports the handling of knowledge and ultimately lead to 
increased organizational effectiveness [Maier, 08]. 

Several authors have remarked the convenience to strengthening the links 
between the disciplines of software engineering and knowledge management as they 
consider that software engineering is characterized, precisely, by being an activity 

Journal of Universal Computer Science, vol. 16, no. 3 (2010), 479-505
submitted: 4/10/09, accepted: 29/1/10, appeared: 1/2/10 © J.UCS



intensive in knowledge. Kukko, Helander and Virtanen consider that the process of 
developing software is typically characterized as intensive in knowledge and that the 
outcome of the process, namely the software, is also a knowledge-intensive product 
[Kukko, 08]. Wohlin considers that the ability to manage knowledge in software 
engineering is a key success factor for software projects and also for software 
organizations in the future [Wohlin, 03]. Similar opinion has been expressed by 
Aurum, Daneshgar and Ward, when they mention that to keep software companies 
competitive in the market, developing effective ways of managing software 
knowledge is of interest to software developers [Aurum, 08]. 

One area within software engineering particularly in need of managing 
knowledge is the area of design and architectural knowledge. The discipline of Design 
Rationale aims to capture the knowledge and reasoning that justifies a resulting 
design. This includes how a design satisfies functional and quality requirements, why 
certain designs are selected over alternatives and what type of system behavior is 
expected, under different environmental conditions [Tang, 06]. As pointed out by 
Babar and colleagues, the availability of architectural knowledge improves the 
software development process and, if not properly managed, critical design 
knowledge will remain implicitly embedded in the architecture, becoming tacit 
knowledge that risks to be eroded as personnel change or leave [Babar, 09], 
[Kruchten, 05]. As Burge and Brown suggest, an explicit capture of the different 
design alternatives and their rationale is an activity that can be integrated into a design 
process model [Burge, 02]. 

Another important activity in current software engineering is the improvement of 
practices and development processes and, in this area, the perspective of knowledge 
management becomes particularly important. As Alagarsamy and colleagues mention, 
even if earlier works on software process improvement have considered a wide range 
of initiatives, knowledge management should be seen as a contemporary approach to 
refine the activities of software process improvement, since software processes have 
evolved from being processes carried away by data to being processes driven by 
information until the actual processes driven by knowledge [Alagarsamy, 07]. 

Briand considers that in software organizations, the knowledge and the 
experience acquired in previous projects can be used to improve the software 
practices in future ones, and that the organizational learning based on that experience 
is a key element in the effective adoption of new practices and for improving both 
productivity and quality [Briand, 03]. As Edwards mentions, even if the general 
literature on knowledge management contains many examples of successful 
knowledge management systems in use in companies related to information 
technology, few of those examples are specific to software engineering [Edwards, 
03]. From his point of view, despite the fact that there is an active community of 
knowledge management in software engineering, their jobs are far from the 
mainstream on knowledge management. Bjørnson adds that software engineering has 
mainly dealt with the storage and retrieval of knowledge while topics such as the 
creation, transfer and application of knowledge need further attention [Bjørnson, 07]. 

Creation, transfer and utilization of knowledge are three knowledge management 
activities that necessarily happen in every software project, as also occur other 
activities considered as "traditional" such as requirement engineering, risk 
management, quality assurance and software testing, just to mention a few of them. 

480 Matturro G., Silva A.: A Model for Capturing and Managing Software ...



However, in our opinion, there are two aspects that differentiate these traditional 
activities from the knowledge management activities just mentioned: 1) the latter are 
taken into account neither in literature nor in practice because they are not explicitly 
planned or managed during the life cycle of projects, and 2) the activities of software 
engineering projects mentioned above as "traditional" generate products and artifacts 
whose scope are at the level of the project where they are created and managed, while 
products generated in the knowledge activities, that is, the knowledge and experience 
that project team members create and acquire, if properly managed, have a wider 
scope across different projects and even the entire organization. 

According to Antunes, Seco and Gomes, the knowledge generated during 
software development projects is a potentially valuable asset for a software 
organization and, to exploit this asset, the organization must acquire, store and 
manage that knowledge for reuse [Antunes, 07]. And for this knowledge and 
experience to be able to be reused in future projects or in software process 
improvement initiatives, it first has to be captured and then disseminated and made  
available to the remainder of the organization as lessons learned and best practices. 

Usual ways of capturing this knowledge and experience are mainly based on 
techniques such as semi-structured interviews ([Komi-Sirvio, 02], [Scott, 03]) or by 
applying methods such as project postmortem analysis ([Birk, 02]), post-project 
revisions ([Harrison, 03]), legacy sessions ([Cooper, 07]), and experience reports and 
reviews ([Dingsoyr, 01]). 

The main drawback of these ways of capturing knowledge and experience is that 
the capture process is usually carried out after the occurrence of the experiences that 
are intended to be captured (usually after completion of the projects) and require that 
the holders of this experience, that means, the members of project teams, are available 
to participate in them, which is not possible in most cases ([Basili, 01], [Cooper, 07], 
[Desouza, 05]). If there is a time difference between the experience and its capture, 
there is the risk of that experience finally being lost. This risk is materialized if the 
owners of the experience are no longer available, either because they have been 
reallocated to another project or because they left the organization, taking with them 
the valuable knowledge and experience acquired. 

Therefore, a new approach is required to enable organizations to capture and 
manage such knowledge and experiences as soon as they occur during the software 
projects life cycle and throughout. Thus, the problem we consider here can be stated 
as follows: “how to integrate to the software development practices and processes of 
an organization, procedures and specific artifacts to guide and manage the knowledge 
and experience that team members gain in software development projects”. 

To answer this question, in this article we present an iterative model for managing 
the knowledge and experience that project team members acquired during their 
project activities, in order to identify and capture lessons learned and generate 
proposals of best practices that enable an organization to preserve this knowledge and 
experience, as well as to provide the basis to support an initiative to improve their 
practices and software processes. The proposed model, called "ele", has the advantage 
that its phases, activities and artifacts for managing knowledge, integrate to traditional 
activities of software projects and also support initiatives to improve the software 
practices and processes in use in an organization. The main contribution of this model 
is that it enables organizations to consider the activities of knowledge and experience 

481Matturro G., Silva A.: A Model for Capturing and Managing Software ...



management as an integral part of the daily activities of their software projects instead 
of being, up to now, additional activities that are rarely carried out after the projects 
are completed. 

As Pettersson mentions, although there has been an extensive research in the KM 
field, it is still complex and difficult for practitioners to implement KM in 
organizations [Pettersson, 09]. Considering this, the proposed model provides an 
organization with a starting point for managing its knowledge and experience in the 
software engineering field; gives specific directions on how to build a knowledge and 
experience repository, and provides the necessary mechanisms for ensuring that this 
knowledge and experience, in the form of lessons learned and best practices, will be 
used both in new software projects and in software process improvement initiatives. 

The rest of the article is organized as follows. Section 2 describes existing 
approaches for capturing and managing software projects experience and also 
presents the main weaknesses of those approaches.  In sections 3 and 4 we present our 
model and its artifacts for knowledge and experience management that support the 
creation, transfer and application of knowledge. In section 5 we show the way in 
which the phases of the model integrate to software project activities and also to the 
activities aimed to improve the software practices and processes in use in an 
organization. In section 6 we present the case study of an implementation of our 
model in a software organization. The purposes of this case study are (1) to show how 
the main flow of activities included in the model can be implemented in a software 
organization, and (2) to test its suitability for capturing and managing the knowledge 
and experience that project team members acquire during a software development 
project. Finally, in section 7 we present the conclusions of the article and future 
works. 

2 Capturing and managing experience in software engineering 

In this section we present a brief overview of existing approaches found in literature 
about capturing, preserving and sharing software engineering knowledge. The section 
concludes with a number of criticisms to the reviewed works, which constitute the 
starting point for designing our model. 

2.1 Capturing software projects experience 

As stated in section 1, usual ways for capturing the knowledge and experience from 
software projects are based on techniques such as semi-structured interviews ([Komi-
Sirvio, 02], [Scott, 03]) or by applying methods such as project postmortem analysis 
([Birk, 02]), post-project revisions ([Harrison, 03]), legacy sessions ([Cooper, 07]), 
and experience postmortem reports and reviews ([Dingsoyr, 01]). 

A project post-mortem analysis, as described in [Birk, 02], comprises three 
phases: preparation, data collection, and analysis. The purposes of the preparation 
phase are to review all the documentation generated during the project in order to 
understand what has happened, and to determine the goals for the postmortem 
analysis. The data collection phase is the moment in which the relevant project 
experience is gathered and, once the important topics have been identified, they are 
prioritized before proceeding with the analysis phase. During this last phase, a 

482 Matturro G., Silva A.: A Model for Capturing and Managing Software ...



feedback session is conducted in order to analyze the data collected and to find the 
causes for positive and negative experiences. 

Cooper has proposed an approach called legacy sessions, in reference to the 
working sessions where project team members identify innovations and 
improvements they have performed in their projects and that are potentially valuable 
for future users [Cooper, 07]. According to the description given by this author, a 
legacy session consists of four parts. The first part consists of a brainstorming session 
to identify potential legacies. These legacies represent apprenticeships that have the 
potential of being re-used by the members of the project team or by other members of 
the organization. In the second part, the participants synthesize the results of the 
former phase combining similar elements, taking out differential ones and 
categorizing the results as “processes”, “products”, “people” or other. From the final 
list, an element is chosen for subsequent discussion. The third phase is the detailed 
discussion of the chosen element for, in the fourth phase, create a summary of the 
discussion, following a predefined structured pattern. 

Harrison presents the post-project reviews as a way of providing a formal 
mechanism to transfer experience from a project team to an organizational memory 
once the project has finished and while these experiences are still fresh in the minds 
of the participants [Harrison, 03]. The captured experience is stored in a repository of 
learned lessons whose purpose is to facilitate the organization, maintenance and 
spread of the captured knowledge. The repository is based on web technology and it 
has an interface based on filling-in-forms for the people who provide learned lessons 
can add new experiences to it. 

Dingsoyr, Moe and Nytro mention other two methods of capturing experiences 
from projects: the experience reports and the post-mortem revision [Dyngsoyr, 01]. 
An experience report is a predefined structured document whose aim is to get 
information from the participants, make them discuss about the way in which the 
project was managed and finally analyze the causes of why things succeeded, or not, 
throughout the project. For post mortem revisions, the authors mention the use of 
techniques such as the KJ method for brainstorming and Ishikawa diagrams for 
analyzing causes of those relevant aspects that were identified with the former 
technique. The KJ method (after its author, Kawakita Jiro) or “affinity diagram” is 
used to refine a brainstorm into something that makes sense and can be dealt with 
more easily. 

2.2 The Experience Factory approach 

More comprehensive approaches on capturing and managing software engineering 
knowledge and experience for reusing them in future projects can be traced back to 
the approach known as Experience Factory, proposed by Basili, Caldeira and 
Rombach [Basili, 94]. 

As defined by its authors, an experience factory is a physical and/or logical 
infrastructure that supports development projects, analyzing and synthesizing 
experiences of all kinds, acting as a repository of such expertise and providing, on 
demand, that experience to other software development projects. This approach 
divides the efforts of software development into two separate units with responsibility 
for developing software projects and for capturing experiences. The Experience 
Factory unit is responsible for developing, updating and providing reusable 

483Matturro G., Silva A.: A Model for Capturing and Managing Software ...



experiences to software development teams. The artifacts of experience can be 
generated on demand for any units of software development (known as Project 
Organization) or by an independent analysis of information obtained to existing 
projects. The physical implementation of an experience factory is an Experience 
Management System, consisting of content, structure, processes and tools [Basili, 01]. 
The content (which may be data, information, knowledge or experience) and the 
structure (that is the way in which the content is organized) constitute what is called 
an Experience Base. The procedures are instructions on how to handle the experience 
base and the tools supports the content management and the implementation of 
procedures. An effective experience base contains an accessible and integrated set of 
experience models, analyzed, synthesized and packaged, that capture previous 
experiences. Jedlitschka and colleagues comment that the approach of Experience 
Factory includes the collection, documentation, dissemination and storage of 
experience (in the form of "experience packages") in an experience base, which is the 
organizational memory for the knowledge and experience that is relevant for the 
organization [Jedlitschka, 01]. 

From this seminal work, Schneider, von Hunnius and Basili ([Schneider, 02]) 
report the implementation of a project at DaimlerChrysler called Software Experience 
Center (SEC), based on the concept of Experience Factory commented above. The 
operational objective of the SEC was to provide business units with the concepts of a 
learning organization and a prototype of an experience base. The SEC supported all 
activities, from experience elicitation to making available these experiences for the 
software task at hand. 

Johansson, Hall and Coquard ([Johansson, 99]) report on the implementation at 
Ericsson AB Software Technology of a variant of the Factory Experience called 
Experience Engine. This variant, unlike the Experience Factory, which is based on 
experiences stored in experience bases, is based on tacit knowledge. Koskinen defines 
tacit knowledge as the knowledge that is acquired through practice and experience 
[Koskinen, 01]. To make the tacit knowledge accessible to a wider group of people, 
two new roles have been defined in the organization. These are the “experience 
communicator” and “experience broker”. The former is a person who possesses a 
deep knowledge about one or more topics, while the experience broker has the 
mission to connect the communicator with the person or people who have a problem. 
The role of the communicator is not to solve the problem, but to educate and assist the 
possessor of it about how to fix it. 

Komi-Sirvio, Mantyniemi and Seppänen ([Komi-Sirvio, 02]) have proposed a 
slightly different approach to the Experience Factory, in which knowledge gathered 
from past projects is guided by the immediate and specific needs of an ongoing 
project. This approach consists of a "knowledge capturing project” and "customer 
projects." The knowledge capturing project collects knowledge from relevant sources, 
"package it" and provides it to a new customer project for reusing it on demand in a 
similar way as the Experience Factory operates. This solution, as mentioned by its 
authors, does not modify the organizational settings and does not require new tools. 
Knowledge comes from existing sources such as final projects reports, errors 
databases, discussion forums and, what is the most important, people. The process of 
knowledge capture uses as the main technique the semi-structured interview.  

484 Matturro G., Silva A.: A Model for Capturing and Managing Software ...



2.3 Criticisms to the reviewed works 

With regard to the project post-mortem analysis and similar techniques, all of them 
are characterized by the fact that the capture of the experience is done later in time, 
with regard to the actual occurrence of the experience, generally after finishing the 
project or at least by the time it has reached a relevant milestone. 

Several criticisms have been formulated in relation with this fact. Basili, Lindvall 
and Costa mention that the problem with these post-mortems is that they arrive very 
late in the life of a project, if they are ever done [Basili, 01]. Desouza, Dingsøyr and 
Awazu consider as an unfortunate situation the fact that most of the software 
engineers do not have time to finish a project because they are almost immediately 
assigned another one [Desouza, 05]. Cooper mentions precisely the fact that project 
teams are by definition, temporal entities and that once the project is finished the 
members return to the organization taking with them the individual knowledge 
[Cooper, 07]. Zedtwitz mentions the restrictions and the lack of time as one of the 
main reasons for skipping the post-mortem revision, as organizations have a queue of 
projects that project managers and other team members have to be assigned as soon as 
they finish the current one [Zedtwitz, 02]. Keegan and Turner conducted a study in 19 
companies with practices in place (referred as after action reviews and project end 
reviews) aimed to capture the learning that takes place after projects are completed 
[Keegan, 01]. In their findings, the authors pointed out that, frequently, project team 
members do not have the time for meetings or for lessons learned review sessions. 
Often, project team members are immediately reassigned to new projects before they 
have the time for participating in lessons learned sessions or after-action reviews. 

In consequence, to separate in time the experience and its subsequent capture 
involves some risks. Experience might be lost if the people in charge of the project 
are no longer available because they have been assigned another project or even 
because they have abandoned the organization, taking with them valuable knowledge 
and experience acquired, sometimes at high cost. 

With regard to the experience factory and related approaches, there are also 
several criticisms found in the literature. As Chau and Maurer pointed out, the 
Experience Factory framework sets which are the activities of knowledge 
management that are needed (elicitation, analysis, generalization, packaging and 
dissemination) but presents the lack of not giving directions on how such activities 
should be carried out [Chau, 05]. Similar opinion has been exppresssed by Zhu, 
Staples and Gorton, who believe that one of the problems in the current investigation 
in experience repositories is that most of it focuses on the technological aspect for 
building repositories rather than on how really occur the capture and share of 
experiences [Zhu, 07]. 

Another criticism that this approach has received concerns the access to the 
"experience packages" provided through the repository of experience are maintained 
by a group dedicated to the task of generalizing these experiences as much as possible 
for its reuse, implying that to feed or update the contents of the repository it is 
necessary to go through a controlled, and usually slow, process [Chau, 05]. 

Finally, two additional critiques can be added to the previous ones. On the one 
hand, the experience factory approach has the premise of capturing experiences "of all 
kinds" but without first identifying which are the software practices or processes to be 
improved, or what kind of experiences are of interest to the organization, according to 

485Matturro G., Silva A.: A Model for Capturing and Managing Software ...



their current or future needs. On the other hand, and particularly in the approach of 
experience factory, the authors suggest the use of software tools such as Frequently 
Asked Questions, e-mail and chat sessions to capture and exchange of experiences 
[Basili, 94], but they don’t establish guidelines on how to make an efficient use of 
these tools for such purposes. 

3 The Model “ele” 

Based on the criticisms presented above, we started to think that a different approach 
was needed, focusing on a) improving the process of capturing project experience, 
avoiding the weaknesses of the post-mortem analysis and similar approaches 
regarding the moment in the project life cycles they are usually applied, and b) 
emphasizing the knowledge management processes and related tools, and not 
exclusively on the repository, even though the existence of such a repository 
continues to be an essential element, both for preserving the captured knowledge and 
as a vehicle for knowledge and experience dissemination. 

Our model, presented in the next sub-sections, places its emphasis on the process 
for capturing knowledge and experience, delimiting the kinds of knowledge and 
experiences that are worth capturing according to the organizational needs, by making 
use of a specific tool, called “reflective guide”, designed for this purpose. 

3.1 General Overview of the Model 

We start by showing, in Figure 1, the flow diagram of the main activities of our 
proposed model, from the initial definition of the objectives of knowledge and 
experiences that are intended to capture, until its end, when the lessons learned and 
best practices are identified, elaborated and integrated into a repository, for making 
them available to the rest of the organization for its use in new software projects. 
 

 

Figure 1: General overview of the Model "ele" 

Consider that there is a software organization that aims to improve its software 
practices and processes, based on the management of the knowledge and experience 
acquired by the participation of its members in different software projects. We 
understand by "organization" a company or a business unit within a company whose 

486 Matturro G., Silva A.: A Model for Capturing and Managing Software ...



core business is to develop software and which carries out activities to improve its 
software practices and processes. 

From the set of practices and software processes in use in the organization, we 
define a series of objectives for new knowledge creation for those software 
development practices and processes that the organization considers necessary to 
improve. Based on these objectives the so-called “reflective guides” are developed, 
defined as a knowledge management tool whose purpose is to guide the reflection of 
the project team members on those aspects of project activities for which there is a 
need to capture experiences. These guides contain a series of questions or sentences 
whose purpose is to provide team members with an opportunity for a primary 
registration of the knowledge and experience acquired. These questions and sentences 
remain the same during the iteration of the model but, as we explain in sub-section 
3.2, the model provides an opportunity to evaluate their usefulness for promoting 
reflection, and to change them, if needed, to best suite this purpose. 

Asking questions is nothing new. The difference in our approach is that these 
questions are asked “before” the team members perform their project activities and 
not “after” (and in general, long after) those activities have been performed. In this 
way, respondents know in advance the questions he/she will have to answer later, and 
find them in a better position to reflect on and to give a more detailed answer. 

Once these guides are elaborated, they are assigned to the software project team 
members who, during the time in which they execute project tasks, use these guides to 
register their reflections and impressions, difficulties found, unforeseen facts and 
similar considerations related to the manner in which they carry out his/her tasks. 

When the project tasks that the reflective guides relate to are completed, and after 
the reflective questions or sentences have been answered, those answers are compiled 
for a primary analysis and for the initial identification of new knowledge and 
experiences captured in the answers. 

This last activity provides new knowledge and personal experiences that serve as 
an input to the subsequent process of collective analysis and discussion aimed to 
identify the lessons learned and proposals of best practices that, later, will be 
incorporated into the Repository of Lessons Learned and Best Practices. These 
knowledge and experience will impact on how project activities will be carried out in 
the future, and be the basis for future improvements to the software practices and 
processes used by the organization. 

This sequence of activities is repeated iteratively in order to enable the 
organization to manage, in an incremental manner, the creation of knowledge. Once 
new lessons learned and proposals of best practices have been obtained in one 
iteration, a new iteration can begin to test them in the next software project. In this 
way, it is possible to gather more insights about they appropriateness and to allow the 
organization to continuously refine the knowledge and experience already captured. A 
new iteration will also enable the organization to define new objectives for experience 
capture from a different set of practices and process. In this case, new reflective 
guides will be elaborated, and the cycle continues as described above. 

Iterations also enable organizational learning by integrating the activities of 
knowledge and experience management into software projects and into the activities 
aimed to improve software practices and processes. 

487Matturro G., Silva A.: A Model for Capturing and Managing Software ...



3.2 Structure of the Model ele 

We are now in position to provide more details about the phases of the model “ele”, 
as shown in Figure 2. 
 

  

 

Figure 2: The model "ele" 

The name given to the model comes after the shape of the letter “l”, chosen for its 
graphical representation, and pronounced as “eh-leh” in Spanish. 

The model begins with an Initiation phase, and its purpose is to establish the 
groundwork for launching the model. Here is where the practices and activities of 
software engineering on which the model will be applied are defined (those that the 
organization aims to improve), the setting out of objectives of new knowledge and 
experiences that are intended to capture, and defines the roles and the responsibilities 
of different actors who will participate in implementing the next phases of the model. 

This initial phase is followed by an iterative cycle consisting of stages from 
Preparation to Revision, as described below. 

The Preparation phase aims to prepare the organization for a new iteration of the 
model. Here, the above-mentioned Reflective Guides are elaborated and updated 
according to the objectives of knowledge and experience capture, previously defined. 

The purpose of the Familiarization phase is to deliver to project team members 
the reflective guides related to the tasks they are carrying out, to make sure they know 
and understand the established objectives of capturing knowledge and experience. Its 
purpose, additionally, is to inform team members about the lessons learned and best 
practices related to the project activities they are carrying out, which have been 
identified and developed in previous iterations of the model. 

In the Actuation phase, the members of the project teams, in parallel to their 
assigned project activities, will analyze them based on the criteria provided in the 
reflective guides, by answering the corresponding questions. Also in this phase the 
members of the project teams begin to delineate proposals of improvements that will 
be analyzed and discussed later in the Elicitation phase. 

For the Elicitation phase, the intention is to analyze the answers gathered in the 
reflective guides and to synthesize the knowledge and the experiences acquired, with 

488 Matturro G., Silva A.: A Model for Capturing and Managing Software ...



the aim of identifying and extract lessons learned from the practical execution of 
project tasks, and to generate proposals of best practices for the items that were 
selected during the Initiation phase. This phase is implemented by conducting an 
experience elicitation workshop, as explained in subsection 4.2 below. 

The Integration phase aims to incorporate, into the repository of lessons learned 
and best practices, the knowledge and experience captured in the previous phase. This 
integration includes the incorporation of new elements of knowledge and experience 
into the Repository, as well as the reformulation of the existing elements, in order to 
update the lessons learned and the best practices. The structure of the repository and 
the way it is intended to be used are explained in subsection 4.3 below. 

The last phase of the iterative cycle, Revision, aims to evaluate the application of 
the model so far, in order to identify eventual deviations from the proposed goals 
related to knowledge and experience capture, as well as to identify areas for 
improving the implementation and execution of the model itself. 

Finally, the Conclusion phase aims to formally close the iteration for the 
practices and processes established at the beginning. This stage is reached when, 
according to the organization, new or improved lessons learned and proposals of best 
practices have been obtained for the practices selected in the Initiation phase. 

4 Other Elements of the Model 

The proposed model is complemented by a set of artifacts that support knowledge and 
experience management activities, used in its different phases. These artifacts, 
described below, are the already mentioned Reflective Guides, the Experience 
Elicitation Workshop and the Repository of Lessons Learned and Best Practices. 

4.1 The Reflective Guides 

Central to the model are the reflective guides, as they are the main tool for knowledge 
and experience capture. These guides, as we propose them, constitute a special type of 
reflective journal that records a learning item that took place as a result of reflecting 
on experiences and situations, and include a series of questions and statements whose 
goal is to motivate and facilitate personal reflection activities, by directing the 
attention of team members to those aspects of the tasks for which knowledge and 
experience capture were initially defined. 

To define the types of reflective questions or sentences, we propose to use, as a 
framework, Bloom’s taxonomy of educational objectives for the cognitive domain 
[Bloom, 56]. This taxonomy, as initially defined by its authors, refers to a 
classification of the different objectives that educators set for students. However, 
other uses are possible and it has been used, for example, in the Guide to the Software 
Engineering Body of Knowledge (SWEBOK) as an aid for defining course material, 
job descriptions, professional training programs or professional development paths 
[Abran, 04]. Similar uses of Bloom's taxonomy can be found in [Azuma, 03] and in 
[Bourque, 03]. Based on the six levels of this taxonomy, we can formulate questions 
or sentences that activate different cognitive operations, from the simple recall of 
facts up to the more complex processes of synthesis and evaluation of information. 
The questions or statements to include in the guide must refer to the software 

489Matturro G., Silva A.: A Model for Capturing and Managing Software ...



practices, activities, techniques and processes for which the initial objectives of 
knowledge and experience capture were defined. 

Questions or sentences related to levels 1 (Knowledge) and 2 (Comprehension) of 
Bloom's taxonomy will refer to knowledge that the team members of the project 
possess or should possess, and that should be applied at the moment of carrying out 
their project activities. Questions of levels 3 (Application) and 4 (Analysis) refer to 
the application of previous knowledge or experience that team members already have 
and that will be applied as they carry out their project activities. Questions of levels 5 
(Synthesis) and 6 (Evaluation) relate to the synthesis and evaluation of experiences 
that project team members acquire when performing their project activities. 

For elaborating the reflective questions, the following elements are considered: 
• The concepts related to the area of knowledge, activity, technique or 

software process respect of which it is intended to motivate reflection. 
• The knowledge and experience capture objectives that were defined in the 

Initiation phase. 
• The different levels of Bloom’s taxonomy described above, with their 

corresponding keywords that reflect the cognitive operations associated with 
each level. Lists of keywords can be found in [Bloom, 56] and [Cecil, 95]. 

 
For instance, consider the purpose to capture experiences related to the 

“interview” technique for requirements elicitation, with the goal of improving the 
interaction among software engineers and stakeholders. Table 1 presents examples of 
reflective questions and sentences for each level of Bloom´s Taxonomy for some 
concepts associated to this technique. 
 

Knowledge area/subarea Requirements engineering / Requirements elicitation 
Technique Interview 
Associated concepts: Choosing the interviewee, planning the interview, knowledge of 
interviewee’s terminology, types of questions to be asked, functional and non functional 
requirements. 
Questions or sentences 
Level 1: Knowledge – Cognitive operation:  Listing 
   Make a list of the steps to follow in order to plan the interview. 
Level 2: Comprehension – Cognitive operation: Comparing 
   Compare the different types of questions that you can make to ask the interviewee. 
Level 3: Application – Cognitive operation: Selecting 
   What criteria must be taken into account to appropriately select the people to be 
interviewed? 
Level 4: Analysis – Cognitive operation: Assessing 
   Assessing the result of the interview, what difficulties and unexpected things do you 
encounter in your interaction with the interviewee? 
Level 5: Synthesis – Cognitive operation: Modifying 
   What aspects of planning the interview do you think should be modified for a future 
instance? 
Level 6: Assessment – Cognitive Operation: Judging 
    How do you judge the process followed in the interview with regard to the identification 
of functional and non functional requirements? 

Table 1: Examples of reflective questions or statements 

490 Matturro G., Silva A.: A Model for Capturing and Managing Software ...



4.2 The Experience Elicitation Workshop 

This workshop, which takes place in the Elicitation phase, is a collective reflection 
and analysis of the knowledge and experiences initially captured in the reflective 
guides. The purposes of this workshop are: 

• To give team members an opportunity to know the answers given by the 
other team members in order to identify similarities and differences in 
opinions, viewpoints and lived experiences in accomplishing their project 
tasks. 

• To discuss and reach an agreement on those opinions and viewpoints in order 
to derive lessons learned and proposals of best practices. 

 
In the workshop the participants are team members who carried out the project 

tasks related to the software practices and processes preselected in the Initiation 
phase. 

One of the inputs for the accomplishment of the workshop are the answers given 
by the team members to the questions included in their reflective guides. With these 
answers, a summary document is elaborated which will include, for each question or 
sentence, the different reflections registered by the respondents. Another important 
input for the accomplishment of the workshop is the experience and tacit knowledge 
of the participants, which, ideally, should become explicit during the workshop. 

The workshop begins by communicating to participants the objectives of the 
workshop, the topics to be discussed, and the general procedure to be followed. 
Afterwards, the summary document mentioned above will be distributed to the 
participants in order to know the answers and reflections made by others. 

When this activity concludes, an analysis and collective reflection follows, by the 
order in which reflective questions appear in the reflective guides. It is in this stage 
where participants report and share their experiences on the projects activities made, 
contribute with new elements and details that were not explicitly included in the 
answers to the reflective questions, and give their points of view, reflections and 
commentaries. 

The workshop´s facilitator will take part in this activity, registering the 
contributions made by the participants, orienting the discussion and enabling the 
participation of all of them. The workshop concludes with the draft of a summary of 
contributions made by the participants, from which lessons learned and proposals of 
best practices will be elaborated in order to incorporate them to the repository of 
lessons learned and best practices. 

This workshop should take place after the reflective guides are collected and 
processed as explained above. It is worth noting that even though a team member 
cannot participate in it, his/her experience has already been captured in his/her 
reflective guide and can be taken in consideration in the collective analysis that take 
place during the workshop. 

4.3 The Repository of Lessons Learned and Best Practices 

The Repository of Lessons Learned and Best Practices is constructed from the 
knowledge and experience acquired by project team members during the 
accomplishment of their project activities. That knowledge and experience was 

491Matturro G., Silva A.: A Model for Capturing and Managing Software ...



elicited and captured during the knowledge and experience elicitation workshop, as 
explained in the previous paragraph. 

This repository has a tree-like structure, following the Software Engineering 
Body of Knowledge key knowledge areas and sub-areas [Abran, 04]. With this 
structure, shown in part in figure 3, each leaf of the tree points to lessons learned 
and/or best practices related to its corresponding knowledge area. We choose the 
SWEBOK because, at this point, it provides a consensually validated characterization 
of the bounds of the software engineering discipline. 
 

 

Pointers to
the lessons 
learned and 
the best 
practices.

 

Figure 3: Structure of the LL and BP repository 

With this organization, any team member in a new project will be able to navigate 
the repository and find the lessons learned and best practices that are relevant to the 
project activities he or she will be responsible to perform. However, this way of 
disseminating the knowledge existing in the repository strongly depends on the 
interest and the goodwill of team members for searching those knowledge and 
experiences and, thus, there is no way to ensure that the lessons learned and the best 
practices will be used in new projects. To overcome this situation, when the reflective 
guides are assigned to team members they will include references to the lessons 
learned and best practices in the repository (if they already exist) related to the project 
activities they are going to perform. In this way, we enforce team members to be 
aware and, more important, to apply, the knowledge and experiences gathered in 
previous cycles. Going back to figure 1, this enforcement is represented by the arrow 
that goes from the Repository to the “Software project activities”. 

492 Matturro G., Silva A.: A Model for Capturing and Managing Software ...



Going through several iterations over the same project activities, those lessons 
learned and best practices can be continuously refined and, when they became stable, 
the knowledge and experiences they represent can be formally integrated into the 
organizational software process specification. For doing this, in future iterations of the 
model, specific questions or sentences can be included in the reflection guides aimed 
to gather the opinion of team members in relation to, for instance, how useful a lesson 
learned had proven to be in at particular task or situation, or how good a proposal for 
best practices really is. Going back again to figure 1, the arrow that goes from the 
Repository to “Software practices and process in use” represent the way in which 
knowledge and experience captured in previous projects forms the base for improving 
software practices and processes in use in the organization. 

The simplest way to build the repository is to organize it like a hierarchy of 
folders in a file system (as shown in Figure 3) and to have each lesson learned or best 
practice as a separate document, filed in the corresponding folder. More sophisticated 
ways to create and manage that repository can be based on specialized software, being 
it a commercial package or a custom-builded one. As we explain at the end of the 
article, this second alternative is under development at the Software Engineering 
Department of Universidad ORT Uruguay. 

4.4 The Knowledge and Experience Management Group 

As the proposed model is intended to give an organization a way to manage its 
knowledge and experience in software engineering, it is expected that the 
organization establish a dedicated team for that purpose. We propose this team to 
have permanent members and ad-hoc or temporary members. 

The permanent members are the ones that will take care of implementing the 
phases and tasks of the mode by, for example, preparing and distributing the 
Reflective Guides, organizing and conducting the Experience Elicitation Workshop, 
elaborating the lessons learned and best practices documentation, and populating and 
updating the Repository. 

On the other hand, the temporary members should be experts in their respective 
software engineering fields and have god knowledge of the software practices and 
process in use in the organization, and of the areas in which these practices and 
process require improvements. These temporary members should participate in 
defining the knowledge and experience objectives, defining the types of question or 
sentences to include in the reflective guides, and in identifying the lessons learned and 
proposals of best practices that come out from the Experience Elicitation workshop. 
 
5 Integration of the model into software projects and process 

improvement activities 

The phases and tasks of the proposed model integrates both to software project 
activities and to the activities of improving the practices and software processes in 
use, so that the knowledge, learning and experience gained by project team members 
during the implementation of project activities can be used as a basis for the 
development and incorporation of improvements to the practices and processes 

493Matturro G., Silva A.: A Model for Capturing and Managing Software ...



software in use in the organization. The moment of integration will depend on the 
phase of the model in which we are in each instance, as graphically shown in figure 4: 
 

 

Figure 4: Integration to project and to process improvement activities 

5.1 Integration to project activities 

The integration of the model and the software project activities occurs fundamentally 
during the Actuation phase. In effect, the reflective guides contain reflective questions 
and sentences relative to the projects activities to execute, techniques to apply or 
processes to be followed by the members of project teams and the intention of these 
questions or sentences is to motivate and to orientate the analysis and the reflection on 
the practical execution of those activities, techniques and processes. 
 
5.2 Integration to process improvement activities 

The integration of the model to the software practices and process improvement 
activities essentially occurs in the phases of Initiation, Preparation and Integration. In 
the Initiation phase is where, from the improvement objectives established by the 
organization, the software practices and processes to improve are selected, and where 
the objectives of learning and knowledge creation are defined. In the phase of 
Preparation is where these objectives of learning and of creation of knowledge are 
translated in the questions or sentences of reflection to include in the reflection 
guides. These questions or sentences should aim precisely to motivate the analysis 
and reflection on those aspects of the software practices and processes that are being 
tried to improve. Finally, in the Integration phase is where the new knowledge and 
experience acquired is incorporated to the Repository of lessons learned and best 
practices and is used as a base for the reformulation of the software practices and 
processes used in the organization. 
 
6 Implementation of the Model 

In order to study the feasibility and usefulness of our model, we implemented it at 
ORT Software Factory (hereafter, ORTsf), an academic unit within the Software 
Engineering department of the University ORT Uruguay. 

494 Matturro G., Silva A.: A Model for Capturing and Managing Software ...



At ORTsf, undergraduate students in the last semester of their Systems Engineer 
career participate in software projects that have actual customers, that is, 
organizations external to the University that acquire the software products developed 
at ORTsf. For every project, team members have to perform all the usual software 
engineering processes, from requirements elicitation to the final delivery of the 
product. For this, the roles of requirements engineer, architect, developer, and project 
manager, among others, are performed by the members of each project team, 
according to their preferences or based on their previous working experience. 

The strategy chosen was a case study. A case study is an empirical inquiry that 
investigates a contemporary phenomenon within its real-life context, especially when 
the boundaries between phenomenon and context are not clearly evident [Yin, 03]. 
These characteristics contrast, for example, with the ones of experiments, which are 
conducted when the researcher wants control over the situation with direct, precise, 
and systematic manipulation of the behavior of the phenomenon to be studied 
[Wohlin, 00]. In this sense, and according to Sjøberg, Dyba and Jørgensen [Sjøberg, 
07], while an experiment deliberately divorces a phenomenon from its context, the 
case study aims deliberately at covering the contextual conditions. 

For this study, the conditions of the context are particularly important to be taken 
into account due to the fact that we aim to study the proposed approach and the 
reflective guides as elements embedded into the daily working activities of the 
members of a real software team project working in real software development. It is 
important to consider the fact that a statistical study was not applicable to our case 
because our focus is mainly qualitative, and the population of available projects at the 
moment of doing the study was limited to only four projects that matched the desired 
characteristics of being actual software development projects and with real customers. 

 
6.1 Implementation process 

As stated above, four independent software development projects were considered in 
this study, carried out by 15 students (see Table 2). The project teams were integrated 
by 3-5 students and had a professional support member who acted as a tutor in each 
project. Of the fifteen student members of the project team, twelve of them have real 
experience in developing software or in activities related to the IT. This is a general 
characteristic among the University students in Uruguay, who also work in the 
software industry at the same time as they do their higher education careers. 
 

Name Description Team size 
COODESOR Management system for a dentistry medical 

organization 
4 

GESA Management system for the Uruguayan 
Accreditation organism 

3 

InvPortal Web site for the Office of Development of the 
Private Sector (Financial and Economic Ministry 
of Uruguay) 

3 

SCPI Investment projects follow up and control System 
(Financial and Economic Ministry of Uruguay) 

5 

Table 2: Projects selected for the empirical study 

495Matturro G., Silva A.: A Model for Capturing and Managing Software ...



The working condition for the teams was to work together on-site (in the facilities 
of the University) for at least 10 hours weekly, in order to promote team cohesion and 
in order to have a similar working ambience to that of a software organization. The 
remaining 30 expected weekly hours in the project, the students had the freedom to 
work in the University or in any other alternative place at their choice. It is important 
to highlight that the selected projects were not conceived with the specific purpose of 
research in itself, because these projects had their own agenda and their own 
deadlines and objectives, which were agreed beforehand with their respective 
customers. 

Based on historical data available at ORTsf about the software practices that are 
usually evaluated as "deficient" when performed by the project teams, in the Initiation 
phase we decided to apply the model "ele" with the intention of obtaining lessons 
learned and proposals of best practices for improving the following software 
requirement engineering activities: (i) planning interviews with stakeholders and (ii) 
interaction with stakeholders during the interviews. 

Even though we selected these two requirements engineering activities, it is worth 
to mention that the model does not impose any restriction regarding the project tasks 
or the software engineering process to be applied to. 

For the next phase (Preparation), and for the associated software requirements 
activities, the corresponding reflective guides were elaborated, containing nine 
questions. The reflective questions and statements included in the guides were 
elaborated by the first author in cooperation with a member of the ORTsf staff who, 
based on working experiences with other former team projects, has good knowledge 
about the specific aspects of the chosen practices that are important to take into 
account. Since the goal is to capture experience, and not to define how to plan and 
handle interviews, the reflective questions and statements are independent of the 
particular application domains of each software product developed. Another 
consideration taken into account at the time of defining the reflective questions was 
the actual knowledge, skills and experience that team members posses about the 
selected practices. As the participants are undergraduate students in the last semester 
of their careers, the questions and statements were tailored according to the 
knowledge and skills they acquired during their regular courses on software 
requirements engineering. 

Once elaborated, the guides were given to the requirements engineer of each of 
the four projects selected for the study, prior to start the requirements engineering 
process. This was done during a brief meeting in which we explained them the 
purpose and content of the guides, and how they are supposed to use those guides as 
part of their requirements engineering activities. 

In the next phase, Actuation, the requirements engineer of each of the projects 
used the reflective guide while preparing and carrying out the assigned tasks and, 
during that time, they answered the corresponding reflective questions. 

Once the requirements engineering activities were finished and the members of 
the project team answered all the questions, the guides were collected back for their 
analysis. Due to their extension, extracts of the answers given for questions 1 and 9 
are included below. The complete reflective guides, with all the answers, can be 
obtained from the first author. 

496 Matturro G., Silva A.: A Model for Capturing and Managing Software ...



Question 1 corresponds to level 4 (Analysis) of Bloom's taxonomy. Excerpts 
from the answers are presented in Table 3: 
 

1. What aspects do you consider as important to take into account when 
planning an interview? 
COODESOR I believe that the most important thing in our case was the 

specific coordination of the interview. It was very good to 
generate a list of possible questions or topics we had to 
approach, as a kind of checklist of those aspects that we had to 
focus on. To inform the interviewee about the topics and the 
content of the interview in order that the interviewee could reach 
a clear outline of the topics to be discussed.  

GESA To make a list of questions or a guide for the interview; this will 
be different depending on the person we are going to interview.  

InvPortal To make a list of questions or a guide for the interview; this will 
be different depending on the person that we are going to 
interview. Before selecting the person who we will interview, it 
would be useful to speak to a Superior in order to be sure that we 
are interviewing the right person. Another important point is that 
the record of the meeting should be done as promptly as possible, 
as time passes and we can lose "small" details that ultimately are 
big requirements for the system. Also it is useful to send the client 
the questions or the topics that are going to be discussed in the 
meeting, in order to prepare it. 

SCPI It is necessary to plan the scope of the interview and the topics 
that are going to be treated. Make a list with the most important 
questions, without having to follow step by step, but to make sure 
ourselves to clarify all the points for which we request the 
interview. 

Table 3: Answers to question 1 

Question 9 corresponds to level 6 (evaluation) of Bloom's taxonomy. Excerpts 
from the answers are presented in Table 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 

497Matturro G., Silva A.: A Model for Capturing and Managing Software ...



 
9: Among the activities related to requirements engineering that took place 
in this project, which ones do you think should be improved next time? 
COODESOR A possible improvement is to start with an initial instance of 

knowledge of the client and other stakeholders before carrying 
out the interview. 

GESA What I should improve for next interviews is time management, 
because the majority of the times, just for being polite to the 
customer, I allowed him/her to spread in irrelevant things for the 
project. This made the meeting longer than planned, without 
adding anything productive to the interview. I suppose this is due 
to the lack of experience in interviews. 

InvPortal The activity that caused most of the problems was the 
documentation of everything we extracted. Provided that many 
tools available in the institutional web pages to take forward the 
requirement engineering, at first we decided to use the majority 
of them. But by means of chats with the tutor of role, he advised 
us that to support all the documents would take time and that is 
necessary to consider a costs/benefits relation and to be able to 
realize documents that contribute to the client and to us. 

SCPI The only problem was the scarce availability of time by our 
customer in order to concrete an interview. 

Table 4: Answers to question 9 

Once the requirement engineering tasks were done, and with the answers to the 
reflective questions as an input, we carried out the Experience Elicitation Workshop 
as the central activity in the Elicitation phase. During the workshop, the requirements 
engineer of each project discussed the answers given and made new contributions to 
the knowledge and experiences that were not previously included in the answers to 
the reflective guides. 

The conclusions of the workshop for the two topics defined at the Initiation phase 
(interaction with the interviewees and planning interviews) are shown in tables 5 and 
6, respectively. 
 

Topic 1: Interaction with the interviewee 
2.1 During the interview, the interviewers must direct their attention to 

different aspects. For instance, to the topics that are approached, the 
dynamics of the interview, aspects of the business and possible needs of 
the user. It is very important that the interviewee does not possess any 
objection for recording the interview so that the attention centers on the 
key aspects and does not turn aside towards recording aspects. 

2.2 If more than one interviewer will take part in the interview, they should 
participate together, as a group, to enable an organized and uniform way 
of conducting the interview. 

2.3 Familiarize yourself with the language (“jargon”) of the interviewee. 

Table 5: Workshop results for "Interaction with the interviewee" 

498 Matturro G., Silva A.: A Model for Capturing and Managing Software ...



 
Topic 2: Planning the interviews 
1.1 Before carrying out the interview it is essential to gather information 

about the business of the client. To do some research about the client and 
its domain. This will allow the interviewer to go to the interview with 
knowledge that will facilitate the comprehension of the problems and 
needs of the customer. 

1.2 Make a list of the questions to be asked to the interviewee and send it 
before the interview. This will warn the interviewee about the topics to be 
discussed during the interview, in order the interviewee to be prepared 
properly and to assure that all the information and supporting 
documentation is available.  

1.3 Elaborate a script of the interview based on the number of respondents 
and the proposed duration of the interview. This will allow establishing 
an appropriate order for conducting the interview and, in addition, will 
help to discuss all the topics, without missing one. 

1.4 Establish the duration of the interview and inform it in advance to the 
interviewee. Set the start time and the finish time and try always to 
respect these hours. If the end of the interview comes without having 
discussed all the topics under consideration, try to schedule a new one 
quickly to conclude the missing topics. 

1.5 Write down the results of the interview immediately after its conclusion 
in order not to forget details or aspects worked during the interview. 

Table 6: Workshop results for "Planning the interview" 

From these conclusions, lessons learned and proposals of best practices were 
elaborated that, in the upcoming phase of Integration, were added to the Repository of 
lessons learned and best practices, whose structure was presented in sub-section 4.3. 
 
6.2.   Process Timing 

As experience indicates, team members usually don’t like their activities to be 
interrupted by “additional” tasks, especially for knowledge management. Because of 
this, we also wanted to know how much time the participants spent in answering the 
questions in the reflective guides as a way to measure the impact this “additional” 
activity has in their project-specific activities and in the total time of the projects. 

In table 7 we present the times (in hours) devoted by the requirement engineer of 
each project in answering the questions in the reflective guides. 
 

Project Timing 
(in hours) 

COODESOR 1.33 
GESA 1.27 
SCPI 0.77 
InvPortal 1.17 

Table 5: Times devoted to answer the reflective guides 

499Matturro G., Silva A.: A Model for Capturing and Managing Software ...



To know the impact these additional activities had in the project activities, we 
proceeded to calculate the percentage of time spent in the requirements engineering 
activities and the total amount of time involved in the project. From the revision of 
the documents of the projects of the competing groups the following timing used in 
the overall project and the engineering requirements activities were obtained; in table 
8 the timing is expressed in hours. 
 

Project RE activities 
(in hours) 

Project duration 
(in hours) 

COODESOR 372 1371 
GESA 233 1262 
SCPI 262 2912 
InvPortal 27 1480 

Table 6: Total times of project activities 

Table 9 shows the percentages of time dedicated to answering the reflective 
guides in relation to the time consumed by the activities of requirements engineering 
and total project time. 
 

Project % related to 
RE activities 

% related to 
project duration 

COODESOR 0.36 % 0.09 % 
GESA 0.55 % 0.10 % 
SCPI 0.29 % 0.03 % 
InvPortal 4.33 % 0.08 % 

Table 7: Incidence of answering the reflective guides in relation to projects times 

Based on the data presented in the previous three tables, the impact of answering 
the questions in the reflective guides is less than 1% of the time devoted to the whole 
software requirements process in each project with the exception of project InvPortal. 
The reason behind this behaviour is that the requirements engineering process for 
project InvPortal took only 27 hours, but answering the reflective guides took about 
the same time as the other three projects (as shown in Table 7). However, if we take 
into consideration the total duration of each project (shown in Table 8), the impact of 
answering the reflective guides was less than 0.1% for all of them. 

The costs in time of recording the answers, shown in table 7, are not the only ones 
to take into account for evaluating the time consumed by the entire approach. Other 
costs include the time required for preparing the reflective guides, for analyzing the 
answers after the guides are returned back, for preparing and carrying out the 
workshop, and for the elaboration of the lessons learned and proposals of best 
practices, beside the time spent in the brief meeting explained above. All of these 
times, in hours, are presented in table 10. 

 
 
 

500 Matturro G., Silva A.: A Model for Capturing and Managing Software ...



 
 

Other activities Times consumed 
(in hours) 

Reflective guides elaboration 1.5 
Brief meeting 1.0 
Analysis of the answers 6.0 
Workshop process 2.5 
LL and BP elaboration 1.5 

Total 12.5 

Table 8: Times devoted to the other activities 

As we have data of only these four projects, we are unable to do a statistical 
treatment of these data in order to derive more general conclusions from them. We 
take these data only as a primary estimation of the effort that implies the use of the 
reflective guides as part of project activities. 

7 Conclusions and future works 

In this paper we presented the model “ele” for managing the knowledge and 
experience that team members acquire during software projects, with its phases and 
tasks integrated into daily project activities. The purpose of the model is to guide 
knowledge and experience management activities in order to capture and manage 
lessons learned and proposals of best practices that will enable an organization to 
preserve them for future use. 

The proposed model provides a complete life cycle for knowledge and experience 
management, from the initial definition of objectives for the experience to be 
captured, to the final elaboration and dissemination of lessons learned and best 
practices. 

A central element in the model is what we called “reflective guides”. By 
integrating them to the project tasks to be carried out, the process of experience 
capture occurs earlier than with existing methods such as project postmortem analysis 
([Birk, 02]), post-project revisions ([Harrison, 03]), legacy sessions ([Cooper, 07]), 
and experience postmortem reports and reviews ([Dingsoyr, 01]) mentioned in section 
1, avoiding the risk of these experiences being lost if, after project completion, the 
team members abandon the organization or are assigned to new projects, taking with 
then the acquired experience. 

Our model goes beyond the mere capture of experience, providing specific 
directions on how to use the captured experience for identifying lessons learned and 
proposals of best practices that are later integrated to a general repository to preserve 
them for future use. The structure given to this repository makes it easy for team 
member to locate existing lessons learned and best practices, enabling this way the 
dissemination of knowledge and experience to the rest of the organization and its 
reuse in new software projects. 

501Matturro G., Silva A.: A Model for Capturing and Managing Software ...



By implementing the model, an organization can achieve an organized and 
systematic way of managing its software engineering knowledge and experiences, 
covering the usual knowledge management activities generally found in the literature, 
such as identification, capture, preservation, dissemination and reutilization. 

An implementation of the model in a software organization was also presented. 
The study carried out shows that the use of the reflective guides enabled the capture 
of experience gathered by team members during the execution of project tasks. This 
contrasts with the way this experience is captured by applying traditional methods 
such as project postmortem analysis, as commented in the introduction. 

The subsequent experience elicitation workshop enables requirements engineers 
to know the experiences lived by others and to make new contributions of knowledge 
and experiences not initially captured in the guides. As a result of this workshop, 
lessons learned and proposals of best practices are elaborated and incorporated into 
the repository of lessons learned and best practices. 

As an additional result of exploratory character, the time consumed by the 
members of the project teams was obtained. Even though we do not have data to 
compare this timing with the timing necessary to capture experience by using the 
methods presented in section 2, we can say that the use of reflective guides in 
particular, and the whole process in general, cannot be considered an overload of 
work for the member of the team projects. With regard to this issue, we consider 
necessary to have not only quantitative data about this timing, but to have qualitative 
data as well, in order to bring into consideration the quality and richness of the results 
obtained with our approach, compared to other methods. For the post-mortem analysis 
method in particular, it could be interesting to investigate how it could be enhanced if 
the answers to the reflective guides were used as an input. By using reflective guides, 
the questions or sentences included in them can be of help to define the goals of the 
post-mortem during its Preparation phase, and the Data Collection phase can be 
considered almost done with the answers given by team members. The only 
remaining phase would be the Analysis phase, that is, the feedback session conducted 
to analyze the causes of positive and negative experiences. Additionally, even though 
some team members cannot finally participate in this later phase, their experiences 
can be taken into account by considering their answers to the reflective questions. 

The implementation of the model also served to define in a precise way the 
purposes and objectives of each phase, as well as to adjust the procedures for 
elaborating the different knowledge management artifacts within the model. At the 
moment of writing this article, the first author is working with two Uruguayan 
software companies in defining a plan for implementing the model in their 
environments. We are carrying out an assessment of the software practices and 
processes in use in both organizations as a previous step to define the objectives for 
knowledge and experience capture. Implementing the model in these two 
organizations will give us the opportunity to test it with bigger project teams than the 
ones considered in the case study. 

Another topic that will deserve further research is how to tailor the model for 
applying it in a distributed software development environment, particularly for the 
step of the Experience Elicitation Workshop. At first sight we are considering the use 
of videoconferencing technology for this purpose which also will give us useful 
information to compare it with a face-to-face meeting. 

502 Matturro G., Silva A.: A Model for Capturing and Managing Software ...



On the technical and practical side, a software tool is being developed in ORTsf 
to support the different phases and tasks of the model, which will also interface with 
the repository of lessons learned and of best practices. Salient features of this tool will 
be to allow team members to read and add comments to the reflections and answers 
given by the other, and also to enable users of the repository to include comments 
regarding the lessons learned and the best practices and to rate them in order to create 
a ranking of the most useful or interesting ones as a way to give a recognition to the 
respective authors. 

References 

[Abran, 04] Abran, A., Moore, J., (eds.) Guide to the software engineering body of knowledge, 
IEEE Computer Society, Los Alamitos, California, 2004 

[Alagarsamy, 07] Alagarsamy, K., Justus, S., Iyakutti, K. The knowledge based software 
process improvement program. A rational analysis, Proceedings of the International Conference 
on Software Engineering Advances (ICSEA 2007), 2007 pp. 61. 

[Antunes, 07] Antunes, B., Seco, N., Gomes, P., Knowledge management using semantic web 
technologies: An application in software development, Proceedings of the Fourth International 
Conference on Knowledge Capture, 2007 187-188 

[Aurum, 08] Aurum, A., Daneshgar, F., Ward, J. Investigating Knowledge Management 
practices in software development organizations. An Australian experience, Information and 
Software Technology 50, 2008, pp. 511–533. 

[Azuma, 03] Azuma, M., Coallier, F., Garbajosa, J., How to apply the Bloom taxonomy to 
software engineering, Proceedings of the Eleventh Annual International Workshop on Software 
Technology and Engineering Practice (STEP ‘03), 2003, pp. 117-122 

[Babar, 09] Babar, M., Dingsøyr, T., Lago, P., van Vliet, H. Software architecture knowledge 
management, Berlin, Springer, 2009 

[Basili, 94] Basili, V., Caldeira, G., Rombach, H. The experience factory, in J. Marciniak (Ed.) 
Encyclopedia of software engineering, New York, J. Wiley & Sons, 1994, pp. 469-476 

[Basili, 01] Basili, V., Lindvall, M., Costa, P. Implementing the Experience Factory as a set of 
experience bases, Proceedings of the 13th International Conference on Software Engineering 
and Knowledge Engineering, 2001, pp. 102-109 

[Birk, 02] Birk, A., Dingsoyr, T., Stalhane, T., Postmortem: never leave a project without it, 
IEEE Software, 19 (3), (2002) pp. 43-45 

[Bjørnson, 07] Bjørnson, F. Knowledge management in software process improvement, 
Doctoral thesis, Department of Computer and Information Science, Norwegian University of 
Science and Technology, 2007 

[Bloom, 56] Bloom, B., Engelhart, M., Furst, E., Hill, W., Krathwohl, D., Taxonomy of 
educational objectives. Handbook I: Cognitive domain, David McKay, New York, 1956. 

[Bourque, 03] Bourque, P., Buglione, L., Abran, A., April, A., Bloom’s taxonomy levels for 
three software engineering profiles, Proceedings of the Eleventh Annual International 
Workshop on Software Technology and Engineering Practice (STEP ’03), 2003, pp. 123-129. 

503Matturro G., Silva A.: A Model for Capturing and Managing Software ...



[Briand, 03] Briand, L., On the many ways software engineering can benefit from knowledge 
engineering, Proceedings of the 14th International Conference on Software Engineering and 
Knowledge Engineering, 2003, pp. 3-6 

[Burge, 02] Burge, J., Brown, D. Integrating design rationale with a process model, 
Proceedings of the Workshop on Design Process Modelling, Artificial Intelligence in Design 
’02, Cambridge, UK., 2002 

[Cecil, 95] Cecil, N., The art of inquiry, Winnipeg, Peguis, 1995 

[Chau, 05] Chau, T., Maurer, F. A case study of wiki-based experience repository at a medium-
sized software company, University of Calgary, Department of Computer Science, 2005 

[Cooper, 07] Cooper, L., Converting project team experience to organizational learning, 
Proceedings of the 40th Hawaii International Conference on System Sciences, 2007, pp. 195 

[Desouza, 05] Desouza, K., Dingsoyr, T., Awazu, Y., Experiences with conducting project 
postmortems. Proceedings of the 38th Hawaii International Conference on System Sciences, 
2005, pp. 233c. 

[Dingsoyr, 01] Dingsoyr, T., Moe, N., Nytro, O., Augmenting experience reports with 
lightweight postmortem reviews, in F. Bomarius, S. Komi.Sirvio (Eds.): PROFES 2001, LNCS 
2188, 2001, pp. 167-181. 

[Edwards, 03] Edwards, L., Coaching: the latest buzzword or a truly effective management 
tool?, Industrial and Commercial Training, 35 (7), 2002, pp. 298-300 

[Gupta, 04] Gupta, J., Sharma, S., Creating knowledge-based organizations, Harshey, Idea 
Group Inc., 2004 

[Harrison, 03] Harrison, W., A software engineering lessons learned repository, Proceedings of 
the 27th Annual NASA Goddard/IEEE Software Engineering Workshop, 2003, pp. 139. 

[IEEE, 90] IEEE Computer Society, IEEE standard glossary for software engineering 
terminology, IEEE, Piscataway, 1990 

[Jedlitschka, 01] Jedlitschka, A., Althoff, K., Decker, B., Harrtkopf, S., Nick, M. Corporate 
information network (COIN): The Fraunhofer IESE experience factory, 2001, pp. 54-60 

[Johansson, 99] Johansson, C., Hall, P., Coquard, M. Talk to Paula and Peter; they are 
experienced. The experience engine in a nutshell, Proceedings of the 11th International 
Conference on Software Engineering and Knowledge Engineering, Learning Software 
Organizations, Methodology and Applications, 1999, pp. 171-185 

[Keegan, 01] Keegan, A., Turner, J., Quantity versus quality in project-based learning 
practices, Management Learning 32(1), 2001, pp. 77-98 

[Komi-Sirvio, 02] Komi-Sirvio, S., Mantyniemi, A., Seppanen, V., Toward a practical solution 
for capturing knowledge for software projects, IEEE Software, 19 (3), 2002, pp. 60-62 

[Koskinen, 01] Koskinen, K. Tacit knowledge as a promoter of success in technology firms, 
Proceedings of the 34th Hawaii International Conference on System Sciences, 2001 

[Kruchten, 05] Kruchten, P., Lago, P., Van Vliet, H., Wolf, T. Building up and exploiting 
architectural knowledge, Proceedings of the 5th Working IEEE/IFIP Conference on Software 
Architecture, WICSA 2005. IEEE Computer Society, 2005, pp. 291–292 

[Kukko, 08] Kukko, M., Helander, N., Virtanene, P. Knowledge management in renewing 
software development process, Proceedings of the 41th Hawaii International Conference on 
System Sciences, 2008, pp. 332 

504 Matturro G., Silva A.: A Model for Capturing and Managing Software ...



[Maier, 08] Maier R., Thalmann S., Bayer F., Krueger M., Nitz H., Sandow A., Optimizing 
assignment of knowledge workers to office space using knowledge management criteria, 
Journal of Universal Computer Science, 14 (4), 2008, pp. 508-525 

[Pettersson, 09] Pettersson, U., Success and Failure Factors for KM: The Utilization of 
Knowledge in the Swedish Armed Forces, Journal of Universal Computer Science, 15(8) 2009, 
pp. 1735-1743 

[Rus, 02] Rus, I., Lindvall, M. Knowledge management in software engineering, IEEE 
Software, 19 (3), (2002) 26-38 

[Schneider, 02] Schneider, K., von Hunnius, J., Basili, V. Experience in implementing a 
learning software organization, IEEE Software, 19 (3), 2002, 46-49 

[Scott, 03] Scott, L., Stalhane, T., Experience repositories and postmortem, Workshop Learning 
Software Organizations, 2003 

[Sjøberg, 07] Sjøberg, D., Dyba, T., Jørgensen, M., The future of empirical methods in 
software engineering research, In 2007 Future of Software Engineering, International 
Conference on Software Engineering. IEEE Computer Society, Washington, DC, pp. 358-378 

[Tang, 06] Tang, A., Babar, M., Gorton, I., Han, J., A survey of architecture design rationale 
Journal of Systems and Software, 79(12), 2006, pp. 1792–1804 

[Wohlin, 00] Wohlin C., Runeson P., Höst P. Experimentation in software engineering: An 
introduction, Kluwer, Boston, 2000 

[Wohlin, 03] Wohlin, C. Applications of knowledge management in software engineering, in: 
R. Jeffery, C. Wohlin, M. Handzic (Eds.), Managing software engineering knowledge, Berlin, 
Springer, 2003, pp. 177-180 

[Ye, 06] Ye, Y. Supporting software development as knowledge intensive and collaborative 
activity, Proceedings of (WISER’06), 2006, pp. 15-22 

[Yin, 03] Yin, R. Case study research. Design and methods, Sage, Thousand Oaks, 2003 

[Zedtwitz, 02] Zedtwitz, M., Organizational learning through post-project reviews in R&D, 
R&D Management, 32(3), 2002, pp. 255-268 

[Zhu, 07] Zhu, L., Staples, M., Gorton, I. An infrastructure for indexing and organizing best 
practices, Proceedings of the 2nd International Workshop on Realizing Evidence-based 
Software Engineering (REBSE ’07), 2007, pp. 4 

 

505Matturro G., Silva A.: A Model for Capturing and Managing Software ...


