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Abstract: In Natural Language Processing (NLP) symbolic systems, several linguistic
phenomena, for instance, the thematic role relationships between sentence constituents,
such as agent, patient, and location, can be accounted for by the employment of a
rule-based grammar. Another approach to NLP concerns the use of the connectionist
model, which has the benefits of learning, generalization and fault tolerance, among
others. A third option merges the two previous approaches into a hybrid one: a symbolic
thematic theory is used to supply the connectionist network with initial knowledge. In-
spired on neuroscience, it is proposed a symbolic-connectionist hybrid system called
BioθPred (Biologically plausible thematic (θ) symbolic-connectionist Predictor), de-
signed to reveal the thematic grid assigned to a sentence. Its connectionist architecture
comprises, as input, a featural representation of the words (based on the verb/noun
WordNet classification and on the classical semantic microfeature representation), and,
as output, the thematic grid assigned to the sentence. BioθPred is designed to “pre-
dict” thematic (semantic) roles assigned to words in a sentence context, employing
biologically inspired training algorithm and architecture, and adopting a psycholin-
guistic view of thematic theory.

Key Words: thematic (semantic) role labeling, natural language processing, biologi-
cally plausible connectionist models
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1 Introduction

In sentences such as (1), one can intuitively find an agent (the man) and a

patient (the girl). The Government and Binding linguistic theory [Cho81] refers

to the roles words usually have in relation to a verb as thematic roles (θ-roles),

so that one can say that the verb hit assigns a thematic grid with the following

roles [agent, patient] to this sentence. But linguistic theory also assumes that

this structure can change, depending on the sentence. So, to sentence (2), the

same verb hit assigns a different thematic grid, since car is cause, instead of
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agent. The difference between (1) and (2) arises from the semantic properties

concerning the subject of verb hit - the conscious animate noun man in (1) in

relation to the inanimate noun car in (2); thus, the thematic grid assigned to (2)

- [cause, patient] - is different from the grid assigned to (1).

The man hit the girl. (1)

The car hit the tree. (2)

The theoretical approach to thematic roles in linguistics is symbolic. As in

predicate logic, the linguistic expressions are decomposed into a central pred-

icate (often the verb) and a number of arguments that complete its meaning.

The predicate assigns thematic roles to the arguments so each sentence can be

associated with a thematic grid.

More than two decades ago, [MK86] proposed a system to deal with rela-

tionship patterns. Their system handled those patterns - the words of a sentence

- in order to assign the correct case role to its constituents. Since then, many

researchers proposed similar approaches.

Here, another Natural Language Processing (NLP) system, called BioθPred

(which stands for Biologically plausible thematic (θ) symbolic-connectionist

Predictor), is proposed to identify the thematic grid assigned to a semanti-

cally sound input sentence. This system, based on linguistic thematic theory,

incorporates many features including dealing with lexical and thematic ambigu-

ities. BioθPred departs from a symbolic knowledge base concerning thematic

theory, and after training, shows the thematic grid assigned to a sentence, one

thematic role at a time1. In addition, a revised symbolic theory can be extracted

from the connectionist architecture.

Unlike McClelland and Kawamoto system, in BioθPred a single network

accounts for each verb-noun pair; thus generalizing over both nouns and verbs.

In fact, this is crucial in dealing with thematic roles, for they are but the gener-

alization of semantic relationships between verbs and nouns.

BioθPred receives the sentence as input, presented in verb-noun pairs. Only

meaningfully well-formed sentences belong to its training set. The motivation for

this comes from the necessity of clarifying some psycholinguistic issues, concern-

ing essentially language acquisition. In order to achieve a complete and sound

thematic processing, the words in a sentence must be related to each other, and

not only to the verb. Furthermore, children when learn language, are unlikely

to have semantic anomalous sentences as examples. Consequently, BioθPred is

designed to contain only semantically sound sentences in its training set.

1 BioθPred employs a limited set of thematic roles. The reasons for this choice are
presented in the next section.
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For the so-called semantic role labeling (SRL), according to [PGX10], “for

a given verb and given each constituent in a parse, the SRL task is to select

from a pre-defined set the constituent’s semantic role label with respect to the

verb.” So, BioθPred does a sort of SRL, although it depends on semantic fea-

tures of the words, instead of almost exclusively syntactic-based, employed by

corpora resources, such as PropBank [PGK05], FrameNet [FJP03], and Verb-

Net [KKRP08].

The next section presents thematic roles under a psycholinguistic view. Sec-

tion 3 describes the connectionist representation of the adopted input data, which

are distributed and based on a semantic feature set. Section 4 presents a discus-

sion of two opposing standpoints regarding language acquisition, and how this

influences the way connectionist systems learn. In section 5, there is an introduc-

tion to symbolic-connectionist hybrid systems, their advantages and drawbacks.

And finally, in section 6, the proposed system BioθPred is presented, with

concluding remarks in section 7.

2 Thematic Roles

The Government and Binding linguistic theory [Cho81, Cho86] states that the-

matic roles - the semantic relations between words in a sentence - are in the lexi-

con, so a specific verb assigns a single thematic grid, the structure containing the

thematic roles assigned to a sentence. This is a “slot and filler” lexicalist view.

For instance, the verb judge would assign an experiencer (i) and a theme (j ),

no matter in which sentence it occurs, like in [I ]i cannot judge [some works of

modern art ]j [Ros07]. There are verbs, however, which assign different thematic

grids to different sentences, for instance the verb thaw in sentences (3) and (4).

The chef thawed the soup, (3)

The wind thawed the ice cream. (4)

To the sentences (3) and (4), although the same verb is employed, are as-

signed different thematic grids. In one possible reading of sentence (3), the the-

matic grid assigned is [agent, patient] and in sentence (4), [cause, patient].

The reason is that the chef, in the intended reading of sentence (3), is supposed

to have the control of action, that is, the intention of thawing. The same does

not occur in sentence (4). The wind is not willing of thawing anything. A verb

that assigns two different thematic grids to different sentences is called here the-

matically ambiguous. How to solve the thematic ambiguity of the verb thaw in

a lexicalist view?
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In BioθPred, the output units constitute the thematic grid assigned to a

sentence, which is composed of up to seven thematic roles: agent, experi-

encer, cause, patient, theme, location, and value2. For BioθPred, some

intuitive thematic role definitions are adopted, as follows. agent is the argu-

ment that controls the action expressed by the predicate. experiencer is a

participant who does not have the control of an action and usually expresses a

psychological state. cause is the argument that initiates the action expressed by

the predicate without controlling it. patient is the participant affected directly

by the action of the predicate, usually changing states. theme is the participant

affected indirectly by the action of the predicate, without changing states. lo-

cation represents the place where the event expressed by the verb occurs or is

direct to. value is the argument that stresses the importance of something or

somebody3.

A set of verbs from WordNet was chosen for BioθPred. These verbs repre-

sent all kinds of semantic relationships BioθPred intends to treat.

In a non-lexicalist view (componential), one could have a representation for

thematically ambiguous verbs, like thaw in sentences (3) and (4), that would

allow them to function as predicates in several sentence types. From the verbs

proposed for BioθPred, many are thematically ambiguous verbs, so they can

assign more than one thematic grid.

The thematic role notion employed here is what some researchers call abstract

thematic roles [GJ02].

English lexical resources, like PropBank [PGK05], FrameNet [FJP03], and

VerbNet [KKRP08] provide thematic role labels. These labels can be used in

annotation tasks. Although the lexical bases differ in the granularity of se-

mantic labels, they are very compatible [Pal09]. Among them, FrameNet is the

most fine-grained regarding thematic relationships [Ros10]. Systems that employ

these resources use mainly syntactic information on the chosen features for train-

ing [PGX10]. Since BioθPred relies mainly on semantic representation for the

2 In the development of the system, several thematic roles, including instrument were
tried. But the role instrument, as well as time and others, would be essential in
a context where they are necessary to express the use of tools for doing something
(instrument) or in temporal events (time). In the case of BioθPred, these roles are
not necessary, because it describes relationships in which these roles do not occur. In
other words, BioθPred lexicon does not contemplate verbs which assign such roles.
That’s the reason they have not been considered anymore, so the final system uses
the only seven roles that the employed verbs assign.

3 How to name a semantic role for money? FrameNet employs the role money it-
self [FB10]. According to VerbNet [Pal10], it should be used asset for nouns that
specify values (price paid): “Asset: used for the Sum of Money Alternation, present
in classes such as Build-26.1, Get-13.5.1, and Obtain-13.5.2 with ‘currency’ as a selec-
tional restriction.” [Pal10]. However, Dowty adopts the usual theme [Dow90], and
Andrews [And85], extend. On the other side, Sowa uses resource [Sow00]. As one
can see, there is no agreement about how to call this specific thematic (semantic)
role. So, it is decided to call it value: this way, one could abstract the meaning of
the intended role.
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words and since it applies to subject-verb-object sentences instead of complex

sentences, it is considered irrelevant direct comparisons among such systems.

According to [AS10], “semantic (thematic) roles are a critical aspect of lin-

guistic knowledge because they indicate the relations of the participants in an

event to the main predicate.” [AS10] propose a computational approach that

shows that children and adults use associations between general thematic roles

such as agent and theme. In addition, they suggest that semantic roles are

verb-based and evolve over time. Also, semantic roles can be learned from the

data children are exposed to, through a process of generalisation and categorisa-

tion. Regarding cognitive neuroscience, [DIH09] studies how cortical plasticity is

employed to drive thematic role assignment in language acquisition. These works

show the importance of dealing (computationally also) with semantic roles. This

way, innovative approaches to Semantic Role Labeling must take into account

semantic aspects of sentence constituents.

3 Microfeatural Distributed Representation

[WP85] and [MK86] employ semantic feature generalization in their pioneer-

ing proposals, and much of subsequent works adopt this kind of representa-

tion: [Jai91], [JW90], [MJT89], [Mii93], [MD91], [Ros07], [Ros09], [RF99], [RS04],

[JM89], [JM90]. These papers present basically the discussion of language pro-

cessing through a machine learning technique called artificial neural networks.

According to them, artificial neural networks are a good approximation of the

low-level mental architecture, but not for high-level symbol manipulation pro-

cesses [FP88]. They also state that subsymbolic systems (i.e., parallel distributed

processing approach, or distributed connectionism, or distributed neural net-

work) seem to capture several properties of human-like information processing

like learning from examples, context sensitivity, generalization, behavior robust-

ness, and intuitive reasoning. They argue that these properties have been very

difficult to model with the traditional symbolic techniques. These papers de-

scribe sentence processing models that aim to explain how syntactic, semantic,

and thematic constraints are combined in sentence comprehension, and how

this knowledge can be coded in the network. The models are based partly on

semantic feature encoding of the words. These works are pointed as highly struc-

tured connectionist architectures to parse complex syntactic structure sentences.

Sometimes, the words are entered one at a time, and the network output consists

on local representations for possible assignments of words into phrases, phrases

into clauses, and phrases into roles in each clause, and for the possible relation-

ships of the clauses. The consistent activation of the output units represents the

sentence interpretation.
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3.1 Systems that make use of distributed representations

According to [vG92], a representation is distributed when it can be described

by means of a function. In a sense, the units in a connectionist network have

function roles.

[Mii93] discusses several kinds of representations adopted by many authors. A

popular approach for forming distributed representations is the semantic feature

encoding, used by [WP85] and [MK86]. In their connectionist systems, inputs are

not raw sentences but semantic microfeature representations of the constituent

structures of sentences. Words are represented as semantic microfeatures arrays.

According to them, every word is described by an array of bits in which each

subset holds an associated meaning, like human-non human, soft-hard, male-

female, and so on. For nouns and verbs, the features are grouped in several

dimensions. Each dimension consists of a mutually exclusive value set and, in

general, each word is represented by an array in which one, and only one, value

in each dimension is on and all the other values are off for that word.

This kind of representation is meaningful by itself. It is possible to extract

information just by examining the representation, without having to train a

network to interpret it. In addition, these representations are semantically well

constructed; that is, they can be related to a semantic theory.

On the other hand, such patterns must be preencoded, so they remain fixed.

Adapting the representations to the actual task and data cannot optimize the

performance. Because every one of the concepts must be classified along the

same dimensions, the number of dimensions becomes very large, and many of

them are irrelevant to the particular concept. It is not an easy task to decide

what dimensions are necessary and useful [vG89].

There is also the epistemological question of whether the process of deciding

what dimensions to use is justifiable or not. Hand-coded representations are

always more or less ad hoc and biased. In some cases, it is possible to make the

task trivial by a clever encoding of the input representations [Mii93].

Developing internal representations in hidden layers of a backpropagation

network avoids these problems. Hinton’s family tree network is a good exam-

ple [Hin86, Hin90]. That network consists of input, output, and three hidden

layers. The input and output layers are localists: exactly one unity is dedicated

to each item. The hidden layers next to the input and output layers contain con-

siderably fewer units, which force these layers to form compressed distributed

activity patterns for the input and output items. The development of these pat-

terns occurs as an essential part of learning the processing task, and they end

up reflecting the regularities of the task.

[Elm89, Elm90] proposes another variant of the same approach. A simple

recurrent network is trained to predict the next word in input word sequence. The
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network hidden layer develops structured representations for the words based on

how the words occur in sequences.

In FGREP approach [Mii93], the representations for symbols are developed

automatically while the network is learning the processing task. Since the repre-

sentations are adapted according to the backpropagation error signal, they end

up coding the properties of the input elements that are most crucial to the task.

3.2 Distributed representations in BioθPred

In BioθPred, a distributed semantic microfeatural representation is employed,

inspired by [WP85] and [MK86] representations. The chosen features are related

to a psycholinguistic thematic theory. For verbs, it is based on WordNet4 clas-

sification for verbs [Fel90] and on a thematic framework5. For nouns, it is based

mainly onWordNet classification for nouns [Mil90]. The chosen semantic features

for verbs in BioθPred are strongly based on a non-lexicalist representation; that

is, the thematic role assignment componentially depends on the whole sentence.

For instance, taking the verb walk, (7) and (8) are the thematic grids assigned

to (5) and (6), respectively.

The man walked to the restaurant, (5)

The man walked the dog. (6)

[agent, location], (7)

[agent,theme]. (8)

To explain the difference, one can resort to the notion that thematic roles

are elements with semantic content [Dow89]. In this case, it seems that some-

times (e.g. in sentence (5) direct process triggering is required by the verb walk

in relation to the first argument (the man), while no such direct triggering is

required in sentence (6)). Thus, one could say that direct process triggering is a

feature to be associated with the verb.

The same is true for the verb thaw, regarding a different feature: control of

action. In sentence (3) presented previously, control of action is part of the game,

while in (4) weather assumes a central role.

4 WordNet version 3.0: http://wordnet.princeton.edu/obtain
5 Not all of the features employed are based on WordNet. 10, out of 25, are based on
a “thematic framework”, that is, they are relevant in a context where semantic role
labeling plays a leading role. Is is used an adaptation of McClelland and Kawamoto’s
representation [MK86] for these features.
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Thus, a small set of features can be associated with the verb, in the same

manner that nouns are associated with a set of (different) features. The com-

ponential features associated with the verb change according to the sentence in

which the verb is used. So, it is inadequate to say that a specific verb assigns

a single thematic grid, because this will depend on the whole sentence in which

the verb occurs. In summary, a non-lexicalist approach is preferable [RF00].

It is important to notice here that the verb microfeatures are chosen in order

to encompass the semantic issues considered relevant in a thematic framework.

The microfeatures outside this semantic context are not meaningful. They only

make sense in a system like BioθPred, where the specification of semantic

relationships between the words in a sentence plays a leading role.

Table 1: The twenty five semantic microfeature dimensions for verbs, based on

WordNet verb classification and on a thematic framework.

10 01

body no body

change no change

cognition no cognition

communication no communication

competition no competition

consumption no consumption

contact no contact

creation no creation

emotion no emotion

motion no motion

perception no perception

possession no possession

social no social

stative no stative

weather no weather

control of action no control of action

direct process triggering indirect process triggering

direction of action to source direction of action to goal

impacting process no impacting process

change of state no change of state

psychological state no psychological state

objective action no objective action

effective action no effective action

high intensity of action low intensity of action

interest on process no interest on process
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The schema on table 1 displays the semantic features for verbs. These fea-

tures are based on WordNet classification for verbs [Fel90] and on a thematic

framework [MK86]. For each of these dimensions, one feature is active, and the

other is inactive. For instance, table 2 shows the features for the verb hit in the

senses of sentences (1) and (2).

Table 2: The semantic microfeature dimensions for verb hit in the sense of sen-

tence (1) (hit1) and in the sense of sentence (2) (hit2).

feature hit1 hit2
body no no

change no no

cognition no no

communication no no

competition yes no

consumption no no

contact yes yes

creation no no

emotion no no

motion yes yes

perception no no

possession no no

social no no

stative no no

weather no no

control of action yes no

process triggering direct indirect

direction of action goal goal

impacting process yes yes

change of state yes yes

psychological state no no

objective action yes no

effective action yes yes

intensity of action high high

interest on process yes no

As one can see, two different readings for the same verb. But when the

user enters the verb hit into BioθPred, the system does not know which hit

is intended. And, the input pattern makes use of a third value to represent

uncertainty, in dimensions where the different readings of the word disagree. It
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means that in cases in which the two readings agree with the values of an input

dimension, this dimension holds the agreed value in the input representation.

In cases in which the two readings disagree, the feature displays the value 0.5

in the input representation (represented by the “?” sign). The goal is to verify

whether the system can come up with the correct values for such unspecified

slots or positions in the input array. Therefore, some of the microfeatures will

be undetermined and the system should arrive at the missing values for the

intended reading of hit.

In addition to the thematic ambiguity of verbs, the system can also handle the

problem of lexical ambiguity of nouns. For ambiguous nouns (bat, for instance),

the input employs a representation similar to that of verbs (values in a three-

valued logic).

Table 3 shows the microfeatures for nouns, based on WordNet classification

for nouns [Mil90]. Here, there are two-bit groups representing the semantic fea-

tures, except for change, cognition, communication, competition, emotion, mo-

tion, perception, social, stative, and weather, which are represented by only one

bit.

4 The Starting Large Approach

[RP99] and [Elm93] discuss the importance of starting “small” or starting “large”

regarding language acquisition. Elman argues that learning is successful only in

cases when sentences are getting more complex gradually or in cases when limited

memory is given initially to the network. Rohde and Plaut, on the other hand,

argue that starting “small” is not important: starting with simplified inputs or

limited memory is not necessary for a network to learn language, providing that

semantic and syntactic constraints are introduced in the training set. That is

the case of BioθPred. Semantic, and also syntactic, constraints are introduced

when sentences are generated during the training step. Only semantically and

syntactically well formed sentences are input to the network.

Both Elman’s and Rohde and Plaut’s systems employ the Elman network

[Elm90], a recurrent artificial neural network, in order to account for sentences

presented in separate words, one by one. For that reason, the system must have

memory, which is achieved by the extra layer in recurrent networks. A system

that accounts for thematic role relationships employing a recurrent network is

presented in [Ros02]. In BioθPred, a bi-directional architecture is employed,

which has memory too, but in a biologically more plausible fashion.

[LGF00] invoke the necessity of having negative examples in the training set

for the network to learn the correct grammatical relations between the words

in sentences. But this consideration is not plausible from a language acquisition

standpoint, since it is not reasonable to suppose that children receive nega-
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Table 3: The thirty semantic microfeature dimension groups for nouns, based

mainly on WordNet noun classification.

feature value 1 (01) value 2 (10/1) value 3 (11) value 4 (00/0)

action act process state n/a

life animal person plant n/a

element artifact quantity substance n/a

property attribute location possession n/a

corporeal body cognition feeling n/a

society commun. event relation n/a

nature time nat. obj. nat. phen. n/a

miscellaneous group motive shape n/a

size small medium large n/a

consistency soft medium hard n/a

form rounded angular irregular n/a

fragility breakable unbreakable - n/a

instrument tool utensil food n/a

adulthood prof. adult adult child n/a

gender male female - n/a

body object subject - n/a

change - subject - n/a

cognition - subject - n/a

communication - subject - n/a

competition - subject - n/a

consumption object subject - n/a

contact object subject - n/a

creation object subject - n/a

emotion - subject - n/a

motion - subject - n/a

perception - subject - n/a

possession object subject - n/a

social - subject - n/a

stative - subject - n/a

weather - subject - n/a

Legend: n/a = not applicable, commun. = communication, nat. obj. = natural
object, nat. phen. = natural phenomenon, prof. adult = professional adult.
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tive examples, or semantically unsound sentences, when they are listening to

their parents. [Elm93] and [RP99] share this position. So, for the sake of cogni-

tive coherence, BioθPred is implemented with no error output, and of course,

without semantically unsound sentences in its training set, present in other sys-

tems [RF99, RF00].

5 Symbolic-Connectionist Hybrid Systems

Since its inception, Artificial Intelligence (AI) is torn between two opposing

fields: the symbolic paradigm, based on logic, and the connectionist paradigm,

based on the propagation of the activity of elementary processors.

Artificial neural networks are not adequate for manipulation of high level

symbols [FP88]. They are usually preferred in a number of situations (such as

pattern recognition) because they are able to generalize over the inputs, they

are fault tolerant, and exhibit the ability to learn from experience.

But, their critics emphasize that they lack transparency, that is, one does not

know how they work, how they develop internal representations. This is a huge

drawback. For instance, it is not easy to ascertain the meaning of the connections

and their weights or the configuration of the hidden layers as regards a certain

input-output pair. In addition, it is known that the training step often takes too

long.

An answer to such criticism is the so-called Knowledge-Based Neural Net-

works, or Symbolic-Connectionist Hybrid Systems, which bring the opposing AI

paradigms into closer contact, allowing for symbolic knowledge to be introduced

in as well as extracted from neural networks [GBG01]. In these systems one can

combine symbolic approach benefits, like expressive power of general logical im-

plications, ease of knowledge representation, and understanding through logical

inference, with connectionism advantages already mentioned.

The extraction of symbolic knowledge from trained artificial neural networks

permits the exchange of information between connectionist and symbolic knowl-

edge representations and has been of great interest to understand what the

artificial neural network actually does [Sha94]. Additionally, a significant de-

crease in training time can be obtained by training networks with initial knowl-

edge [OG96].

In a symbolic-connectionist hybrid approach, symbolic rules are inserted in

a connectionist architecture as connection weights. The network is submitted

to a training period, like conventional connectionist systems. After training, the

symbolic theory, which gave initial knowledge to the network, had been revised

by the connectionist learning. The symbolic knowledge generated by the net can

be extracted in a way comparable to initial symbolic knowledge insertion.

Since symbolic-connectionist hybrid systems include initial knowledge, train-

ing is supposed to take less time. In the hybrid approach adopted here, the
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symbolic knowledge is represented through connection weights between artificial

neural network processing units. For instance, a connectionist schema, as shown

in figure 1, can represent a logical rule (Eq. (9)), with weighed antecedents A

and B, and consequent C. The antecedents are weighed, because wAC and wBC

(connection weights) are not binary values but real numbers. Also, it simulates

an and unit, such that only the presence of both inputs A and B causes unit C

to be activated.

Figure 1: A schema for the rule (wAC ∗A) and (wBC ∗B) → C.

(wAC ∗A) and (wBC ∗B) → C. (9)

Although many researchers believe that symbolic and connectionist systems

are so different that they are irreconcilable, others emphasize that the integra-

tion of both is not only possible but also crucial for the systems “understand”

cognition behind computational implementations [HU95].

6 The Biologically Plausible BioθPred System

The search for models (architecture and algorithm) that are more biological plau-

sible attempts to “rescue” the initial neural motivation of connectionist systems.

And, of course, computational performance cannot be ignored. It is shown that,

in the case of BioθPred, the alleged more biologically motivated system is also

more computationally efficient. That is, experiments show that backpropagation

was surpassed by BioθPred for a cognitive task, such as semantic role labeling.

In this section, the BioθPred system is presented: its connectionist archi-

tecture, the biologically plausible supervised learning algorithm, and simulation

experiments: the way training sentences are generated, the inclusion of initial

symbolic data, training, and the extraction of symbolic data, which confirm the

expected data and extend initial knowledge. Finally, a real example is demon-

strated.
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6.1 BioθPred connectionist architecture

The connectionist network used in BioθPred is structured in three layers: the

input layer α with A units, to which the input sentence is made available, word

by word; the hidden layer β with B units, which allows the network to develop

internal representations; and the output layer γ with C units, from which the

assigned thematic grid representations are generated by the system.

The implemented architecture is bi-directional, with a hundred input units

(A = 100), fourteen hidden units (B = 14), and seven output units (C = 7), one

for each of the seven thematic roles: agent (a), patient (p), experiencer

(e), theme (t), location (l), cause (c), and value (v). In this case, the

architecture classification schema, according to [Sun03], can be single-module,

employing distributed representation. Each sentence is presented one word at

a time to the hundred-unit input layer α (see figure 2). Notice that there are

different slots for verbs and nouns. Notice also the bi-directional links between

hidden (β) and output (γ) layers, while there are unidirectional links from input

(α) to hidden (β) layer.

Figure 2: The connectionist architecture of BioθPred. Thematic roles in the

output layer γ: A = agent, P = patient, E = experiencer, T = theme, L =

location, C = cause, and V = value.

Since input sentences are pre-parsed [Ros07], sentences other than declarative

could be accepted6. This paper reports only the connectionist learning with

6 The reference for pre-parsing is for Portuguese language [Ros07], although this pro-
cedure may be considered language independent. Pre-parsing is referred as a prelim-
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declarative sentences, but a key-structure with all the nouns compounding the

sentence and the main verb is generated. This way, sentences like (10), (11) and

(12) would generate the same key-structure (cat-open-door) which predicts the

same thematic grid [agent, theme] assigned by verb open.

The cat opened the yellow door. (10)

The yellow door was opened by the cat. (11)

Did the cat open the yellow door? (12)

6.2 Biologically plausible supervised learning

For each sentence presented, an output is computed, based on the input pat-

tern and on the current values of net weights. The actual output can be quite

different from the “expected” output, i.e. the values that it should have in the

correct reading of the sentence, that is, the correct thematic grid assigned to the

input sentence. During training, each output is compared to the correct reading,

supplied as a “master input.” This master input should represent what a real

language learner would construct from the context in which the sentence occurs.

Learning may be described as the process of changing the connection weights to

make the system output correspond, as close as possible, to the master input.

Instead of the computationally successful, but considered to be biologically

implausible [Cri89] supervised Back-propagation [RHW86], the learning algo-

rithm BioRec employed in BioθPred is inspired by the Recirculation [HM88]

and GeneRec [O’R96] algorithms, and consists of two phases.

In the expectation phase7 (figure 3), when input x, representing the first

word of a sentence through semantic microfeatures, is presented to input layer

α, there is propagation of these stimuli to the hidden layer β (bottom-up prop-

agation) (step 1 in figure 3). There is also a propagation of the previous actual

output op, which is initially empty, from output layer γ back to the hidden

layer β (top-down propagation) (steps 2 and 3).8 Then, a hidden expectation

activation (he) is generated (Eq. (13)) for each and every one of the B hidden

units, based on inputs and previous output stimuli op (sum of the bottom-up

and top-down propagations - through the sigmoid logistic activation function

σ). Then, these hidden signals propagate to the output layer γ (step 4), and an

inary symbolic processing that eliminates the so-called stop words, such as determin-
ers, prepositions, and also adjectives. This key format of the (pre-parsed) sentence
is used as input to the connectionist network.

7 [O’R96] employs the terms “minus” and “plus” phases to designate expectation and
outcome phases respectively in his GeneRec algorithm.

8 The superscript p is used to indicate that this signal refers to the previous cycle.
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Figure 3: The expectation phase of the BioRec algorithm.

actual output o is obtained (step 5) for each and every one of the C output units,

through the propagation of the hidden expectation activation to the output layer

(Eq. (14)) [Ros02]. wh
ij are the connection (synaptic) weights between input (i)

and hidden (j) units, and wo
jk are the connection (synaptic) weights between

hidden (j) and output (k) units9.

he
j = σ(ΣA

i=0w
h
ij .xi +ΣC

k=1w
o
jk.o

p
k 1 ≤ j ≤ B (13)

ok = σ(ΣB
j=0w

o
jk.h

e
j) 1 ≤ k ≤ C (14)

In the outcome phase (figure 4), input x is presented to input layer α again;

there is propagation to hidden layer β (bottom-up) (step 1 in figure 4). After

this, expected output y (step 2) is presented to the output layer and propagated

back to the hidden layer β (top-down) (step 3), and a hidden outcome activation

9 i, j, and k are the indexes for the input (A), hidden (B), and output (C) units re-
spectively. Input (α) and hidden (β) layers have an extra unit (index 0) used for
simulating the presence of a bias [Hay99]. This extra unit is absent from the output
(γ) layer. That’s the reason i and j range from 0 to the number of units in the layer,
and k from 1. x0, h

e
0, and ho

0 are set to +1. wh
0j is the bias of the hidden neuron j

and wo
0k is the bias of the output neuron k.
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Figure 4: The outcome phase of the BioRec algorithm.

(ho) is generated, based on inputs and on expected outputs (Eq. (15)). For the

other words, presented one at a time, the same procedure (expectation phase

first, then outcome phase) is repeated [Ros02]. Recall that the architecture is

bi-directional, so it is possible for the stimuli to propagate either forwardly or

backwardly.

ho
j = σ(ΣA

i=0w
h
ij .xi +ΣC

k=1w
o
jk.yk) 1 ≤ j ≤ B (15)

In order to make learning possible the synaptic weights are updated through

the delta rule10 (Eqs. (16) and (17)), considering only the local information made

available by the synapse. The learning rate η used in the algorithm is considered

an important variable during the experiments [Hay99].

Δwo
jk = η.(yk − ok).h

e
j 0 ≤ j ≤ B, 1 ≤ k ≤ C (16)

Δwh
ij = η.(ho

j − he
j).xi 0 ≤ i ≤ A, 1 ≤ j ≤ B (17)

10 The learning equations are essentially the delta rule (Widrow-Hoff rule), which is
basically error correction: “The adjustment made to a synaptic weight of a neuron
is proportional to the product of the error signal and the input signal of the synapse
in question.” ([Hay99], p. 53).
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6.3 Simulation experiments

In this subsection, simulation experiments for BioθPred are presented. Training

sentences represented by their semantic microfeatures are entered, word by word,

to the input layer α (training step). Each sentence is accompanied by its thematic

grid since the adopted training algorithm BioRec is supervised. After training,

test sentences are entered in order to check the system learning of the correct

thematic grids (recognition step).

During training, the system employs a sentence generator which generates

only semantically well-formed sentences. That is, in training, there are no un-

determined input values. Every (lexically or thematically) ambiguous word is

related to a specific meaning regarding the sentence in which it occurs. After

training, when the user enters a thematically ambiguous verb (or a lexically am-

biguous noun), the word is simply entered as it is written, that is, without any

additional semantic information. So, since at input layer the word comes apart

from the sentence, it is unknown which meaning is intended. In this case, some

semantic microfeatures have their values “undetermined.” For instance, see the

word hit on table 2, for the semantic microfeature control of action, one reading

has the value “yes” while the other presents “no.” When the user enters hit, the

value of this feature is unknown, so it is set on 0.5 (neither “yes” nor “no”).

The system will arrive to the correct value because it learned sentence patterns

with the two readings, so, based on context, it is able to “discover” which is the

correct reading (a kind of pattern recognition).

The sentence generator supplies different training sentences, according to

semantic and syntactic constraints, absolutely necessary for a system to learn

without negative examples [RP99]. Instead of entering the sentences by hand,

they are generated automatically by a frame set for each one of the verbs, in-

cluding alternative readings of the thematically ambiguous verbs. Each frame

specifies a verb, a noun set and a list of possible fillers for each noun. So, the

sentence frame the human eats the food is a generator for sentences in which the

subject human is replaced by one of the words in the human list, like man, and

food is replaced by one of the words in the food list, like soup, since eat assigns

the following thematic roles: an agent (the one that eats) and a patient (the

food that is eaten). Then the sentence the man ate the soup could be generated.

And the output for this sentence would be the assigned thematic grid [agent,

patient]. See the frames and the assigned thematic grids (outputs) for some

verbs on table 4.

The generator replaces the categories present in frames by the words for each

category (see examples on table 5), in order to furnish BioθPred with the input

sentences. Table 6 shows the thematic grids assigned by some verbs in training

sentences.

The data used in the experiments are realistic in the way that they reflect
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Table 4: Some frames of the sentence generator for training and the thematic

grids assigned to them in BioθPred. See table 5.

training frame for dress thematic grid

the human dresses the human [agent,theme]

training frames for eat thematic grids

the human eats the food [agent,patient]

the animal eats the food [agent,patient]

training frames for fight thematic grids

the human fights the fought [agent,patient]

the human fights the human [agent,patient]

training frames for have1 thematic grids

the human has the value [experiencer,value]

the human has the thing [experiencer,value]

training frame for have2 thematic grid

the human has the human [experiencer,theme]

training frame for hit1 thematic grid

the hitter hits the hit [cause,patient]

training frames for hit2 thematic grids

the human hits the human [agent,patient]

the human hits the animal [agent,patient]

training frames for judge thematic grids

the human judges the judged [experiencer,theme]

the human judges the human [experiencer,theme]

training frame for paint thematic grid

the human paints the painted [agent,patient]

training frames for see thematic grids

the human sees the seen [experiencer,theme]

the human sees the human [experiencer,theme]

the human sees the animal [experiencer,theme]

training frames for thaw1 thematic grids

the cook thaws the food [agent,patient]

the human thaws the food [agent,patient]

training frame for thaw2 thematic grid

the natural phenomenon thaws the food [cause,patient]

training frame for walk1 thematic grid

the human walks to the place [agent,location]

training frame for walk2 thematic grid

the human walks the walked [agent,theme]
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situations found “in the wild.” The method used for generating sentences for

the training and test sets (i.e. by filling out the slots of sentence frames) creates

a representative set of training or test instances, because the chosen frames are

typical for the kinds of sentences BioθPred intends to deal with.

Table 5: The categories for the frames in the sentence generator and an example

of a noun that may fill out the slots for each category (table 4).

category noun

animal bat

cook chef

food soup

fought war

hit tree

hitter car

human man

judged competition

natural phenomenon heat

painted door

place house

seen movie

thing ball

value money

walked dog

If all possible inputs and outputs are shown to a connectionist network em-

ploying a supervised training procedure, the net will find a weight set that ap-

proximately maps the inputs to the outputs. For many artificial intelligence

problems, however, it is impossible to provide all possible inputs. To solve this

problem, the training algorithm uses the generalization mechanism, i.e. the net-

work will interpolate when inputs, which have never been received before, are

supplied. In the case of this system, since words are described by microfeatures

arrays, there are words with related meanings (like, for instance, woman and

girl). These words are expected to contain many microfeatures in common, so

the distance between their microfeatures arrays is small, favoring generalization.

When BioθPred runs, it is shown a menu through which the user can train

the system to learn the correct thematic grids assigned to input sentences. The

training set was chosen in order to contain representative verbs and nouns of

each thematic category present in BioθPred. After training, the system saves

the weight matrixes (wh and wo) corresponding to the learned knowledge. The
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Table 6: Assigned “thematic grids” of BioθPred complete sentences for some

verbs during training step.

verb/θ-role age pat exp the loc cau val

dress θ θ

eat θ θ

fight θ θ

have1 θ θ

have2 θ θ

hit1 θ θ

hit2 θ θ

judge θ θ

paint θ θ

see θ θ

thaw1 θ θ

thaw2 θ θ

walk1 θ θ

walk2 θ θ

Legend (thematic role (θ-role)): age = agent, pat = patient, exp =
experiencer, the = theme, loc = location, cau = cause, val = value.

user can also check the thematic grid assigned to an input sentence. In this case,

they are asked to input a sentence manually or to let the system generate it.

The sentences generated automatically by the test generator are different

from the sentences generated by the training sentence generator, although their

thematic frames are basically the same (the difference relies on the choice of the

words involved). In this case, only the default readings for thematically ambigu-

ous verbs are generated, simulating a user entering sentences to be analyzed.

The user does not need to know which thematic reading is expected for the

verb; BioθPred will decide, based on sentence context, which will be the cor-

rect reading and, consequently, arrive at the expected thematic grid assigned to

that sentence.

Recall that BioθPred is a symbolic-connectionist hybrid system, so the next

three subsections present (1) the cycle of symbolic data insertion and extraction,

(2) initial symbolic knowledge insertion, in order to improve training perfor-

mance, decreasing training time, and (3) the final symbolic data extraction, to

revise the symbolic thematic theory.
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6.3.1 The cycle of symbolic data in the symbolic-connectionist hy-

brid BioθPred

The cycle of symbolic data insertion and extraction into/from BioθPred is

shown in figure 5, adapted from [TG99]. Instead of beginning with random con-

nection weights (no initial knowledge), BioθPred starts with some biased sym-

bolic knowledge inserted into the connectionist architecture, and, through a

learning procedure that makes use of a sentence generator, produces final sym-

bolic data. The sentence generator employs a training set, consisting of syntactic

and semantically sound sentences provided by a symbolic theory. Symbolic data,

extracted from the connectionist architecture after learning, revise the initial

symbolic theory and provide up-to-date information for the sentence genera-

tor. It had been proved that the set of rules and the network, from which it is

extracted, are equivalent [HU95].

6.3.2 Initial symbolic knowledge insertion and training

After the introduction of initial symbolic knowledge concerning thematic roles

as connection weights, the network begins to learn through presentations of se-

mantically sound sentence-thematic grid pairs. The sentence generator produces

the input sentences.

Initial knowledge is inserted based on the architecture displayed in figure 6.

In this architecture, symbolic concepts about verbs and nouns are mapped on

to network elements, according to the hybrid approach as shown in figure 1.

As mentioned before, the symbolic knowledge is represented through connection

weights between network units. So, logical rules with weighed antecedents can

be obtained.

Negative and positive values for nouns and verbs are assigned. In the hidden

layer β there are the conjunction of the verb inputs in HV and the conjunction of

the noun inputs in HN. These two units are connected to one unit in the output

layer γ, corresponding to a specific thematic role.

Symbolic knowledge regarding a thematic framework is considered in the

symbolic-connectionist hybrid system BioθPred. Initial “symbolic thematic

rules” for verbs are implemented for each one of the thematic roles (table 7)

[Hae91, MFA97]. For nouns, there are initial rules only for the thematic roles

agent and cause (table 8), because both may be assigned to subjects of the-

matically ambiguous verbs (see tables 6 and 4). The other thematic roles are

considered noun-independent. The rules are if-then rules (logical implications),

and they are implemented as an and gate, i. e., if an input is absent, the unit

should not be activated. Unlike classical logic, each element in the antecedent

part of the rules is weighed by the connection weight of the respective element

in the network. Then, for a unit to be active, all its inputs together should be

such that their sum is enough to activate the unit.
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Figure 5: The cycle of symbolic data insertion and extraction into/from a connec-

tionist architecture. Steps: (1) Initial symbolic knowledge is inserted as synaptic

weights into the network; (2) The sentence generator supplies semantically sound

sentences for training; (3) Training sentences feed the connectionist architecture;

(4) After learning is finished, final symbolic knowledge is extracted from the con-

nectionist architecture; (5) Final knowledge is used to revise the initial symbolic

theory; (6) The revised symbolic theory provides up-to-date information for the

sentence generator.

For each thematic role there are two “hidden” rules whose antecedents map

the units belonging to the input layer and whose consequents map hidden units

- one for the verb (HV), and the other for the noun (HN) (see figure 6). For

instance, for the thematic role agent, the rules are:

If verb comprises (control of action) and (direct process triggering) and (im-

pacting process) and (objective action) and (interest on process) then HVagent
If noun is (person) and (body-subject) and (no cognition) and (competition)

and (creation-subject) then HNagent

If (0.5 HVagent) and (0.5 HNagent) then thematic role = agent.
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Figure 6: BioθPred architecture for initial rule insertion and final rule extrac-

tion.

Table 7: Initial symbolic knowledge regarding some verb microfeatures inserted

into the network as connection weights.

θ-R/Mf. ca pt ds ip cn ps ob ea ia in

agent yes yes - yes - - yes - - yes

patient - - no yes yes - - yes yes -

experiencer - - yes - no - no no no no

theme - - no no no - - yes no -

location yes yes no - no - - yes - -

cause no no - - - - no - - no

value yes yes - - no - - yes - yes

Legend: Semantic microfeatures (Mf): ca = control of action, pt = direct process
triggering, ds = direction of action to source, ip = impacting process, cn = change of
states, ps = psychological state, ob = objective action, ea = effective action, ia = high

intensity of action, in = interest on process.

6.3.3 Final symbolic knowledge extraction

After about 45,000 training cycles, which corresponds to an average output er-

ror11 of 10−3, the system will be able to predict the thematic roles assigned to

an input sentence.

11 The average output error is the difference between “actual” output and “expected”
output, and it is obtained from the average squared error energy formula [Hay99] for
each set of different sentences presented to the network.
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Table 8: Initial symbolic knowledge regarding some noun microfeatures inserted

into the network as connection weights.

θ-R/Mf. li el na bo cg cp ct cr we

agent person - - subject no yes - yes -

cause animal artifact yes object - no subject no yes

Legend: Semantic microfeatures (Mf.): li = life, el = element, na = natural
phenomenon, bo = body, cg = cognition, cp = competition, ct = contact, cr =

creation, we = weather.

In relation to accuracy, the system presents precision rate of 94%12, since

only seven words revealed inadequate thematic roles in 120 words belonging to

test sentences, in a limited, but sufficient, set of test sentences.

As soon as training finishes, the symbolic rules can be obtained from the

architecture by running an extraction procedure [Fu93, SL96, TS93]. Rule ex-

traction consists in reversing the process of initial rule insertion. That is, the net

weights are assessed and a weighed antecedent is obtained, corresponding to the

connection weight. The symbolic knowledge thus extracted from the present con-

nectionist architecture corresponds to the network learning and generalization

capacities. As a consequence, the network is able to “revise” the initial symbolic

rules.

Initial and extracted rules for thematic roles agent and cause are presented

below. The semantic microfeatures are in italics and are weighed by a normalized

real number. Only microfeatures representing relevant semantic features for the

thematic role (weight above 50%) are displayed. The closer to 1.0, the more

precise is the value. In order to understand the conjunction of extracted rules

see figure 6:

agent

initial hidden rule for verb

If verb comprises (control of action) and (direct process triggering) and (im-

pacting process) and (objective action) and (interest on process) then HVagent

initial hidden rule for noun

If noun is (person) and (body-subject) and (no cognition) and (competition)

and (creation-subject) then HNagent

extracted hidden rule for verb:

If verb comprises (1.0 no change) and (0.9 no contact) and (0.5 no percep-

tion) (0.6 no weather) and (0.9 control of action) and (0.9 direction of action to

12 According to [JM00], precision is the number of correct answers given by the system
divided by the number of answers given by the system.
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source) and (0.9 objective action) and (0.5 no effective action) and (1.0 interest

on process) then HV agent

extracted final rule:

If 1.0 HV agent and -0.1 HNagent then thematic role = agent

cause

initial hidden rule for verb

If verb comprises (no control of action) and (indirect process triggering) and

(no objective action) and (no interest on process) then HV cause

initial hidden rule for noun

If noun is (animal) and (artifact) and (natural phenomenon) and (no body-

subject) and (no competition) and (contact-subject) and (no creation-subject)

and (weather) then HNcause

extracted hidden rule for verb

If verb comprises (0.7 change) and (0.6 contact) and (0.4 weather) and (0.7

no control of action) and (0.6 direction of action to goal) and (0.7 no objective

action) and (0.7 no interest on process) then HVcause

extracted final rule:

If 1.0 HV cause and 0.5 HNcause then thematic role = cause

The schema above shows initial and extracted rules for two thematic roles

(agent and cause). For instance, taking the rules for agent, one can notice

that all the microfeatures considered relevant as initial knowledge were high-

lighted by connectionist learning, mainly control of action, objective action, and

interest on process. The system discovered new semantic features for the verb

that assigns the thematic role agent: no change, no contact, no perception,

weather, direction of action to source, and no effective action.

The noun to which is assigned the thematic role agent is not taken into

consideration, since the “output” rule shows no significant value for HNagent.

Notice that, when initial knowledge is input to the system (for verbs), there

is a tendency of strengthening the initial weights. This can only be taken as

evidence that the final weights reflect the available symbolic knowledge (about

a thematic role) from the examples and from the architecture, in cases when

initial weights are arbitrary.

One interesting consequence of learning is that the system is able to cate-

gorize on the basis of the complementarity of the verb microfeatures for many
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subsets. Since during training the sentences exhibited mutually exclusive val-

ues within some subsets of microfeatures, the final connection weights are found

to be complementary in the sense that their respective values are of opposite

signs. That is, the network incorporates the complementarity of microfeatures

by virtue of its architecture and experience.

6.4 A real example

Consider the connectionist architecture of Figure 2. Recall that initial symbolic

knowledge concerning verbs and nouns is inserted into the network as connec-

tion weights. Take sentence 18 as an example. This sentence is fed to the input

layer α, word by word, through semantic features. First, the word woman is

entered into the noun slot, with the following semantic microfeatures: no ac-

tion, life: person, no element, no property, no corporeal, no society, no nature,

no miscellaneous, size: medium, consistency: soft, form: angular, no fragility,

no instrument, adulthood: adult, gender: female, body: subject, no change, cog-

nition: subject, communication: subject, competition: subject, consumption: sub-

ject, contact: subject/object, creation: subject, emotion: subject, motion: subject,

perception: subject, possession: subject, social: subject, stative: subject, and no

weather.

The woman dressed the girl. (18)

The word woman represented by its semantic microfeatures propagates to

the hidden layer β - bottom-up propagation. Also, an empty output op is fed to

the output layer γ, and then to the hidden layer β - top-down propagation. The

sum of these signals ((Eq. (13))) is propagated to the output layer γ, generating

an output signal o (Eq. (14)) (“expectation” phase - figure 3).

After this phase, the word woman is fed again to the input layer α, prop-

agating to the hidden layer β - bottom-up propagation. A target output y13 is

propagated from the output layer γ to the hidden layer β - top-down propaga-

tion, generating a signal (Eq. (15)) (“outcome” phase - figure 4). This way, the

connection weights could be updated (Eqs. (16) and (17)).

Only when the verb dress is fed to the input layer α, the thematic role

assigned to the subject woman could be predicted (in this case, agent). The

verb repeats the cycle of the noun, except for its features: body, no change,

no cognition, no communication, no competition, no consumption, no contact,

no creation, no emotion, no motion, no perception, no possession, no social, no

stative, no weather, control of action, direct process tiggering, direction to source,

13 In this case, the first word of a sentence, no target output will be provided (y = 0)
because the system does not know the verb yet. Only after the verb input, there
will be a correct thematic role presented at the output as signal y (target or desired
output).
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impacting process, no change of states, no psychological state, objective, effective

action, low intensity of action, and interest on process.

Of course, in the beginning of training, the obtained output o is far from the

target output y, therefore the error is large. It means that y does not represent

yet the thematic role it should represent for the noun woman. After the verb, it

is time for the object noun girl, whose features are: no action, life: person, no

element, no property, no corporeal, no society, no nature, no miscellaneous, size:

medium, consistency: soft, form: angular, no fragility, no instrument, adulthood:

child, gender: female, body: subject, no change, cognition: subject, communica-

tion: subject, competition: subject, consumption: subject, contact: subject/object,

creation: subject, emotion: subject, motion: subject, perception: subject, posses-

sion: subject, no social, stative: subject, and no weather. Note that the features

for girl are very similar to the features for woman, except for adulthood and so-

cial. This means that the system would be able to generalize over similar inputs.

After learning, the system will give the thematic role for girl, i.e., theme.

When many sentences are shown to the network, it will be able to reduce the

error to a minimum acceptable, so it can be said that the system learned the

thematic roles of training sentences. In the recognition step, if the user enters

sentence 18, for instance, BioθPred will be able to reveal the thematic role for

each word entered: for woman, no thematic role appears because the verb is still

unknown, for dress, the system reveals the thematic role for woman, regarding

the verb dress: agent. When finally the user enters the word girl, the system will

give theme at the output. In addition, final symbolic rules can be extracted from

the network, confirming and updating the initial symbolic knowledge related to

the thematic grid of the sentence.

7 Conclusion

BioθPred implements a symbolic-connectionist hybrid approach to thematic

role processing. In this approach, the advantages of symbolic systems (ease

of knowledge representation, understanding through logical inference, etc.) are

combined with the advantages of connectionism (learning, generalization, fault

tolerance, etc.) to yield a more discriminating thematic role processing, that is

sensitive to the subtleties involved in such linguistic phenomenon.

In connectionist NLP systems, the words belonging to a sentence must be

represented in such a way as to keep the meaning of the words and, at the same

time, to be useful for the network to develop significant internal representations.

The representation of semantic features adopted in this system would also easily

allow for new words to be entered in order to increase its lexicon, provided that

their semantic microfeature arrays are supplied.

BioθPred adopts pre-specified semantic microfeatures, although its micro-

features are partially based on WordNet, which is considered an ontology based
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on semantics [O’H04]. In addition, there is a psycholinguistic concern about

which features should be considered important in a thematic framework. A next

version of this system could contemplate a kind of semantic features learning, like

FGREP architecture [Mii93, MD91], which develops distributed representations

for its input/output words.

BioθPred presents as a novelty a more biologically plausible architecture

and training procedure based on [OM00]. The bi-directional connectionist archi-

tecture is designed to account for chemical and electrical synapses that occur in

the cerebral cortex, and the training procedure makes use of this architecture

resulting in a model based on neuroscience.

In this system, the architecture employed is feed-forward, although bi-direc-

tional. A recurrent architecture, in the sense of [Elm90] was also considered,

but it proved to be not as efficient as the bi-directional feed-forward version,

although it is well known that recurrent architectures are adequate to temporal

processing tasks, like NLP.

BioθPred is able to classify and categorize the intended mutually exclusive

microfeatures within a sub-array, and subsequently to adjust the weights con-

necting hidden units to output units in order to correctly reveal the thematic

assignment for each pair verb-noun in a sentence. This is attributed to the fact

that the network architecture, in addition to initial biasing, induces the connec-

tion weights related to pairs of semantic features to be taken as complementary

(see initial knowledge of BioθPred on tables 7 and 8). That is, some sort of

internal representation of implications has been developed for thematic roles,

which are not introduced as inputs to the network.

In order to better determine the effectiveness of BioθPred for thematic role

labeling, it would be very helpful to have some comparison to existing algorithms.

Comparisons between the employed algorithm and Back-Propagation for similar

NLP applications can be found in [Ros04, RS04].
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