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Abstract: We initiate in this work the study of a sort of redundancy problem revealed
by what we call redundant relations. Roughly, we define a redundant relation in a
database instance (dbi) as a k-ary relation R such that there is a first-order query
which evaluated in the reduced dbi, (i.e., the dbi without the redundant relation R)
gives us R. So, given that first-order types are isomorphism types on finite structures,
we can eliminate that relation R as long as the equivalence classes of the relation of
equality of the first-order types for all k-tuples in the dbi are not altered. It turns
out that in a fixed dbi, the problem of deciding whether a given relation in the dbi is
redundant is decidable, though intractable, as well as the problem of deciding whether
there is any relation symbol in the schema which is a redundant relation in the given
dbi. We then study redundant relations with a restricted notion of equivalence so that
the problem becomes tractable.
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1 Introduction

From a conceptual point of view it is desirable for a model of computation of
queries to be representation independent [Abiteboul et al. 1994]. This means,
roughly, that queries to databases (in the present work we will refer to database
instances simply as databases) which represent the “same” reality should evalu-
ate to the “same” result. In mathematical terms, the previous concept was cap-
tured by asking queries to isomorphic databases to evaluate to the same result
[Chandra and Harel 1980]. The principle of preservation of isomorphisms has an
important consequence if we consider a single database, namely the preserva-
tion of automorphisms. That is, considering a fixed database, two elements with
the same “structural” properties should be considered as undistinguishable. By
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structural properties we roughly mean the way in which the two elements are
related to all other elements in the database, by means of the different relations
according to the schema. The same is also true for tuples of elements, i.e., two
tuples with the same “structural” properties should be considered as undistin-
guishable. To formalize this concept we can make use of the model theoretic
notion of type. The notion of type of a tuple is a topic which has been deeply
studied in the context of finite model theory [Dawar 1993, Otto 1997], but which
has not received the same attention in the context of database theory. Roughly,
if L is a logic, the L type of a tuple of length k in a given database is the set of
L formulas with up to k free variables which are satisfied by that tuple in the
database.

As databases are finite structures, it follows that two arbitrary tuples have the
same first-order type if and only if they are commutable by some automorphism.
So, two arbitrary tuples have the same “structural” properties and should be
considered undistinguishable, if and only if, they have the same first-order type.

Designing a relational database schema is usually a complex task which has
important practical consequences. Redundant storage of information can lead to
a variety of practical problems on the updating, insertion and deletion of data.
This anomaly is usually known as the redundancy problem and has been stud-
ied extensively in the field of databases. Traditionally, the redundancy problem
is studied by considering a particular class of properties, the functional depen-
dencies, that are supposed to be satisfied by all instances of a given database.
By taking a quite different approach, we will make use of the model theoretic
concept of type to study the redundancy problem.

Specifically, we initiate in this work the study of a sort of redundancy problem
revealed by what we call redundant relations. Roughly, we define a redundant
relation as a relation R such that there is a first-order query which evaluated in
the reduced database, (i.e., the database without the redundant relation R), gives
us R. So, given that first-order types are isomorphism types on finite structures,
we can eliminate that relation R as long as the equivalence classes of the relation
of equality of the first-order types for all k-tuples in the database are not altered.
In practical terms, this means that we do not lose information if we eliminate
such redundant relation from a database. It turns out that in a fixed database
of some relational schema, the problem of deciding whether a given relation
in the database is redundant is decidable, though intractable, as well as the
problem of deciding whether there is any relation symbol in the schema which is
a redundant relation in the given database. We then study redundant relations
with a restricted notion of equivalence so that the problem becomes tractable.

We also give the construction of a formula in polynomial time which, provided
that R is a redundant relation in the database, will evaluate to R in the reduced
database.
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Though in this work we do not consider classes of databases, it certainly
makes sense to think on relations which are redundant not only in a particular
database but in a whole class of databases of a given schema. Note that the
problem of deciding whether a given relation (schema) is redundant in a given
class of databases is clearly not decidable in the general case.

We organized the article as follows. In Section 2 we give a brief description of
the concepts and results of finite model theory and databases, as well as the no-
tations that we use in this work. In Section 3 we formally introduce the concept
of redundant relation in databases and discuss in detail its main implications and
consequences. Finally, in Section 4 we establish our main decidability result re-
garding redundant relations, and we study redundant relations with a restricted
notion of equivalence so that the problem becomes tractable.

The outcome of this research can be of a great relevance to applications
like census databases, where we have a huge and stable database instance of a
very large schema, and where by eliminating redundant relations we can save
an important amount of space and time in the evaluation of queries. We aim to
follow this research towards defining a kind of normal form for database instances
and further for restricted classes of databases where the problem of checking for
redundant relations can be tractable.

Note that, this paper is an extended version of [Ferrarotti, et al. 2009] which
was presented at the ETheCoM 2009 workshop held on November 2009 in
Gramado, Brazil. Furthermore, several results presented here first appeared in
[Paoletti 2005].

2 Preliminaries

We define a relational database schema, or simply schema, as a set of relation
symbols with associated arities, unless otherwise explicitly stated. We do not
allow constraints in the schema, and we do not allow constant symbols either. If
σ = 〈R1, . . . , Rs〉 is a schema with arities r1, . . . , rs, respectively a database in-
stance or simply database over the schema σ, is a structure I = 〈DI , RI

1 , . . . , R
I
s 〉

where DI is a finite set which contains exactly all elements of the database, and
for 1 ≤ i ≤ s, RI

i is a relation of arity ri, i.e., RI
i ⊆ (DI)ri . We often use dom(I)

instead of DI . We use � to denote isomorphism. A k-tuple over a database I,
with k ≥ 1, is a tuple of length k formed with elements from dom(I). We de-
note a k-tuple of I as āk, and also as ā. We use DBσ to denote the class of all
databases of schema σ.
Computable Queries: In this paper, we will consider total queries only. Let σ
be a schema, let r ≥ 1, and let R be a relation symbol of arity r. A computable
query of arity r and schema σ ([Chandra and Harel 1980]), is a total recursive
function qr : DBσ → DB〈R〉 which preserves isomorphisms such that for every
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database I of schema σ, dom(q(I)) ⊆ dom(I). A Boolean query is a 0-ary
query. We denote the class of computable queries of schema σ as CQσ, and
CQ =

⋃
σ CQσ.

Finite Model Theory and Databases: We use the notion of a logic in a
general sense. A formal definition would only complicate the presentation and
is unnecessary for our work. As usual in finite model theory, we regard a logic
as a language, that is, as a set of formulas (see [Ebbinghaus and Flum 1999,
Abiteboul et al. 1994]). Unless otherwise explicitly stated, we only consider sig-
natures, or vocabularies, which are purely relational. We always assume that
the signature includes a symbol for equality. We consider finite structures only.
Consequently, if L is a logic, the notion of equivalence between structures or
databases, denoted as ≡L, is related to only finite structures. If L is a logic
and σ is a signature, we denote as Lσ the class of formulas from L with sig-
nature σ. If I is a structure of signature σ, or σ-structure, we define the L
theory of I as ThL(I) = {ϕ ∈ Lσ : I |=L ϕ}. A database schema is re-
garded as a relational signature, and a database instance of some schema σ

as a finite and relational σ-structure. By ϕ(x1, . . . , xr) we denote a formula
of some logic whose free variables are exactly {x1, . . . , xr}. We denote the set
of free variables of a formula ϕ as free(ϕ). If ϕ(x1, . . . , xk) ∈ Lσ, I ∈ DBσ,
āk = (a1, . . . , ak) is a k-tuple over I, let I |= ϕ(x1, . . . , xk)[a1, . . . , ak] de-
note that ϕ is TRUE, when interpreted by I, under a valuation v where for
1 ≤ i ≤ k, v(xi) = ai. Then we consider the set of all such valuations as follows:
ϕI = {(a1, . . . , ak) : a1, . . . , ak ∈ dom(I) ∧ I |= ϕ(x1, . . . , xk)[a1, . . . , ak]}. That
is, ϕI is the relation defined by ϕ in the structure I, and its arity is given by the
number of free variables in ϕ. Sometimes, we use the same notation when the
set of free variables of the formula is strictly included in {x1, . . . , xk}. We denote
as FOk with some integer k ≥ 1 the fragment of first-order logic (FO) where
only formulas whose variables are in {x1, . . . , xk} are allowed. In this setting,
FOk itself is a logic. This logic is obviously less expressive than FO. We denote
as Ck the logic which is obtained by adding to FOk counting quantifiers, i.e.,
all existential quantifiers of the form ∃≥mx with m ≥ 1. Informally, a sentence
of the form ∃≥mx(ϕ) means that there are at least m different elements in the
database which satisfy ϕ.
Types: Given a database I and a k-tuple āk in dom(I)k, we would like to con-
sider all properties of āk in the database I including the properties of every com-
ponent of the tuple and the properties of all different sub-tuples of āk. Therefore,
we use the notion of type. Let L be a logic. Let I be a database of some schema
σ and let āk = (a1, . . . , ak) be a k-tuple over I. The L type of āk in I, denoted as
tpLI (āk), is the set of formulas in Lσ with free variables among {x1, . . . , xk} such
that every formula in the set is TRUE when interpreted by I for any valuation
which assigns the i-th component of āk to the variable xi, for every 1 ≤ i ≤ k.
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In symbols tpLI (āk) = {ϕ ∈ Lσ : free(ϕ) ⊆ {x1, . . . , xk} ∧ I |= ϕ[a1, . . . , ak]}. We
say that a relation R ⊆ dom(I)r of arity r ≥ 1 has complete L-types in I iff, for
every pair of r-tuples ā and b̄ in dom(I)r , if ā ∈ R and tpLI (ā) = tpLI (b̄), then
b̄ ∈ R. Note that we may also regard an L type as a set of queries, and even as
a query. We can think of a type without having a particular database in mind.
That is, we add properties (formulas with the appropriate free variables) as long
as the resulting set remains consistent. Let α be the L type of some k-tuple over
some database in Bσ. We say that a database I realizes the type α if there is a
k-tuple āk over I whose L type is α. That is, if tpLI (āk) = α. The following is a
well known result.

Proposition1. For every schema σ and for every pair of (finite) databases I,
J of schema σ the following holds: I≡FOJ iff I � J .

Although types are infinite sets of formulas, due to results in [Dawar 1993] and
[Otto 1996], a single FOk (Ck) formula is equivalent to the FOk (Ck) type of a
tuple over a given database. The equivalence holds for all databases of the same
schema.

Proposition2. ([Dawar 1993, Otto 1996]): For every schema σ, for every data-
base I of schema σ, for every k ≥ 1, for every 1 ≤ l ≤ k, and for every l-tuple āl

over I, there is an FOk formula χ ∈ tpFOk

I (āl) and a Ck formula φ ∈ tpCk

I (āl),
such that for any database J of schema σ and for every l-tuple b̄l over J ,
J |= χ[b̄l] iff tpFOk

I (āl) = tpFOk

J (b̄l) and J |= φ[b̄l] iff tpCk

I (āl) = tpCk

J (b̄l).

Moreover, such formulas χ and φ can be built inductively for a given database.
If an FOk formula χ (Ck formula φ, respectively) satisfies the condition of
Proposition 2, we call χ an isolating formula for tpFOk

I (āl) (φ an isolating formula
for tpCk

I (āl), respectively).

Remark. Isolating formulas for the FO types of k-tuples can be built in a sim-
ilar way to that used to build the isolating formulas for FOk types and Ck

types. Considering the formulas ϕm
ū (x̄), defined in [Ebbinghaus and Flum 1999]

in Theorem 2.2.8, as we are dealing with finite structures there is always an m

big enough such that for all σ-structures B and k-tuples v̄ over dom(B)k we have
that B |= ϕm

A,ū[v̄] iff tpFO
A (ū) = tpFO

B (v̄), and that is the isolating formula for
the FO type of ū in A. It is well known (see [Ebbinghaus and Flum 1999]) that
n+ 1 is a value of m big enough to build the isolating formula for an arbitrary
k-tuple in a given database of size n. The size of these formulas is exponen-
tial in n. However, for FO types there are other isolating formulas, built from
the so called diagram of the database, which are of size polynomial in n (see
Proposition 6 below).

Let āk = (a1, . . . , ak) be a k-tuple over I. We say that the type tpLI (āk) is an
automorphism type in the database I if for every k-tuple b̄k = (b1, . . . , bk) over
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I, if tpLI (āk) = tpLI (b̄k), then there exists an automorphism f in the database I
which maps āk onto b̄k, i.e., for 1 ≤ i ≤ k, f(ai) = bi. Regarding the tuple āk

in the database I, the logic L is therefore sufficiently expressive with respect to
the properties which might make āk distinguishable from other k-tuples in the
database I.

3 Databases with Redundant Relations

It is well known that, depending on its design, a database may contain redundant
information, i.e., it may contain the same information stored in more than one
place within the database. In this section, we use the model theoretic concept
of type to detect the presence of a particular kind of redundancy which we call
redundant relations.

Definition 3. Let A be a dbi of some schema σ, let ā ∈ dom(A)r, let x̄ =
(x1, . . . , xr), and let m ≥ 0. The m-isomorphism type (or m-Hintikka formula)
ϕm
A,ā(x̄) of ā in A is defined as follows:

ϕm
A,ā(x̄) ≡

∧
{ϕ(x̄) : ϕ is atomic or negated atomic, A |= ϕ[ā]}

and for m > 0,

ϕm
A,ā(x̄) ≡

∧

a∈dom(A)

∃xr+1ϕ
m−1
A,āa(x̄, xr+1) ∧ ∀xr+1

∨

a∈dom(A)

ϕm−1
A,āa(x̄, xr+1).

ϕm
A,ā(x̄) describes the isomorphism type of the substructure generated by ā in

A, and for m > 0 the formula ϕm
A,ā(x̄) describes to which isomorphism types the

tuple ā can be extended in m steps adding one element in each step.

The fundamental observation which leads to our definition of redundant re-
lation is that, as the FO types of all k-tuples in a database A describe all FO
properties which are satisfied by the tuples of arity k in A, every FO query of
arity k is equivalent in A to the disjunction of some of the FO isolating formulas
for the FO types for k-tuples in A. This is a consequence of the following well
known result.

Proposition4 (see Theorem 2.2.11 in [Ebbinghaus and Flum 1999]).
Let ϕ(x1, . . . , xr) be an FO formula of quantifier rank ≤ m. Then,

ϕ ≡
∨

{ϕm
A,ā : A is a dbi, ā ∈ dom(A)r and A |= ϕ(x1, . . . , xr)[ā]},

where, ϕm
A,ā is the m-isomorphism type of ā in A and the disjunction is taken

over a finite set (see Lemma 2.2.6 in [Ebbinghaus and Flum 1999]).
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Thus, we could eliminate a relation RA of arity k from A as long as the
relationship among the FO types of the different k-tuples in A is not altered.

Definition 5. Let σ be a relational schema, let A be a database of schema σ,
and let Ri be a given relation symbol in σ of some arity k ≥ 1. We denote as:

– σ − Ri the schema obtained by eliminating from σ the relation symbol Ri,
i.e., if σ = 〈R1, . . . , Ri, . . . , Rn〉, then σ−Ri = 〈R1, . . . , Ri−1, Ri+1, . . . , Rn〉;

– FOσ and FOσ−Ri the set of formulas of FO over the schemas σ and σ−Ri,
respectively; and

– A|σ−Ri the reduced database of schema σ − Ri obtained by eliminating the
relation RA

i from A.

We say that RA
i is a redundant relation in the database A if for all k-tuples ū

and v̄ in dom(A)k,

tpFOσ

A (ū) = tpFOσ

A (v̄) iff tp
FOσ−Ri

A|σ−Ri
(ū) = tp

FOσ−Ri

A|σ−Ri
(v̄),

i.e., if the equivalence classes induced by the relation of equality of FOσ types
of the k-tuples in dom(A)k coincide with the equivalence classes induced by the
relation of equality of FOσ−Ri types of k-tuples in dom(A|σ−Ri)

k.

Let us see a few examples of database instances with a redundant relation.

Example 1. Below, we show two complete binary trees G1 and G2. They can
be seen as databases of schema τ = 〈E,C〉 with E a binary relation symbol
interpreted as the edge relation and C a unary relation symbol interpreted as
the set of black nodes.

b c

G1
G2

Clearly, if we consider the FO types for tuples of arity 1 in a complete binary
tree of depth n then we have n + 1 different types, because all nodes of the
same depth have the same FO type. That is, a node in a complete binary tree
cannot be distinguished by any FO formula from another node at the same
depth in the tree, therefore, nodes of the same depth can be exchanged by an
automorphism of the tree. This fact points out that in our complete binary
tree G1, the relation CG1 is a redundant relation, i.e., for every elements u, v ∈
dom(G1), tpFOτ

G1
(u) = tpFOτ

G1
(v) iff tpFOτ−C

G1|τ−C
(u) = tp

FOτ−C

G1|τ−C
(v). On the other hand,
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this is not the case for the tree G2 as the relation CG2 allows us to distinguish, for
levels two and three, some nodes from the others in the same level. So it is not
longer the case that all nodes in the same level have the same FO type. Take for
instance the nodes b and c in G2. Let ϕb(x) ≡ ∃y(E(y, x)∧¬∃z(E(z, y)))∧C(x)
and let ϕc(x) ≡ ∃y(E(y, x) ∧ ¬∃z(E(z, y))) ∧ ¬C(x). Then, G2 |= ϕb(x)[b] but
G2 �|= ϕb(x)[c] and G2 |= ϕc(x)[c] but G2 �|= ϕc(x)[b]. Clearly, tpFOτ

G2
(b) �= tpFOτ

G2
(c)

while tpFOτ−C

G2|τ−C
(b) = tp

FOτ−C

G2|τ−C
(c).

Example 2. Let us consider the classical database example of suppliers, parts
and projects (see [Ullman 1988] for instance). Assume a database schema σ =
〈S, P, J,SPJ ,SP〉 and a dbi A of schema σ. Let SA, PA and JA be the sup-
pliers, parts and projects relations, respectively. A tuple (s id , p id , j id , c) is
in the relation SPJA iff supplier s id supplies c parts p id to project j id .
The relation SPA is the projection of the columns s id and p id of SPJA, i.e.,
SPA = πs id ,p id (SPJA). Since ϕ(s id , p id) ≡ ∃j id c (SPJ(s id , p id , j id , c))
is an FOσ−SP formula such that ϕA|σ−SP = SPA, it follows that SPA is a
redundant relation in A.

Example 3. Again, let us consider the classical database example of suppliers,
parts and projects with the same schema σ of Example 2. All relation sym-
bols are interpreted in the same way as in Example 2, except for the relation
symbol SP that is interpreted as the relation resulting from evaluating the
relational calculus query: “Supplier Sid supplies part Pid to every project to
which Sid supplies some part”. Let A be a dbi of schema σ and ϕ(Sid ,Pid) ≡
∀p′ j c (SPJ (Sid , p′, j, c) → ∃c′(SPJ (Sid ,Pid , j, c′)). Then ϕA|σ−SP = SPA, and
hence SPA is a redundant relation in A.

Next, we show that there is, for every redundant relation RA in a database A
of schema σ, an FO formula φR of vocabulary σ−R such that if φR is evaluated
in the reduced database A|σ−R, it defines the relation RA.

Proposition6. Let R be a relation symbol of arity r in a schema σ, let RA be
a redundant relation in a database A of schema σ, let ā be an r-tuple in RA,
and let b̄ be an r-tuple in dom(A). Then, there is a formula ψā(z1, . . . , zr) of
FOσ−R such that A|σ−R |= ψā(z1, . . . , zr)[b̄] iff tp

FOσ−R

A|σ−R
(ā) = tp

FOσ−R

A|σ−R
(b̄). And,

hence, if A|σ−R |= ψā(z1, . . . , zr)[b̄] then b ∈ RA.

Proof. Following [Ebbinghaus and Flum 1999] we build ψā(z1, . . . , zr) by using
the diagram of A|σ−R. Assume |dom(A|σ−R)| = n. Let v : {x1, . . . , xn} →
dom(A|σ−R) be an injective valuation such that v(xi1 ) = a1, . . . , v(xir ) = ar,
where 1 ≤ i1, . . . , ir ≤ n. Let

Θ = {α : α has the form P (xi1 , . . . , xik
) where 1 ≤ i1, . . . , ik ≤ n, and

P ∈ σ −R with arity k ≥ 1}
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and let

ψā(z1, . . . , zr) ≡ ∃x1 . . . xn

( ∧
{α : α ∈ Θ, (A|σ−R, v) |= α}∧

∧
{¬α : α ∈ Θ, (A|σ−R, v) |= ¬α}∧

∧
1≤i<j≤n(xi �= xj)∧

∀xn+1(xn+1 = x1 ∨ · · · ∨xn+1 = xn)∧ z1 = xi1 ∧ . . .∧ zr = xir

)

The following facts complete the proof. Clearly, a given tuple b̄ = (b1, . . . , br)
satisfies ψā(z1, . . . , zr) iff there exists an automorphism f in A|σ−R which maps
ā onto b̄, i.e., for 1 ≤ i ≤ r, f(ai) = bi. That is, the formula ψā is an isolating
formula for the FO type of ā in A|σ−R (see remark following Proposition 2).
Furthermore, as RA is redundant, every tuple b̄ whose FOσ−R type coincides
with the FOσ−R type of ā, is also in RA. Note that, since we are dealing with
finite databases, FO types are automorphism types. ��

Observe that in Example 1, the relation CG1 is a redundant relation in G1 as
it has complete FO types for the 1-tuples for nodes in the second level on the
tree, while the relation CG2 is not a redundant relation in G2 as it does not have
complete FO types for the 1-tuples either for nodes in the second or in the third
level of G2.

The following proposition shows that, given a redundant relation RA in a
database A of schema σ, there is an FO formula φR of vocabulary σ − R such
that if φR is evaluated in the reduced database A|σ−R, it defines the relation
RA, and that such formula can be build in polynomial time.

Proposition7. Let A be a database of schema σ, and let RA = {ā1
k, . . . , ā

n
k} be

a redundant relation of arity k and cardinality n in A. Then, the following FO
formula φR(x1, . . . , xk) ≡ ψ1(x1, . . . , xk) ∨ . . . ∨ ψn(x1, . . . , xk) where, for 1 ≤
i ≤ n, ψi is the formula described in Proposition 6 for the k-tuple āi

k, defines the
relation RA when evaluated in the reduced database A|σ−R, i.e., φA|σ−R

R = RA.
Furthermore, there is an algorithm which builds the formula φR in polynomial
time.

Proof. (sketch). It follows from Proposition 6 and the fact that a relation RA

of arity r is redundant in A if and only if for every FO type for the r-tuples
α realized by the database A, either all r-tuples whose type is α belong to RA

or none of them does. Furthermore, it takes polynomial time to build each sub-
formula ψi of φR, since the task of building the diagram of a database is known
to take polynomial time. And that is what we did in Proposition 6. ��

Remark. If we omit in the previous proposition the condition of RA being a
redundant relation, then the relation φA|σ−R

R would include not only the tuples
in RA, but also all the tuples which are commutable by an automorphism with
some tuple in RA.
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Note that given an FO formula ϕq which expresses an arbitrary query q

over a database A of schema σ, it can be translated in a straightforward way
to a formula ϕ′

q of schema σ − R which expresses the same query q over the
reduced database A|σ−R. By Proposition 7, a redundant relation RA of arity k
in A can be expressed by an FO formula φR(x1, . . . , xk) in A|σ−R. Therefore,
every arbitrary query q which is expressed by an FO formula ϕq in which the
relation symbol R occurs, could be expressed in the reduced database A|σ−R

using the formula φR(x1, . . . , xk). That is, every atomic formula formed with
the relation symbol R in ϕq can be replaced in ϕ′

q by the formula φR(x1, . . . , xk)
in the database A|σ−R. We only need to take care of the appropriate re-naming
of variables in φR. In general, we can say that given a logic L and a formula ϕq

in that logic that expresses an arbitrary query q over a database A of schema
σ, it can be translated to a formula ϕ′

q in the same logic of schema σ−R which
expresses the same query q over the reduced database A|σ−R provided that the
formula φR can be expressed in the logic L.

Up to now, in this article we have used somehow informally three different
ways to characterize redundant relations. Next we show that these three charac-
terizations are indeed equivalent. These are direct consequences of well known
facts in finite model theory, but we include a direct proof for clarity.

Fact 8 Let σ be a relational vocabulary, let R be a relation symbol of arity r ≥ 1
in σ, and let A be a dbi of schema σ. Then the following are equivalent:

i. RA has complete FOσ−R types for r-tuples.

ii. RA is a redundant relation in the dbi A.

iii. There is an FOσ−R formula ϕ such that ϕA|σ−R = RA.

Proof.

– (i) ⇒ (iii): RA has complete FOσ−R types for r-tuples iff for every two
r-tuples ā, b̄ ∈ dom(A)r such that tpFOσ−R

A|σ−R
(ā) = tpFOσ−R

A|σ−R
(b̄) and ā ∈ RA, it

holds that b̄ is also in RA. Then, by using the formulas ψ of Propositions 7
and 6, ϕ ≡ ψā1

r
∨ . . . ∨ ψām

r
, where RA = {ā1

r, . . . , ā
m
r }.

– (iii) ⇒ (ii): Suppose, running towards a contradiction, that RA is not
redundant. Then, there are two r-tuples ā, b̄ ∈ dom(A)r such that

tpFOσ−R

A|σ−R
(ā) = tpFOσ−R

A|σ−R
(b̄) (4)

but tpFOσ

A (ā) �= tpFOσ

A (b̄), so that there is an FOσ formula ψ with r′ ≤ r

free variables such that

A |= ψ(x1, . . . , xr′)[ā] while A �|= ψ(x1, . . . , xr′)[b̄] (5)
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By (4) ψ �∈ FOσ−R, i.e., ψ contains R(x1, ..., xr) as an atomic sub-formula.
By (4) and (iii) ā ∈ ϕA|σ−R iff b̄ ∈ ϕA|σ−R , so that either ā, b̄ ∈ RA, or
ā, b̄ �∈ RA, an hence A |= R(x1, ..., xr)[ā] iff A |= R(x1, ..., xr)[b̄], which is a
contradiction with (5).

– (ii) ⇒ (i): Suppose, running towards a contradiction, that RA has no com-
plete FOσ−R types for r-tuples. Then, there are two r-tuples ā ∈ RA and
b̄ �∈ RA such that tpFOσ−R

A|σ−R
(ā) = tpFOσ−R

A|σ−R
(b̄). But then tpFOσ

A (ā) �= tpFOσ

A (b̄),
since A |= R(x1, ..., xr)[ā] but A �|= R(x1, ..., xr)[b̄], which is a contradiction
with (ii).

��

That is, to prove that a relation RA is redundant in a given dbi A we can
use any of the two properties (i) or (iii) of Fact 8 above.

3.1 Kernel Databases

Though in our examples we include databases with only one redundant relation,
databases may contain several redundant relations. We define a kernel database
as a dbi which has no redundant relations.

Definition 9. Let σ = 〈R1, . . . , Rs〉 be a relational vocabulary, let A be a dbi
of schema σ and let ρ = 〈Ri1 , . . . , Rit〉 be a sub-vocabulary of σ. The relations
RA

i1 , . . . , R
A
it

corresponding to the relations symbols in ρ are simultaneously re-
dundant in A if for each Rj ∈ ρ, there is an FOσ−{Ri1 ,...,Rit} formula ϕj such
that

ϕ
A|σ−{Ri1 ,...,Rit

}
j = RA

j .

The dbi A|σ−{Ri1 ,...,Rit} is a kernel if:

i. RA
i1 , . . . , R

A
it

are simultaneously redundant in A, and

ii. for noR ∈ σ−{Ri1 , . . . , Rit} isRA|σ−{Ri1 ,...,Rit
} redundant in A|σ−{Ri1 ,...,Rit}

Note that a dbi A can have more than one kernel. Think of a dbi A formed
by the relations RA

1 and RA
2 , where R1 and R2 are relation symbols of arities

r1 and r2, respectively. Then there could exist two formulas ϕ1(x1, . . . , xr1) and
ϕ2(x1, . . . , xr2), of vocabularies 〈R2〉 and 〈R1〉, respectively, such that ϕ

A|〈R2〉
1 =

RA
1 and ϕ

A|〈R1〉
2 = RA

2 .
Recall that a dbi A of some schema σ is rigid if its only automorphism is

the identity function. That is, the only bijection in dom(A) which preserves all
relation symbols in σ is the identity bijection. By Proposition 1, a dbi is rigid iff
there are no two elements a, b ∈ dom(A) with the same FO type for elements.
Then the following Fact is straightforward.
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Fact 10 Let σ be a relational vocabulary, let R ∈ σ and let A be a dbi of schema
σ. If A|σ−R is rigid then the relation RA is redundant in A.

Proof. If A|σ−R is rigid then, for every r ≥ 1,

tpFOσ−R

A|σ−R
(a1, . . . , ar) �= tpFOσ−R

A|σ−R
(b1, ..., br) whenever some ai �= bi(1 ≤ i ≤ r).

Thus, there are no two different r-tuples in A|σ−R with the same FO type for
r-tuples. On the other hand,

if tpFOσ−R

A|σ−R
(a1, ..., ar) = tpFOσ−R

A|σ−R
(b1, ..., br),

then it means that for all 1 ≤ i ≤ r is tpFOσ−R

A|σ−R
(ai) = tpFOσ−R

A|σ−R
(bi),

which since A|σ−R is rigid implies that for all 1 ≤ i ≤ r is ai = bi. Then, never
minding which relation R we add to A|σ−R, the FO types for different r-tuples
will still be different. Hence, RA is redundant in A. ��

Note that a dbi A which is not rigid can be “converted” to a rigid one by
adding a relation which “breaks” the equivalence classes defined in the set of
k-tuples of its domain, by equality of FO types for k-tuples. This can be done
for instance by adding a binary relation RA which is a total order in the domain
of the dbi, since a total order defines a rigid sub-structure in the domain of the
dbi. Let the domain of the dbi be {a1, ..., an}, then for every 1 ≤ i ≤ n there is
an FO formula ϕi(x) which says “x is the i-th element in the total order given
by RA in dom(A)”. Clearly, every such formula will be true in A only when x

is replaced by ai.
On the other hand, a dbi A which is rigid cannot be “converted” to a non-rigid

one by adding a relation, since the FO types for different k-tuples being different
in A, means that not minding which relation we add to A, by the definition of
type, the relation of equality of FO types for k-tuples will not change. Hence,
for an arbitrary relation RA, if A is rigid then the dbi of schema σ ∪ {R} form
by the dbi A plus RA is also rigid.

Then, the following Proposition is immediate.

Proposition11. Let σ be a relational vocabulary, let A be a dbi of schema
σ. If there are relation symbols R1, . . . , Rs in σ, such that A|σ−{R1,...,Rs} is
rigid, then all the relations RA

1 , . . . , R
A
s are simultaneously redundant in A, and

A|σ−{R1,...,Rs} is a kernel.

Corollary 12. Let σ be a relational vocabulary, let A be a dbi of schema σ.
Let {R1, . . . , Rs} and {S1, . . . , St} be two disjoint subsets of relation symbols in
σ. If both A|σ−{R1,...,Rs} and A|σ−{S1,...,St} are rigid, and there are no relation
symbols R and S in σ such that A|σ−{R1,...,Rs,R} and A|σ−{S1,...,St,S} are both
rigid, then A|σ−{R1,...,Rs} and A|σ−{S1,...,St} are both kernels in A.
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4 Computing Redundant Relations

First we will establish that in a fixed database of some schema σ, the problem of
deciding whether a given relation in the database is redundant is decidable, as
well as the problem of deciding whether there is any relation symbol in σ which
is a redundant relation in the given database.

Proposition13. The following problems are decidable:

i. Given a schema σ, a relation symbol R ∈ σ of arity k ≥ 1, and a database
A of schema σ, to decide whether RA is a redundant relation in A.

ii. Given a schema σ and a database A of schema σ, to decide whether there
is any relation symbol R in σ such that RA is a redundant relation in A.

Proof. (sketch). We use the formulas ψā of Proposition 6. We denote by ψA,ā

the formula built following that fact for the database A. The following algorithm
decides (i).

redundant := True;
For every ū ∈ dom(A)k {

Build ψA,ū(x̄); Build ψA|σ−R,ū(x̄);
For every v̄ ∈ dom(A)k {

# If ū and v̄ have different FO type in A and A|σ−R

If ¬
(
A |= ψA,ū(x̄)[v̄] ↔ A|σ−R |= ψA|σ−R,ū(x̄)[v̄]

)
then {

redundant := False; Return redundant } } };
Return redundant;

As relational database schemas have a finite number of relation symbols. We can
decide (ii) by simply checking, using the previous algorithm, whether for some
relation symbol R in σ, RA is a redundant relation. ��

Unfortunately, the algorithm we gave in the proof of Proposition 13 to de-
cide whether a given relation is redundant in a given database, has exponential
time complexity. Note that while the formulas ψA,ā of the previous proposition
and Proposition 6 can be built in polynomial time, their evaluation on a given
database takes time O(nn), since we must consider all valuations on the n vari-
ables of the formulas to that end. It is very unlikely that there is a polynomial
time algorithm for this problem since it is equivalent to deciding isomorphism.
In this section, we attack this problem by restricting:

a. the notion of redundant relations to relations which are definable in logics
which are less expressive than first-order logic.
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b. the class of databases to classes where deciding whether a relation is redun-
dant in a database which belongs to the class is in P .

We need first the following definition.

Definition 14. Let L be a logic, let σ be a relational schema, let A be a
database of schema σ, let r ≥ 1, and let R be an r-ary relation symbol in
σ. We say that RA is an L-redundant relation in the database A if there is an
L-formula φR(x1, . . . , xr) such that, for every computable query q, it holds that
q(A) = q(〈A|σ−R, φ

A|σ−R

R 〉), where 〈A|σ−R, φ
A|σ−R

R 〉, of schema σ, denotes the
reduced database A|σ−R augmented with the relation defined by the formula φR

in A|σ−R.

As a consequence of this definition and Proposition 7, we get the following.

Fact 15 Let R be a relation symbol in σ of arity r. The relation RA is FO-
redundant in a database A iff it is redundant in the sense of Definition 5.

Remark. In [Ferrarotti and Turull 2008] a restricted second-order logic called
SOω (which was first introduced in [Dawar 1998]) was studied, where second-
order quantifiers range over relations that are closed under equality of FOk types
of k-tuples, and it was proved that SOω captures the relational polynomial-time
hierarchy. In [Grosso and Turull 2009], the logic SOF was defined, where valu-
ations assign to r-ary second-order variables, relations which are closed under
equality of FO types for r-tuples. Note that from the perspective of the present
article, valuations in SOω can assign only FOk-redundant relations to second-
order variables, for some k, and valuations in SOF can assign only FO -redundant
relations to relational variables. However, the use of redundant relations as in-
termediate results turned out to be relevant as to expressive power. Even some
NP-complete problems can be expressed in the existential fragments of SOω and
SOF (recall that the existential fragment of SO captures NP and the existential
fragment of SOω captures relational NP), even when as we show in this article,
they do not alter the information contents of a database, in a given precise way.

4.1 FOk and Ck Redundant Relations

Fact 16 Let k ≥ 1,

i. a relation RA of arity 1 ≤ r ≤ k is FOk-redundant in a database A iff for

all r-tuples ū and v̄ in dom(A)r, tpFOk
σ

A (ū) = tp
FOk

σ

A (v̄) iff tp
FOk

σ−R

A|σ−R
(ū) =

tp
FOk

σ−R

A|σ−R
(v̄),

ii. a relation RA of arity 1 ≤ r ≤ k is Ck-redundant in a database A iff for all r-

tuples ū and v̄ in dom(A)r, tpCk
σ

A (ū) = tp
Ck

σ

A (v̄) iff tp
Ck

σ−R

A|σ−R
(ū) = tp

Ck
σ−R

A|σ−R
(v̄).

2947Ferrarotti F.A., Paoletti A.L., Torres J.M.T.: Redundant Relations ...



Proof. We prove item (i). Item (ii) is completely analogous. Running towards a
contradiction, let us suppose that RA is an FOk-redundant relation while there
exists tuples ū, v̄ ∈ dom(A)r such that

tp
FOk

σ

A (ū) �= tp
FOk

σ

A (v̄) and tp
FOk

σ−R

A|σ−R
(ū) = tp

FOk
σ−R

A|σ−R
(v̄).

If that is the case, then either ū ∈ RA and v̄ �∈ RA, or vice-versa. Let us assume
w.l.o.g. that ū ∈ RA and v̄ �∈ RA. Let φR ∈ FOk be the formula required by Def-
inition 14 to determine that RA is FOk-redundant. Since φA|σ−R

R has complete
FOk-types, it contains all tuples in RA plus any r-tuple in dom(A) whose FOk-
type in A|σ−R coincides with the FOk-type of some tuple in RA. In particular,
given that ū ∈ R, then both ū and v̄ are in φA|σ−R

R . Thus, φA|σ−R

R strictly includes
RA. Now, let q be the computable query expressed by the formula R(x1, . . . , xr).
We have that q(A) = RA is strictly included in q(〈A|σ−R, φ

A|σ−R

R 〉) = φ
A|σ−R

R ,
which contradicts our hypothesis.

In the other direction, suppose that for all r-tuples ū, v̄ ∈ dom(A)r ,

tp
Ck

σ

A (ū) = tp
Ck

σ

A (v̄) iff tp
Ck

σ−R

A|σ−R
(ū) = tp

Ck
σ−R

A|σ−R
(v̄).

Then RA has complete FOk-types in A|σ−R, i.e., if there is an r-tuple ā ∈ RA

whose FOk-type is α, then every r-tuple b̄ ∈ dom(A)r which has the same FOk-
type α than ā is also in RA. Let α1, . . . , αm the different FOk-types realized by
the tuples of RA. Then, there is an FOk-formula φR ≡ χ1 ∨ . . . ∨ χm, where for
1 ≤ i ≤ m, χi is the isolating formula of Proposition 2 for the type αi, such that
RA = φ

A|σ−R

R . Since φR is also a first-order logic formula, by Fact 8 it follows
that RA is a redundant relation in A and also a FOk-redundant relation. ��

Note that, for a fixed k, a relation RA can be FO -redundant in A and not
be FOk-redundant at the same time. Let us see an example.

Example 4. Let G be the database of schema τ = 〈E〉, where EG is the edge rela-
tion corresponding to the following directed graph formed by two disconnected
trees.

a b c d e

Let us assume that the distance from the root of the left hand side tree to the
nodes a b and c, as well as the distance from the root of the right hand side tree
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to the nodes d and e, is in all cases m. We also assume that the distance from a,
b, c, d and e to their corresponding leaves, is also the same in all cases. Clearly,
to add the relation RG

1 = {a, b, c} to the database G, would be redundant since
it can be defined on G by the following FO -formula:

φR1(x
′) ≡ ∃x∀y(¬E(y, x) ∧ ∃y z w(E(x, y) ∧ E(x, z) ∧ E(x,w) ∧ y �= z �= w)∧

“There is a path from x to x′ of length m”)

Note that, we need only three variables to express “there is a path from x to
x′ of length m” as we can re-use variables. For instance, if m = 3, that formula
could be ϕ(x′) ≡ ∃y(E(y, x′) ∧ ∃x′(E(x′, y) ∧ ∃y(E(y, x′) ∧ ∀x′(¬E(x′, y))))).
But, we need four variables to distinguish a, b and c from d and e, since they
also are at distance m from the root. In fact, since a, b, c, d and e, have all
the same FO3-type in G, there is no FO3-formula that can distinguish a, b and
c from d and e. Therefore, RG

1 is not FO3-redundant in G. If we add to G the
relation RG

2 = {d, e}, again we would have the same situation for exactly the
same reasons. That is, the relation RG

2 would be FO-redundant, but it would
not be FO3-redundant. Now, if we add the relation RG

3 = {a, b, c, d, e} to G, it
would be not only FO redundant, but also FO3-redundant.

Remark. For every k, FOk+1-types are refinements of FOk-types, i.e., the set of
r-tuples (1 ≤ r ≤ k) of a given FOk+1-type realized by a database A, is a subset
of (or equal to) the set of r-tuples of an FOk-type realized by A. Thus, we can
have a database A of some schema σ and a relation symbols R ∈ σ of arity r (1 ≤
r ≤ k) such that the corresponding relation RA has complete FOk+1-types in
the reduced database A|σ−R and does not have complete FOk-types in the same
reduced database. This implies that the relation of equivalence of FOk-types of
A is altered if we eliminate RA. That is, it is not true that, for all r-tuples ū and

v̄ in dom(A)r, tpFOk
σ

A (ū) = tp
FOk

σ

A (v̄) iff tp
FOk

σ−R

A|σ−R
(ū) = tp

FOk
σ−R

A|σ−R
(v̄). Therefore, by

Fact 16,RA is not FOk-redundant in A. However, it is FOk+1-redundant as there
is a FOk+1-formula φR such that φA|σ−R

R = RA. φR is simply the disjunction of
the FOk+1 isolating formulas (see Proposition 2) for the different FOk+1-types
realized in A by the tuples in RA.

The observation in the previous remark also holds if we replace the logic
FOk by Ck. Therefore, for a fixed k, it also holds that a relation RA can be
FO -redundant in A and not be Ck-redundant.

By a result of Grohe, equivalence in FOk is complete for polynomial time.

Proposition17. [Grohe 1996] For every k ≥ 1, the following problems are com-
plete for polynomial time:

i. Given two databases A and B of schema σ, is it the case that A ≡FOk B?
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ii. Given a database A of schema σ and two r-tuples ū, v̄ ∈ dom(A)r with

1 ≤ r ≤ k, is it the case that tpFOk
σ

A (ū) = tp
FOk

σ

A (v̄)?

The same is also true for Ck.

Proposition18. [Grohe 1996] For every k ≥ 1, the following problems are com-
plete for polynomial time:

i. Given two databases A and B of schema σ, is it the case that A ≡Ck B?

ii. Given a database A of schema σ and two r-tuples ū, v̄ ∈ dom(A)r with

1 ≤ r ≤ k, is it the case that tpCk
σ

A (ū) = tp
Ck

σ

A (v̄)?

Then we can check in P , FOk equivalence as well as Ck equivalence between
every two extensions of a database with any given pair of tuples. So, we have
the following important propositions.

Proposition19. Let k ≥ 1. Given a schema σ, a relation symbol R ∈ σ of
arity r (1 ≤ r ≤ k) and a database A of schema σ, to decide whether RA is a
FOk-redundant relation in A, is in P .

Proof. By Fact 16 (i), we only need to check whether, for every r-tuple ū, v̄ ∈
dom(A), it holds that

tp
FOk

σ

A (ū) = tp
FOk

σ

A (v̄) iff tp
FOk

σ−R

A|σ−R
(ū) = tp

FOk
σ−R

A|σ−R
(v̄)

Since there are nr r-tuples in A and, by Proposition 17, the test for equality of
FOk types is in P , it follows that these checks can be computed in polynomial
time. ��

The same proposition holds for the case of deciding Ck redundancy. We omit
the proof as it is similar to the proof for FOk redundancy.

Proposition20. Let k ≥ 1. Given a schema σ, a relation symbol R ∈ σ and a
database A of schema σ, to decide whether RA is a Ck-redundant relation in A,
is in P .

Remark. As to the existence for FOk-redundant relations of an equivalent result
to Proposition 7, unfortunately it seems very unlikely. By using the isolating
formulas for FOk-types for k tuples (denoted as χ in Proposition 2), we can
indeed build a formula φR ∈ FOk which defines R in A|σ−R, but that formula
is of size O(n(nk)). And the same is true also for Ck-redundant relations (see
[Otto 1996]).
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4.1.1 A Database Design Perspective of FOk and Ck Redundancy

From a database design point of view, a redundant relation RA in a database A
of schema σ, might indicate the existence of a computable query q which would
represent the design intention behind the inclusion of the relation symbol R in
σ. That is, it might indicate that there is a computable query q such that for
every database Ai of schema σ, q(Ai) = RAi . In particular, for Ck-redundant
relations, and also for FOk redundant relations, it might indicate that such query
q belongs to a well studied class of computable queries which is strictly included
on CQ. More precisely, in those cases q might belong to one of the classes that
characterize the expressive power of some variations of the reflective relational
machine (RRM) developed in [Abiteboul et al. 1998].

Roughly, an RRM is a deterministic Turing machine with an additional re-
lational store (rs) and a query tape. The input database, the output relation,
and a set of auxiliary relations form the rs. The machine can access relations in
the rs only through formulas of First Order Logic (FO), which in turn are gen-
erated dynamically in the query tape. This feature is what enforces preservation
of isomorphisms in the queries computed by the machine.

In [Turull 2004] a strict hierarchy was defined in CQ, in terms of the preser-
vation of equivalence in FOk. We denote the whole hierarchy as QCQω. For
every natural k, the layer denoted as QCQk was proved to be a semantic char-
acterization of the computation power of the RRM of [Abiteboul et al. 1998] if
we restrict to k the number of different variables which can be used in any FO
query generated during a computation (i.e., if we restrict what is known as the
variable complexity of the model). The class of RRM machines with variable
complexity k is usually denoted as RRMk.

A variation of RRM called reflective counting machine (RCM) was defined
in [Turull 2006] together with a characterization of its expressive power through
a hierarchy denoted as QCQCω

. This hierarchy was defined in terms of the
preservation of equivalence in Ck. For every natural k, we denote as QCQCk

the layer of the hierarchy QCQCω

which consists of those queries that preserve
equivalence in Ck. The RCM with variable complexity k (RCMk) is defined as a
variant of the RRMk in which the dynamic queries are formulas in the logic Ck,
instead of FOk. For every natural k, the layer denoted as QCQCk

characterizes
exactly the expressive power of the RCMk.

The following fact is a direct consequence of Definition 14 and the fact that
the QCQk and QCQCk

classes preserve equality of FOk types and Ck types,
respectively, in the set of k-tuples of a database.

Fact 21 Let σ be a relational schema, let A be a database of schema σ and let R
be a relation symbol in σ of arity r. For all query q ∈ QCQk (QCQCk

), if q(A) =
RA, then RA is FOk-redundant (Ck-redundant) in the sense of Definition 14,
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i.e., there is an FOk-formula (Ck-formula) φR(x1, . . . , xr) such that, for every
computable query q′, it holds that q′(A) = q′(〈A|σ−R, φ

A|σ−R

R 〉).

Example 5. Let σ = 〈E,F 〉 and let A = 〈DA, EA, FA〉 be a relational structure
of schema σ such that FA is the binary relation which contains the transitive
closure of the directed graph with domain DA and edge relation EA. Since
the transitive closure query belongs to QCQ3, it follows that there is an FO3-
formula that express it in A. Recall that for every fixed n, the query “there
is a path from node x to node y of length n” can be expressed by a formula
ψn(x, y) in FO3 by re-using variables. Suppose |DA| = n, the following FO3

formula φF (x, y) ≡ ψ1(x, y)∨ . . .∨ψn−1(x, y), when evaluated in A, returns the
transitive closure relation FA. Then, FA is FO3-redundant in A, since there is
an FO3 formula which satisfies Definition 14.

As to Ck redundancy, let us consider the query q = “pairs of nodes with the
same out-degree” on the same schema σ. This query is in QCQC2

and hence,
for every dbi, there is a C2-formula that expresses it. For instance, in a dbi A =
〈DA, EA, FA〉 where FA = q(A), if A has n vertices, the C2 formula ϕF (x, y) ≡∨

i≤n

(
∃≥iy(E(x, y))∧¬∃≥i+1y(E(x, y))∧∃≥ix(E(y, x))∧¬∃≥i+1x(E(y, x))

)
ex-

presses q. And hence FA is C2-redundant in A.

We believe this observation is of interest because on one hand, by Proposi-
tion 20, Ck-redundancy is decidable in polynomial time, and on the other hand,
for k ≥ 2, the classes QCQCk

capture a relevant portion of the class CQ of
computable queries. Following [Hella et al. 1996] though using a slightly differ-
ent perspective, we define the notion of equality of queries almost everywhere,
as follows:

μ(q=q′) = lim
n→∞

|{I ∈ DBσ : dom(I) = {1, . . . , n} ∧ q(I) = q′(I)}|
|{I ∈ DBσ : dom(I) = {1, . . . , n}}|

where q, q′ are computable queries of schema σ. If C is a class of finite structures,

μC = lim
n→∞

|{I ∈ DBσ : dom(I) = {1, . . . , n} ∧ I ∈ C}|
|{I ∈ DBσ : dom(I) = {1, . . . , n}}|

Let us consider the following result.

Proposition22. ([Babai et al. 1980, Immerman and Lander 1990]) There is a
class C of graphs with μC = 1 such that for all graphs I,J ∈ C we have I � J iff
I ≡C2 J . Moreover, for all I ∈ C and a, b ∈ dom(I), there is an automorphism
mapping a to b iff tpC2

I (a) = tpC2

I (b).

Then it follows that, for every computable query q there is a query q′ in QCQC2

(and, hence in each layer QCQCk

, for k ≥ 2) such that μ(q=q′) = 1, i.e., such
that q′ coincides with q over almost all databases. Furthermore, there is a large
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amount of relevant queries, which are not expressible in relational calculus (or
FO), that belong to the lower levels of the QCQω and QCQCω

hierarchies.

(i) Assume we have a database with a ternary relation R such that a tuple
(a, b, c) is in R iff the supplier a supplies part b to project c. Then, there is an
RCM3 machine which computes the query “suppliers who supply the biggest
amount of different parts supplied by any supplier in the database”. Thus, this
query is in the class QCQC3

.
(ii) The property of the graph being regular of even degree, or equivalently of
having an Eulerian cycle, is decidable by an RCM2 machine and then it is in
the class QCQC2

[Kolaitis and Väänänen 1995].
(iii) There is an RRM3 machine which decides whether a graph is connected
[Grohe 1998]. This shows that connectivity is in QCQ3.
(iv) The problem usually known as parity consisting in determining whether the
cardinality of the domain of a database is even, belongs to QCQC1

, i.e., there is
an RCM1 machine which decides parity.
(v) There is an RRM3 machine which computes transitive closure over graphs.
So, this problem is in QCQ3.
(vi) By a result from [Kolaitis and Väänänen 1995], there is an RCM2 machine
that decides whether a binary relation R is an equivalence relation with an even
number of equivalence classes. That means that this problem is in QCQC2

.

4.2 Subclasses of Databases

Now, we consider the second kind of restriction that we mentioned at the begin-
ning of this section.

Proposition23. Let k ≥ 1 and let C be a class of databases in which Ck (FOk)
equivalence coincides with isomorphism. Then, the problem of deciding whether
a given relation is redundant in a database which belongs to C, is in P , as well
as the problem of deciding whether a given database in C has any redundant
relation.

Proof. (sketch). By Proposition 20 the problem of deciding whether a given re-
lation is Ck-redundant is decidable in P . As we are considering only classes of
databases in which Ck equivalence coincides with isomorphism, then in those
classes deciding whether a given relation is Ck-redundant in a database coin-
cides with deciding whether it is FO-redundant. ��

Some examples of classes where Ck equivalence coincides with isomorphism
are: (i) the class of planar graphs, where there is a k ≥ 1 such that Ck equiv-
alence coincides with isomorphism; (ii) for all k ≥ 1, the class of graphs of k-
bounded tree-width [Grohe and Mariño 1998], where Ck+3 equivalence coincides
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with isomorphism; (iii) the class of trees, where C2 equivalence coincides with
isomorphism.

Regarding FOk, in the class of linear graphs [Ebbinghaus and Flum 1999],
FO2 equivalence coincides with isomorphism, and in the class of graphs with
color class size ≤ 3 [Grohe 1998], FO3 equivalence coincides with isomorphism.
In these two classes, the problem of deciding whether a given relation is re-
dundant, as well as the problem of deciding whether a given database has any
redundant relation, is in P .

Note that, even if Ck equivalence and FOk equivalence do not coincide with
isomorphism, we have the following result.

Fact 24 Let C be a class of databases in which isomorphism is decidable in P ,
then the problem of deciding whether a given relation is redundant in a database
which belongs to C, is in P , as well as the problem of deciding whether a given
database in C has any redundant relation.

Proof. Let C ⊆ DBσ, where for all dbi A, B in C, checking A � B is in P. Then,
by Proposition 1, ≡FO is also in P, so that 〈A, ā〉 ≡FO 〈A, b̄〉 can be checked in
P, where 〈A, ā〉 is a dbi of schema τ = σ ∪ {c1, . . . , cr} with constant symbols
c1, . . . , cr, and ā ∈ dom(A)r, for some r ≥ 1. Then the following algorithm is in
P and decides whether RA is redundant in A:

redundant := True;
For every ā ∈ RA{

For every b̄ ∈ dom(A)r{
If ¬

(
〈A, ā〉 ≡FO 〈A, b̄〉 iff 〈A|σ−R, ā〉 ≡FO 〈A|σ−R, b̄〉

)
then

redundant := False; Return redundant } };
Return redundant;

Note that 〈A, ā〉 ≡FO 〈A, b̄〉 iff tpFOσ

A (ā) = tpFOσ

A (b̄). ��

The classes of linear graphs, trees, planar graphs and graphs with bounded
tree-width are examples of such classes where isomorphism is decidable in P .
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